
Implementing System/36
Advanced Peer-to-Peer
Networking

by R. A. Sultan
P. Kermani
G. A. Grover
T. P. Barzilai
A. E. Baratz

System136 Adva
provides highly
ing for low-end 1
SNA Logical Uni
oresents Svsten

tnced Peer-to-Peer Networking (APPN)
dynamic, fully distributed peer network-
Drocessors. It is built upon existing
't 6.2 and Node type 2.1 support. APPN
9/36 users with a simplified model of

'communications. The structure of the APPN subsystem
is outlined, with particular emphasis on the integration
of APPN functions with existing SNA support. The au-
thors describe how particular aspects of the APPN de-
sign have been tuned to the System136 operating envi-
ronment.

A dvanced Peer-to-Peer Networking' (APPN) pro-
vides enhanced communications capabilities

for both the System/36 and the growing number of
products that attach to the System/36 via Systems
Network Architecture' (SNA) protocols. System/36 is
a multiuser system intended for business applica-
tions. In 1985, System/36 introduced Advanced Pro-
gram-to-Program Communication (APPC), which in-
cluded support for SNA Logical Unit (LU) type 6.2
and Node type 2.1 protocols. LU 6.23.4 allows trans-
action processing programs in the System/36 to con-
verse with programs in remote processors via an
architected set of verbs. Node type 2.1' allows
adjacent' nodes to communicate with each other as
peers.

Figure 1 shows two System/36s directly connected
by a communication link. LU 6.2 sessions are estab-
lished between Logical Units' in the two nodes.
When a program in one node communicates with a
program in the other node, it uses one of the avail-
able sessions to establish a conversation. From the
viewpoint of a transaction program, the Logical Unit
is a port through which communications services are
obtained.

APPC is the base on which a number of System/36
user services have been built. These services include
the following: Distributed Data Management (DDM),
which provides remote file access, Display Station
Pass-Through (DSPT), which provides remote log-on
capability; and SNA Distribution Services* (SNADS),
which uses APPC transaction programs to forward
data asynchronously from node to node. System/36
customers also construct their own distributed ap-
plications using APPC.

As the number of products implementing LU 6.2 and
Node type 2.1 has grown, so has reliance on this
means of providing logical connectivity among mini-
computers and workstations. The Node type 2.1
connection protocol, however, requires that peer
nodes be adjacent in order to communicate. Provid-
ing links between all pairs of communicating pro-
cessors is costly for customers with large numbers of
systems. System/36 APPN introduces full peer net-
working capability, eliminating the requirement that
peer nodes be adjacent in order to communicate.

System/36 nodes configured with the APPN function
are called Network Nodes; they can serve as inter-

Copyright 1987 by International Business MachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Fiaure 1 Svstem/36 Advanced Program-to-Program Communication

NODE TYPE 2.1 NODE TYPE 2.1

r

mediate routing nodes for data passing through the
node en route to other destinations. Network Nodes
are interconnected to form networks of arbitrary
topology, as shown in Figure 2. End Nodes are type
2.1 nodes that do not provide network services' and
are attached at the periphery of the network. Any
two nodes in the network can communicate as peers.
LU 6.2 application programs such as DSPT, which were
previously limited to a pair of adjacent processors,
will now run without change to provide services
between nonadjacent peer processors.

Figure 3 shows a four-node APPN network. Session
One extends from Logical Unit A to Logical Unit D
via Intermediate Routing Functions in Nodes X and
Y. The conversation between transaction programs
which makes use of Session One has no awareness
that the session is extended. The session may be
thought of as a set of session segments connected by
the Intermediate Routing Functions of nodes X and
Y. Each segment is commonly called a hop. APPN is
therefore said to provide a multihop data transport.
Session Two is a single-hop session and does not
require the use of an Intermediate Routing Function.

APPN networks incorporate dynamic control mech-
anisms. Changes in the status of nodes and links are
immediately broadcast to all Network Nodes. Each
Network Node uses this information to construct a
view of the current network topology. Paths between
nodes are constructed dynamically from this topol-
ogy information. Similarly, Logical Units in the

430 SULTAN ET AL

network need only be defined in a single owning
Network Node. A dynamic directory function is
responsible for finding the Network Node owning
any particular Logical Unit.

Dynamic control has several advantages. The oper-
ator is relieved of a substantial system definition
burden because only information local to a Network
Node, such as directly attached links and local re-
sources, need be defined. The network does not cease
operation to incorporate such changes. There is less
likelihood of failure due to an incompatible defini-
tion among nodes. The network is highly adaptive
to failure and change. If a link fails, for example,
sessions which used the failing link may be re-estab-
lished using the best existing alternative paths." Dy-
namic function improves data transport perform-
ance because the best route between nodes can be
chosen at the time that the communications session
is established.

The APPN dynamic network control function is dis-
tributed. All Network Nodes have identical algo-
rithms for cooperating in the execution of functions
such as the broadcasting network topology infor-
mation and searching for network resources. This
distribution of function provides significant advan-
tages. The failure of a Network Node generally has
no effect on the continued operation of the rest of
the network because nodes do not perform central-
ized services on behalf of other nodes. An exception
occurs when the only path between two nodes is
through the failing node. The failure of such a node

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

partitions the network into two or more independent
subnetworks, each of which continues to function
normally. Network Nodes share the processing cost
of performing network functions. When a node joins
an APPN network it receives services via the network
and, in exchange, performs its share of the distrib-
uted processing necessary to maintain these services.

Members of the Network Architecture and Protocols
group at the Thomas J. Watson Research Center had
for some time been exploring areas related to dy-
namic peer networking such as distributed broadcast
algorithms," dynamic routing," adaptive flow con-
trol, and deadlock prevention. Much of this work
was incorporated into a proposed design for net-
working small systems,13 a joint effort between the
Communication Products Division and the Re-
search Division. The design is based on the use of
the existing LU 6.2 verbs and protocols for sessions
while extending Node type 2.1 services to provide
multihop data transport and dynamic network con-
trol. Many problems needed to be addressed. Could
the design actually be implemented successfully in
small processors? How would such a network per-
form? Could network definition and operation be
made simple for the small systems environment
where the user is often the operator? How do char-
acteristics of the system environment for a particular
product affect the design of algorithms and data
structures for the implementation of networking
software? Interest in investigating such questions,
along with System/36 product interest in meeting
customer requirements, motivated the development
of System/36 APPN as a joint project of the IBM
Thomas J. Watson Research Center and the IBM
System Products Division.

APPN design overview

APPN functions may be viewed as a set of services.
Connectivity Services performs activities related to
changes in the physical connectivity of the network.
Each Network Node maintains a database describing
the current network topology. As a node becomes
aware that its state or the state of its attached links
has changed, it makes use of a distributed broadcast
algorithm to spread the information throughout the
network. Network Nodes then update their databases
accordingly.

Directory Services identifies the node containing a
specified Logical Unit. It may perform a distributed

IBM SYSTEMS JOURNAL, VOL 26. NO 4 1987

Figure 2 A mesh of Network Nodes with attached End Nodes

0 NETWORK NODE

0 END NODE

search of the network or simply verify information
which has been previously cached. It is necessary to
know where an LU is located in order to establish a
communications session to that LU.

Route Selection Services identifies the best path avail-
able to a specified node in the network. A shortest-
path algorithm is applied to the database of network
topology which is maintained in each Network
Node.

Session Activation establishes a communications ses-
sion between a pair of Logical Units located any-
where in the network using the path provided by
Route Selection Services. Information is established
at each node in &he session path so that data can
later be transported on the session.

Data Transport performs the actual flow of data
traffic between two session endpoints, including the
flow through all intermediate routing nodes on the
path. At each hop, data must be properly routed to
the next node on the session path. The flow of data
is throttled and messages are segmented when nec-
essary.

User view of System/36 communications

The System/36 is designed for exceptional ease of
use. All user and operator functions are menu-
driven. Context-sensitive help screens are available.

A wide variety of communications functions, called
subsystems, are accessed via a single Interactive
Communications Facility (I C F) . ' ~ This allows the
same basic set of menus to be used for the configu-
ration, activation, control, and deactivation of all
communications subsystems. Thus, the System/36
was an excellent environment in which to test the
premise that the distributed and dynamic nature of
the APPN design results in networks that are very
easy to establish and operate.

Configuring the communications environment, ac-
tivating and deactivating communications resources,
conversing with programs in remote nodes, and
monitoring communications status are frequently
performed communications activities. The sections
that follow describe a functional view of each of
these activities and the changes which have been
made in order to integrate the APPN subsystem into
the existing System/36 communications framework.
Although the changes have been introduced because
APPN requires a different functional model from
other subsystems, they have the effect of enhancing
usability and substantially reducing system defini-
tion.

Line configuration. Configuration is performed at a
System/36 display station via menus. The user de-
fines a Line Configuration for each communications
line attached to the System/36. The Line Configu-
ration specifies characteristics of the line and the
Remote Nodes attached to the line. A simplified
Line Configuration is shown for one of the three
lines illustrated in Figure 4. APPN required no
changes to Line Configuration since the existing
menus provided information about adjacent nodes
and links, and APPN network control functions were
designed to dynamically obtain this information for
nonadjacent nodes and links.

Subsystem configuration prior to APPN. The user
defines a Subsystem Configuration describing each
communications Subsystem which is to be activated
on a line. The Subsystem may be thought of as the
Local Logical Unit. The Subsystem Configuration
names Remote Logical Units to which the Local
Logical Unit can establish communications sessions.
The Subsystem Configuration names a specific Line
Configuration and can only be used to establish
communications on that line. Each Remote Logical
Unit is mapped to a specific Remote Node named
in that Line Configuration. Associated with each
configured Remote Logical Unit the user defines a
number of Modes that specify a set of session char-

432 SULTAN ET AL

Figure 3 System136 Advanced Peer-to-Peer Networking
~~~ 

I NODE W 

acteristics, such as  maximum allowable message size, 
for sessions associated with that  Mode. The Subsys- I 
tem Configuration can be  viewed as describing logi- 
cal connectivity. An example is shown in Figure 5 .  
The operator  at  node YKTN must perform a subsys- 
tem configuration for each of the local Logical I Jnits 1 
JIM,  ALAN and BOB. The subsystem configuratio" ~ ~ 

local Logical Unit ALAN must  include  descriptions 
Of  remote Logical Units MARY,  ALEX, and 11 JNF. A I 
set of Mode definitions, not shown in tk ~ , 

must be associated with each of the  remote Logical I 
Units. 

n for 

Readers familiar with the System/36 are aware that 
the  terms Logical Unit, Node, and Mod1 
appear on configuration menus.  They  are replaced 
by the  terms Location, System, and Session Group. 
This is done so that  the  same terminology can  be 
applied to  the configuration of both SNA and non- 
SNA Subsystems. It would be confusing if an R N A  

term such as Logical Unit were applied to 
subsystems. System/36 therefore uses  non 
minology to describe all configurations. SNA termi- 
nology is used consistently in this paper. 

e do not 
." - "~." I 

'c 
APPN subsystem configuration. APPN simplifies 
Subsystem Configuration. It is not possible to asso- 
ciate an instance of the APPN subsystem with a single 
line, as is done  in  other subsystems. Data received 
on  one line may be forwarded on a different line. 
The APPN Subsystem Configuration does  not, there- 
fore, specify one Line Configuration with which it is 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 I 



NODE X NODE Y NODE Z 

to be associated. A single APPN Subsystem Configu- than the pre-APPN network shown in Figure 5, but 
ration is applied to all Line Configurations on which its system definition requirements are substantially 
APPN is active. The association between the Subsys- smaller. 
tem  and  the line is made at the  time  that  the Sub- 
system  is made active on the line rather  than  at  the When defining System/36 have the 
time of configuration. option of specifying a  number of pre-established 

sessions. These sessions become active when the 
In the APPN environment, it is not necessary to Mode becomes active and they remain active 
configure Remote Logical UnitsI5 since Directory whether or not they are being  used. Such sessions 
Services dynamically associates Remote Logical are useful because they are available immediately to 
Units with the Nodes in which they reside.  Excep- transaction programs without requiring time  for ses- 
tions  are those Logical Units which  reside in adjacent sion activation. In the APPN environment,  maintain- 
End Nodes. The identity of these Logical Units ing sessions for long periods of time cames a penalty. 
cannot be learned dynamically since Directory Serv- These sessions will not be able to  make use of path 
ices does not extend to  the End Node. improvements caused by changes in network topol- 

ogy. While pre-established sessions may be available 
If Remote Logical Units are no kWer configured, it quickly, they may not perfom as well as sessions 
follows that  Mode definition can no longer be per- established as needed. 
formed for each Logical Unit.  The user instead de- 
fines a master list of Mode  names  and associated Activation of Subsystems other than APPN. A Re- 
characteristics which serve all Remote Logical Units. mote Logical Unit  must be explicitly activated before 
This significantly reduces system definition require- any communications sessions can be established to 
ments at the cost of some small loss  of granularity that Logical Unit. Activation is performed by issuing 
in the specification of  session characteristics. An an ENABLE command  naming  the Logical Unit or an 
example of the simplified APPN Subsystem Configu- entire Subsystem Configuration. In the latter case  all 
ration is shown in Figure 6 .  One local Logical Unit, Logical Units named in the Configuration are acti- 
BOB, is defined. It serves  all lines on which the APPN vated. The first ENABLE of a  Remote Logical Unit 
subsystem is active. The only remote Logical Units belonging to a particular Subsystem activates the 
requiring definition are in the adjacent End Node, Subsystem itself.  Any Modes to be  used  for sessions 
ROCH. Information  about  other Logical Units is to the  Remote Logical Unit  must also be activated. 
learned by means of APPN’S  dynamic directory func- This is done by issuing a STRTGRP command  naming 
tion.  Note  that  the APPN network of Figure 6 is larger the Mode and associated Logical Unit. 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 SULTAN ET AL 433 



Figure 4 Line  configuration 

.......,.. "...... 

...*..I,....*,... 

.I..... ".,...*..* 
I 

Figure 5 Pre-APPN subsystem  configuration 

RAL 

KING YKTN I ROCH 

The user does  not explicitly request line activation. 
In the non-APPN environment,  there is only one link 
on which the Logical Unit  may be reached so the 
link can be activated automatically when the  Remote 
Logical Unit is activated. 

APPN Subsystem activation. The above activation 
model changes in the APPN environment. In an APPN 

network the  number of Remote Logical Units  and 
associated Modes could grow quite large. It would 
be an unreasonable  burden  on  the user to perform 
explicit activation  and  deactivation.  This require- 
ment has therefore been eliminated for APPN. Logical 
Units  and Modes are dynamically activated as they 
are needed. The ENABLE command is  still  used in 
the APPN environment,  but  its  primary purpose is 

434 SULTAN ET AL IBM SYSTEMS JOURNAL, VOL 26. NO 4 1987 



the activation on lines in which the APPN subsystem 
is being used. 

Conversation. Transaction programs are application 
programs which  have embedded verbs for program- 
to-program communications. Examples of such 
verbs are ACQUIRE, which obtains  a session to a 
specified  Logical Unit, EVOKE, which establishes a 
conversation over the session, and PUT, which sends 
data from one program to another on the established 
conversation.'6 Transaction programs which  were 
written to run on the APPC subsystem will run with- 
out change on the APPN subsystem. Conversation 
protocols are performed only at  the  endpoints of a 
session. They are not sensitive to whether the  under- 
lying  session is a single-hop session established by 
the APPC subsystem or a  multihop session established 
by the APPN subsystem. 

Monitoring. System136 provides a  number of Status 
functions that allow the user to view communica- 
tions activities. The  status of links, Logical Units, 
Modes, and sessions can be displayed. Although 
these displays have  been  modified to reflect changes 
in the APPN functional view, they do not provide the 
global information which  is  necessary to manage and 
troubleshoot a network. APPN uses the fact that 
network topology  is maintained in  every Network 
Node in order to provide useful network manage- 
ment information. A utility called APPNINFO accesses 
the topology database in order to display the current 
status of nodes and links throughout  the network. 

System/36 communications  structure 

The System/36 provides a multiuser, multitasking 
environment via its operating system, the System 

Figure 6 APPN subsystem configuration 

POK HAW 

AUS TAMPA I RAL I NN 

KING I NN YKTN I NN ROCH EN 

IBM SYSTEMS JOURNAL VOL 26. NO 4. 1987 SULTAN ET AL 435 



Figure 7 System/36 communications structure 

Support Program (SSP). Systems can have up to seven 
megabytes  of main storage and 1.6 gigabytes  of  disk 
storage. Ten  communications lines are available with 
line speeds of up to 56K bits per second. IBM Token 
Ring, X.25 packet network, Binary Synchronous 
Communications (BSC), and  Synchronous  Data Link 
Control (SDLC) are supported line protocols. 

Task size is limited to  64K bytes. Tasks requiring 
additional space make use of transients which over- 
lay portions of the task when the  functions they 
perform are needed. Much use  is made of transients 
in both the operating system and  communications 
subsystems. 

Real storage allocated to tasks by the operating sys- 
tem is  called System Queue Space (sas). Virtual 
storage, called Task Work Space (TWS), is also avail- 
able. An area of disk is designated as a Work Space. 
The operating system allocates TWS to tasks out of a 
Work Space in much the same manner  as  it allocates 
SQS out of its pool of available real storage. Virtual 
storage must be mapped to real storage before it can 

436 SULTAN ET AL 

be referenced in a program. Mapping requires a disk 
access unless the storage to be  assessed has remained 
in  real storage since an earlier mapping operation. 

A portion of the System/36 communications struc- 
ture is shown in Figure 7. The figure shows three 
SNA subsystems which  have transaction programs as 
their end-users." Each  box represents a task. Mes- 
sages are passed  between tasks via operating system 
queues." The  top row  of  boxes represents transac- 
tion programs. ICF Data Management routes verbs 
issued  by the transaction programs to the subsystems 
for which they are intended. In the case  of the 
Finance Subsystem,19  all  of the SNA support except 
the Data Link Control2' (DLC) is contained in a single 
task. The  other two subsystems shown split this 
support between two tasks. The SNA Upline Facility 
(SNUF) allows communication with host subsys- 
terns2' It provides transaction programs with a dif- 
ferent set of functions  than  the APPC subsystem. The 
interpretation of such functions is performed by the 
Presentation Services  layer  of SNA. Presentation Serv- 
ices are therefore implemented in separate SNUF and 
APPC tasks. Lower-level functions, such as  the pacing 
and segmentation of data messages, are common to 
the two subsystems. These functions are placed in a 
single task, which  is called Combined SNA (c/sNA).~~ 
CISNA implements  the  Data Flow Control,  Trans- 
mission Control,  and  Path  Control layers of the SNA 
architecture. There is only a single instance of the 
C/SNA task, and it provides single-threaded execution 
of communications functions. When C ~ N A  is posted 
with an external event, such as the receipt of a 
message from ICF Data Management or a message 
segment from the DLC, that external event is com- 
pletely  processed before the next external event is 
accepted for processing. 

APPN implementation  overview. APPN Session Es- 
tablishment, Data  Transport,  and  portions of Con- 
nectivity Services are implemented  as modifications 
to existing communications  support. Most of the 
change occurs in  the C/SNA task where the SNA 
functions to be extended are located. C/SNA is divided 
into  subcomponents.  Three new subcomponents 
were created: Session Connection performs the  In- 
termediate Routing  Function  and  other  Data  Trans- 
port functions, Session Connection Manager per- 
forms intermediate session establishment, and Node 
Buffer Manager dynamically allocates buffer  re- 
sources to sessions.  Session Connection is written as 
part of C/SNA mainline processing in order to per- 
form the Intermediate  Routing  Function with a  min- 
imum of delay. Session Connection Manager and 

IBM SYSTEMS JOURNAL,  VOL 26, NO 4, 1987 



Node Buffer Manager are written as  transients  and 
are obtained from disk as needed. 

In addition to the new components described in the 
previous paragraph, modifications were also made 
to existing C/SNA subcomponents.  The changes were 
implemented so as to be transparent to the  other 
subsystems which share CISNA. A software switch 
setting in the C/SNA task indicates whether the APPN 
modifications should be executed, in which case the 
node functions  as  a Network Node, or should not be 
executed, in  which  case the node does not perform 
network services. In the latter case the  node may be 
attached to  an APPN network as an End Node. The 
node may not perform both roles simultaneously. 
The choice is made at  the  time of system configura- 
tion. 

There is no new APPN task equivalent to  the APPC or 
SNUF tasks. The APPC and SNUF tasks perform Pre- 
sentation Services functions. APPN uses APPC Presen- 
tation Services; this is what allows APPC transaction 
programs to run without change in the APPN envi- 
ronment. 

APPN Directory Services, Route Selection Services, 
and  the  portion of Connectivity Services  which 
maintains  the Topology Database are implemented 
as two  new application tasks. They are called Direc- 
tory Services (DSS) and  Route Selection and Topol- 
ogy Database Update (RSS). Two additional transac- 
tion tasks, Send and Target, allow control  informa- 
tion to be exchanged with adjacent Network Nodes. 
The Send task establishes an LU 6.2 conversation with 
a Target task in an adjacent Network Node when it 
has network control  information, such as  a topology 
database update message or a directory search mes- 
sage, to send. In order for the Directory task in one 
Network Node to send a message to the Directory 
task in an adjacent Network Node, it posts the 
message to the local Send task. The Send task estab- 
lishes an LU 6.2 conversation to a Target task in the 
adjacent node and sends the message. The Target 
task then posts the message to the destination Direc- 
tory task. A fifth task, the  Control  Point Manager 
(MGR), is responsible for synchronization and coor- 
dination  among the network control tasks. The five 
tasks are known collectively as  the  Control  Point. 

If only a single session  were  used to carry control 
messages between adjacent Network Nodes, it is 
possible that  the Send tasks in the two nodes would 
contend for the use of the session. This would hap- 
pen, for example, if the two nodes attempted to send 

IBM SYSTEMS JOURNAL,  VOL 26. NO 4, 1987 

directory search messages to each other  simultane- 
ously. In order to avoid such contention, two  sessions 
are maintained for the exchange of information be- 
tween adjacent Control Points, one for each direc- 
tion of data flow. These two  sessions may be  viewed 
as simulating a single  full duplex session. Conversa- 
tions between adjacent Control Points are started as 
needed, but  the sessions  they  use are maintained  as 
long as the link between the two Control  Points 
remains intact. Figure 8 shows Control Points in two 
adjacent nodes and  the pair of  sessions on which 
they broadcast network control messages. 

All  of the Control Point tasks except the Target task 
become active when the APPN subsystem becomes 
active. An instance of the Target task becomes active 
each time  a Send task in an adjacent node establishes 
an LU 6.2 conversation for the purpose of broadcast- 
ing control  information. 

Implementation issues 

Characteristics of the System/36 environment had 
considerable influence on the APPN implementation. 
This section describes portions of the  implementa- 
tion with particular emphasis on those issues  which 
are specific to the System/36 environment. 

Link activation. As described earlier, link activation 
for subsystems other  than APPN is transparent to the 
user. C/SNA activates a link when a  Remote Logical 
Unit associated with that link is activated. APPN 
differs from other subsystems in that it does not 
associate a  Remote Logical Unit with any particular 
link. The Node in which the Logical Unit resides 
might be reached by a variety of paths. In order to 
use CISNA’S existing link activation function, APPN 
creates one  Remote Logical Unit associated with 
each link on which the APPN Subsystem has been 
ENABLEd. This Logical Unit has the  same  name  as 
the Remote Node associated with the link. The 
association between the Logical Unit  and  the link is 
used only for purposes of link activation. Route 
Selection Services ignores the association when com- 
puting paths.23 

The creation of a  Remote Logical Unit associated 
with the link allows C/SNA’s existing link activation 
function to be  used  by APPN. The  operator  continues 
to use the familiar ENABLE command,  but its primary 
purpose in the APPN environment is link activation 
rather than Logical Unit activation. 

Endpoint session activation. Communications ses- 
sions are established by sending a session activation 
message (BIND) from one  endpoint of the session to 

SULTAN  ET AL 437 



Figure 8 Sessions between APPN control points 

the  other  and receiving a response message in reply. 
The BIND response allows session parameters to be 
negotiated and indicates that  activation has been 
completed.  Data  structures required for the  transport 
of data on the session are established at each node 
in the session path. 

Prior to the  implementation of APPN, C/SNA provided 
support to  the APPC subsystem for the  establishment 
of single-hop LU 6.2 sessions. APPN uses this session 
activation  function, with some modifications, at  the 
endpoint nodes of multihop sessions. Session acti- 
vation in intermediate nodes is a new function  that 
is described later. 

The session activation  function, which existed in 
C/SNA prior  to APPN, expected a specific environment 
to be present at  the  time of its  invocation. It required 
( I )  an active Remote Logical Unit, (2) an active 
Mode, and (3) knowledge of the  link on which the 
BIND was to be sent. The first two requirements were 
met because the  operator performed explicit Remote 
Logical Unit  activation by issuing an ENABLE com- 
mand  and explicit Mode  activation by issuing the 
STRTGRP command.  The third  requirement was met 
because there was only one link on which any  par- 
ticular  Remote Logical Unit  could  be reached. In 
the APPN environment  the  operator is not required 
to explicitly activate  Remote Logical Units or Modes 

438 SULTAN ET AL IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 



Figure 9 Multihop session activation 

and  the link on which the BIND is to be sent depends 
on the  route which is computed for the requested 
session. 

The following paragraphs describe the sequence of 
session activation  events which occur  at session end- 
points, including  the new functions which have been 
inserted to allow activation to proceed in the APPN 
environment.  The  sequence is shown graphically in 
Figure 9. The description begins with a  transaction 
program requesting the use  of an LU 6.2 session in 
order to establish a  conversation with a  Remote 
Logical Unit.  The figure depicts  the events which 
occur  as  a BIND flows from session origin to desti- 
nation. 

Dynamic activation of Remote Logical Units. A 
transaction program issues an ACQUIRE verb to ICF 
Data  Management  indicating  that  a session has been 
requested. The Remote Logical Unit  named  in  the 
verb is matched against a list  of active Logical Units 
in  order to route  the request to  the proper Subsystem. 

IBM SYSTEMS JOURNAL, VOL 26 NO 4 1987 

If no Logical Unit is found, it is assumed  that  the 
Remote Logical Unit is associated with the APPN 
subsystem and should be activated dynami~ally.’~ 
The Logical Unit  to be activated might be anywhere 
in the APPN network, and there is no adjacent link 
with which it is associated. Dynamic  activation of 
the Implicit Logical Unit involves little more  than 
the  creation of a  data  element  naming  the Logical 
Unit  and serving as  a place to  anchor sessions asso- 
ciated with that Logical Unit.  The System/36 user 
can observe whether a Logical Unit has been acti- 
vated dynamically by issuing the Subsystem Status 
(DI) command  at a display station. Dynamically 
activated Logical Units show a dashed line where 
the associated line  number would ordinarily be dis- 
played. 

Dynamic activation of modes. The session activation 
request is passed from ICF Data  Management to  the 
APPC task. The APPC task keeps a  count of the 
number of sessions activated per Mode to ensure 

SULTAN  ET AL 439 



that session limits  are not exceeded. This processing 
depends upon the existence of an active Mode. The 
APPC subsystem requires that Modes be explicitly 
activated by operator  command  prior  to session 
activation. APPN allows the  dynamic  activation of 
Modes during session activation. Session activation 
is suspended while a  function called Change  Number 
of Sessions (CNOS) is performed.  A CNOS transaction 
program establishes a  conversation with a CNOS 
transaction program at  the  Remote Logical Unit. 
Session limits are negotiated and  the  named  Mode 
becomes active at both  the origin and  destination 
Logical Units.25 When Mode  activation is com- 
pleted, the APPC task can  increment  its count of 
active sessions and verify that session limits have not 
been exceeded. 

Where  to forward  the BIND. The session activation 
request is next passed from the APPC task to  the 
C/SNA task. A  Remote Logical Unit  and Mode  are 
active, but  the link on which the BIND should be sent 
is still unknown.  C/SNA requests that  the  Control 
Point provide a  route  through  the network to  the 
node in which the  destination Logical Unit resides. 
Directory Services resolves the  named  destination 
Logical Unit  to  the  name of the  node  in which it 
resides. Route Selection Services computes  the opti- 
mal path  to  the  Remote  Node based on a  character- 
istic, called the Class of Service (cos), associated with 
the  Mode.  C/SNA  examines  the  route  to find the first 
link in the  path.  This is the link on which the BIND 
is to be sent.  With an active Remote Logical Unit 
and Mode, and knowledge of the link on which the 
BIND is to be forwarded, C/SNA is able to use the LU 
6.2 session activation  function which served the APPC 
subsystem prior to  the introduction of A P P N . ~ ~  This 
is one of many  instances where System/36 APPN was 
able to build upon existing function provided by 
C/SNA. The fact that APPN is designed as  an extension 
to  Node type 2.1 significantly reduces the  effort 
required to implement APPN when the type 2.1 node 
already exists. 

Session activation at the  destination. Making use  of 
the  activation  code at the session destination is some- 
what simpler. When  Mode  activation is performed 
dynamically at  the session origin, the  Mode is also 
activated at  the  destination. It is therefore unneces- 
sary to dynamically activate  the  Mode at  the desti- 
nation.  The link on which the BIND response flows 
is the  same link on which the BIND was received. It 
is therefore unnecessary to identify the  link on which 
the BIND response is to be sent. The only remaining 
requirement is the  dynamic  activation of the  Remote 

440 SULTAN ET AL 

Logical Unit.  The node receiving a BIND may know 
nothing  about  the Logical Unit which originated the 
BIND. When  the BIND reaches C/SNA via the DLC, 
C/SNA dynamically activates the  Remote Logical 
Unit  in  a  manner similar to  the way in which the 
ICF task does this in the session origin node. 

Intermediate session activation.  Session activation  at 
Intermediate  Routing Nodes performs different 
functions  than  the  activation  at Session Endpoint 
Nodes. Activation in the  Intermediate  Routing  Node 
must establish the  environment in which data mes- 
sages can be  passed through  the  node.  A session 

Pacing  allows  the  receiver of data to 
tell  the  sender  that  a  specific 
quantity  of data may be sent. 

passing through an Intermediate  Routing  Node is 
represented by a pair of data elements. One  element 
represents the session segment or  hop over the  link 
on which the BIND has been received, and  the  other 
represents the segment on which the BIND is for- 
warded. This  pair of data  elements is called a Session 
Connector. The receiving element saves the  identity 
of the  inbound  link  and  a 17-bit address assigned by 
the previous node  and camed with the  BIND.  The 
sending element saves a new 17-bit address which 
identifies the next segment of the session and points 
to  the  link  on which the BIND is forwarded. The 
identity of this  link is determined by examining  the 
next element  in  the  path which is carried in  the BIND. 
The receiving and  the sending data elements  point 
to each other.  Intermediate  node session activation 
provides the  environment which allows data mes- 
sages to travel through  intermediate nodes of the 
session. 

After the session has been established and  data mes- 
sages  begin  flowing, the Session Connector is used to 
route messages through  the  Intermediate  Routing 
Node. The 17-bit address camed in the header of 
the message and  the  link  on which the message is 
received uniquely identify a data element.  This data 
element is one of a  pair of data elements  forming 
the Session Connector. The partner data element 

IBM SYSTEMS JOURNAL,  VOL 26, NO 4, 1987 



Fi 
- 

lgure 10 Session  connection 

LINK 2 

” 

LINK 1 LINK 3 

provides the address camed by the message on its 
next hop  and  the identity of the link on which the 
message  is to be forwarded. 

An example is shown in Figure 10. A message amv- 
ing on link 4 searches through the pool of  session 
data elements associated  with link 4 in order to find 
one with an address of 7, matching the address 
camed in its header. This data element, labeled d in 
the figure, points to  a  partner  data element, labeled 
c, associated  with link 1. The pair of data elements, 
c and d, form a Session Connector. The Session 
Connection function changes the address in the mes- 

sage from its inbound address of 7 to its outbound 
address of 12 and forwards it on link 1, as indicated 
by the Session Connector. 

Flow control and  buffer  management. Data messages 
flowing on  a session are paced on each hop or 
segment of the session path. Pacing  allows the re- 
ceiver  of data  to tell the sender that  a specific quan- 
tity  of data may be sent. The receiver guarantees that 
sufficient  storage  is available to buffer the  data on 
amval. 

Pacing is performed independently for each of the 
two directions of data flow on the session segment. 

IBM SYSTEMS JOURNAL, VOL 26, NO 4. 1987 SULTAN ET AL 441 



Figure 11 Fixed vs. adaptive  pacing 

ALL WINDOWS ARE OF SIZE 3 

m"' 
t 

1m 
/p/'"II'"I"'" 

11111, 

1 

1m 

111, 

m w=3 r I  

1 mm 
WINDOW OF SIZE 2 

Y 

t 

m w=4 P 
WINDOW OF SIZE 3 

t 

Dl w=5 g 

IE 1m 

442 SULTAN ET AL IEM SYSTEMS JOURNAL VOL 26. NO 4, 1987 



Each instance of pacing has a sender and a receiver. 
The receiver grants  the  sender permission to send a 
specified number of messages. The  number of mes- 
sages is known as the pacing window. The receiver 
must ensure  that sufficient storage will  be available 
to buffer the messages when they are received. The 
exact size of the messages  is not  known by the 

Adaptive  pacing  facilitates  more 
efficient  buffer  management. 

receiver, so it reserves storage for the largest possible 
quantity of  messages  which can be sent on the ses- 
sion. The  maximum size  of  messages is fixed at  the 
time of session establishment. By granting permis- 
sion to send data only when there is sufficient storage 
to buffer the  data,  the receiver maintains  complete 
control  over the flow of data  into  the  node. 

The pre-existing System136 APPC subsystem, which 
allowed only single-hop data transport,  implemented 
fixed window pacing. When  the  sender asked the 
receiver for a new window, the receiver always 
granted a window of a  particular size. The  amount 
of storage required to buffer received data was there- 
fore fixed and could be allocated at  the  time of 
session establishment. 

Fixed pacing is not an  attractive  alternative  in  the 
APPN environment. An Intermediate  Routing  Node 
may have many sessions routed through  it. Each of 
these sessions would require sufficient storage to 
receive data  transmitted in both directions. Buffer 
requirements to  support fixed windows could ex- 
haust available storage in Intermediate  Routing 
Nodes, thus limiting  the  number of sessions sup- 
ported through  the node. If the problem is  solved by 
reducing the size  of the fixed windows, this may 
result in  poor utilization of available bandwidth on 
the  communications links. Sessions may wait for 
permission to send data while links  are idle. 

The solution used in APPN is adaptive window pac- 
ing. The pacing window is allowed to vary. Window 

IBM SYSTEMS JOURNAL, VOL 26. NO 4 1987 

size is computed by the receiver on the basis  of the 
sender’s utilization of previous windows, the availa- 
bility of buffers in the receiver, and  the level  of 
congestion in the receiver as measured by the  num- 
ber of received messages  which have not yet been 
processed. Storage available in an Intermediate 
Routing  Node is divided fairly among  the sessions 
according to these criteria. 

Figure 1 1 shows a  comparison of  fixed and  adaptive 
pacing. In both cases the  sender asks for a new 
window with a pacing request (PRQ) attached to  the 
first  message  of each window. The receiver grants 
the request with a pacing response (PRS). In the case 
of  fixed pacing, the size  of the window is assigned at 
session initiation. The pacing response always grants 
a window of the assigned size. In the case  of adaptive 
pacing, the pacing response carries the size of the 
window being granted. 

Adaptive pacing facilitates more efficient  buffer man- 
agement, as shown in Figure 12. The figure shows 
two ways  of managing a pool of ten buffers. Fixed 
pacing, shown at  the left, requires that each session 
be allocated a fixed number of  buffers dedicated to 
that session. Because the window size is fixed,  buffers 
cannot be shifted from one session to  another ac- 
cording to current need. A request for a new  session 
cannot be honored since buffers are  not available. 
Adaptive pacing, shown on the right, requires that 
only one buffer  be dedicated to each session for the 
purpose of deadlock prevention. Other buffers are 
distributed  among  the sessions in such a way as  to 
achieve high buffer utilization. The association be- 
tween buffers and sessions is dynamic. A change in 
the buffer allocation of a session  is  reflected in the 
size  of the window it grants. In the example shown, 
two buffers are available to establish new sessions or 
to increase the windows of current sessions. If these 
buffers are allocated, it is  still  possible to  start  a new 
session by decreasing the buffer allocation of one of 
the existing sessions. 

The sender’s participation in the window size deter- 
mination is an  important feature of APPN flow con- 
trol. The sender requests a new window when it 
sends the first  message  of  its current window. When 
the receiver gets the request, it sends back a reply 
which includes the window size. Between the  time 
that  the  sender requests the new window and  the 
time it receives the reply, the  sender may send mes- 
sages using its current pacing window. When  the 
sender receives the response to  the window request, 
it takes the  opportunity to gather some useful infor- 



Figure 12 Dedicated vs. pooled  buffer  allocation 

SESSION 
ONE 

SESSION 
MI0 

THREE 
SESSION 

DEDICATED c 
444 SULTAN  ET At 

mation.  The sender looks at its queue of outbound 
messages.  If there are messages to be sent and if the 
current pacing window has been exhausted, this in- 
dicates that  the sender could  make use of a larger 
window. The sender  remembers this, and  on  the 
next window request it asks the receiver to provide 
a larger window. The receiver may not  grant this 
request. It is just  one piece  of information used by 
the receiver in determining window size. 

The adaptive pacing function was added  to  the  Con- 
nection Point Manager subcomponent of CISNA, 
which previously performed only fixed window pac- 
ing for session endpoints. It  was also added to  the 
new  Session Connection  subcomponent of c/sNA, 
which performs data  transport  through  intermediate 
nodes on a session path.  Another new component, 
the Node Buffer Manager, is responsible for deter- 
mining  the window size that  the receiver grants to 
the  sender. The rules for determining window size 
for a session are  quite simple. The  queue of  messages 
received, but  not yet processed, is examined. If this 
queue is long, the window is one less than  the 
previous window. If the  queue is short  and  the  sender 
has requested a larger window, the new window is 
one larger than  the previous window. In all other 
cases, the window size is the  same  as  that of the 
previous window. These rules may be pre-empted by 
an additional set of rules related to buffer availability. 
The structure of APPN buffer management  and  the 
manner in which buffer availability may determine 
window sizes are described in the sections which 
follow. 

Managing real storage. The Node Buffer Manager 
maintains  a 1 OK-byte pool of real storage and a 1 M- 
byte pool of virtual storage. It does not physically 
allocate storage to sessions from  its pools. The op- 
erating system performs the physical allocation  from 
either real or virtual storage when data messages 
actually arrive in  the  node  and  must be buffered. 
The Node Buffer Manager maintains an accounting 
of the real storage which has been allocated to con- 
tain amving  data  and of the virtual storage which 
has been reserved at  the  time  that pacing windows 
are  granted. 

The tracking of  real storage usage is done for per- 
formance purposes. It is much  more efficient to 
buffer data in real storage than  in virtual storage. 
Real storage is, however, a scarce resource in  the 
System/36. If too much real storage is used by APPN, 
the  performance of operating system functions  may 
be seriously degraded. The Node Buffer  Manager’s 
1 OK pool of real storage places a  limit on  the  amount 

IBM SYSTEMS JOURNAL,  VOL 26. NO 4. 1987 



of real storage which can be  used by APPN data 
transport. A threshold value  is  associated  with the 
pool. When usage  crosses this threshold, the node is 
said to be  in a state of real  storage depletion. When 

Virtual  storage  is  tracked  to  prevent 
deadlocks. 

the Node Buffer Manager is in this state and a request 
is made to supply a session  with a new window 
value, the request is honored in a manner similar to 
any other window request. No special attempt is 
made to reduce the size  of the window that is  asso- 
ciated with the session requesting the new window. 
There is no reason to believe that  the session making 
the request is a significant  cause  of the node being 
in depletion state. Instead, a search is performed to 
find the session  which currently holds the largest 
window. The next time a window request is made 
for this greedy  session, the window granted will  be 
one less than its current window. In this way,  window 
sizes are gradually reduced until real  storage  usage 
drops below the threshold. This scheme does not 
prevent the 10K real  storage limit from being 
reached, but it does reduce the likelihood of this 
occurrence. If the limit is reached, messages  received 
above the threshold are buffered in virtual storage 
and some performance degradation is observed. A 
goal  of  buffer management is to maintain high 
throughput by adjusting window  sizes so that real 
storage can be  used for buffering  messages  most of 
the time. 

Managing virtual storage. Virtual storage is managed 
in such a way as  to ensure that there is  always  storage 
available to receive data. This guarantees freedom 
from deadlock. The Node Buffer Manager reserves 
virtual storage for a session  each time a new window 
is granted. Data messages may actually be  buffered 
in real  storage  when  they amve. The reservation 
simply guarantees that if  real storage is not available, 
there will be sufficient virtual storage to buffer the 
data. When the  data messages are forwarded to  the 
next node or to a user within the node, and  the buffer 
is emptied, the buffer  is reclaimed by the Node Buffer 
Manager. The reservation associated  with the buffer 
is canceled and the count of available virtual storage 

IBM SYSTEMS JOURNAL, VOC 26 NO 4, 1987 

is incremented. The Node Buffer Manager is not 
permitted to reclaim  storage until the buffer has been 
physically deallocated by the operating system and 
is ready for reuse.  Deadlock  may  result if the storage 
has  been  logically reclaimed but is not physically 
available. 

Virtual storage is not as scarce a resource as real 
storage;  however, it is not unlimited. Virtual storage 
reserved  for APPN data transport is limited by the 
amount of  disk  storage  which is dedicated for this 
purpose. An  excessively  large  pool  would  waste  disk 
storage  resources,  while a pool that is too small would 
limit the number of  sessions supported by the node. 
System/36 APPN uses a one-megabyte pool. The 
System/36 operating environment permits the reser- 
vation of this pool of virtual storage  exclusively for 
the use  of APPN data transport, while  still  allowing 
physical allocation of blocks of storage from the pool 
to be performed by the operating system. Without 
this feature, the Node Buffer Manager would  be 
forced to physically allocate the entire pool  of  storage 
in order to reserve it. It  would then have to imple- 
ment its own  storage manager in order to divide the 
pool into smaller segments when  storage  is actually 
needed to buffer  received data. 

The dedicated  buffer. When a session  is established, 
it  is  given an initial window of one, and a corre- 
sponding single  buffer  is  reserved from the virtual 
storage pool. This buffer  is dedicated to  the session 
for the life  of the session. In this way every  session 
always has at least one buffer, guaranteeing that 
windows will not be reduced to zero due  to lack of 
buffers. Not only does data transport cease on a 
session  when the window is reduced to zero, but 
there is also a potential for deadlock. 

The first  message  received in a window  always cames 
a request for a new window. The message may be 
viewed as occupying the single dedicated buffer  as- 
sociated  with the session. In an Intermediate Routing 
Node the message  is  processed by forwarding it to 
the next node on  the session path. When the message 
leaves the node, the buffer  which contained the 
message  is  physically deallocated and reclaimed by 
the Node Buffer Manager. The request for a new 
window camed by the message  is then processed. 
The dedicated buffer  which  was just reclaimed by 
the buffer  pool  is  reserved once again as part of the 
new window  being granted. 

It is  possible that between the  time the buffer  is 
reclaimed and  the  time  that it is  again  reserved, a 



window request from a different session could steal 
the dedicated buffer from the session to which it 
belongs. Since the dedicated buffer  is returned to the 
buffer pool like any  other buffer, there  does not 
appear to be anything to prevent this. The Node 
Buffer Manager relies on the single-threaded nature 
of the C/SNA environment.  This  environment  en- 
sures that processing associated with one event will 

Why slam the window to zero? 

be complete before the processing of the next event. 
In this case, the reclaiming of the dedicated buffer 
and  the  subsequent reservation of the dedicated 
buffer cannot be interrupted by activities related to 
a different session. Knowledge of the single-threaded 
nature of the C/SNA environment has been used to 
reduce the complexity of the APPN implementation. 

Window slamming. A threshold value is maintained 
for the virtual storage pool, as was the case for the 
real storage pool.  When  this threshold is exceeded, 
the  node is said to be in a virtual storage depletion 
state. If a window request is made while the  node is 
in this state, the request is honored  in  a  manner 
similar to  any  other window request. As in  the case 
of  real storage depletion, no special attempt is made 
to reduce the size of the window associated with the 
session that requested the new window. There is no 
reason to believe that  the session making  the request 
is a significant cause of the  node being in the deple- 
tion  state.  Instead,  a search is performed to find the 
session which currently holds the largest window. 
The window associated with this greedy session is 
slammed  to zero by sending a special unsolicited 
pacing message to  the sender. 

Why slam the window to zero? This would seem to 
have the undesirable effect of stopping all new data 
flow from the  sender.  Consider what would happen 
if the window were reduced to some  nonzero value: 
one, for example. In this case the  number of  buffers 
reserved by this session would actually have to be 
increased by one  in  order  to provide the new win- 
dow. Buffers in the  current window cannot be re- 
claimed because the receiver has no knowledge of 

446 SULTAN ET AL 

whether the sender has actually used part or all  of 
the  current window. Clearly, if the  sender has used 
all  of the  current window but  the messages have not 
yet amved  at  the receiver, the receiver cannot allow 
any  part of the  current window to be reclaimed due 
to  the risk of buffer unavailability and deadlock. 

When the  sender receives the pacing message slam- 
ming the window to zero, it sets its pacing count  to 
zero and  sends no  more messages except for an 
acknowledgment to  the receiver that  the window has 
been shut. When the receiver gets the acknowledg- 
ment, it waits for the  queue of  received  messages to 
be processed. It can  then reclaim the storage associ- 
ated with that  part of the window which the  sender 
did not use, since it knows that  no more messages 
associated with this window will amve.  The receiver 
then  sends to  the sender  a pacing message with a 
new window of one, allowing data  transport to pro- 
ceed on  the session but with a  much reduced win- 
dow. The window can gradually grow in size again 
with subsequent window requests for the session. 

The Node Buffer Manager may be  viewed as  a buffer 
reservation accounting service. Its knowledge of 
buffer distribution  and availability allows it  to  com- 
pute  and adjust the sizes  of windows granted to 
sessions in order  to  obtain high throughput  and avoid 
deadlock. Of all APPN components,  the  Node Buffer 
Manager is perhaps the most sensitive to  the oper- 
ating  environment. It must be tailored specifically to 
the  performance characteristics of each type of avail- 
able storage and to the primitives available for the 
manipulation of these storage types. 

The topology database  and  route  selection 

APPN maintains  a  database of network topology in- 
formation in every Network Node. Synchronization 
of the replicated database is performed by a distrib- 
uted broadcast algorithm.  The  database consists of a 
Node  Table, which contains  the  names  and charac- 
teristics of all Network Nodes, and a Link Table, 
which contains  the  identity  and characteristics of all 
links between pairs of Network Nodes. A link is 
uniquely identified by the pair lorigin Node, Desti- 
nation NodeJ.  The link  from  node A to node  B is 
considered to be distinct  from  the  link from node  B 
to  node A. 

The  Node  Table is a simple list. Each entry  points 
to  a list  of links which have their origin in  that  node. 
Link Table  entries specify the link origin and desti- 
nation  as indices into  the  Node Table. 

IBM SYSTEMS JOURNAL, VOL 26 NO 4, 1987 



Computing  routes. In order to  compute  an optimal 
path from a source node to a destination node, 
weights must be  assigned to nodes and links. When 
a transaction program requests a session, it specifies 
a Mode with which the session  is associated. One 
attribute of the Mode is its Class of Service (cos). A 
Class of Service might specify that  the path be secure 
(e.g., no public or satellite links) or that links on the 
path have sufficient bandwidth to support batch data 
traffic such as large file transfers. 

Route  computation consists of the  construction of a 
spanning tree, rooted at  the  node which is the path 
origin, indicating the best path to all Network Nodes 
for a specified  Class  of Service. Such a Rooted Tree 
is shown iq Figure 13, and is constructed by using a 
variation of Dijkstra’s basic single-source shortest- 
path The  number shown next to each 
link in the network is the weight  assigned to that 
link. It is computed by applying the cos mapping to 
the  current characteristics of the link and  the node 
which  is the link destination.  The path of least  weight 
from any node n to the source node can be found 
by traversing the  Rooted  Tree from node n to the 
source. 

Topology  database  performance issues. Many topol- 
ogy database  entries  are referenced during  a single 
path computation. Disk  access  of entries would re- 
sult in poor performance. Dedicating real storage 
(SQS) to the database is difficult to justify, since path 
computation is performed relatively infrequently 
and real storage is a scarce resource. The solution 
chosen is to place the database and all components 
which  access it in a single task. It  is a characteristic 
of the System/36 that all  pages of a task must be in 
real storage before the task can  enter execution state. 
The solution has the characteristic that  the database 
resides in real storage when the  functions  that use it 
are executing; it is swapped to disk at  other times. 
Since all components which  access the database re- 
side within the same task, it is unnecessary to provide 
a locking mechanism to serialize database access. 
The disadvantage of this solution is that there is a 
64K-byte maximum task size  which implies a  limit 
on the size of the database. The  current  implemen- 
tation allows 150 Network Nodes and 600 links 
between Network Nodes. 

Directory Services 

Directory Services provides the identity of the node 
in which a specified  Logical Unit resides. This infor- 
mation is needed so that  a path to the node can be 

IBM SYSTEMS JOURNAL, VOL 26. NO 4 1987 

Figure 13 A rooted tree 

computed  and  a BIND sent in order to establish a 
session to the Logical Unit. In the  future  one may 
wish to locate other types of resources such as trans- 
action programs, files, and printers. 

Since Directory Services initiates searches only for 
Logical Units,  it is assumed that  a request for Direc- 
tory Service will always  be  followed  by a request for 
a  route to the node in which the Logical Unit resides. 
Anticipating this request, Directory Services obtains 
a path to the Node from Route Selection Services. 

The  Distributed  Directory. Each Network Node 
maintains  a Local Directory Table containing those 
resources which  reside in the node or in adjacent 
End Nodes. The Network Node is said to own these 
resources. The  union of the individual Local Direc- 
tory Tables may be  viewed as a distributed Network 
Directory. 

SULTAN ET AL 447 



Finding  Logical Units. A session  may  be requested 
by a Logical Unit in an End Node or in a Network 
Node. When an End Node requests a session to a 
Remote Logical Unit in the APPN network, it  per- 
ceives the Logical Unit as residing in the adjacent 
Network Node. The End Node therefore sends a 
BIND to the adjacent Network Node. The C/SNA task 
in the Network Node recognizes that  the Logical 
Unit for which the bind is actually destined does not 
reside in the Network Node. The BIND is sent to  the 
Session Connection Manager subcomponent so that 
intermediate session activation may be performed. 
The Session Connection Manager invokes Directory 
Services in order to resolve the Destination Logical 
Unit  to  the  name of the node in which  it  resides. If 
Directory Services locates the Logical Unit, it obtains 
a path to  the node from Route Selection  Services 
and returns both the location of the Logical Unit 
and the optimal path on which it can be reached. 
The Session Connection Manager appends  the path 
to the BIND. 

When the Logical Unit requesting the session  is in a 
Network Node, it is the LU Network Services sub- 
component of CISNA, responsible for session end- 
point activation, which invokes Directory Services 
in order to resolve the Destination Logical Unit  to 
the name of the node in  which it resides. Whether 
the session originates in an End Node or in a Net- 
work Node, the Network Node which invokes Direc- 
tory Services  is the search origin. 

When Directory Services  receives a request from 
CISNA, it first checks the Local Directory Table to 
determine whether the Logical Unit is in the Net- 
work Node or an attached End Node. If the Logical 
Unit is found in the table, the  name of the node in 
which  it  resides can be learned directly from the 
table. 

If it is not found in the table, a cache of  previously 
located Logical Units is searched. The cache is sim- 
ply a fixed-size table of Logical Unit names and 
associated owning nodes into which  newly located 
Logical Units are placed, displacing existing table 
entries on a Least Recently Referenced  basis. If the 
Logical Unit is found in the cache, its location must 
be  verified,  because its residence may have changed 
since the last time it was referenced. Verification is 
performed by sending a message directly to  the node 
which the cache indicates is the owner of the Logical 
Unit  and obtaining a confirmation from that node. 
The verification  message  follows a path through the 
network supplied by Route Selection  Services. If 

448 SULTAN ET AL 

verification  fails, the incorrect cache entry is  re- 
moved. 

If the Logical Unit is not found in the cache or if 
verification  fails, a broadcast search" is initiated. 
The object of the broadcast search  is to examine the 
Local Directory at every  Network Node in order to 

Each  Network  Node  searches its 
local  directory. 

determine whether the Logical Unit is present and 
pass this information back to  the search origin. A 
broadcast search uses considerable bandwidth, since 
search  messages are forwarded to every Network 
Node in the network. The caching of  Logical Units 
and optimizations described in later sections reduce 
the likelihood that broadcast searches will  be  re- 
quired. The broadcast algorithm itself ensures that 
the search origin learns as quickly as  possible  when 
the Logical Unit has been found, although the search 
itself  may not yet have reached all nodes. This re- 
duces the response time seen by the user  waiting for 
session establishment. 

Figure 14 shows  how a Logical Unit is found in the 
APPN network. Network Node YKTN has received a 
BIND from Logical Unit BOB in End Node ROCH. The 
destination Logical Unit is TOM. YKTN searches its 
local directory of  Logical Units which  reside in YKTN 
or in attached End Nodes. When this fails, the cache 
in YKTN is examined, but  the Logical Unit is  again 
not found. YKTN initiates a broadcast search among 
the Network Nodes of the network, and each Net- 
work Node searches its local directory. TOM is found 
in the directory of node KING. The information that 
TOM resides in node HAW is propagated back to YKTN. 
The information is  placed in the cache at YKTN so 
that  a broadcast search  may not be  necessary in the 
future. 

Data  structures and  design considerations. Each 
search being processed by a node is represented by a 
data element containing a unique identifier associ- 
ated with that search. Chained to the search element 

IBM SYSTEMS JOURNAL. VOL 26, NO 4, 1987 



Figure 14 APPN directory  services 

CACHE 

LOCAL DIRECTORY 

i\ 
ROCH \ I YKTN f/ I 

LOCAL DIRECTORY 

t 

is an uptree element representing the node from 
which  a search message has been  received and a 
linked list of downtree elements representing the 
nodes to which search messages have been  for- 
warded. As in  the case  of the Topology and  Route 
Selection task, Directory Services implements its 
data structures from storage obtained within its own 
64K task address space. 

Directory Services  optimizations. Examination of 
the System/36 environment suggested certain imple- 
mentation choices  which  would  be  likely to improve 
performance. 

Batching duplicate search  requests. It is  possible that 
a node may attempt  to establish a  large number of 
sessions to a  Logical Unit within a short period of 
time. This is particularly likely  if the Mode has been 

configured for large numbers of  pre-established  ses 
sionsr In this case the C/SNA task can flood Directory 
Services  with requests to find  a  Logical Unit. If the 
resource is not in the Local Directory Table, a  sep- 
arate directory search may be initiated for each ses- 
sion to be e~tablished.’~ All of these searches are 
identical except for the search identifier. This situa- 
tion wastes bandwidth and slows  session activation 
response time. Directory Services  recognizes  new 
service requests which are identical to service  re- 
quests that  are being processed. It chains these du- 
plicate requests to  the original request and satisfies 
all  such requests with the results of a  single directory 
search. 

Avoiding directory search. A System/36 APPN node 
has only one Local  Logical Unit. This Logical Unit 
must have the same name as the Local Node. Before 

IBM SYSTEMS JOURNAL, VOL a, NO 4, 1987 



performing any search activity outside  the  node, 
Directory Services invokes Route Selection Services 
to determine whether there is a Node listed in  the 
Topology Database with the  same  name  as  the Log- 
ical Unit for which directory service has been re- 
quested. If the Node name is found  in  the database, 
there  must be a Logical Unit bearing the  same  name 
contained in that Node. Since Logical Unit  names 
are required to be unique  in  the network, it follows 
that  the Logical Unit being sought can be resolved 
to  the Node with the  same  name.  Route Selection 
Services provides Directory Services with a  route  to 
the Node. If Route Selection does  not  find  the  name 
in its  database, Directory Services returns to its nor- 
mal processing to resolve the Logical Unit  to the 
name of the  node in which it resides. The  number 
of additional cycles required to perform this check 
on the Logical Unit  name is small compared to  the 
cost of a directory search. 

Concluding remarks 

System/36 APPN provides highly dynamic, fully dis- 
tributed peer networking in  a  product which is  easy 
to use. Preliminary performance studies indicate  that 
the  time required for data  to pass through an inter- 
mediate node is sufficiently small to support  mul- 
tihop interactive activities such as  remote log-on 
capability. 

This paper has described some of the ways in which 
APPN was tailored to  the System/36 environment. 
The  authors believe that  the Advanced Peer-to-Peer 
Networking design may be implemented successfully 
in a wide variety of system environments. 

Acknowledgments 

The System/36 APPN implementation was a  joint 
effort of the I B M  Thomas  J. Watson Research Center 
and  the IBM System Products Division. The  authors 
would like to express their high technical regard and 
warm personal regard for those people from SPD 
Rochester who participated in  the System/36 APPN 
implementation.  Those who made substantial tech- 
nical contributions are: Dan  Amundson,  Dan Bros- 
soit, Dave Christensen, Beth Gabriel, Carole Mataya, 
John McGinn, Mike Monday,  Karen Orbeck, Chris 
Jones,  Narendra Singh, Laurie  Strand, and Saeid 
Sakhitab. Marv Kulas, Scott McCreadie, and Rosie 
Rocke spent many  hours testing APPN networks in  a 
wide variety of configurations to verify the correct- 
ness  of the  implementation.  Don Momson provided 
early technical direction. We would also like to  thank 

450 SULTAN ET AL 

the following members of the CPD Architecture 
Group  at Research Triangle Park, North  Carolina, 
for their advice and review  of the design of System/ 
36 APPN: Jeff Carley, Kathy Clarke, John Drake, and 
Melinda Pollard. Those most responsible for the 
concept of APPN are Alan Baratz, Jim  Gray, Paul 
Green, Jeff  Jaffe, Diane Pozefsky, and Lee Rafalow. 
Others who contributed to  the realization of APPN 
are Paul Frosch, Bharath Kadaba,  Jean  Lorrain, 
Frank Moss, Larry Plank,  Mark Pozefsky, and 
Chuck  Wood. 

Cited references and notes 

1. System/36 Advanced Peer-to-Peer Networking is System Sup- 
port  Program  (SSP)  Feature No. 6096  and  Program No. 5727- 
SSl/l7. It is available through IBM branch offices or by calling 

2. SNA is  IBM’s architecture  for networking. It specifies exactly 
those functions  and  protocols which a  product  must  imple- 
ment  in  order  to  cooperate with other  products  in  the SNA 
network. 

3. J. P. Gray, P. J. Hansen, P. Homan, M. A. Lerner, and 

tion  in  SNA,” IBM  Systems Journal 22, No. 4, 298-318 
M. Pozefsky, “Advanced program-to-program communica- 

( 1  983). 
4. Transaction Programmer’s Reference Manual .for LU Type 

6.2. GC30-3084, IBM Corporation (1985); available through 
IBM branch offices. 

5. Format  and Protocol Reference Manual: Archiieciure Logic 
for  rvpe 2.1 Nodes, SC30-3422, IBM Corporation ( I  986); 
available through IBM branch offices. 

6. The  term udjacent means  that  there  are  no  intervening SNA 
nodes. Examples of adjacent nodes are  the  primary  and  a 
secondary on  a  multidrop leased line, two nodes  connected by 
a dial line, or two nodes connected  across an X.25 packet 

7.  An SNA Logical Unit  (LU) is a  port  through which an  end 
network. 

user accesses the SNA network. An end user can be an 
application program or a  workstation  operator. 

8. B. C. House1 and C. J.  Scopinich, “SNA Distribution Ser- 
vices,” IBM  Systems Journal 22, No. 4,  3 19-343 (1983). 

9. A  customer  may wish to attach  a  System/36  as  an  End  Node 
node to  the  APPN network when communication  into  the 
network is required  without  the  burden of providing network 
services. The  customer activates the  APPC subsystem to obtain 
End  Node  function, or the  APPN subsystem in order  to  obtain 
Network Node  function. 

10. The user transaction program must recognize a  return  code 
indicating  that  a session failure has occurred. The program 
can  then reissue the  ACQUIRE verb. A new session will be 
obtained  on  an  alternate  path if such a  path exists. Participa- 
tion of the  transaction program is required for recovery from 
session failure due  to link outage. 

1 1. A. Segall, “Distributed network protocols,” IEEE Transac- 
tions on Information  Theory IT-29, No. I ,  23-35 (1983). 

12. J. M. Jaffe, A.  E. Baratz, and A.  Segall. “Subtle Design Issues 
in the  Implementation of Distributed,  Dynamic  Routing Al- 
gorithms,” Compuler  Networks  and  ISDN  Systems 12, No.  3, 
147-158 (1986). 

13. A. E. Baratz, J. P. Gray,  P. E. Green,  J. M. Jaffe, and 
D. P. Pozefsky, “SNA networks of small systems,” IEEE 
Journal on Selected Areas in  Communications SAC-3, No. 3, 

800-IBM-2468. 

416-426 (1985). 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 



14. P. E. Green, R. J.  Chappuis,  J. D. Fisher, P. S. Frosch, and 
C. E. Wood, “A perspective on Advanced Peer-to-Peer Net- 
working,” IEM Systems Journal 26, No.  4, 414-428 (1987, 
this issue). This  paper provides additional  information  on 
System/36  communication  functions. 

15. Although configuration of Remote Logical Units is not re- 
quired,  the user is given the  opportunity  to supply an  optional 
list of Logical Units  and associated Nodes. This allows the 
user to selectively activate  a link to  a specific adjacent  Remote 
Node by enabling  the associated Logical Unit. Most users do 
not  require  this level of  granularity in link activation  and 
should leave the  menu  blank. 

16. The  ICF verbs are  not  the  same  as  the  LU 6.2 Architecture 
verbs, but  in  the case of the  APPC subsystem there is a 
mapping between the  two sets of verbs. For  example,  the 
ACQUIRE  and EVOKE verbs together map  to  the single LU 
6.2 verb ALLOCATE. 

17. There  are  many such SNA subsystems. These  three have been 
chosen for illustrative purposes. 

18. Implemented by POST  and  WAIT supervisor calls. 
19. The  Finance subsystem allows System/36 users to  communi- 

cate with programs  running in the 3601 and 4701 Finance 
Controllers  and  the 3694 Document Processor. 

20. DLC is the protocol by which data packets are actually sent 
on  a line. It performs flow control  functions so that link 
buffers are  not  overrun  and  ensures  the integrity of  data  sent 
over the link. System/36  supports  SDLC  and X.25 protocols. 

2 I .  Communication with CICS and IMS via  LU 0. 
22. C/SNA supports LU 6.2. Secondary  LUs 0, I ,  2, and 3, and 

Node types 2.0  and 2.1. Two  additional subsystems, SNA 
3270 Emulation  and  Multiple Session Remote  Job  Entry, 
make use of the C/SNA function in a  manner  similar  to  APPC 
and  SNUF. 

23. The  Control  Point sessions which cany network control mes- 
sages always use the single-hop path over the link directly 
connecting  the two nodes. In  this case the  route is obtained 
from the association between the  Remote Logical Unit  and 
the  Remote Node. since no alternative  path is possible. 

24. If dynamic  activation of Remote Logical Units is to be per- 
formed. the user must specify the new parameter APPN-YES 
on  the SESSION OCL  statement. 

25. For simplicity, the  establishment of the session on which the 
CNOS  conversation  takes place is not described. It is estab- 
lished like any  other LU 6.2 session, except that it uses a 
Session Group whose limits  are  not negotiated, so that  the 
possibility of recursion is avoided. 

26. Some  additional APPN specific activities are  required in the 
preserved session endpoint  activation  function.  The session 
activation message must be extended  to  contain  the session 
path and  other  information required along  the route. Initial 
values are established for  functions such as  adaptive hop-by- 
hop flow control which are not performed by other subsystems. 

27. A. V. Aho. J. E. Hopcroft,  and J. D.  Ullman, The Design and 
Analwis  ojComplcter  Algorithms, Addison-Wesley Publishing 
Co., Inc., Reading, MA (1975). 

28. J. M. McQuillan, 1. Richer,  and E. C. Rosen,  “The new routing 
algorithm for the  ARPANET.” IEEE Transactions on Com- 
munications COM-28, 7 I 1-7  19 (May  1980). 

29.  There would be a  broadcast search corresponding to each 
requested session only if no searches completed before the last 
of the  multiple service requests received from  C/SNA. If one 
of the broadcast searches did  complete,  the resource would be 
cached and  subsequent searches would be directed searches. 

Robert A. Sultan IBM Research Division,  Thomas J.  Watson 
Research Center, P . 0  Box 704,  Yorklown  Heights,  New  York 
10598. After joining IBM in 1979, Mr.  Sultan worked on  the 
design and  development of manufacturing systems. He  joined  the 
Computing Systems Department of the Research Center in 198 I ,  
working in  the  areas  of systems monitoring  and  telecommunica- 
tions  planning. In 1983 Mr.  Sultan  joined  the Network Architec- 
ture  and Protocols Group, where he participated in System/36 
APPN design and  implementation. He is currently  a  member  of 
the  Data  Communications  Architecture  Group, working on  the 
design and analysis of network control  algorithms.  Mr.  Sultan 
received a B.S. in humanities  and science from MIT in 1968 and 
an M.S. in  computer science from Pennsylvania State University 
in 1979. 

Parviz  Kermani IBM Research Division, Thomas  J.  Watson  Re- 
search Center. P.O. Box 704,  Yorktown Heights. New  York  10598. 
Dr.  Kermani has been a Research Staff Member in the  Computer 
Science Department  at  the Research Center since 1978. He re- 
ceived a B.S. in engineering from  the University of Tehran,  Iran, 
in 1969, an M.A. in mathematics from the University of Waterloo, 
Canada,  in 1973, and  a  Ph.D. in computer science from UCLA in 
1977. He is currently  manager of the  Data Network Analysis 
Group  at  the Research Center. In 1984 he was a  member  of  the 
Technical Planning Staff of the  director of the Research Division, 
and  in 1986 spent  a sabbatical year at  the IBM Research Labora- 
tory in Zurich, Switzerland. His work has been in the  area of 
design, development,  and  performance analysis of  communication 
networks. Dr.  Kermani is a  member of the IEEE. 

George A. Grover IBM Research Division,  Thomas J. Watson 
Research Center. P.O. Box 704,  Yorktown  Heights,  New York 
10598. Mr.  Grover was a  member of the Network Architecture 
and Protocols Group  at  the Research Center which implemented 
System/36 APPN jointly with SPD Rochester. He was involved in 
the design of its deadlock-free flow control  and of critical synchro- 
nization processes. From 1979 to  mid-I982 he was a  member of 
the  Communication  Programming System Design group  in  CPD 
Kingston. In  both Research and  CPD  Mr.  Grover  has worked 
extensively in the design of SNA networking functions. Previously 
he participated in assembler, compiler,  and  operating system de- 
sign and  development activities in conjunction with System/360, 
the  Stretch  computer,  and  the 7950 (a special-purpose extension 
of the  Stretch  computer),  and  in technical planning activities 
relating to advanced technology, security, and privacy. Mr.  Grover 
received a B.A. from Amherst College in 195 1 and  joined IBM in 
1954. 

Tsipora  P.  Barzilai IBM Research Division,  Thomas J.  Watson 
Research Center, P.O. Box 704,  Yorktown  Heights,  New  York 
10598. Ms. Barzilai is a  member of the  Data  Communication 
Architecture group  at  the Research Center.  She has been with IBM 
since 1982, and was involved in  the  development of a tool for 
performance  evaluation of computer networks. In 1984 she  joined 
the  team  that was responsible for design and  implementation of 
APPN on  the  System/36. Recently she has been working on cost 
performance  and design of  computer  communication protocols. 
Ms. Barzilai received a B.Sc. and  an M.Sc. from the  Technion, 
Israel Institute of Technology, in 1975 and 1979, respectively. 

Alan E. Baratz IBM Research Division, Thomas J.  Watson  Re- 
search Center. P.O. Box 704,  Yorktown  Heights.  New  York  10598. 

IBM SYSTEMS JOURNAL VOL 26. NO 4, 1987 SULTAN ET AL 451 



Dr. Baratz is manager  of  the  Telecommunications Network Archi- 
tecture Project at  the Research Center. He did his undergraduate 
work at UCLA, where he received a B.S. in math/computer science 
in 1976. His graduate work was done  at  MIT, where he received 
M.S. and  Ph.D. degrees in computer science in 1979 and 1981. 
His thesis research with Professor R. L. Rivest was on  algorithms 
for integrated circuit signal routing.  In 198 I Dr. Baratz joined  the 
IBM Thomas J. Watson Research Center as a Research Staff 
Member,  and  in 1984 assumed his present position.  His research 
interests have included  computer  communications,  distributed 
algorithms, VLSl layout  algorithms,  and  combinatorial  graph al- 
gorithms. 

Reprint  Order No. G321-5306. 

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 


