Box structured
information systems

The box structure methodology for information sys-
tems development is based on a usage hierarchy of
data abstractions, in which each abstraction is defined
in three distinct forms, called its black box, its state
machine, and its clear box. Each of these three box
structures defines identical external behavior, but with
increasing internal visibility, to provide a hierarchical
structure which supports the systems development
principles of referential transparency, transaction clo-
sure, state migration, and common services. This hier-
archy of box structures provides, in turn, a basis for
orderly management of information systems develop-
ment by a finite set of analysis and design tasks in a
spiral development process. The methodology and its
use are described.

ince their inception, information systems have

been used in government and business, but re-
search and development in information systems
have increased dramatically since the advent of the
computer some thirty years ago. As a result, a rec-
ognizable discipline of Information Systems is
emerging in business and in university curricula.
However, Information Systems is still a young field
in terms of intellectual growth and development.
Even with all the current excitement and progress,
there is still a lot to discover. The search for funda-
mental ideas and deep simplicities takes time.

Structures and data flows. The revolution that
changed trial-and-error computer programming into
software engineering was triggered by Dijkstra’s idea
of structured programming.! Structured program-
ming cleared a control flow jungle that had grown
unchecked for twenty years in dealing with more
and more complex software problems. It replaced
that control flow jungle with the astonishing asser-

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

by H. D. Mills
R. C. Linger
A. R. Hevner

tion that software of any complexity whatsoever
could be designed with just three basic control struc-

. tures—sequence (begin-end), alternation (if-then-

else), and iteration (while-do)—which could be
nested over and over in a hierarchical structure (the
structure of structured programming). The benefits
of structured programming to the management of
large projects are immediate. The work can be struc-
tured and progress measured in a top-down devel-
opment in a direct way.

Even so, information systems development is much
more than software development. The operations of
a business involve all kinds of data that are trans-
mitted, stored, and processed in all kinds of ways.
The total data processing of a business is defined by
the activities of all of its people and computers, as
they interact with one other and with customer,
vendor, and government personnel and computers
outside the business. In a large company, it is a
massively parallel operation with many thousands
of interactions going on simultaneously. Information
systems are called on to automate more and more
of the information processing in business—in many
cases these systems are required for survival in a
competitive environment. And for these systems, a
complete description of their data operations and
uses leads to a data flow jungle that is even more
tangled and arcane than the control flow jungle of
software.

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

MLLS, LINGER, AND HEVNER 395

We will replace that data flow jungle with just three
system structures that can be nested over and over
in a hierarchical structure (the structure of box struc-
tures). Any information system—automatic, man-
ual, or hybrid—can be described or designed in a

Software counterparts of state
machines have been called data
abstractions.

hierarchy of these system structures step by step in a
provable way. The benefits of box structures to the
management of large projects are also immediate.
The work can be structured and progress measured
in top-down system development in a direct way.

State machines and data abstractions. The origins of
these system structures are in the hierarchical state
machine methodology of software engineering found
in References 2, 3, and 4 and taught at the IBM
Software Engineering Institute.>® As discussed in the
book by Mills, Linger, and Hevner,’ this methodol-
ogy was used in the New York Times Information
Bank, as reported by Baker,®® with remarkable re-
sults in reliability.® A very large-scale use of this
methodology in the modernization of U.S. Air Force
satellite tracking and control systems has been re-
ported by Jordano.'®

The software counterparts of state machines have
also been called data abstractions,!"'? and more re-
cently, software objects.”® Their common feature is
the presence of a state, represented in stored data,
and accessed and altered by procedures that collec-
tively define the state machine transition function.
Since these data are accessed and altered by reusing
the data abstraction or object, the hierarchy is a
usage hierarchy, in the sense found in Parnas,'*
rather than a parts hierarchy. That is, data abstrac-
tions appear in the hierarchy at each occasion of use
in the design, rather than as a part in the design.

This usage hierarchy of data abstractions cuts a
Gordian knot for the effective dual decomposition
of data flows and processes in information systems.

396 MILLS, LINGER, AND HEVNER

Data flows are convenient heuristic starting points
in information systems analysis, as developed in
References 15 through 18, but require a mental
discontinuity to move to information systems design.
The problem is that data flows describe all that can
possibly happen, whereas processes must deal with
one data instance at a time and prescribe precisely
what will happen at each such instance. Each use of
a data abstraction is an instance of data flow through
a process, which provides for storage in its state as
well. And the collective effects of the usage of the
data abstraction throughout a hierarchy are sum-
marized by a data flow through the process. Data
abstractions have proved useful in software engi-
neering in several specific languages and systems, as
in cLU,"” vDM,*?' HDM,?? Larch,”® and object-ori-
ented design."

Box structures and data abstractions. The box struc-
ture methodology develops the usage hierarchy of
data abstractions in a way especially suited for infor-
mation systems development, in which the emphasis
is jointly on mathematical rigor and management
simplicity.” For this purpose, we not only need strong
system development principles, but must also make
these principles obvious in the methodology. We
define three distinct forms for any data abstraction,
namely, its black box, its state machine, and its clear
box. A black box defines a data abstraction entirely
in terms of external behavior, in transitions from
stimuli to responses. A state machine defines a data
abstraction in terms of transitions from a stimulus
and internal state to a response and new internal
state. A clear box defines a data abstraction in terms
of a procedure that accesses the internal state and
possibly calls on other black boxes. This recursion
of black boxes with clear boxes that call on other
black boxes defines a usage hierarchy that supports
important principles for system development,

In the next section of this paper we summarize the
principal concepts of the box structure methodology
and explain their mathematical foundations. In the
subsequent section, box structure hierarchies are de-
fined, and the system development principles of
referential transparency, state migration, transaction
closure, and common services are described. Finally,
we discuss the benefits of these structures in man-
aging a spiral system development process.

Box structures

The behavior of any information system (or subsys-
tem) can be rigorously described in three distinct

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

box structure forms previously mentioned—the
black box, state machine, and clear box of the sys-
tem. We first define each of these structures and then
show relationships among them.

Black box behavior. The black box gives an external
view of a system or subsystem that accepts stimuli,
and for each stimulus, S, produces a response, R
(which may be null), before accepting the next stim-
ulus. A diagram of a black box is shown in Figure 1.
The system of the diagram could be a hand calcula-
tor, a personal computer, an accounts receivable
system, or even a manual work procedure that ac-
cepts stimuli from the environment and produces
responses one by one. As the name implies, a black
box description of a system omits all details of inter-
nal structure and operations and deals solely with
the behavior that is visible to its user in terms of
stimuli and responses. Any black box response is
uniquely determined by its stimulus history.

For example, an interactive workstation is a com-
puter system that accepts keystrokes, one by one,
and returns a new screen with each keystroke. Most
keystrokes change the screen in small ways, say, by
adding or deleting a character, but some keystrokes
bring up entirely new screens, say, by an enter key
or a menu choice. Each such keystroke is a stimulus
for the black box. The user need have no idea of the
internal structure—that some screens are created
locally, some indirectly by remote computers, etc.
The workstation behaves as a black box for the user.

The idea of describing a system as a black box is
useful for analyzing the system from the user’s point
of view. Only system externals are visible; no system
state or procedure is described. The mathematical
semantics of black box behavior is a function from
system stimulus histories to system responses. A
black box is specified by its traces.>** In fact, Parnas
uses the term black box to motivate the study of
traces.”

State machine behavior. The state machine gives an
intermediate system view that defines an internal
system state, namely an abstraction of the data stored
from stimulus to stimulus. It can be established
mathematically that every system described by a
black box has a state machine description. (Consider
each stimulus history to be a state.) A state machine
diagram is shown in Figure 2. The state machine
part called Machine is a black box that accepts as its
stimulus both the external stimulus and the internal
state and produces as a response both the external

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure1 A black box diagram

Figure2 A state machine diagram

response and a new internal state which replaces the
old state. The role of the state machine is to open up
the black box description of a system one step by
making its state visible. State machine behavior can
be described in the transition formula

(Stimulus, Old State) — (Response, New State)

Much of the work in formal specification methods
for software applies directly to specification of the
state machine system view. These methods, such as
those presented in the literature,!'"'22%27 gpecify the

MLLLS, LINGER, AND HEVNER 397

Figure3 The clear box sequence structure

required properties of programs and abstract data
types in axiomatic and algebraic models. The models
represent behavior without presenting implementa-
tion details.

For information systems, however, we believe that
direct descriptions are often sufficient—that indirect
axiomatic and algebraic methods of describing data
abstractions tend to obscure the essential simplicity
of state machines. Also, the conceptual work re-
quired to derive axioms or algebras for a complete
system state can require deep research itself. (For an
example of problems associated with the axiomati-
zation of even a simple data abstraction, see Ferren-
tino and Mills.?)

Clear box behavior. The clear box, as the name
suggests, opens up the state machine description of
a system one more step in an internal view that
describes the system processing of the stimulus and
state. The processing is described in terms of three
possible sequential structures, namely sequence, al-
ternation, and iteration, and a concurrent structure.
Figure 3 shows a clear box sequence structure with
two internal subsystems represented as black boxes;
each accepts both a stimulus and a state and pro-
duces both a response and a new state. In the se-
quence structure, the clear box stimulus is the stim-
ulus to black box M1, whose response becomes the

398 muLs LNGER, AND HEVNER

stimulus to M2, whose response is the response of
the clear box. At this point, a hierarchical, top-down
description can be repeated for each of the embedded
black boxes at the next lower level of description.
Each black box is described by a state machine, then
by a clear box containing even smaller black boxes,
and so on.

Figures 4, 5, and 6 show, respectively, the alterna-
tion, iteration, and concurrent clear box structures.
The internal machines, Mi, can be expanded at lower
levels of description in a box structure hierarchy. In
alternation and iteration clear boxes, the condition
C (denoted by a diamond) is a special black box that
accesses the stimulus and old state to return re-
sponses T or F (True or False). The function of C is
to direct the stimulus to the proper black box.

The clear box is an essential step of system descrip-
tion that 1s lacking in many information systems
development methods. It specifies the procedurality
that connects the usage of subsystems to be described
at the next lower level in the box structure hierarchy.
This explicit connection supports the principle of
referential transparency, to be discussed in the next
section.

Box structure derivation and expansion. The rela-
tionships among the black box, state machine, and

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 4 The clear box alternation structure

Figure5 The clear box iteration structure

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 MILLS, LINGER, AND HEVNER 399

Figure 6 The clear box concurrent structure (shown with
two machines)

| sTATE
. 2

clear box views of a system or subsystem precisely
define the tasks of derivation and expansion. As
shown in Figure 7, it is a derivation task to deduce
a black box from a state machine or to deduce a
state machine from a clear box, whereas it is an
expansion task to induce a state machine from a
black box or to induce a clear box from a state
machine. That is, a black box derivation from a state
machine produces a state-free description, and a state
machine derivation from a clear box produces a
procedure-free description. Conversely, a state ma-
chine expansion of a black box produces a state-
defined description, and a clear box expansion of a
state machine produces a procedure-defined descrip-
tion. The expansion step does not produce a unique
product because there are many state machines that
behave like a given black box and many clear boxes
that behave like a given state machine. The deriva-
tion step does produce a unique product because
there is only one black box that behaves like a given
state machine and only one state machine that be-
haves like a given clear box.

In summary, black box, state machine, and clear
box expansions provide behaviorally equivalent

400 wmiLs. UNGER, AND HEVNER

views of an information system or subsystem at
increasing levels of internal visibility. This equiva-
lence relationship is depicted in Figure 8.

A box structure illustration. Although the concept
of box structures is easy to grasp, its use in actual
business systems requires business knowledge. In
fact, box structures provide forms in which to de-
scribe business knowledge in a standard way. The
principal value of a black box is that any business
information system or subsystem will behave as a
black box whether consciously described as such or
not. In turn, any black box can be described as a
state machine (actually in many ways), and any state
machine can be described as a clear box (also in
many ways), possibly using other black boxes. In
practice, information systems or subsystems often
have their own natural descriptions that can be
reformulated as box structures.

As an illustration, a 12-month running average de-
fines a simple, low-level black box that might be used
in sales forecasting, for example, for a variety store
with 10 000 items. A stimulus of last month’s sales
of an item produces a response of the past year’s
average monthly sales of the item. Each month a
new sales amount produces a new average of the past
12 months. In the case of new items with less than
12 months of sales history, the response can be the
average of sales to date. If is the age of an item in
months, then the number of months to average is
min (i,12), the minimum of / and 12, no matter how
long the sales history is.

Figure 9 shows the Running Average black box
where for an item of age i, S./ = § is last month’s
sales, S.2 is the next previous month’s sales, and so
on. The symbol “:=” means that the term on the left
side (R) is assigned the value of the expression on
the right side.

One possible state machine with the same behavior
as this black box would store the previous min (i,12)
monthly sales S.1, S.2, - - . in state variables S1, S2,
---, and item age i in state variable /. Then, with
each new stimulus .S, there is sufficient information
to calculate the response and update the state. The
state variable / must be initialized, say to 1, and
incremented with each stimulus. The state variables
S§1, 82, - .- will be initialized as the first 12 months
of sales materialize.

Figure 10 shows the corresponding Running Average
state machine. The multiple assignments are to be

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 7 Box structure derivation and expansion (shown with sequence clear box)

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987 MLLS, UNGER, anD HEVNER 401

Figure8 Three behaviorally equivalent views of an information system or subsystem

INFORMATION SYSTEM

Figure9 Running average black box

SALES AVERAGE
FOR LAST MONTHLY

MONTH { SALES

understood as concurrent. That is, all expressions on
the right sides use the data available at the beginning
of the transition, not data computed in assignments
above them.

Note a distinction between S.1, S.2, - - -, which are
monthly sales, and S/, S2, ---, which are state
variables. The values are the same (at the end of each

402 MLLS. LNGER, AND HEVNER

transition), but unless S.1, S.2, - .. are recorded in
S1, S2, ---, they will be lost to the state machine
because it does not access stimulus history, as does
the black box. The assignments made to S2, S3, - - -
before S1, S2, - - - are initialized reference undefined
values, but do no harm because they are not used in
R.

A clear box will describe how the response and new
state are computed in a sequential or concurrent
structure of other black box uses. One possibie design
1s to first update the sales data, then compute the
running average from the new state data and incre-
ment the age of the item, as shown in Figure 11. In
this case, no further black box expansion will be
needed because both black boxes, Update Sales and
Find Average, require no more than their last stimuli
to compute their response [they can be defined as
mathematical functions from stimuli (not stimulus
histories) to responses]. Of course, the stimuli on
which they operate include the state variables of
Running Average.

Note that many other state machine and clear box
designs could have been chosen to implement the

IBM SYSTEMS JOURNAL. VOL 26, NO 4, 1987

Figure 10 Running average state machine

1, 81, 82+, 811, 512
INITIAL: J = 1

_ 8+ 81 +er- + Smin(l—-1,11)

o ; min(112)
SALES : L.81'=8 AVERAGE
FOR LAST i 3 L igpie 81 F§ MONTHLY
MONTH BroRit SALES
S11= 810
§12:= 811
Fi= 1+ 1
Figure 11 Running average clear box
1, 81, 82,+», S11, §12
INITIAL: /=1
UPDATE SALES [7¢i " FIND AVERAGE
S1: 81 4+« + Smin(1,12)
y s2: : = s
'S:ALES - 1o min(112) AVERAGE
OR LA s S11:= > MONTHLY
MONTH S12:= SRS 'ﬂ SALES

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

MILLS, UNGER, AND HEVNER 403

Running Average black box. For example, after the
value of I exceeds 11, the state data could be stored
as monthly sales values divided by 12. The running
average would then be found by adding all the state
data.

A Running Average black box is a simple sales

forecaster. However, if sales are seasonal or have
definite trends, a more suitable black box may be

Box structure verification defines an
objective, rigorous process for self-
checking and peer inspections.

required. Such a forecaster will differ in details, but
can still be described in a black box/state machine/
clear box structure.

Box structure verifications. In the foregoing example,
we began with an informal description of a black
box (“12-month running average™), then formalized
it into an assignment from stimulus histories to
responses,

SI1+S2+ - + Smin(i,12)
min (i,12) ’

accounting for new items with less than 12 months
of sales history. Next, we expanded this black box
into one of many possible state machines, as in
Figure 10, then expanded the state machine into one
of many possible clear boxes, as in Figure 11. These
two expansions were simple and direct, because the
black box itself is quite simple. Even so, these designs
are possibly faulty, and in more complex cases the
probability of faulty designs increases, even with the
greatest of care.

R =

Fortunately, there is a direct and rigorous way to
check these designs: Independently derive the state
machine of the final clear box expansion and com-
pare it with the intended state machine designed
above. If the intended state machine is recovered by
derivation, the expansion into the clear box has been
verified. Next, we can independently derive the black

404 MuLLs UNGER. AND HEVNER

box from the verified state machine and compare it
with the intended black box formulated initially.

We call this rederivation and comparison process a
box structure verification. It works on the same prin-
ciple used in division to check that the division has
been done correctly, that is, a multiplication of quo-
tient and divisor added to the remainder to inde-
pendently derive the dividend.

Box structure verification defines an objective, rig-
orous process for self-checking and peer inspections.
Even though people are fallible, this fallibility can be
reduced dramatically by such inspections based on
an objective, rigorous foundation.

In this example, beginning with the clear box of
Figure 11, the first task is to eliminate the procedur-
ality—in this case the sequence of Update Sales and
Find Average—to obtain the black box machine of
the derived state machine. In Find Average, the
expression for R references S1, ---, Smin(1,12),
which were updated in Update Sales, where S1 was
assigned .S, S2 assigned S/, ---, and S12 assigned
S11. Therefore, in terms of the stimulus and original
state at the beginning of the transition, the assign-
ment to R is

S+ SI+ -+ Smin(d — 1,11)
min (1,12)

R :=

Also, in Find Average, the expression for I references
only 7 which is not changed in Update Sales, so this
assignment remains as before,

I=1+1

Since Update Sales is the first black box used, its
assignments are from the stimulus and onginal state,
so those assignments remain the same. The result of
collecting all these assignments into a single black
box machine results in the derived state machine
shown in Figure 12.

Now we can compare the derived state machine of
Figure 12 with the Running Average state machine
as shown in Figure 10. They are not identical, line
by line, but they differ only in the placement of the
line I := I + 1 in the multiple assignments. But since
these multiple assignments are concurrent, the order
of placement of 7 := I + 1 has no effect on the
responses of these two machines. So they are identi-
cal in effect in returning a response and updating the
state of the state machines. With this derivation and
comparison, the Running Average clear box of Fig-
ure 11 has been verified to be a correct (and com-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 12 Derived state machine

SALES
FOR LAST
MONTH

AVERAGE
Py MONTHLY
SALES

plete) expansion of the Running Average state ma-
chine of Figure 10.

Now that the Running Average clear box has been
verified, we can turn our attention to the verification
of the Running Average state machine, by the inde-
pendent derivation of its black box, to be compared
with the original Running Average black box of
Figure 9.

Each value in the state of the Running Average state
machine is the cumulative result of its initial value
and all subsequent transitions to date. Our objective
is to determine the value assigned to R, which is

S+S8I+ .-+ Smin(I —1,11)
min(1,12)

not in terms of stimulus and state data, but in terms
of stimulus history data instead.

R =

First, at age i/ of the item, we observe that [= |
at the beginning of the transition, because at age 1,
I = 1 by initialization, and / is incremented by 1| at
each transition. Therefore, at age /, by direct substi-
tution of i for I in the assignment above,

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

S+S8I+ -+ Smin(i — 1,11)
min (i,12)

Furthermore, at the beginning of the transition at
age i, the state variables S1, 82, - -+, Smin(i — 1,11)
will contain the sales values S.2, S.3, ---,
S.min (i,12) for the following reason.

R =

At age 1 of the item, all values of S1, S2, ..., SI2
are uninitialized, but S1 = S.7 after the transition at
age 1. At age 2, S2 is assigned the value of S1, which
is the value of S.1 at age 1, but is renamed S.2 at age
2,50 82 = 8.2, and S! is assigned S./. Continuing,
at age i, S1, S2, ---, Smin(i — 1,11) are assigned
S.1,82, ---, Smin(i — 1,11) after the transition.
But at the beginning of the next transition, these
sales values will have all aged one month. So, in fact,
at the beginning of the transition at age I, the state
variables S1, S2, ..., Smin(i — 1,11) will contain
the sales values S$.2, S.3, - .-, Smin (i,12).

Finally, we observe that S = S.1, the last sales value,
so we can complete the substitution of sales values
for state values in the calculations for R in the
assignment above, to get the derived black box
shown in Figure 13.

MLLS, LNGER, AND HEVNER 405

Figure 13 Derived black box

AVERAGE
MONTHLY
SALES

Figure 14 A box structure hierarchy

The derived black box of Figure 13 is identical to
the Running Average black box of Figure 9. With
this derivation and comparison, the Running Aver-
age state machine of Figure 10 has been shown to be
a correct (and complete) expansion of the Running
Average black box of Figure 9.

The joint result of these two verifications is the
verification that the Running Average clear box of

406 MLLs, UNGER, AND HEVNER

Figure 11 is a correct (and complete) expansion of
the Running Average black box of Figure 9.

Information systems development with box
structures

The box structure concepts presented in the previous
section can be expanded into a complete methodol-
ogy for information systems development. The first
step is to describe an information system as a mul-
tilevel usage hierarchy wherein each node is a box
structure expansion of an independent system part.
We then demonstrate how fundamental principles
of system development can be applied in the box
structure hierarchy.

Box structure hierarchies. A box structure hierarchy,
as shown in Figure 14, provides an effective means
of control for managing and developing complex
information systems. By identifying black box sub-
systems in higher levels of the system, state data and
processing are decentralized into lower-level box
structures. Each subsystem becomes a well-defined,
independent module in the overall system. Although
the progression from black box to state machine to
clear box at any point in the hierarchy may appear
to be a triplication of effort, this is not the case. Each
subsystem can be initially described in its most nat-
ural form, with the other forms determined as nec-
essary for analysis and design.

The concept of hierarchies is crucial in system and
program development. Top-down programming is
based on the principle of stepwise refinement of
program modules in a hierarchy. Similarly, usage
hierarchies of system modules allow a top-down
discipline of system specification and implementa-
tion.

The box structure hierarchy, in particular, provides
for the systematic application of four essential prin-
ciples of system development. These principles,
called referential transparency, transaction closure,
state migration, and common services, are discussed
next.

Referential transparency. The box structure hier-
archy provides a formal method for defining system
modules while preserving referential transparency
between levels. Referential transparency is a guiding
principle for forming system hierarchies.

Principle of Referential Transparency—In the dele-
gation of any system part for design and implemen-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

tation, all requirements should be specified explicitly
and independently, so that no further communica-
tion or coordination is logically required to complete
the system part.

The principle of referential transparency provides a
crisp discipline for management delegation and as-
signment of responsibility. The lack of referential
transparency can lead to management nightmares
where nothing works and no one is to blame.

The kinds of system parts required to make the
principle possible are data abstractions. The specifi-
cation of such a part must be defined at the stimulus/
response level (i.e., black box) for each access to the
part, and account for the effect of any previous access
to the part. Popularized system development meth-
ods that use plausible ideas such as HIPO charts,?®
structure charts,'® or data flow diagrams'® can still
lose vital information and thus make referential
transparency impossible. It takes the right kinds of
system parts to defer details without losing them.

The clear box view of a system provides the key
abstraction that ensures referential transparency in a
box structure hierarchy. The procedurality of the
clear box makes precise the control flow and data
flow into and out of all embedded black boxes. At
the next level of the system hierarchy, each black
box can be designed and implemented indepen-
dently of its surroundings in a system, so accounta-
bility is achieved in the delegation. Flexibility is
achieved in the delegation because a black box can
be redesigned with different state machines and clear
boxes as required. As long as the new black box
behavior is identical to that of the original, the rest
of the system will operate exactly as before. Such
black box replacement may be required or desirable
for purposes of better performance, changing hard-
ware, or even changing from manual to automatic
operations.

When designers and implementers are required to
discuss and coordinate details of separate parts after
their assignment of responsibilities, gamesmanship
becomes an important part of a day’s work, in ad-
dition to system development. It’s only sensible, with
ill-defined responsibilities, to cover one’s bets and
tracks with activities and documents designed as
much to protect as to illuminate.

Even with the best of intentions, extensive commu-

nication and coordination with respect to design and
implementation details opens up many more oppor-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

tunities for misunderstandings and errors. Such er-
rors are always written off as human fallibilities
(nobody is perfect), but errors of unnecessary com-

Transaction closure defines a
systematic, iterative specification
process.

munication and coordination should be charged to
the methodologies that require them, not to the
people forced to do the unnecessary communication
and coordination.

Transaction closure. Principle of Transaction Clo-
sure—The transactions (transitions) of a system or
system part should be sufficient for the acquisition
and preservation of all its state data, and its state
data should be sufficient for the completion of all its
transactions. In particular, system integrity as well
as user function should be considered in achieving
transaction closure.

The principle of transaction closure can forestall
many surprises and afterthoughts in specifying and
designing systems. A common mistake for amateur
(and not so amateur) analysts and designers is con-
centrating so much on primary user transactions
that the secondary transactions to make primary user
transactions available and reliable become awkward
or impossible. For example, if system security or
recovery requirements are not identified up front, an
ideal user system (imagined in a perfect world of
hardware and people) may end up with data struc-
tures that make security or recovery difficult or im-
possible. Therefore, transactions provided for secu-
rity and recovery need to be defined as early as user
transactions, and as carefully.

The principle of transaction closure defines a system-
atic, iterative specification process, in ensuring that
a sufficient set of transactions is identified to acquire
and preserve a sufficient set of state data. The itera-
tion begins with the transactions for the primary
users, and the state data needed for those transac-

MLLLS, LINGER, AND HEVNER 40T

tions, then considers the transactions required for
the acquisition and preservation of those state data,
then identifies the state data needed for those trans-
actions, and so on. Eventually, no more transactions
will be required in an iteration, and transaction
closure will have been achieved.

The concept of system integrity plays a special role
in transaction closure. Transaction closure assuming
perfect hardware and people is not enough; many
transactions can only be defined once specific hard-
ware and people are identified for system use. For
example, an information system using an operating
system with automatic checkpoint and restart facili-
ties will not need checkpoint and restart transactions,
but one without them will. The problem of system
security provides a classic example. Many operating
systems and database systems in wide use today
cannot be retrofitted for high-level multilevel secu-
rity because they were conceived and specified before
such security requirements were identified.

In simplest terms, information systems integrity is
the property of the system fulfilling its function while
handling all of the system issues inherent in its
implementation. For example, systems are expected
to be correct, secure, reliable, and capable of han-
dling their applications. These requirements may not
be explicitly stated by managers, users, or operators,
but it is clear that the designed system must have
provisions for such properties. Questions of system
integrity are largely independent of the function of
the system, but are dependent on its means of im-
plementation, manual or automatic. Manual imple-
mentations must deal with the fallibilities of people,
beginning with their very absence or presence (so
backup personnel may be required), that include
limited ability and speed in doing arithmetic, limited
memory capability for detailed facts, lapses in per-
formance from fatigue or boredom, and so on. Au-
tomatic implementation must deal with the fallibil-
ities of computer hardware and software, beginning
with their total lack of common sense, that include
limited processing and storage capabilities (much
larger than for people, but still limited), hardware
and software errors, security weaknesses, and so on.

The process of transaction closure is essential in the
development of a top-level black box for any system.
A useful beginning of this search for a top-level black
box begins with the most obvious users of the system
but seldom ends there. These most obvious users
often interact with the system daily, even minute by
minute, in entering and accessing data (for example,

408 MLLs, LNGER, AND HEVNER

a clerk in an airline reservations system). Usually,
however, the data they use are provided in part by
other users who enter and access data less frequently,
such as those entering flight availability information.
And other users even more distant from the obvious
users enter and access data even less frequently (for
example, users who add route schedule information).
All the while, an entirely different group, the opera-
tors of the system, is entering and accessing system
control data that affect the users in terms of more or
less access to the system because of limited capacity
or availability.

The top-level black box must accommodate the
transactions of all these users and operators, not just
the most obvious ones. A cross-check can be made
between the top-level black box and its top-level
state machine. Every item of data in the top-level
state must have been loaded with the original system
or acquired by previous black box transactions. Are
there any items not so loaded or acquired? It is easy,
in concentrating on one set of transactions, to as-
sume the existence of data to carry them out. A
comprehensive scrutiny of these needed data items
can discover such unwarranted assumptions early.

State migration. Principle of State Migration—Sys-
tem data should be decentralized to the smallest
system parts that do not require duplicating data
updates. If, for geographic or security reasons, system
data should be decentralized to smaller system parts,
the system should be designed to ensure correctly
duplicated data updates.

The principle of state migration eliminates the need
for instant decisions (often faulty) about how data
should be structured and how the data should be
stored in a system. Instead, it permits the definition
of system data at a conceptual level, and permits the
concrete form and location of the data to be worked
out interactively with the system design and decom-
position into system parts. As better design ideas
emerge, system data can be relocated effectively to
accommodate such ideas, all the while maintaining
correct function as required in the system transac-
tions.

When system data need to be decentralized to
smaller system parts than allowed by the principle
of state migration, the smallest system defined by
this part must be redesigned to accommodate correct
duplicate updating. In this case, it is a different
system and should be recognized as such from the
outset. The problem of incorrect updating of dupli-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

cated data is a well-known burden of faulty system
designs.

System data in a box structure hierarchy are distrib-
uted into the states of their component box struc-
tures. State migration through the box structure
hierarchy is a powerful tool in managing system
development. It permits the placement of state data
at the most effective level for its use. Downward

Common service box structures are
ubiquitous in information systems.

migration may be possible when black boxes are
identified in a clear box; state data used solely within
the state machine expansion of one black box can
be migrated to that state machine at the next lower
level of the hierarchy. The isolation of state data at
proper levels in the system hierarchy provides im-
portant criteria for the design of database and file
systems. Upward migration is possible when dupli-
cate state data are updated in identical ways in
several places in the hierarchy. These data can be
migrated up to the common parent state machine
for consistent update at one location.

Common services. Principle of Common Services—
System parts with multiple uses should be considered
for definition as common services. A corollary prin-
ciple is to create as many opportunities as possible
for reusability within and between system parts.

Operating systems, data management and database
systems, network and terminal control systems are
all illustrations of common services between systems.
It is axiomatic in today’s technology to seek as much
reuse of common services as possible to multiply
productivity and increase reliability. These common
services must satisfy the principle of referential trans-
parency in their use, so their specifications are as
important as their implementations. On a smaller
scale, effective system design seeks and creates com-
monality of services and identifies system parts for
widespread multiple uses within a system.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

When several black boxes of a clear box expansion
access or alter a common state part, it is generally
inadvisable to migrate the state part to those lower
levels. But it may be advisable to define a new box
structure hierarchy to provide access to or to alter
this common state part for these several black boxes.
Such a new box structure must be invoked in the
clear box expansions of these black boxes. This new
box structure thereby provides a common service to
these several black boxes. Such a common service
structure in effect encapsulates a state part, by pro-
viding the only means for accessing or altering it in
the box structure hierarchy.

State encapsulation requires a new box structure
whose state will contain the common state part and
whose transactions will provide common access to
that state part for multiple users. In essence, state
encapsulation permits state migration to be carried
out in another form, with the provision that the only
possible access to the migrated state is by invoking
transactions of the new box structure that encapsu-
lates it.

Common service box structures are ubiquitous in
information systems. For example, any database sys-
tem behaves as a common service box structure to
the people and programs that use it. As a simple
illustration, consider a clear box expansion of a
master file update state machine. Such a clear box
would contain a number of black boxes which op-
erate on the master file, for example, to open, close,
read, and write the file, as well as black boxes to
access transaction files, directory and authorization
information, etc. The master file of the clear box
state cannot be migrated to these lower-level black
boxes without duplication. However, the master file
can be encapsulated, without duplication, in a new
box structure that provides the required transactions
to open, close, read, and write the file. These trans-
actions can then be invoked from the original box
structure hierarchy as required. The new box struc-
ture can be designed to ensure the integrity of the
master file and all access directed to it. In fact, when
the master file is migrated to this common service,
it is protected from faulty access by the box structure
in an effective way.

The spiral development process

In information systems development, the box struc-
ture methodology defines a set of limited, time-
phased activities to decompose and manage the work
required. A formal development plan defines and

MLLS, UNGER, AND HEVNER 409

Figure 15 A system development spiral

START
APPROVAL
INVESTIGATION
APPROVAL
SPECIFICATION
APPROVAL
IMPLEMENTATION ’
APPROVAL
COMPLETION

schedules the specific activities required to address a
specific problem. The development plan represents
long-range planning for information system devel-
opment; the activity plans represent short-range
planning. As each activity is completed, the entire
development plan is updated to account for the
current situation.

Although the activities of a development plan are
always specific to a particular system development
problem, they can be categorized into three general
classes: investigation, specification, and implemen-
tation. An investigation is a fact-finding, exploratory
study, usually to assess the feasibility of an infor-
mation system. For example, such a study may
define the black box behavior of a projected infor-
mation system. A specification is more focused to
define a specific information system and its benefits
to the business. For example, a specification activity
may result in definition of state data and high-level
clear boxes of a projected information system. An
implementation converts a specification into an op-
erational system. For example, implementation may
elaborate the black boxes of high-level clear boxes
into box structure hierarchies of their own, eventu-
ally arriving at human and computer procedures in
user guides and software, respectively.

410 MLLS, LNGER, AND HEVNER

The system development spiral. Many current meth-
ods of information systems development reflect ap-
pearances rather than principles. One of the obvious
appearances in information systems is the system
development life cycle. It is certainly apparent that
information systems go through various stages of
conception, specification, design, implementation,
operation, maintenance, modification, and so on.
But although these terms are suggestive, real infor-
mation systems do not pass through these stages in
any simple or straightforward way.

In contrast to a fixed life cycle, the box-structured
system development process is defined by a set of
time-phased activities that are initiated and managed
dynamically on the basis of the outcome of previous
activities in the development. This progression of
activities is conveniently represented in a flexible
system development spiral that reflects the actual
progress of a development effort in terms of box
structure analysis and design tasks.

The time-phased set of activities in a spiral can be
strictly sequential or may have concurrent parts. If a
development is sequential, it can be pictured, in
prospect or retrospect, as shown in Figure 15. In this
example, the activity sequence is a straightforward
progression of

¢ Investigation
¢ Specification
e Implementation

with a management approval to enter each activity
and to end the entire development. Such a progres-
sion for developing a system is ideal, but is not
necessarily possible or even desirable.

It may not be possible because the business problem
is too complex and needs several investigation activ-
ities to arrive at a solution. It may not be possible
because the system development problem is too
complex and needs several specification/implemen-
tation activities in an incremental development. It
may not be desirable because the business problem
is too acute and a less-than-best implementation is
called for as soon as possible. It may not be desirable
because the happy outcome of the first investigation
activity is the discovery of an existing implementa-
tion to meet the business need.

If a development is concurrent, it can be pictured in

a network of spirals, as in the example of Figure 16.
In this network, activity dependencies are shown by

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

the approval lines (“A” lines here). For example,
Investigation 1 enables both Specification 1 and
Investigation 2, whereas both Implementation 1 and
Specification 2 must be completed before Implemen-
tation 2 can be started. The specific network pictured
might, for example, represent the concurrent devel-
opment of a database system (Implementation 1)
and an application system (Implementation 2) that
uses it.

Managing spiral development. The system develop-
ment process generates limited, time-phased activi-
ties of investigation, specification, and implementa-
tion that must be managed. Formal stages of plan-
ning, performance, and evaluation in each activity
define an orderly process for this management. The
box structure methodology provides a great deal of
commonality across these activities for the analysis
and design work that is required. The management
problems are also very similar. As the names imply,
the most challenging stages for management are
planning and evaluation, whereas the performance
stage is the most challenging for technical profession-
als.

Planning. There are three basic results from the
planning stage of any activity:

1. Activity objective. A statement of what the activity
15 to produce.

2. Activity statement of work. A statement of how
the activity will achieve its objective.

3. Activity schedule. An assignment of work items
in the Statement of Work to professionals to-
gether with agreed-on completion dates.

With such a plan, each member of the entire devel-
opment team understands the objectives, Statement
of Work, and the individual responsibilities for mak-
ing good on the work objectives and schedule. Such
a plan not only requires the agreement of the profes-
sionals, but also requires their direct participation in
the planning process. But the planning process must
be led by managers to address the proper questions
and problems for the activity in the overall devel-
opment plan.

Performance. If plans are well made, performance is
focused and predictable. The management job in
performance is to assess and track progress against
the Statement of Work and schedules. Management
must identify unexpected problems and help profes-
sionals decide how to meet them, and must identify
unexpected windfalls in solutions that can free up

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 16 A system development spiral with concurrent
activities

START

INVESTIGATION 1

SPECIFICATION 1

IMPLEMENTATION 1 SPECIFICATION 2

INVESTIGATION 2 ’

U

IMPLEMENTATION 2

COMPLETION

people and resources. It is here that good understand-
ings and agreements on assignments and schedules
pay off.

Evaluation. Evaluation is both a closing out of one
activity and a basis for selecting and commencing
one or more following activities. The objectives and
results of performance can be compared and related
to the business and its situation. Even if objectives
are not met, the lessons learned may be useful. If the
objectives are met, so much the better, and the
expected next activities can be initiated. In particu-
lar, the evaluation stage is the point where the de-
velopment plan for future activities can be assessed
and modified.

These activities and stages can be organized in tab-
ular form, as shown in Table 1, which indicates
typical tasks in systems development. A detailed
discussion of these tasks is found in Mills et al.”

MLLS, LUNGER, AND HEvNER 411

Table 1 Stages in activities: Typical tasks

Concluding remarks

The box structure methodology provides a rigorous
approach for information systems analysis and de-
sign. The black box, state machine, and clear box
present three different, yet complementary, views of
an information system and any of its subsystems.
The methodology provides formal techniques for
relating these structures and constructing box struc-
ture hierarchies.

The correctness of box structure designs can be
verified in stepwise fashion from clear boxes by
systematically deriving their actual state machine
and black box behaviors, and comparing them to
their intended behaviors.

Box structures permit application of specific princi-
ples of information systems development that help
ensure complete and well-structured designs. Refer-
ential transparency permits precise delegation of
black box expansions once their clear box connec-
tions have been designed. Transaction closure en-

412 mLLs, LNGER, AND HEVNER

sures complete system behavior for users and com-
plete state definitions for developers. State migration
avoids data flow jungles in systems by decentralizing
data storage and access into box structure subsys-
tems. Common service design permits migration of
widely used data into new box structure hierarchies
that provide all required data access.

Box structures permit a flexible management process
of spiral development, in contrast to a fixed life cycle.
Spiral development is characterized by steps of in-
vestigation, specification, and implementation of
box structures that can be dynamically sequenced
and managed to best capitalize on the current prog-
ress and remaining resources of a development effort.

Cited references

1. O. Dahl, E. Dijkstra, and C. A. R. Hoare, Structured Program-
ming, Academic Press Inc., New York (1972).

2. A. B. Ferrentino and H. D. Mills, “State machines and their
semantics in software engineering,” Proceedings of COMP-
SAC 1977, Chicago (November 1977), pp. 242-251.

3. R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Program-
ming: Theory and Practice, Addison-Wesley Publishing Com-
pany, Inc., Reading, MA (1979).

4. H. D. Mills, D. O’Neill, R. C. Linger, M. Dyer, and R. E.
Quinnan, “The management of software engineering,” IBM
Systems Journal 19, No. 4, 414-477 (1980).

5. M. B. Carpenter and H. K. Hallman, “Quality emphasis at
IBM’s Software Engineering Institute,” IBM Systems Journal
24, No. 2, 121-133 (1985).

6. M. Schaul, “Designing using software engineering principles:
Qverview of an educational program,” Proceedings 8th Inter-
national Conference on Software Engineering, London (1985),
pp. 201-208.

7. H. D. Mills, R. C. Linger, and A. Hevner, Principles of
Information Systems Analysis and Design, Academic Press,
Inc., New York (1986).

8. F. T. Baker, “Chief programmer team management of pro-
duction programming,” IBM Systems Journal 11, No. 1, 56—
73 (1972).

9. F. T. Baker, “System quality through structured program-
ming,” AFIPS Conference Proceedings Fall Joint Computer
Conference 41, 339-343 (1972).

10. A.J.Jordano, “DSM software architecture and development,”
IBM Technical Directions 10, No. 3, 17-28 (1984).

11. D. Parnas, “A technique for software module specification
with examples,” Communications of the ACM 15, No. 5, 330-
336 (May 1972).

12. J. Guttag and J. Horning, “The algebraic specification of
abstract data types,” Acra Informatica 10 (1978).

13. G. Booch, “Object-oriented development,” IEEE Transac-
tions on Software Engineering SE-12, No. 2, 211-221 (Feb-
ruary 1986).

14. D. L. Parnas, “Designing software for ease of extension and
contraction,” IEEE Transactions on Software Engineering
SE-5, No. 3, 128-138 (March 1979).

15. E. Yourdon and L. Constantine, Structured Design: Funda-
mentals of a Discipline of Computer Programs and System
Design, 2nd Edition, Yourdon Press, New York (1978).

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

16. T. DeMarco, Structured Analysis and System Specification,
Yourdon Press, New York (1979).

17. W. P. Stevens, Using Structured Design, John Wiley & Sons,
Inc., New York (1981).

18. W. P. Stevens, “How data flow can improve application
development productivity,” IBM Systems Journal 21, No. 2,
162-178 (1982).

19. B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, “Abstrac-
tion mechanisms in CLU,” Communications of the ACM 20,
No. 8, 564-576 (August 1977).

20. D. Bjgrner and C. Jones, “The Vienna Development Method:
The Meta-Language,” Springer-Verlag Lecture Notes in Com-
puter Science 61, Springer-Verlag, New York (1978).

21. D. Bjgrner, “On the use of formal methods in software devel-
opment,” Proceedings 9th International Conference on Soft-
ware Engineering (1987), pp. 17-29.

22. K. Levitt, P. Neumann, and L. Robinson, “The SRI Hier-
archical Development Methodology and its application to the
development of secure software,” Proceedings of Sofiware
Engineering Applications, Capri (1980).

23.). Guttag, J. Horning, and J. Wing, Larch in Five Easy Pieces,
Technical Report, Digital Equipment Corporation Systems
Research Center, Maynard, MA (1985).

24. D.L.Parnasand W. Bartussek, Using Traces to Write Abstract
Specifications for Softiware Modules, UNC Report TR 77-012,
University of North Carolina, Chapel Hill, NC 27514 (1977).

25. C. A. R. Hoare, “Some properties of predicate transformers,”
Journal of the ACM 25, No. 3, 461-480 (July 1978).

26. B. Liskov and S. Zilles, “Specification techniques for data
abstraction,” IEEE Transactions on Sofiware Engineering
SE-1, No. 3, 114-126 (March 1975).

27. M. Shaw, “Abstraction techniques in modern programming
languages,” IEEE Software 1, No. 4 (October 1984).

28. H. Katzen, Systems Design and Documentation: An Introduc-
tion to the HIPO Method, Van Nostrand Reinhold, New York
(1976).

General references

R. Burstall and J. Goguen, “An informal introduction to specifi-
cations using CLEAR,” in Boyer and Moore, editors, The Cor-
rectness Problem in Computer Science, Academic Press Inc., New
York (1981).

L. Robinson and O. Roubine, SPECIAL—A Specification and
Assertion Language, Technical Report CSL-46, Stanford Research
Institute, Stanford, CA (1977).

Harlan D. Mills Information Systems Institute, 2770 Indian River
Boulevard, Vero Beach, Florida 32960. Dr. Mills is Director of the
Information Systems Institute, and a Visiting Professor at the
University of Florida. He was formerly an IBM Fellow, a member
of the IBM Corporate Technical Committee, and Director of
Software Engineering and Technology in the IBM Federal Systems
Division. Dr. Mills received his Ph.D. in mathematics from lowa
State University in 1952 and has served on faculties at Jowa State,
Princeton, New York, and Johns Hopkins Universities and at the
University of Maryland. He has also served as a Regent of the
DPMA Education Foundation and as a Governor of the IEEE
Computer Society.

Richard C. Linger IBM Federal Systems Division, 6600 Rock-
ledge Drive, Bethesda, Maryland 20817. Mr. Linger is Senior
Programming Manager of Software Engineering Studies. He is the

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

author of numerous research papers on software engineering tech-
nology, and coauthor of Structured Programming: Theory and
Practice (Addison-Wesley, 1979) and Principles of Information
Systems Analysis and Design (Academic Press, 1986). Mr. Linger
received a B.S. degree in electrical engineering from Duke Univer-
sity. He is a member of the ACM and the IEEE Computer Society.

Alan R. Hevner Information Systems Department, College of
Business and Management, University of Maryland, College Park,
Maryland 20742. Dr. Hevner is an Associate Professor and Chair-
person of the Information Systems Department. He has published
numerous research papers in the areas of distributed database
systems, database design, and information systems analysis and
design. Dr. Hevner received his Ph.D. in computer science from
Purdue University in 1979. He is a member of the ACM and the
IEEE Computer Society.

Reprint Order No. G321-5304.

MILLS, LNGER, AND HEVNER 413

