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The  box structure  methodology  for  information  sys- 
tems  development is based  on  a  usage  hierarchy of 
data abstractions, in which each abstraction is  defined 
in  three  distinct  forms,  called its black  box,  its state 
machine,  and  its  clear  box.  Each of these three box 
structures  defines  identical  external  behavior, but with 
increasing  internal  visibility, to provide  a  hierarchical 
structure  which  supports the systems  development 
principles of referential  transparency,  transaction clo- 
sure,  state  migration,  and  common  services.  This  hier- 
archy  of  box structures  provides,  in  turn,  a  basis  for 
orderly  management of information  systems  develop- 
ment by a  finite  set of analysis  and  design  tasks  in  a 
spiral  development  process.  The  methodology  and  its 
use are described. 

S ince their inception, information systems have 
been  used in government and business, but re- 

search and development in information systems 
have increased dramatically since the advent of the 
computer some thirty years  ago. As a result, a rec- 
ognizable discipline of Information Systems  is 
emerging in business and in university cumcula. 
However, Information Systems is  still a young field 
in terms of intellectual growth and development. 
Even  with  all the  current excitement and progress, 
there is  still a lot to discover. The search for funda- 
mental ideas and deep simplicities takes time. 

Structures and  data flows. The revolution that 
changed trial-and-error computer programming into 
software engineering was  triggered  by Dijkstra's idea 
of structured programming.' Structured program- 
ming cleared a control flow jungle that had  grown 
unchecked for twenty  years  in dealing with more 
and more complex software problems. It replaced 
that control flow jungle with the astonishing asser- 

tion that software of any complexity whatsoever 
could be  designed  with just three basic control struc- 
tures-sequence (begin-end), alternation (if-then- 
else), and iteration (while-do)-which could be 
nested over and over in a hierarchical structure (the 
structure of structured programming). The benefits 
of structured programming to  the management of 
large projects are immediate. The work can be struc- 
tured and progress measured in a top-down devel- 
opment  in a direct way. 

Even so, information systems development is much 
more than software development. The operations of 
a business involve all kinds of data  that are trans- 
mitted, stored, and processed in all kinds of  ways. 
The total  data processing of a business  is  defined by 
the activities of all of its people and computers, as 
they interact with one other and with customer, 
vendor, and government personnel and computers 
outside the business.  In a large company, it  is a 
massively  parallel operation with many thousands 
of interactions going on simultaneously. Information 
systems are called on to automate more and more 
of the information processing in business-in many 
cases these systems are required for survival in a 
competitive environment. And for these systems, a 
complete description of their data operations and 
uses leads to a data flow jungle that is  even more 
tangled and arcane than the control flow jungle of 
software. 
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We  will replace that  data flow jungle with just three 
system structures that can be nested over and over 
in a hierarchical structure  (the  structure of  box struc- 
tures). Any information system-automatic, man- 
ual, or hybrid-can  be described or designed  in a 

Software  counterparts of state 
machines  have  been  called data 

abstractions. 

hierarchy of these system structures step by step in a 
provable way. The benefits  of  box structures to  the 
management of  large projects are also immediate. 
The work can be structured and progress measured 
in top-down system development in a direct way. 

State machines and  data  abstractions. The origins of 
these system structures are in the hierarchical state 
machine methodology of  software engineering found 
in References 2, 3, and 4 and taught at  the IBM 
Software Engineering In~titute.'.~ As discussed in the 
book by Mills,  Linger, and Hevner,' this methodol- 
ogy  was  used in  the New York Times Information 
Bank, as reported by  Baker,*,'  with remarkable re- 
sults in reliability.' A very  large-scale  use  of this 
methodology in  the modernization of U.S. Air Force 
satellite tracking and control systems has been  re- 
ported by Jordano." 

The software counterparts of state machines have 
also been  called data abstractions,'l,12 and more re- 
cently, software 0bje~ts . l~ Their  common feature is 
the presence of a state, represented in stored data, 
and accessed and altered by procedures that collec- 
tively  define the state machine transition function. 
Since these data are accessed and altered by reusing 
the  data abstraction or object, the hierarchy is a 
usage hierarchy, in  the sense found in Parnas,I4 
rather  than a parts hierarchy. That is, data abstrac- 
tions appear in  the hierarchy at each occasion of use 
in the design, rather than  as a part in the design. 

This usage hierarchy of data abstractions cuts a 
Gordian knot for the effective dual decomposition 
of data flows and processes in information systems. 

396 MILLS,  LINGER, AND HEVNER 

Data flows are convenient heuristic starting points 
in information systems analysis, as developed in 
References 15 through 18, but require a mental 
discontinuity to move to information systems design. 
The problem is that  data flows describe all that  can 
possibly happen, whereas  processes must deal with 
one data instance at a time  and prescribe  precisely 
what will happen at each such instance. Each  use  of 
a data abstraction is an instance of data flow through 
a process,  which provides for storage in its state as 
well.  And the collective  effects  of the usage  of the 
data abstraction throughout a hierarchy are sum- 
marized by a data flow through the process. Data 
abstractions have proved useful in software  engi- 
neering in several  specific  languages and systems, as 
in CLU," V D M , ~ ~ , ~ '  HDM," and object-ori- 
ented design.I3 

Box structures and  data  abstractions. The box struc- 
ture methodology develops the usage hierarchy of 
data abstractions in a way especially suited for infor- 
mation systems development, in which the emphasis 
is jointly on mathematical rigor and management 
~implicity.~ For this purpose, we not only need strong 
system development principles, but must also make 
these principles obvious in the methodology. We 
define three distinct forms for any data abstraction, 
namely, its black box, its state machine, and its clear 
box. A black  box  defines a data abstraction entirely 
in terms of external behavior, in transitions from 
stimuli to responses. A state machine defines a data 
abstraction in terms of transitions from a stimulus 
and internal state to a response and new internal 
state. A clear box defines a data abstraction in terms 
of a procedure that accesses the internal state and 
possibly  calls on  other black  boxes. This recursion 
of  black  boxes  with clear boxes that call on  other 
black  boxes  defines a usage hierarchy that supports 
important principles for system development. 

In the next section of this paper we summarize the 
principal concepts of the box structure methodology 
and explain their mathematical foundations. In the 
subsequent section, box structure hierarchies are de- 
fined, and  the system development principles of 
referential transparency, state migration, transaction 
closure, and  common services are described. Finally, 
we discuss the benefits  of these structures in man- 
aging a spiral system development process. 

Box structures 

The behavior of any information system (or subsys- 
tem)  can be rigorously described in three distinct 
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box structure forms previously mentioned-the 
black  box, state machine, and clear box of the sys- 
tem. We  first define each of these structures and  then 
show relationships among them. 

Black  box  behavior. The black box gives an external 
view of a system or subsystem that accepts stimuli, 
and for each stimulus, S, produces a response, R 
(which may be null), before accepting the next stim- 
ulus. A diagram of a black box is shown in Figure 1 .  
The system  of the diagram could be a hand calcula- 
tor, a personal computer,  an accounts receivable 
system, or even a manual work procedure that ac- 
cepts stimuli from the  environment  and produces 
responses one by one. As the  name implies, a black 
box description of a system omits all details of inter- 
nal structure and operations and deals solely  with 
the behavior that is  visible to its user in terms of 
stimuli and responses.  Any  black  box response is 
uniquely determined by its stimulus history. 

For example, an interactive workstation is a com- 
puter system that accepts keystrokes, one by one, 
and  returns a new screen  with each keystroke. Most 
keystrokes change the screen in small ways,  say,  by 
adding or deleting a character, but some keystrokes 
bring up entirely new screens, say, by an enter key 
or a menu choice. Each such keystroke is a stimulus 
for the black  box. The user  need have no idea of the 
internal structure-that some screens are created 
locally, some indirectly by remote computers, etc. 
The workstation behaves as a black  box for the user. 

The idea of describing a system as a black  box  is 
useful for analyzing the system from the user’s point 
of  view. Only system externals are visible; no system 
state or procedure is described. The mathematical 
semantics of black box behavior is a function from 
system stimulus histories to system  responses. A 
black  box is specified by its  trace^.^^^^^ In fact, Parnas 
uses the  term black box to motivate the study of 

State machine  behavior. The state machine gives an 
intermediate system view that defines an internal 
system state, namely an abstraction of the  data stored 
from stimulus to stimulus. It  can be established 
mathematically that every  system described by a 
black  box has a state machine description. (Consider 
each stimulus history to be a state.) A state machine 
diagram is shown in Figure 2. The state machine 
part called Machine is a black box that accepts as its 
stimulus both  the external stimulus and  the internal 
state and produces as a response both the external 
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Figure 1 A black  box  diagram 

Figure 2 A state  machine  diagram 

response and a new internal state which  replaces the 
old state. The role of the state machine is to open up 
the black  box description of a system one step by 
making its state visible. State machine behavior can 
be described in the transition formula 

(Stimulus, Old State) + (Response, New State) 

Much of the work in formal specification methods 
for software applies directly to specification  of the 
state machine system view. These methods, such as 
those presented in the  literature,11-12.26.27 specify the 
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Figure 3 The clear box sequence  structure 

required properties of programs and abstract data 
types in axiomatic and algebraic models. The models 
represent behavior without presenting implementa- 
tion details. 

For information systems,  however, we believe that 
direct descriptions are often sufficient-that indirect 
axiomatic and algebraic methods of describing data 
abstractions tend to obscure the essential simplicity 
of state machines. Also, the conceptual work  re- 
quired to derive axioms or algebras for a complete 
system state can require deep research  itself. (For  an 
example of problems associated with the axiomati- 
zation of even a simple data abstraction, see Ferren- 
tino  and Mills.’) 

Clear box behavior. The clear box, as the name 
suggests, opens up  the state machine description of 
a system one  more step in  an  internal view that 
describes the system  processing of the stimulus and 
state. The processing is described in terms of three 
possible sequential structures, namely sequence, al- 
ternation, and iteration, and  a  concurrent structure. 
Figure 3 shows a clear box sequence structure with 
two internal subsystems represented as black  boxes; 
each accepts both a stimulus and  a state and pro- 
duces both a response and  a new state. In the se- 
quence structure,  the clear  box stimulus is the stim- 
ulus to black  box M1, whose response becomes the 
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stimulus to M2, whose response is the response of 
the clear box. At this point, a hierarchical, top-down 
description can be repeated for each of the embedded 
black  boxes at the next lower  level of description. 
Each black box is described by a state machine, then 
by a clear box containing even smaller black  boxes, 
and so on. 

Figures 4, 5, and 6 show,  respectively, the alterna- 
tion, iteration, and  concurrent clear box structures. 
The internal machines, Mi, can be expanded at lower 
levels  of description in a box structure hierarchy. In 
alternation and iteration clear boxes, the condition 
C (denoted by a  diamond) is a special black box that 
accesses the stimulus and old state to return re- 
sponses T  or  F  (True or False). The function of C is 
to direct the stimulus to  the proper black  box. 

The clear  box  is an essential step of system  descrip- 
tion that is  lacking  in many information systems 
development methods. It specifies the procedurality 
that connects the usage  of subsystems to be described 
at the next lower  level in the box structure hierarchy. 
This explicit connection supports the principle of 
referential transparency, to be discussed in  the next 
section. 

Box structure  derivation and expansion. The rela- 
tionships among  the black box, state machine, and 
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Figure 4 The  clear box alternation  structure 

1 

Figure 5 The  clear box iteration  structure 
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Figure 6 The clear box concurrent structure (shown with 
two machines) 

4 

clear box  views  of a system or subsystem  precisely 
define the tasks of derivation and expansion. As 
shown in Figure 7, it is a derivation task to deduce 
a black box from a state machine or to deduce a 
state machine from a clear box, whereas it is an 
expansion task to induce a state machine from a 
black box or to induce a clear box from a state 
machine. That is, a black  box derivation from a state 
machine produces a statefree description, and a state 
machine derivation from a clear box produces a 
procedure-fiee description. Conversely, a state ma- 
chine expansion of a black  box produces a state- 
defined description, and a clear box expansion of a 
state machine produces a procedure-defined descrip- 
tion.  The expansion step does not produce a unique 
product because there are many state machines that 
behave like a given  black  box and many clear boxes 
that behave like a given state machine. The deriva- 
tion step does produce a unique product because 
there is only one black  box that behaves like a given 
state machine and only one state machine that be- 
haves  like a given clear box. 

In summary, black  box, state machine, and clear 
box expansions provide behaviorally equivalent 

views of an information system or subsystem at 
increasing levels of internal visibility. This equiva- 
lence relationship is depicted in Figure 8. 

A box structure illustration. Although the concept 
of  box structures is  easy to grasp, its use in actual 
business systems requires business  knowledge. In 
fact,  box structures provide forms in which to de- 
scribe business knowledge in a standard way. The 
principal value  of a black  box is that any business 
information system or subsystem will behave as a 
black  box whether consciously described as such or 
not. In turn, any black  box can be described as a 
state machine (actually in many ways), and any state 
machine can be described as a clear  box  (also in 
many ways),  possibly  using other black  boxes. In 
practice, information systems or subsystems often 
have their own natural descriptions that can be 
reformulated as box structures. 

As an illustration, a 12-month running average de- 
fines a simple, low-level black box that might be used 
in sales  forecasting, for example, for a variety store 
with  10 000 items. A stimulus of last month’s sales 
of an item produces a response of the past  year’s 
average monthly sales of the item. Each month a 
new  sales amount produces a new average  of the past 
12 months. In the case of  new items with  less than 
12 months of  sales history, the response can be the 
average  of  sales to date. If i is the age  of an item in 
months, then  the  number of months  to average  is 
rnin (i, 12), the  minimum of i and 12, no  matter how 
long the sales  history  is. 

Figure 9 shows the  Running Average  black  box 
where for an item of  age i, S.Z = S is  last month’s 
sales, S.2 is the next previous month’s sales, and so 
on. The symbol “:=” means  that  the  term  on  the left 
side (R) is assigned the value of the expression on 
the right  side. 

One possible state machine with the same behavior 
as this black  box  would store the previous rnin (i, 12) 
monthly sales S. 1 ,  S.2, . . . in state variables SI, S2, 

. , and item age i in state variable I. Then, with 
each new stimulus S, there is sufficient information 
to calculate the response and update the state. The 
state variable I must be initialized, say to 1, and 
incremented with each stimulus. The state variables 
SI, S2, . will  be initialized as the first  12 months 
of sales materialize. 

Figure  10  shows the corresponding Running Average 
state machine. The multiple assignments are  to be 
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Figure 8 Three behaviorally equivalent views of an information system  or subsystem 

Figure 9 Running average black box 

understood as  concurrent.  That is,  all expressions on 
the right sides use the  data available at the beginning 
of the  transition,  not  data  computed in assignments 
above them. 

Note  a distinction between S.1, S.2, . . . , which are 
monthly sales, and SI,  S2, . . , which are  state 
variables. The values are the same (at  the  end of each 

transition), but unless S.1, S.2, + . . are recorded in 
S1, S2, . . . , they will be lost to  the state  machine 
because it does not access stimulus history, as does 
the black box. The assignments made to S2, S3, . . . 
before SI ,  S2, . . . are initialized reference undefined 
values, but do  no harm because they are  not used in 
R. 

A clear box will describe how the response and new 
state are computed in a sequential or concurrent 
structure of other black box uses. One possible  design 
is to first update  the sales data,  then  compute  the 
running average from the new state  data  and incre- 
ment the age of the  item, as shown in Figure 1 1. In 
this case, no  further black box expansion will be 
needed because both black boxes, Update Sales and 
Find Average, require no more than  their last stimuli 
to  compute their response [they can be defined as 
mathematical functions from stimuli (not  stimulus 
histories) to responses]. Of course, the  stimuli  on 
which they operate include the  state variables of 
Running Average. 

Note that many  other state machine  and clear box 
designs could have been chosen to implement  the 
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gure 10 Running  average state machine 

SALES 
FOR LAST 
MONTH 

4 :O&HLY 
AVERAGE 

Figure 11 Running  average  clear box 

SALES 
FOR  LAST 
MONTH 

AVERAGE 
MONTHLY 
SALES 
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Running Average  black  box. For example, after the 
value of 1 exceeds 1 1, the state data could be stored 
as monthly sales  values divided by 12. The  running 
average  would then be found by adding all the state 
data. 

A Running Average  black  box  is a simple sales 
forecaster. However, if sales are seasonal or have 
definite trends, a more suitable black  box may be 

Box structure  verification  defines  an 
objective,  rigorous  process  for  self- 

checking  and peer inspections. 

required. Such a forecaster will  differ in details, but 
can still be described in a black box/state machine/ 
clear box structure. 

Box structure verifications. In the foregoing example, 
we began  with an informal description of a black 
box (“12-month  running average”), then formalized 
it  into  an assignment from stimulus histones to 
responses, 

R := 

accounting for new items with  less than 12 months 
of sales history. Next, we expanded this black  box 
into  one of many possible state machines, as in 
Figure  10, then expanded the state machine into  one 
of many possible clear boxes, as in Figure 1 1. These 
two expansions were simple and direct, because the 
black box itself  is quite simple. Even so, these designs 
are possibly faulty, and in more complex cases the 
probability of faulty designs  increases,  even  with the 
greatest  of  care. 

Fortunately, there is a direct and rigorous way to 
check these designs: Independently derive the state 
machine of the final  clear box expansion and com- 
pare it with the intended state machine designed 
above. If the intended state machine is  recovered by 
derivation, the expansion into  the clear  box has been 
verified.  Next, we can independently derive the black 

S.1 + S.2 + . . . + S.min (i,12) 
min (i, 1 2 )  , 
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box from the verified state machine and compare it 
with the intended black  box formulated initially. 

We call this rederivation and comparison process a 
box structure Verification. It works on  the same prin- 
ciple  used in division to check that  the division has 
been done correctly, that is, a multiplication of quo- 
tient and divisor added to  the remainder to inde- 
pendently derive the dividend. 

Box structure verification  defines an objective,  rig- 
orous process for self-checking and peer inspections. 
Even though people are fallible, this fallibility can be 
reduced dramatically by such inspections based on 
an objective, rigorous foundation. 

In this example, beginning with the clear box of 
Figure 1 1, the first task is to eliminate the procedur- 
ality-in this case the sequence of Update Sales and 
Find Average-to obtain the black box machine of 
the derived state machine. In Find Average, the 
expression for R references S1, . . . , Smin (1,12), 
which  were updated in Update Sales,  where SI was 
assigned S, S2 assigned SI,  . , . , and S12 assigned 
SII .  Therefore, in terms of the stimulus and original 
state at the beginning of the transition, the assign- 
ment to R is 

R := 

Also, in Find Average, the expression for I references 
only Z which  is not changed in Update Sales, so this 
assignment remains as before, 

I : = Z +  1 

Since Update Sales  is the first  black  box used, its 
assignments are from the stimulus and original state, 
so those assignments remain the same. The result  of 
collecting all these assignments into a single  black 
box machine results in the derived state machine 
shown in Figure 12. 

Now we can compare the derived state machine of 
Figure  12  with the  Running Average state machine 
as  shown in Figure  10. They are not identical, line 
by line, but they differ only in the placement of the 
line 1 := 1 + 1 in the multiple assignments. But since 
these multiple assignments are concurrent, the order 
of placement of Z := I + 1 has no effect on the 
responses of these two machines. So they are identi- 
cal in effect in returning a response and updating the 
state of the state machines. With this derivation and 
comparison, the  Running Average clear box of  Fig- 
ure 1 1 has been  verified to be a correct (and com- 

S +  S1 + ... + Smin(Z- 1,ll)  
min ( I ,  12) 
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Figure 12 Derived  state  machine 
- 

SALES 

MONTH 
FOR LAST 4 :4'4T&HLY 

AVERAGE 

plete) expansion of the  Running Average state ma- 
chine of Figure  10. R := 

S + S I  + ... +Smin( i -  1, l l )  
min (i,  12) 

Now that  the  Running Average clear box has been 
verified, we can turn  our  attention to  the verification 
of the  Running Average state machine, by the inde- 
pendent derivation of its black  box, to be compared 
with the original Running Average  black  box  of 
Figure 9. 

Each value in the state of the  Running Average state 
machine is the cumulative result  of its initial value 
and all subsequent transitions to  date.  Our objective 
is to  determine  the value assigned to R, which  is 

R := 

not in terms of stimulus and state data,  but in terms 
of stimulus history data instead. 

First, at age i of the item, we observe that I = i 
at  the beginning of the transition, because at age  1, 
I = 1 by initialization, and I is incremented by 1 at 
each transition. Therefore, at age i, by direct substi- 
tution of i for I in the assignment above, 

S +  SI + ... + Smin(I- 1, l l )  
min (I, 12) 

Furthermore, at  the beginning of the transition at 
age i, the state variables SI,  S2, . . . , Smin (i - 1, l l )  
will contain the sales  values S.2, S.3, . . ., 
S.min (i, 12) for the following reason. 

At age 1 of the  item, all  values of SI,  S2, . . ., SI2 
are uninitialized, but SI = S.1 after the transition at 
age 1. At age 2,  S2 is  assigned the value of SI,  which 
is the value of S. I at age 1, but is renamed S.2 at age 
2, so S2 = S.2, and SI is  assigned S.I. Continuing, 
at age i, SI,  S2, . . . , Smin (i  - 1, l l )  are assigned 
S.l,  S.2, . . ., S.min (i  - 1, l l )  after the transition. 
But at the beginning of the next transition, these 
sales  values will have  all  aged one  month. So, in fact, 
at the beginning of the transition at age i, the state 
variables SI,  S2, . . . , Smin ( i  - 1, l l )  will contain 
the sales  values S.2, S.3, . . . , S.min (i, 12). 

Finally, we observe that S = S. I, the last  sales  value, 
so we can complete the substitution of  sales  values 
for state values in the calculations for R in  the 
assignment above, to get the derived black  box 
shown in Figure  13. 
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Figure 13 Derived  black box 

I I 

I 

Figure 14 A box  structure  hierarchy 

The derived black  box of Figure 13 is identical to 
the  Running Average  black  box  of  Figure 9. With 
this derivation and comparison, the  Running Aver- 
age state machine of Figure 10 has been  shown to be 
a correct (and complete) expansion of the  Running 
Average  black  box  of  Figure 9. 

The  joint result  of  these two verifications  is the 
verification that  the  Running Average clear box of 
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Figure 1 1 is a correct (and complete) expansion of 
the Running Average  black  box  of  Figure 9. 

Information systems development with box 
structures 

The box structure concepts presented in  the previous 
section can be expanded into a complete methodol- 
ogy for information systems development. The first 
step is to describe an information system as a mul- 
tilevel  usage hierarchy wherein each node is a box 
structure expansion of an independent system part. 
We then demonstrate how fundamental principles 
of system development can be applied in the box 
structure hierarchy. 

Box structure  hierarchies. A box structure hierarchy, 
as  shown in Figure 14, provides an effective means 
of control for managing and developing complex 
information systems. By identifying black  box sub- 
systems in higher  levels  of the system, state data  and 
processing are decentralized into lower-level  box 
structures. Each  subsystem becomes a well-defined, 
independent module in the overall  system. Although 
the progression from black  box to state machine to 
clear  box at any point in the hierarchy may appear 
to be a triplication of effort, this is not  the case. Each 
subsystem can be initially described in its most nat- 
ural form, with the  other forms determined as nec- 
essary for analysis and design. 

The concept of hierarchies is crucial in system and 
program development. Top-down programming is 
based on  the principle of  stepwise refinement of 
program modules in a hierarchy. Similarly, usage 
hierarchies of  system modules allow a top-down 
discipline of system  specification and implementa- 
tion. 

The box structure hierarchy, in particular, provides 
for the systematic application of four essential prin- 
ciples  of  system development. These principles, 
called referential transparency, transaction closure, 
state migration, and  common services, are discussed 
next. 

Referential  transparency. The box structure hier- 
archy provides a formal method for defining system 
modules while  preserving referential transparency 
between  levels. Referential transparency is a guiding 
principle for forming system hierarchies. 

Principle of Referential  Transparency--In the dele- 
gation of any system part for design and implemen- 
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tation, all requirements should be  specified  explicitly 
and independently, so that no further communica- 
tion or coordination is  logically required to complete 
the system part. 

The principle of referential transparency provides a 
crisp discipline for management delegation and as- 
signment of responsibility. The lack  of referential 
transparency can lead to management nightmares 
where nothing works and  no  one is to blame. 

The kinds of system parts required to make the 
principle possible are  data abstractions. The specifi- 
cation of such a part must be defined at  the stimulus/ 
response level  (i.e.,  black  box) for each  access to  the 
part, and  account for the effect  of any previous access 
to  the part. Popularized system development meth- 
ods that use  plausible ideas such as HIPO charts,28 
structure  charts,” or data flow  diagrams16 can still 
lose  vital information and  thus  make referential 
transparency impossible. It takes the right kinds of 
system parts  to defer details without losing them. 

The clear box  view  of a system provides the key 
abstraction that ensures referential transparency in a 
box structure hierarchy. The procedurality of the 
clear  box makes precise the control flow and  data 
flow into  and  out of all embedded black  boxes.  At 
the next  level  of the system hierarchy, each black 
box can be  designed and implemented indepen- 
dently of its surroundings in a system, so accounta- 
bility  is achieved in the delegation. Flexibility is 
achieved in the delegation because a black  box can 
be  redesigned  with different state machines and clear 
boxes as required. As long as the new  black  box 
behavior is identical to  that of the original, the rest 
of the system will operate exactly as before. Such 
black  box replacement may be required or desirable 
for purposes of better performance, changing hard- 
ware, or even changing from manual  to  automatic 
operations. 

When designers and implementers are required to 
discuss and coordinate details of separate parts after 
their assignment of responsibilities, gamesmanship 
becomes an important part of a day’s work, in ad- 
dition to system development. It’s only sensible,  with 
ill-defined responsibilities, to cover  one’s bets and 
tracks with activities and  documents designed as 
much to protect as to illuminate. 

Even  with the best  of intentions, extensive commu- 
nication and coordination with respect to design and 
implementation details opens up many more oppor- 
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tunities for misunderstandings and errors. Such er- 
rors are always written off as human fallibilities 
(nobody is perfect), but errors of unnecessary com- 

Transaction  closure  defines  a 
systematic,  iterative  specification 

process. 

munication and coordination should be  charged to 
the methodologies that require them,  not  to  the 
people  forced to  do the unnecessary communication 
and coordination. 

Transaction  closure. Principle of Transaction C/o- 
sure-The transactions (transitions) of a system or 
system part should be sufficient for the acquisition 
and preservation of all its state data,  and its state 
data should be  sufficient for the completion of  all its 
transactions. In particular, system integrity as well 
as user function should be considered in achieving 
transaction closure. 

The principle of transaction closure can forestall 
many surprises and afterthoughts in specifying and 
designing  systems. A common mistake for amateur 
(and  not so amateur) analysts and designers is con- 
centrating so much on primary user transactions 
that  the secondary transactions to make primary user 
transactions available and reliable become awkward 
or impossible. For example, if system security or 
recovery requirements are not identified up front, an 
ideal  user  system (imagined in a perfect  world of 
hardware and people) may end up with data struc- 
tures that make security or recovery  difficult or im- 
possible. Therefore, transactions provided for secu- 
rity and recovery  need to be defined as early as user 
transactions, and  as carefully. 

The principle of transaction closure defines a system- 
atic, iterative specification  process, in ensuring that 
a sufficient set  of transactions is identified to acquire 
and preserve a sufficient  set  of state data.  The itera- 
tion begins  with the transactions for the primary 
users, and  the state data needed for those transac- 

MILLS, LINGER, AND HEVNER 407 



tions, then considers the transactions required for 
the acquisition and preservation of those state data, 
then identifies the state data needed for those trans- 
actions, and so on. Eventually, no more transactions 
will  be required in an  iteration,  and transaction 
closure will have  been achieved. 

The concept of  system integrity plays a special  role 
in transaction closure. Transaction closure assuming 
perfect hardware and people  is not enough; many 
transactions can only be defined once specific hard- 
ware and people are identified for system  use. For 
example, an information system  using an operating 
system  with automatic checkpoint and restart facili- 
ties will not need checkpoint and restart transactions, 
but  one without them will. The problem of system 
security provides a classic example. Many operating 
systems and database systems in wide  use today 
cannot be retrofitted for  high-level multilevel secu- 
rity because they were conceived and specified  before 
such security requirements were identified. 

In simplest terms, information systems integrity is 
the property of the system  fulfilling its  function while 
handling all  of the system  issues inherent in its 
implementation. For example, systems are expected 
to be correct, secure, reliable, and capable of han- 
dling their applications. These requirements may not 
be  explicitly stated by managers, users, or operators, 
but  it is clear that  the designed  system must have 
provisions for such properties. Questions of  system 
integrity are largely independent of the function of 
the system, but  are dependent on its means of im- 
plementation, manual or automatic.  Manual imple- 
mentations  must deal with the fallibilities  of people, 
beginning with their very absence or presence (so 
backup personnel may be required), that include 
limited ability and speed in doing arithmetic, limited 
memory capability for detailed facts,  lapses in per- 
formance from fatigue or boredom, and so on. Au- 
tomatic implementation must deal with the fallibil- 
ities of computer hardware and software, beginning 
with their total lack of common sense, that include 
limited processing and storage capabilities (much 
larger than for people, but still limited), hardware 
and software errors, security weaknesses, and so on. 

The process  of transaction closure is essential in the 
development of a top-level black box for any system. 
A useful beginning of this search for a top-level  black 
box  begins  with the most obvious users  of the system 
but seldom ends there. These most obvious users 
often interact with the system daily, even minute by 
minute, in entering and accessing data (for example, 
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a clerk in an airline reservations system). Usually, 
however, the  data they  use are provided in part by 
other users who enter and access data less frequently, 
such as those entering flight availability information. 
And other users  even more distant from the obvious 
users enter  and access data even  less frequently (for 
example, users  who add  route schedule information). 
All the while, an entirely different group, the opera- 
tors of the system, is entering and accessing  system 
control data  that affect the users in terms of more or 
less access to  the system  because of limited capacity 
or availability. 

The top-level black  box must accommodate the 
transactions of all these users and operators, not just 
the most obvious ones. A cross-check can be made 
between the top-level  black  box and its top-level 
state machine. Every item of data  in  the top-level 
state must have  been loaded with the original system 
or acquired by previous black  box transactions. Are 
there any items not so loaded or acquired? It is  easy, 
in concentrating on one set of transactions, to as- 
sume the existence of data  to carry them out. A 
comprehensive scrutiny of these needed data items 
can  discover  such unwarranted assumptions early. 

State migration. Principle of State Migration-Sys- 
tem data should be decentralized to  the smallest 
system parts that do not require duplicating data 
updates. If, for geographic or security reasons,  system 
data should be decentralized to smaller system parts, 
the system should be  designed to ensure correctly 
duplicated data updates. 

The principle of state migration eliminates the need 
for instant decisions (often faulty) about how data 
should be structured and how the  data should be 
stored in a system. Instead, it permits the definition 
of system data at a conceptual level, and permits the 
concrete form and location of the data  to be  worked 
out interactively with the system  design and decom- 
position into system parts. As better design ideas 
emerge,  system data can be relocated effectively to 
accommodate such ideas, all the while maintaining 
correct function as required in the system transac- 
tions. 

When  system data need to be decentralized to 
smaller system parts than allowed by the principle 
of state migration, the smallest system  defined by 
this part must be redesigned to accommodate correct 
duplicate updating. In this case, it is a different 
system and should be  recognized as such from the 
outset. The problem of incorrect updating of dupli- 
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cated data is a well-known burden of  faulty  system 
designs. 

System data in a box structure hierarchy are distrib- 
uted into  the states of their component box struc- 
tures. State migration through the box structure 
hierarchy is a powerful tool in managing system 
development. It permits the placement of state data 
at the most effective  level for its use. Downward 

Common service box structures are 
ubiquitous  in  information  systems. 

migration may be  possible  when  black  boxes are 
identified in a clear box; state data used  solely within 
the state machine expansion of one black  box can 
be migrated to  that state machine at  the next lower 
level  of the hierarchy. The isolation of state data  at 
proper levels in the system hierarchy provides im- 
portant criteria for the design  of database and file 
systems. Upward migration is  possible  when dupli- 
cate state data are updated in identical ways in 
several  places in the hierarchy. These data  can be 
migrated up  to  the  common  parent state machine 
for consistent update at  one location. 

Common services. Principle of Common Services- 
System parts with multiple uses should be considered 
for definition as common services. A corollary prin- 
ciple is to create as many opportunities as possible 
for reusability within and between  system parts. 

Operating systems, data management and database 
systems, network and terminal control systems are 
all illustrations of common services  between  systems. 
It is axiomatic in today’s technology to seek as much 
reuse of common services as possible to multiply 
productivity and increase  reliability. These common 
services must satisfy the principle of referential trans- 
parency in their use, so their specifications are as 
important  as their implementations. On a smaller 
scale,  effective  system  design  seeks and creates com- 
monality of services and identifies system parts for 
widespread multiple uses within a system. 
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When several  black  boxes of a clear box expansion 
access or alter a common state part, it is  generally 
inadvisable to migrate the state part to those lower 
levels.  But it may  be advisable to define a new  box 
structure hierarchy to provide access to or to alter 
this common state part for these  several  black  boxes. 
Such a new  box structure must be invoked in the 
clear box expansions of these black  boxes. This new 
box structure thereby provides a common service to 
these several  black  boxes. Such a common service 
structure in effect encapsulates a state part, by pro- 
viding the only means for accessing or altering it in 
the box structure hierarchy. 

State encapsulation requires a new box structure 
whose state will contain  the  common state part and 
whose transactions will provide common access to 
that state part for multiple users. In essence, state 
encapsulation permits state migration to be camed 
out  in  another form, with the provision that  the only 
possible  access to  the migrated state is by invoking 
transactions of the new  box structure that encapsu- 
lates it. 

Common service  box structures are ubiquitous in 
information systems. For example, any database sys- 
tem behaves as a common service  box structure to 
the people and programs that use it. As a simple 
illustration, consider a clear box expansion of a 
master file update state machine. Such a clear box 
would contain a number of black  boxes  which op- 
erate on the master file, for example, to open, close, 
read, and write the file, as well as black  boxes to 
access transaction files, directory and authorization 
information, etc. The master file of the clear box 
state cannot be migrated to these lower-level  black 
boxes without duplication. However, the master file 
can be encapsulated, without duplication, in a new 
box structure  that provides the required transactions 
to  open, close, read, and write the file. These trans- 
actions can then be invoked from the original box 
structure hierarchy as required. The new  box struc- 
ture can be  designed to ensure the integrity of the 
master file and all  access directed to it. In  fact,  when 
the master file is migrated to this common service, 
it is protected from faulty access by the box structure 
in an effective  way. 

The  spiral  development  process 

In information systems development, the box struc- 
ture methodology defines a set of limited, time- 
phased activities to decompose and manage the work 
required. A formal development plan defines and 
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Figure 15 A system development spiral 

START 

APPROVAL 

INVESTIGATION 

APPROVAL 

SPECIFICATION 

APPROVAL 

IMPLEMENTATION 

APPROVAL 

COMPLETION 

schedules the specific activities required to address a 
specific problem. The development plan represents 
long-range planning for information system  devel- 
opment; the activity plans represent short-range 
planning. As each activity is completed, the entire 
development plan is updated to account for the 
current situation. 

Although the activities of a development plan are 
always  specific to a particular system development 
problem, they can be  categorized into three general 
classes: investigation, specijication, and implemen- 
tation. An investigation is a fact-finding, exploratory 
study, usually to assess the feasibility  of an infor- 
mation system. For example, such a study may 
define the black box behavior of a projected infor- 
mation system. A specification is more focused to 
define a specific information system and its benefits 
to the business. For example, a specification activity 
may  result  in definition of state data  and high-level 
clear boxes  of a projected information system. An 
implementation converts a specification into  an op- 
erational system. For example, implementation may 
elaborate the black  boxes of high-level  clear  boxes 
into box structure hierarchies of their own, eventu- 
ally amving  at  human  and  computer procedures in 
user  guides and software, respectively. 

The  system  development  spiral. Many current meth- 
ods of information systems development reflect ap- 
pearances rather than principles. One of the obvious 
appearances in information systems is the system 
development life  cycle. It is certainly apparent  that 
information systems go through various stages of 
conception, specification, design, implementation, 
operation, maintenance, modification, and so on. 
But although these terms  are suggestive, real infor- 
mation systems do not pass through these stages in 
any simple or straightforward way. 

In contrast to a fixed  life  cycle, the box-structured 
system development process  is defined by a set  of 
time-phased activities that  are initiated and managed 
dynamically on  the basis of the  outcome of previous 
activities in the development. This progression of 
activities is conveniently represented in a flexible 
system development spiral that reflects the actual 
progress  of a development effort in terms of box 
structure analysis and design tasks. 

The time-phased set of activities in a spiral can be 
strictly sequential or may have concurrent parts. If a 
development is sequential, it  can be pictured, in 
prospect or retrospect, as shown in Figure 15. In this 
example, the activity sequence is a straightforward 
progression  of 

Investigation 
Specification 
Implementation 

with a management approval to enter each activity 
and  to  end  the entire development. Such a progres- 
sion  for developing a system is ideal, but is not 
necessarily  possible or even desirable. 

It  may not be  possible  because the business problem 
is too complex and needs several investigation activ- 
ities to amve  at a solution. It may not be  possible 
because the system development problem is too 
complex and needs  several specification/implemen- 
tation activities in  an incremental development. It 
may not be desirable because the business problem 
is too acute and a less-than-best implementation is 
called for as soon as  possible. It may not be desirable 
because the happy outcome of the first investigation 
activity is the discovery of an existing implementa- 
tion  to meet the business need. 

If a development is concurrent, it can be pictured in 
a network of  spirals, as in the example of  Figure 16. 
In this network, activity dependencies are shown  by 
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the approval lines (“A” lines here). For example, 
Investigation 1 enables both Specification 1 and 
Investigation 2, whereas both Implementation 1 and 
Specification 2 must be completed before Implemen- 
tation 2 can be started. The specific network pictured 
might, for example, represent the  concurrent devel- 
opment of a database system (Implementation 1) 
and an application system (Implementation 2) that 
uses  it. 

Managing spiral development. The system  develop- 
ment process generates limited, time-phased activi- 
ties of investigation, specification, and implementa- 
tion  that must be managed. Formal stages of plan- 
ning, performance, and evaluation in each activity 
define an orderly process for this management. The 
box structure methodology provides a great deal of 
commonality across these activities for the analysis 
and design  work that is required. The management 
problems are also very similar. As the names imply, 
the most challenging stages for management are 
planning and evaluation, whereas the performance 
stage  is the most challenging for technical profession- 
als. 

Planning. There are three basic results from the 
planning stage  of any activity: 

1. Activity objective. A statement of  what the activity 
is to produce. 

2. Activity  statement of work. A statement of  how 
the activity will achieve its objective. 

3. Activity schedule. An assignment of work items 
in the Statement of  Work to professionals to- 
gether with  agreed-on completion dates. 

With such a plan, each member of the entire devel- 
opment team understands the objectives, Statement 
of Work, and  the individual responsibilities for mak- 
ing good on  the work  objectives and schedule. Such 
a plan not only requires the agreement of the profes- 
sionals, but also requires their direct participation in 
the planning process.  But the planning process must 
be  led by managers to address the proper questions 
and problems for the activity in the overall devel- 
opment plan. 

Performance. If plans are well made, performance is 
focused and predictable. The management job in 
performance is to assess and track progress against 
the Statement of Work and schedules. Management 
must identify unexpected problems and help profes- 
sionals decide how to meet them,  and must identify 
unexpected windfalls  in solutions that can free up 
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Figure 16 A system  development spiral with concurrent 
activities 
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people and resources. It is  here that good understand- 
ings and agreements on assignments and schedules 
pay off. 

Evaluation. Evaluation is both a closing out of one 
activity and a basis for selecting and commencing 
one or more following activities. The objectives and 
results of performance can be compared and related 
to the business and its situation. Even if objectives 
are not met, the lessons learned may be  useful. If the 
objectives are met, so much the better, and  the 
expected next activities can be initiated. In particu- 
lar, the evaluation stage  is the point where the de- 
velopment plan for future activities can be  assessed 
and modified. 

These activities and stages can be organized in tab- 
ular form, as shown in Table 1, which indicates 
typical tasks in systems development. A detailed 
discussion of these tasks is found in Mills et ai.’ 
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Table 1 Stages  in  activities:  Typical  tasks 

Concluding remarks 

The box structure methodology provides a rigorous 
approach for information systems analysis and de- 
sign. The black box, state machine, and clear box 
present three different,  yet complementary, views  of 
an information system and any of its subsystems. 
The methodology provides formal techniques for 
relating these structures and constructing box struc- 
ture hierarchies. 

The correctness of  box structure designs can  be 
verified in stepwise fashion from clear boxes by 
systematically deriving their actual state machine 
and black  box behaviors, and comparing them  to 
their intended behaviors. 

Box structures permit application of  specific princi- 
ples  of information systems development that help 
ensure complete and well-structured designs.  Refer- 

, ential transparency permits precise delegation of 
black  box expansions once their clear box connec- 
tions have  been  designed. Transaction closure en- 

avoids data flow jungles in systems by decentralizing 
data storage and access into box structure subsys- 
tems. Common service  design permits migration of 
widely  used data  into new  box structure hierarchies 
that provide all required data access. 

Box structures permit a flexible management process 
of spiral development, in contrast to a fixed  life  cycle. 
Spiral development is characterized by steps of in- 
vestigation, specification, and implementation of 
box structures that can be dynamically sequenced 
and managed to best capitalize on  the current prog- 
ress and remaining resources of a development effort. 
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