Implementing System/36
Advanced Peer-to-Peer
Networking

System/36 Advanced Peer-to-Peer Networking (APPN)
provides highly dynamic, fully distributed peer network-
ing for low-end processors. It is built upon existing
SNA Logical Unit 6.2 and Node type 2.1 support. APPN
presents System/36 users with a simplified model of
communications. The structure of the APPN subsystem
is outlined, with particular emphasis on the integration
of APPN functions with existing SNA support. The au-
thors describe how particular aspects of the APPN de-
sign have been tuned to the System/36 operating envi-
ronment.

dvanced Peer-to-Peer Networking' (APPN) pro-

vides enhanced communications capabilities
for both the System/36 and the growing number of
products that attach to the System/36 via Systems
Network Architecture? (SNA) protocols. System/36 is
a multiuser system intended for business applica-
tions. In 1985, System/36 introduced Advanced Pro-
gram-to-Program Communication (APPC), which in-
cluded support for sNa Logical Unit (Lu) type 6.2
and Node type 2.1 protocols. LU 6.2°* allows trans-
action processing programs in the System/36 to con-
verse with programs in remote processors via an
architected set of verbs. Node type 2.1° allows
adjacent® nodes to communicate with each other as
peers.

Figure 1 shows two System/36s directly connected
by a communication link. LU 6.2 sessions are estab-
lished between Logical Units’ in the two nodes.
When a program in one node communicates with a
program in the other node, it uses one of the avail-
able sessions to establish a conversation. From the
viewpoint of a transaction program, the Logical Unit
is a port through which communications services are
obtained.
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APPC is the base on which a number of System/36
user services have been built. These services include
the following: Distributed Data Management (DDM),
which provides remote file access, Display Station
Pass-Through (DspT), which provides remote log-on
capability; and sNA Distribution Services® (SNADS),
which uses APPC transaction programs to forward
data asynchronously from node to node. System/36
customers also construct their own distributed ap-
plications using APPC.

As the number of products implementing LU 6.2 and
Node type 2.1 has grown, so has reliance on this
means of providing logical connectivity among mini-
computers and workstations. The Node type 2.1
connection protocol, however, requires that peer
nodes be adjacent in order to communicate. Provid-
ing links between all pairs of communicating pro-
cessors is costly for customers with large numbers of
systems. System/36 APPN introduces full peer net-
working capability, eliminating the requirement that
peer nodes be adjacent in order to communicate.

System/36 nodes configured with the ApPN function
are called Network Nodes, they can serve as inter-
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Figure 1 System/36 Advanced Program-to-Program Communication
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mediate routing nodes for data passing through the
node en route to other destinations. Network Nodes
are interconnected to form networks of arbitrary
topology, as shown in Figure 2. End Nodes are type
2.1 nodes that do not provide network services® and
are attached at the periphery of the network. Any
two nodes in the network can communicate as peers.
LU 6.2 application programs such as DsPT, which were
previously limited to a pair of adjacent processors,
will now run without change to provide services
between nonadjacent peer processors.

Figure 3 shows a four-node ApPN network. Session
One extends from Logical Unit A to Logical Unit D
via Intermediate Routing Functions in Nodes X and
Y. The conversation between transaction programs
which makes use of Session One has no awareness
that the session is extended. The session may be
thought of as a set of session segments connected by
the Intermediate Routing Functions of nodes X and
Y. Each segment is commonly called a hop. APPN is
therefore said to provide a multihop data transport.
Session Two is a single-hop session and does not
require the use of an Intermediate Routing Function.

APPN networks incorporate dynamic control mech-
anisms. Changes in the status of nodes and links are
immediately broadcast to all Network Nodes. Each
Network Node uses this information to construct a
view of the current network topology. Paths between
nodes are constructed dynamically from this topol-
ogy information. Similarly, Logical Units in the
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network need only be defined in a single owning
Network Node. A dynamic directory function is
responsible for finding the Network Node owning
any particular Logical Unit.

Dynamic control has several advantages. The oper-
ator is relieved of a substantial system definition
burden because only information local to a Network
Node, such as directly attached links and local re-
sources, need be defined. The network does not cease
operation to incorporate such changes. There is less
likelihood of failure due to an incompatible defini-
tion among nodes. The network is highly adaptive
to failure and change. If a link fails, for example,
sessions which used the failing link may be re-estab-
lished using the best existing alternative paths.'® Dy-
namic function improves data transport perform-
ance because the best route between nodes can be
chosen at the time that the communications session
is established.

The APPN dynamic network control function is dis-
tributed. All Network Nodes have identical algo-
rithms for cooperating in the execution of functions
such as the broadcasting network topology infor-
mation and searching for network resources. This
distribution of function provides significant advan-
tages. The failure of a Network Node generally has
no effect on the continued operation of the rest of
the network because nodes do not perform central-
ized services on behalf of other nodes. An exception
occurs when the only path between two nodes is
through the failing node. The failure of such a node
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partitions the network into two or more independent
subnetworks, each of which continues to function
normally. Network Nodes share the processing cost
of performing network functions. When a node joins
an APPN network it receives services via the network
and, in exchange, performs its share of the distrib-
uted processing necessary to maintain these services.

Members of the Network Architecture and Protocols
group at the Thomas J. Watson Research Center had
for some time been exploring areas related to dy-
namic peer networking such as distributed broadcast
algorithms,'' dynamic routing,'? adaptive flow con-
trol, and deadlock prevention. Much of this work
was incorporated into a proposed design for net-
working small systems,'? a joint effort between the
Communication Products Division and the Re-
search Division. The design is based on the use of
the existing LU 6.2 verbs and protocols for sessions
while extending Node type 2.1 services to provide
multihop data transport and dynamic network con-
trol. Many problems needed to be addressed. Could
the design actually be implemented successfully in
small processors? How would such a network per-
form? Could network definition and operation be
made simple for the small systems environment
where the user is often the operator? How do char-
acteristics of the system environment for a particular
product affect the design of algorithms and data
structures for the implementation of networking
software? Interest in investigating such questions,
along with System/36 product interest in meeting
customer requirements, motivated the development
of System/36 APPN as a joint project of the IBM
Thomas J. Watson Research Center and the IBM
System Products Division.

APPN design overview

APPN functions may be viewed as a set of services.
Connectivity Services performs activities related to
changes in the physical connectivity of the network.
Each Network Node maintains a database describing
the current network topology. As a node becomes
aware that its state or the state of its attached links
has changed, it makes use of a distributed broadcast
algorithm to spread the information throughout the
network. Network Nodes then update their databases
accordingly.

Directory Services identifies the node containing a
specified Logical Unit. It may perform a distributed
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Figure2 A mesh of Network Nodes with attached End Nodes
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search of the network or simply verify information
which has been previously cached. It is necessary to
know where an LU is located in order to establish a
communications session to that LU.

Route Selection Services identifies the best path avail-
able 1o a specified node in the network. A shortest-
path algorithm is applied to the database of network
topology which is maintained in each Network
Node.

Session Activation establishes a communications ses-
sion between a pair of Logical Units located any-
where in the network using the path provided by
Route Selection Services. Information is established
at each node in #he session path so that data can
later be transported on the session.

Data Transport performs the actual flow of data
traffic between two session endpoints, including the
flow through all intermediate routing nodes on the
path. At each hop, data must be properly routed to
the next node on the session path. The flow of data
is throttled and messages are segmented when nec-
essary.

User view of System/36 communications

The System/36 is designed for exceptional ease of
use. All user and operator functions are menu-
driven. Context-sensitive help screens are available.
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A wide variety of communications functions, called
subsystems, are accessed via a single Interactive
Communications Facility (ic)."* This allows the
same basic set of menus to be used for the configu-
ration, activation, control, and deactivation of all
communications subsystems. Thus, the System/36
was an excellent environment in which to test the
premise that the distributed and dynamic nature of
the APPN design results in networks that are very
easy to establish and operate.

Configuring the communications environment, ac-
tivating and deactivating communications resources,
conversing with programs in remote nodes, and
monitoring communications status are frequently
performed communications activities. The sections
that follow describe a functional view of each of
these activities and the changes which have been
made in order to integrate the APPN subsystem into
the existing System/36 communications framework.
Although the changes have been introduced because
APPN requires a different functional model from
other subsystems, they have the effect of enhancing
usability and substantially reducing system defini-
tion.

Line configuration. Configuration is performed at a
System/36 display station via menus. The user de-
fines a Line Configuration for each communications
line attached to the System/36. The Line Configu-
ration specifies characteristics of the line and the
Remote Nodes attached to the line. A simplified
Line Configuration is shown for one of the three
lines illustrated in Figure 4, APPN required no
changes to Line Configuration since the existing
menus provided information about adjacent nodes
and links, and APPN network control functions were
designed to dynamically obtain this information for
nonadjacent nodes and links.

Subsystem configuration prior tc APPN. The user
defines a Subsystem Configuration describing each
communications Subsystem which is to be activated
on a line. The Subsystem may be thought of as the
Local Logical Unit. The Subsystem Configuration
names Remote Logical Units to which the Local
Logical Unit can establish communications sessions.
The Subsystem Configuration names a specific Line
Configuration and can only be used to establish
communications on that line. Each Remote Logical
Unit is mapped to a specific Remote Node named
in that Line Configuration. Associated with each
configured Remote Logical Unit the user defines a
number of Modes that specify a set of session char-
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Figure3 System/36 Advanced Peer-to-Peer Networking
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acteristics, such as maximum allowable message size,
for sessions associated with that Mode. The Subsys-
tem Configuration can be viewed as describing logi-
cal connectivity. An example is shown in Figure 5.
The operator at node YKTN must perform a subsys-
tem configuration for each of the local Logical Units
JIM, ALAN and BOB. The subsystem configuration for
local Logical Unit ALAN must include descriptions
of remote Logical Units MARY, ALEX, and JUNE. A
set of Mode definitions, not shown in the figure,
must be associated with each of the remote Logical
Units.

Readers familiar with the System/36 are aware that
the terms Logical Unit, Node, and Mode do not
appear on configuration menus. They are replaced
by the terms Location, System, and Session Group.
This i1s done so that the same terminology can be
applied to the configuration of both SNA and non-
SNA Subsystems. It would be confusing if an sNa
term such as Logical Unit were applied to non-SNA
subsystems. System/36 therefore uses non-SNA ter-
minology to describe all configurations. SNA termi-
nology is used consistently in this paper.

APPN subsystem configuration. APPN simplifies
Subsystem Configuration. It is not possible to asso-
ciate an instance of the APPN subsystem with a single
line, as is done in other subsystems. Data received
on one line may be forwarded on a different line.
The ApPN Subsystem Configuration does not, there-
fore, specify one Line Configuration with which it is
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to be associated. A single APPN Subsystem Configu-
ration is applied to all Line Configurations on which
APPN is active. The association between the Subsys-
tem and the line is made at the time that the Sub-
system is made active on the line rather than at the
time of configuration.

In the APPN environment, it is not necessary to
configure Remote Logical Units'® since Directory
Services dynamically associates Remote Logical
Units with the Nodes in which they reside. Excep-
tions are those Logical Units which reside in adjacent
End Nodes. The identity of these Logical Units
cannot be learned dynamically since Directory Serv-
ices does not extend to the End Node.

If Remote Logical Units are no longer configured, it
follows that Mode definition can no longer be per-
formed for each Logical Unit. The user instead de-
fines a master list of Mode names and associated
characteristics which serve all Remote Logical Units.
This significantly reduces system definition require-
ments at the cost of some small loss of granularity
in the specification of session characteristics. An
example of the simplified ApPN Subsystem Configu-
ration is shown in Figure 6. One local Logical Unit,
BOB, is defined. It serves all lines on which the APPN
subsystem is active. The only remote Logical Units
requiring definition are in the adjacent End Node,
ROCH. Information about other Logical Units is
learned by means of APPN’s dynamic directory func-
tion. Note that the APPN network of Figure 6 is larger
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than the pre-APPN network shown in Figure 5, but
its system definition requirements are substantially
smaller.

When defining Modes, System/36 users have the
option of specifying a number of pre-established
sessions. These sessions become active when the
Mode becomes active and they remain active
whether or not they are being used. Such sessions
are useful because they are available immediately to
transaction programs without requiring time for ses-
sion activation. In the APPN environment, maintain-
ing sessions for long periods of time carries a penalty.
These sessions will not be able to make use of path
improvements caused by changes in network topol-
ogy. While pre-established sessions may be available
quickly, they may not perform as well as sessions
established as needed.

Activation of Subsystems other than APPN. A Re-
mote Logical Unit must be explicitly activated before
any communications sessions can be established to
that Logical Unit. Activation is performed by issuing
an ENABLE command naming the Logical Unit or an
entire Subsystem Configuration. In the latter case all
Logical Units named in the Configuration are acti-
vated. The first ENABLE of a Remote Logical Unit
belonging to a particular Subsystem activates the
Subsystem itself. Any Modes to be used for sessions
to the Remote Logical Unit must also be activated.
This is done by issuing a STRTGRP command naming
the Mode and associated Logical Unit.
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Figure 4 Line configuration
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Figure5 Pre-APPN subsystem configuration

The user does not explicitly request line activation.
In the non-APPN environment, there is only one link
on which the Logical Unit may be reached so the
link can be activated automatically when the Remote
Logical Unit is activated.

APPN Subsystem activation. The above activation
model changes in the APPN environment. In an APPN
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network the number of Remote Logical Units and
associated Modes could grow quite large. It would
be an unreasonable burden on the user to perform
explicit activation and deactivation. This require-
ment has therefore been eliminated for AppN. Logical
Units and Modes are dynamically activated as they
are needed. The ENABLE command is still used in
the APPN environment, but its primary purpose is
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the activation on lines in which the APPN subsystem
is being used.

Conversation. Transaction programs are application
programs which have embedded verbs for program-
to-program communications. Examples of such
verbs are ACQUIRE, which obtains a session to a
specified Logical Unit, EVOKE, which establishes a
conversation over the session, and pUT, which sends
data from one program to another on the established
conversation.'® Transaction programs which were
written to run on the APPC subsystem will run with-
out change on the APPN subsystem. Conversation
protocols are performed only at the endpoints of a
session. They are not sensitive to whether the under-
lying session is a single-hop session established by
the APPC subsystem or a multihop session established
by the APPN subsystem.

Monitoring. System/36 provides a number of Status
functions that allow the user to view communica-
tions activities. The status of links, Logical Units,
Modes, and sessions can be displayed. Although
these displays have been modified to reflect changes
in the APPN functional view, they do not provide the
global information which is necessary to manage and
troubleshoot a network. APPN uses the fact that
network topology is maintained in every Network
Node in order to provide useful network manage-
ment information. A utility called APPNINFO accesses
the topology database in order to display the current
status of nodes and links throughout the network.

System/36 communications structure

The System/36 provides a multiuser, multitasking
environment via its operating system, the System

Figure 6 APPN subsystem configuration
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Figure 7 System/36 communications structure
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Support Program (SsP). Systems can have up to seven
megabytes of main storage and 1.6 gigabytes of disk
storage. Ten communications lines are available with
line speeds of up to 56K bits per second. 1BM Token
Ring, X.25 packet network, Binary Synchronous
Communications (BsC), and Synchronous Data Link
Control (SDLC) are supported line protocols.

Task size is imited to 64K bytes. Tasks requiring
additional space make use of transients which over-
lay portions of the task when the functions they
perform are needed. Much use is made of transients
in both the operating system and communications
subsystems.

Real storage allocated to tasks by the operating sys-
tem is called System Queue Space (sQs). Virtual
storage, called Task Work Space (Tws), is also avail-
able. An area of disk is designated as a Work Space.
The operating system allocates TWS to tasks out of a
Work Space in much the same manner as it allocates
sQs out of its pool of available real storage. Virtual
storage must be mapped to real storage before it can
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be referenced in a program. Mapping requires a disk
access unless the storage to be assessed has remained
in real storage since an earlier mapping operation.

A portion of the System/36 communications struc-
ture is shown in Figure 7. The figure shows three
SNA subsystems which have transaction programs as
their end-users.'” Each box represents a task. Mes-
sages are passed between tasks via operating system
queues.'® The top row of boxes represents transac-
tion programs. ICF Data Management routes verbs
issued by the transaction programs to the subsystems
for which they are intended. In the case of the
Finance Subsystem,'® all of the SNA support except
the Data Link Control*® (DLC) is contained in a single
task. The other two subsystems shown split this
support between two tasks. The SNA Upline Facility
(sSNUF) allows communication with host subsys-
tems.?! It provides transaction programs with a dif-
ferent set of functions than the APPC subsystem. The
interpretation of such functions is performed by the
Presentation Services layer of SNA. Presentation Serv-
ices are therefore implemented in separate SNUF and
APPC tasks. Lower-level functions, such as the pacing
and segmentation of data messages, are common to
the two subsystems. These functions are placed in a
single task, which is called Combined SNA (C/SNA).%
C/SNA implements the Data Flow Control, Trans-
mission Control, and Path Control layers of the sNa
architecture. There is only a single instance of the
C/SNA task, and it provides single-threaded execution
of communications functions. When C/sNa is posted
with an external event, such as the receipt of a
message from ICF Data Management or a message
segment from the DLC, that external event is com-
pletely processed before the next external event is
accepted for processing.

APPN implementation overview. APPN Session Es-
tablishment, Data Transport, and portions of Con-
nectivity Services are implemented as modifications
to existing communications support. Most of the
change occurs in the C/SNA task where the SNA
functions to be extended are located. c/sNa is divided
into subcomponents. Three new subcomponents
were created: Session Connection performs the In-
termediate Routing Function and other Data Trans-
port functions, Session Connection Manager per-
forms intermediate session establishment, and Node
Buffer Manager dynamically allocates buffer re-
sources to sessions, Session Connection is written as
part of C/SNA mainline processing in order to per-
form the Intermediate Routing Function with a min-
imum of delay. Session Connection Manager and
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Node Buffer Manager are written as transients and
are obtained from disk as needed.

In addition to the new components described in the
previous paragraph, modifications were also made
to existing C/SNA subcomponents. The changes were
implemented so as to be transparent to the other
subsystems which share c/SNA. A software switch
setting in the C/SNA task indicates whether the APPN
modifications should be executed, in which case the
node functions as a Network Node, or should not be
executed, in which case the node does not perform
network services. In the latter case the node may be
attached to an APPN network as an End Node. The
node may not perform both roles simultaneously.
The choice is made at the time of system configura-
tion.

There is no new APPN task equivalent to the APPC or
SNUF tasks. The AppC and SNUF tasks perform Pre-
sentation Services functions. APPN uses APPC Presen-
tation Services; this is what allows APPC transaction
programs to run without change in the APPN envi-
ronment.

APPN Directory Services, Route Selection Services,
and the portion of Connectivity Services which
maintains the Topology Database are implemented
as two new application tasks. They are called Direc-
tory Services (DsS) and Route Selection and Topol-
ogy Database Update (rRss). Two additional transac-
tion tasks, Send and Target, allow control informa-
tion to be exchanged with adjacent Network Nodes.
The Send task establishes an LU 6.2 conversation with
a Target task in an adjacent Network Node when it
has network control information, such as a topology
database update message or a directory search mes-
sage, to send. In order for the Directory task in one
Network Node to send a message to the Directory
task in an adjacent Network Node, it posts the
message to the local Send task. The Send task estab-
lishes an LU 6.2 conversation to a Target task in the
adjacent node and sends the message. The Target
task then posts the message to the destination Direc-
tory task. A fifth task, the Control Point Manager
(MGR), is responsible for synchronization and coor-
dination among the network control tasks. The five
tasks are known collectively as the Control Point.

If only a single session were used to carry control
messages between adjacent Network Nodes, it is
possible that the Send tasks in the two nodes would
contend for the use of the session. This would hap-
pen, for example, if the two nodes attempted to send
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directory search messages to each other simultane-
ously. In order to avoid such contention, two sessions
are maintained for the exchange of information be-
tween adjacent Control Points, one for each direc-
tion of data flow. These two sessions may be viewed
as simulating a single full duplex session. Conversa-
tions between adjacent Control Points are started as
needed, but the sessions they use are maintained as
long as the link between the two Control Points
remains intact. Figure 8 shows Control Points in two
adjacent nodes and the pair of sessions on which
they broadcast network control messages.

All of the Control Point tasks except the Target task
become active when the APPN subsystem becomes
active. An instance of the Target task becomes active
cach time a Send task in an adjacent node establishes
an LU 6.2 conversation for the purpose of broadcast-
ing control information.

Implementation issues

Characteristics of the System/36 environment had
considerable influence on the APPN implementation.
This section describes portions of the implementa-
tion with particular emphasis on those issues which
are specific to the System/36 environment.

Link activation. As described earlier, link activation
for subsystems other than APPN is transparent to the
user. C/SNA activates a link when a Remote Logical
Unit associated with that link is activated. APPN
differs from other subsystems in that it does not
associate a Remote Logical Unit with any particular
link. The Node in which the Logical Unit resides
might be reached by a varniety of paths. In order to
use C/SNA’s existing link activation function, APPN
creates one Remote Logical Unit associated with
each link on which the APPN Subsystem has been
ENABLEd. This Logical Unit has the same name as
the Remote Node associated with the link. The
association between the Logical Unit and the link is
used only for purposes of link activation. Route
Selection Services ignores the association when com-
puting paths.*

The creation of a Remote Logical Unit associated
with the link allows C/SNA’s existing link activation
function to be used by APPN. The operator continues
to use the familiar ENABLE command, but its primary
purpose in the APPN environment is link activation
rather than Logical Unit activation.

Endpoint session activation. Communications ses-
sions are established by sending a session activation

message (BIND) from one endpoint of the session to
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Figure8 Sessions between APPN control points
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the other and receiving a response message in reply.
The BIND response allows session parameters to be
negotiated and indicates that activation has been
completed. Data structures required for the transport
of data on the session are established at each node
in the session path.

Prior to the implementation of APPN, C/SNA provided
support to the APPC subsystem for the establishment
of single-hop LU 6.2 sessions. APPN uses this session
activation function, with some modifications, at the
endpoint nodes of multihop sessions. Session acti-
vation in intermediate nodes is a new function that
1s described later.
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The session activation function, which existed in
C/SNA prior to APPN, expected a specific environment
to be present at the time of its invocation. It required
(1) an active Remote Logical Unit, (2) an active
Mode, and (3) knowledge of the link on which the
BIND was to be sent. The first two requirements were
met because the operator performed explicit Remote
Logical Unit activation by issuing an ENABLE com-
mand and explicit Mode activation by issuing the
STRTGRP command. The third requirement was met
because there was only one link on which any par-
ticular Remote Logical Unit could be reached. In
the APPN environment the operator is not required
to explicitly activate Remote Logical Units or Modes
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Figure 9 Muitihop session activation
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and the link on which the BIND is to be sent depends
on the route which is computed for the requested
session.

The following paragraphs describe the sequence of
session activation events which occur at session end-
points, including the new functions which have been
inserted to allow activation to proceed in the APPN
environment. The sequence is shown graphically in
Figure 9. The description begins with a transaction
program requesting the use of an LU 6.2 session in
order to establish a conversation with a Remote
Logical Unit. The figure depicts the events which
occur as a BIND flows from session origin to desti-
nation.

Dynamic activation of Remote Logical Units. A
transaction program issues an ACQUIRE verb to ICF
Data Management indicating that a session has been
requested. The Remote Logical Unit named in the
verb is matched against a list of active Logical Units
in order to route the request to the proper Subsystem.
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If no Logical Unit is found, it is assumed that the
Remote Logical Unit is associated with the APPN
subsystem and should be activated dynamically.*
The Logical Unit to be activated might be anywhere
in the APPN network, and there is no adjacent link
with which it is associated. Dynamic activation of
the Implicit Logical Unit involves little more than
the creation of a data element naming the Logical
Unit and serving as a place to anchor sessions asso-
ciated with that Logical Unit. The System/36 user
can observe whether a Logical Unit has been acti-
vated dynamically by i1ssuing the Subsystem Status
(D1) command at a display station. Dynamically
activated Logical Units show a dashed line where
the associated line number would ordinarily be dis-
played.

Dynamic activation of modes. The session activation
request is passed from ICF Data Management to the
Appc task. The appc task keeps a count of the
number of sessions activated per Mode to ensure
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that session limits are not exceeded. This processing
depends upon the existence of an active Mode. The
APPC subsystem requires that Modes be explicitly
activated by operator command prior to session
activation. APPN allows the dynamic activation of
Modes during session activation. Session activation
is suspended while a function called Change Number
of Sessions (CNOS) is performed. A CNOS transaction
program establishes a conversation with a CNOS
transaction program at the Remote Logical Unit.
Session limits are negotiated and the named Mode
becomes active at both the origin and destination
Logical Units.”® When Mode activation is com-
pleted, the APPC task can increment its count of
active sessions and verify that session limits have not
been exceeded.

Where to forward the BIND. The session activation
request is next passed from the APPC task to the
C/SNA task. A Remote Logical Unit and Mode are
active, but the link on which the BIND should be sent
is still unknown. c/SNA requests that the Control
Point provide a route through the network to the
node in which the destination Logical Unit resides.
Directory Services resolves the named destination
Logical Unit to the name of the node in which it
resides. Route Selection Services computes the opti-
mal path to the Remote Node based on a character-
istic, called the Class of Service (C0Ss), associated with
the Mode. ¢/sNA examines the route to find the first
link in the path. This is the link on which the BIND
is to be sent. With an active Remote Logical Unit
and Mode, and knowledge of the link on which the
BIND is to be forwarded, C/SNA is able to use the LU
6.2 session activation function which served the Appc
subsystem prior to the introduction of APPN.%® This
1s one of many instances where System/36 APPN was
able to build upon existing function provided by
C/SNA. The fact that ApPN is designed as an extension
to Node type 2.1 significantly reduces the effort
required to implement APPN when the type 2.1 node
already exists.

Session activation at the destination. Making use of
the activation code at the session destination is some-
what simpler. When Mode activation is performed
dynamically at the session origin, the Mode is also
activated at the destination. It is therefore unneces-
sary to dynamically activate the Mode at the desti-
nation. The link on which the BIND response flows
is the same link on which the BIND was received. It
is therefore unnecessary to identify the link on which
the BIND response is to be sent. The only remaining
requirement is the dynamic activation of the Remote
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Logical Unit. The node receiving a BIND may know
nothing about the Logical Unit which originated the
BIND. When the BIND reaches C/SNA via the DLC,
C/sNa dynamically activates the Remote Logical
Unit in a manner similar to the way in which the
ICF task does this in the session origin node.

Intermediate session activation. Session activation at
Intermediate Routing Nodes performs different
functions than the activation at Session Endpoint
Nodes. Activation in the Intermediate Routing Node
must establish the environment in which data mes-
sages can be passed through the node. A session

Pacing allows the receiver of data to
tell the sender that a specific
quantity of data may be sent.

passing through an Intermediate Routing Node is
represented by a pair of data elements. One element
represents the session segment or hop over the link
on which the BIND has been received, and the other
represents the segment on which the BIND is for-
warded. This pair of data elements is called a Session
Connector. The receiving element saves the identity
of the inbound link and a 17-bit address assigned by
the previous node and carried with the BIND. The
sending element saves a new 17-bit address which
identifies the next segment of the session and points
to the link on which the BIND is forwarded. The
identity of this link is determined by examining the
next element in the path which is carried in the BIND.
The receiving and the sending data elements point
to each other. Intermediate node session activation
provides the environment which allows data mes-
sages to travel through intermediate nodes of the
session.

After the session has been established and data mes-
sages begin flowing, the Session Connector is used to
route messages through the Intermediate Routing
Node. The 17-bit address carried in the header of
the message and the link on which the message is
received uniquely identify a data element. This data
element is one of a pair of data elements forming
the Session Connector. The partner data element
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Figure 10 Session connection
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provides the address carried by the message on its
next hop and the identity of the link on which the
message is to be forwarded.

An example is shown in Figure 10. A message arriv-
ing on link 4 searches through the pool of session
data elements associated with link 4 in order to find
one with an address of 7, matching the address
carried in its header. This data element, labeled d in
the figure, points to a partner data element, labeled
¢, associated with link 1. The pair of data elements,
¢ and d, form a Session Connector. The Session
Connection function changes the address in the mes-
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sage from its inbound address of 7 to its outbound
address of 12 and forwards it on link 1, as indicated
by the Session Connector.

Flow control and buffer management. Data messages
flowing on a session are paced on each hop or
segment of the session path. Pacing allows the re-
ceiver of data to tell the sender that a specific quan-
tity of data may be sent. The receiver guarantees that
sufficient storage is available to buffer the data on
arrival.

Pacing is performed independently for each of the
two directions of data flow on the session segment.

sutan €T AL 441




Figure 11

Fixed vs. adaptive pacing
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Each instance of pacing has a sender and a receiver.
The receiver grants the sender permission to send a
specified number of messages. The number of mes-
sages is known as the pacing window. The receiver
must ensure that sufficient storage will be available
to buffer the messages when they are received. The
exact size of the messages is not known by the

Adaptive pacing facilitates more
efficient buffer management.

receiver, so it reserves storage for the largest possible
quantity of messages which can be sent on the ses-
sion. The maximum size of messages is fixed at the
time of session establishment. By granting permis-
sion to send data only when there is sufficient storage
to buffer the data, the receiver maintains compiete
control over the flow of data into the node.

The pre-existing System/36 APPC subsystem, which
allowed only single-hop data transport, implemented
fixed window pacing. When the sender asked the
receiver for a new window, the receiver always
granted a window of a particular size. The amount
of storage required to buffer received data was there-
fore fixed and could be allocated at the time of
session establishment.

Fixed pacing is not an attractive alternative in the
APPN environment. An Intermediate Routing Node
may have many sessions routed through it. Each of
these sessions would require sufficient storage to
receive data transmitted in both directions. Buffer
requirements to support fixed windows could ex-
haust available storage in Intermediate Routing
Nodes, thus limiting the number of sessions sup-
ported through the node. If the problem is solved by
reducing the size of the fixed windows, this may
result in poor utilization of available bandwidth on
the communications links. Sessions may wait for
permission to send data while links are idle.

The solution used in APPN is adaptive window pac-
ing. The pacing window is allowed to vary. Window
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size is computed by the receiver on the basis of the
sender’s utilization of previous windows, the availa-
bility of buffers in the receiver, and the level of
congestion in the receiver as measured by the num-
ber of received messages which have not yet been
processed. Storage available in an Intermediate
Routing Node is divided fairly among the sessions
according to these criteria.

Figure 11 shows a comparison of fixed and adaptive
pacing. In both cases the sender asks for a new
window with a pacing request (PRQ) attached to the
first message of each window. The receiver grants
the request with a pacing response (PRS). In the case
of fixed pacing, the size of the window is assigned at
session initiation. The pacing response always grants
a window of the assigned size. In the case of adaptive
pacing, the pacing response carries the size of the
window being granted.

Adaptive pacing facilitates more efficient buffer man-
agement, as shown in Figure 12. The figure shows
two ways of managing a pool of ten buffers. Fixed
pacing, shown at the left, requires that each session
be allocated a fixed number of buffers dedicated to
that session. Because the window size is fixed, buffers
cannot be shifted from one session to another ac-
cording to current need. A request for a new session
cannot be honored since buffers are not available.
Adaptive pacing, shown on the right, requires that
only one buffer be dedicated to each session for the
purpose of deadlock prevention. Other buffers are
distributed among the sessions in such a way as to
achieve high buffer utilization. The association be-
tween buffers and sessions is dynamic. A change in
the buffer allocation of a session is reflected in the
size of the window it grants. In the example shown,
two buffers are available to establish new sessions or
to increase the windows of current sessions. If these
buffers are allocated, it is still possible to start a new
session by decreasing the buffer allocation of one of
the existing sessions.

The sender’s participation in the window size deter-
mination is an important feature of APPN flow con-
trol. The sender requests a new window when it
sends the first message of its current window. When
the receiver gets the request, it sends back a reply
which includes the window size. Between the time
that the sender requests the new window and the
time it receives the reply, the sender may send mes-
sages using its current pacing window. When the
sender receives the response to the window request,
it takes the opportunity to gather some useful infor-
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Figure 12 Dedicated vs. pooled buffer allocation
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mation. The sender looks at its queue of outbound
messages. If there are messages to be sent and if the
current pacing window has been exhausted, this in-
dicates that the sender could make use of a larger
window. The sender remembers this, and on the
next window request it asks the receiver to provide
a larger window. The receiver may not grant this
request. It is just one piece of information used by
the receiver in determining window size.

The adaptive pacing function was added to the Con-
nection Point Manager subcomponent of C/SNa,
which previously performed only fixed window pac-
ing for session endpoints. It was also added to the
new Session Connection subcomponent of C/SNA,
which performs data transport through intermediate
nodes on a session path. Another new component,
the Node Buffer Manager, is responsible for deter-
mining the window size that the receiver grants to
the sender. The rules for determining window size
for a session are quite simple. The queue of messages
received, but not yet processed, is examined. If this
queue is long, the window is one less than the
previous window. If the queue is short and the sender
has requested a larger window, the new window is
one larger than the previous window. In all other
cases, the window size is the same as that of the
previous window. These rules may be pre-empted by
an additional set of rules related to buffer availability.
The structure of AppN buffer management and the
manner in which buffer availability may determine
window sizes are described in the sections which
follow.

Managing real storage. The Node Buffer Manager
maintains a 10K-byte pool of real storage and a 1M-
byte pool of virtual storage. It does not physically
allocate storage to sessions from its pools. The op-
erating system performs the physical allocation from
either real or virtual storage when data messages
actually arrive in the node and must be buffered.
The Node Buffer Manager maintains an accounting
of the real storage which has been allocated to con-
tain arriving data and of the virtual storage which
has been reserved at the time that pacing windows
are granted.

The tracking of real storage usage is done for per-
formance purposes. It is much more efficient to
buffer data in real storage than in virtual storage.
Real storage is, however, a scarce resource in the
System/36. If too much real storage is used by APPN,
the performance of operating system functions may
be seriously degraded. The Node Buffer Manager’s
10K pool of real storage places a limit on the amount
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of real storage which can be used by APPN data
transport. A threshold value is associated with the
pool. When usage crosses this threshold, the node is
said to be in a state of real storage depletion. When

Virtual storage is tracked to prevent
deadlocks.

the Node Buffer Manager is in this state and a request
is made to supply a session with a new window
value, the request is honored in a manner similar to
any other window request. No special attempt is
made to reduce the size of the window that is asso-
ciated with the session requesting the new window.
There is no reason to believe that the session making
the request is a significant cause of the node being
in depletion state. Instead, a search is performed to
find the session which currently holds the largest
window. The next time a window request is made
for this greedy session, the window granted will be
one less than its current window. In this way, window
sizes are gradually reduced until real storage usage
drops below the threshold. This scheme does not
prevent the 10K real storage limit from being
reached, but it does reduce the likelihood of this
occurrence. If the limit is reached, messages received
above the threshold are buffered in virtual storage
and some performance degradation is observed. A
goal of buffer management is to maintain high
throughput by adjusting window sizes so that real
storage can be used for buffering messages most of
the time.

Managing virtual storage. Virtual storage is managed
in such a way as to ensure that there is always storage
available to receive data. This guarantees freedom
from deadlock. The Node Buffer Manager reserves
virtual storage for a session each time a new window
is granted. Data messages may actually be buffered
in real storage when they arrive. The reservation
simply guarantees that if real storage is not available,
there will be sufficient virtual storage to buffer the
data. When the data messages are forwarded to the
next node or to a user within the node, and the buffer
is emptied, the buffer is reclaimed by the Node Buffer
Manager. The reservation associated with the buffer
is canceled and the count of available virtual storage
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is incremented. The Node Buffer Manager is not
permitted to reclaim storage until the buffer has been
physically deallocated by the operating system and
is ready for reuse. Deadlock may result if the storage
has been logically reclaimed but is not physically
available.

Virtual storage is not as scarce a resource as real
storage; however, it is not unlimited. Virtual storage
reserved for APPN data transport is limited by the
amount of disk storage which is dedicated for this
purpose. An excessively large pool would waste disk
storage resources, while a pool that is too small would
limit the number of sessions supported by the node.
System/36 APPN uses a one-megabyte pool. The
System/36 operating environment permits the reser-
vation of this pool of virtual storage exclusively for
the use of APPN data transport, while still allowing
physical allocation of blocks of storage from the pool
to be performed. by the operating system. Without
this feature, the Node Buffer Manager would be
forced to physically allocate the entire pool of storage
in order to reserve it. It would then have to imple-
ment its own storage manager in order to divide the
pool into smaller segments when storage is actually
needed to buffer received data.

The dedicated buffer. When a session is established,
it is given an initial window of one, and a corre-
sponding single buffer is reserved from the virtual
storage pool. This buffer is dedicated to the session
for the life of the session. In this way every session
always has at least one buffer, guaranteeing that
windows will not be reduced to zero due to lack of
buffers. Not only does data transport cease on a
session when the window is reduced to zero, but
there is also a potential for deadlock.

The first message received in a window always carries
a request for a new window. The message may be
viewed as occupying the single dedicated buffer as-
sociated with the session. In an Intermediate Routing
Node the message is processed by forwarding it to
the next node on the session path. When the message
leaves the node, the buffer which contained the
message is physically deallocated and reclaimed by
the Node Buffer Manager. The request for a new
window carried by the message is then processed.
The dedicated buffer which was just reclaimed by
the buffer pool is reserved once again as part of the
new window being granted.

It is possible that between the time the buffer is
reclaimed and the time that it is again reserved, a
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window request from a different session could steal
the dedicated buffer from the session to which it
belongs. Since the dedicated buffer is returned to the
buffer pool like any other buffer, there does not
appear to be anything to prevent this. The Node
Buffer Manager relies on the single-threaded nature
of the c/SNA environment. This environment en-
sures that processing associated with one event will

Why slam the window to zero?

be complete before the processing of the next event.
In this case, the reclaiming of the dedicated buffer
and the subsequent reservation of the dedicated
buffer cannot be interrupted by activities related to
a different session. Knowledge of the single-threaded
nature of the c/SNA environment has been used to
reduce the complexity of the ApPN implementation.

Window slamming. A threshold value is maintained
for the virtual storage pool, as was the case for the
real storage pool. When this threshold is exceeded,
the node is said to be in a virtual storage depletion
state. If a window request is made while the node is
in this state, the request is honored in a manner
similar to any other window request. As in the case
of real storage depletion, no special attempt is made
to reduce the size of the window associated with the
session that requested the new window. There is no
reason to believe that the session making the request
is a significant cause of the node being in the deple-
tion state. Instead, a search is performed to find the
session which currently holds the largest window.
The window associated with this greedy session is
slammed to zero by sending a special unsolicited
pacing message to the sender.

Why slam the window to zero? This would seem to
have the undesirable effect of stopping all new data
flow from the sender. Consider what would happen
if the window were reduced to some nonzero value:
one, for example. In this case the number of buffers
reserved by this session would actually have to be
increased by one in order to provide the new win-
dow. Buffers in the current window cannot be re-
claimed because the receiver has no knowledge of
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whether the sender has actually used part or all of
the current window. Clearly, if the sender has used
all of the current window but the messages have not
yet arrived at the receiver, the receiver cannot allow
any part of the current window to be reclaimed due
to the risk of buffer unavailability and deadlock.

When the sender receives the pacing message slam-
ming the window to zero, it sets its pacing count to
zero and sends no more messages except for an
acknowledgment to the receiver that the window has
been shut. When the receiver gets the acknowledg-
ment, it waits for the queue of received messages to
be processed. It can then reclaim the storage associ-
ated with that part of the window which the sender
did not use, since it knows that no more messages
associated with this window will arrive. The receiver
then sends to the sender a pacing message with a
new window of one, allowing data transport to pro-
ceed on the session but with a much reduced win-
dow. The window can gradually grow in size again
with subsequent window requests for the session.

The Node Buffer Manager may be viewed as a buffer
reservation accounting service. Its knowledge of
buffer distribution and availability allows it to com-
pute and adjust the sizes of windows granted to
sessions in order to obtain high throughput and avoid
deadlock. Of all APPN components, the Node Buffer
Manager is perhaps the most sensitive to the oper-
ating environment. It must be tailored specifically to
the performance characteristics of each type of avail-
able storage and to the primitives available for the
manipulation of these storage types.

The topology database and route selection

APPN maintains a database of network topology in-
formation in every Network Node. Synchronization
of the replicated database is performed by a distrib-
uted broadcast algorithm. The database consists of a
Node Table, which contains the names and charac-
teristics of all Network Nodes, and a Link Table,
which contains the identity and characteristics of all
links between pairs of Network Nodes. A link is
uniquely identified by the pair {Origin Node, Desti-
nation Node}. The link from node A to node B is
considered to be distinct from the link from node B
to node A.

The Node Table is a simple list. Each entry points
to a list of links which have their origin in that node.
Link Table entries specify the link origin and desti-
nation as indices into the Node Table.
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Computing routes. In order to compute an optimal
path from a source node to a destination node,
weights must be assigned to nodes and links. When
a transaction program requests a session, it specifies
a Mode with which the session is associated. One
attribute of the Mode is its Class of Service (C0S). A
Class of Service might specify that the path be secure
(e.g., no public or satellite links) or that links on the
path have sufficient bandwidth to support batch data
traffic such as large file transfers.

Route computation consists of the construction of a
spanning tree, rooted at the node which is the path
origin, indicating the best path to all Network Nodes
for a specified Class of Service. Such a Rooted Tree
is shown in Figure 13, and is constructed by using a
variation of Dijkstra’s basic single-source shortest-
path algorithm.?”?® The number shown next to each
link in the network is the weight assigned to that
link. It is computed by applying the COS mapping to
the current characteristics of the link and the node
which is the link destination. The path of least weight
from any node n to the source node can be found
by traversing the Rooted Tree from node n to the
source.

Topology database performance issues. Many topol-
ogy database entries are referenced during a single
path computation. Disk access of entries would re-
sult in poor performance. Dedicating real storage
(sQs) to the database is difficult to justify, since path
computation is performed relatively infrequently
and real storage is a scarce resource. The solution
chosen is to place the database and all components
which access it in a single task. It is a characteristic
of the System/36 that all pages of a task must be in
real storage before the task can enter execution state.
The solution has the characteristic that the database
resides in real storage when the functions that use it
are executing; it is swapped to disk at other times.
Since all components which access the database re-
side within the same task, it is unnecessary to provide
a locking mechanism to serialize database access.
The disadvantage of this solution is that there is a
64K-byte maximum task size which implies a limit
on the size of the database. The current implemen-
tation allows 150 Network Nodes and 600 links
between Network Nodes.

Directory Services

Directory Services provides the identity of the node
in which a specified Logical Unit resides. This infor-
mation is needed so that a path to the node can be
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computed and a BIND sent in order to establish a
session to the Logical Unit. In the future one may
wish to locate other types of resources such as trans-
action programs, files, and printers.

Since Directory Services initiates searches only for
Logical Units, it is assumed that a request for Direc-
tory Service will always be followed by a request for
a route to the node in which the Logical Unit resides.
Anticipating this request, Directory Services obtains
a path to the Node from Route Selection Services.

The Distributed Directory. Each Network Node
maintains a Local Directory Table containing those
resources which reside in the node or in adjacent
End Nodes. The Network Node is said to own these
resources. The union of the individual Local Direc-
tory Tables may be viewed as a distributed Network
Directory.
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Finding Logical Units. A session may be requested
by a Logical Unit in an End Node or in a Network
Node. When an End Node requests a session to a
Remote Logical Unit in the APPN network, it per-
ceives the Logical Unit as residing in the adjacent
Network Node. The End Node therefore sends a
BIND to the adjacent Network Node. The C/SNA task
in the Network Node recognizes that the Logical
Unit for which the bind is actually destined does not
reside in the Network Node. The BIND is sent to the
Session Connection Manager subcomponent so that
intermediate session activation may be performed.
The Session Connection Manager invokes Directory
Services in order to resolve the Destination Logical
Unit to the name of the node in which it resides. If
Directory Services locates the Logical Unit, it obtains
a path to the node from Route Selection Services
and returns both the location of the Logical Unit
and the optimal path on which it can be reached.
The Session Connection Manager appends the path
to the BIND.

When the Logical Unit requesting the session is in a
Network Node, it is the LU Network Services sub-
component of C/SNA, responsible for session end-
point activation, which invokes Directory Services
in order to resolve the Destination Logical Unit to
the name of the node in which it resides. Whether
the session originates in an End Node or in a Net-
work Node, the Network Node which invokes Direc-
tory Services is the search origin.

When Directory Services receives a request from
C/SNA, 1t first checks the Local Directory Table to
determine whether the Logical Unit is in the Net-
work Node or an attached End Node. If the Logical
Unit is found in the table, the name of the node in
which it resides can be learned directly from the
table.

If it is not found in the table, a cache of previously
located Logical Units is searched. The cache is sim-
ply a fixed-size table of Logical Unit names and
associated owning nodes into which newly located
Logical Units are placed, displacing existing table
entries on a Least Recently Referenced basis. If the
Logical Unit is found in the cache, its location must
be verified, because its residence may have changed
since the last time it was referenced. Verification is
performed by sending a message directly to the node
which the cache indicates is the owner of the Logical
Unit and obtaining a confirmation from that node.
The verification message follows a path through the
network supplied by Route Selection Services. If
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verification fails, the incorrect cache entry is re-
moved.

If the Logical Unit is not found in the cache or if
verification fails, a broadcast search'' is initiated.
The object of the broadcast search is to examine the
Local Directory at every Network Node in order to

Each Network Node searches its
local directory.

determine whether the Logical Unit is present and
pass this information back to the search origin. A
broadcast search uses considerable bandwidth, since
search messages are forwarded to every Network
Node in the network. The caching of Logical Units
and optimizations described in later sections reduce
the likelihood that broadcast searches will be re-
quired. The broadcast algorithm itself ensures that
the search origin learns as quickly as possible when
the Logical Unit has been found, although the search
itself may not yet have reached all nodes. This re-
duces the response time seen by the user waiting for
session establishment.

Figure 14 shows how a Logical Unit is found in the
APPN network. Network Node YKTN has received a
BIND from Logical Unit BoB in End Node RocH. The
destination Logical Unit is TOM. YKTN searches its
local directory of Logical Units which reside in YKTN
or in attached End Nodes. When this fails, the cache
in YKTN is examined, but the Logical Unit is again
not found. YKTN initiates a broadcast search among
the Network Nodes of the network, and each Net-
work Node searches its local directory. ToM is found
in the directory of node KING. The information that
TOM resides in node HAW is propagated back to YKTN.
The information is placed in the cache at YKTN so
that a broadcast search may not be necessary in the
future.

Data structures and design considerations. Each
search being processed by a node is represented by a
data element containing a unique identifier associ-
ated with that search. Chained to the search element
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Figure 14 APPN directory services
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is an uptree element representing the node from
which a search message has been received and a
linked list of downtree elements representing the
nodes to which search messages have been for-
warded. As in the case of the Topology and Route
Selection task, Directory Services implements its
data structures from storage obtained within its own
64K task address space.

Directory Services optimizations. Examination of
the System/36 environment suggested certain imple-
mentation choices which would be likely to improve
performance.

Batching duplicate search requests. It is possible that
a node may attempt to establish a large number of
sessions to a Logical Unit within a short period of
time. This is particularly likely if the Mode has been
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configured for large numbers of pre-established ses-
sions. In this case the C/SNA task can flood Directory
Services with requests to find a Logical Unit. If the
resource is not in the Local Directory Table, a sep-
arate directory search may be initiated for each ses-
sion to be established.?® All of these searches are
identical except for the search identifier. This situa-
tion wastes bandwidth and slows session activation
response time. Directory Services recognizes new
service requests which are identical to service re-
quests that are being processed. It chains these du-
plicate requests to the original request and satisfies
all such requests with the results of a single directory
search.

Avoiding directory search. A System/36 APPN node
has only one Local Logical Unit. This Logical Unit
must have the same name as the Local Node. Before
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performing any search activity outside the node,
Directory Services invokes Route Selection Services
to determine whether there 1s a Node listed in the
Topology Database with the same name as the Log-
ical Unit for which directory service has been re-
quested. If the Node name is found in the database,
there must be a Logical Unit bearing the same name
contained in that Node. Since Logical Unit names
are required to be unique in the network, it follows
that the Logical Unit being sought can be resolved
to the Node with the same name. Route Selection
Services provides Directory Services with a route to
the Node. If Route Selection does not find the name
in its database, Directory Services returns to its nor-
mal processing to resolve the Logical Unit to the
name of the node in which it resides. The number
of additional cycles required to perform this check
on the Logical Unit name is small compared to the
cost of a directory search.

Concluding remarks

System/36 APPN provides highly dynamic, fully dis-
tributed peer networking in a product which is easy
to use. Preliminary performance studies indicate that
the time required for data to pass through an inter-
mediate node is sufficiently small to support mul-
tihop interactive activities such as remote log-on
capability.

This paper has described some of the ways in which
APPN was tailored to the System/36 environment.
The authors believe that the Advanced Peer-to-Peer
Networking design may be implemented successfully
in a wide variety of system environments,
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