Advanced Interactive
Executive program
development environment

The IBM RT Personal Computer uses the Advanced
Interactive Executive as an operating system. This op-
erating system provides a distinct environment for the
development of programs. Some of the characteristics
of application development with this operating system,
some of its features that influence application design,
and the basic program development tools are de-
scribed.

Henry‘ has described some of the ways in which
user demands for high function and perform-
ance combined with ease of use in a low-cost small-
system environment have led to innovative design
solutions for key technical problems. The IBM RT
Personal Computer™ (RT PC™), and the Advanced
Interactive Executive (AIX™) operating system rep-
resent an advance in IBM’s small-system technology.
The RT PC provides performance and functionality
rivaling that of traditional mainframe computers in
a workstation environment that puts the power of
the machine at the fingertips of the end user. The
capabilities of the RT PC make it an attractive system
for sophisticated end-user applications requiring
more power than is commonly available on a work-
station. This, in turn, requires a program develop-
ment environment that supports the development of
such applications.

The choice of a UNIx®-based operating system for
the RT Personal Computer was influenced to a large
degree by the desire to provide both a platform for a
variety of existing applications and a system that
gives the programmer a powerful and flexible set of
interfaces and tools for subsequent application de-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

by R. Q. Cordell Il
M. Misra
R. F. Wolfe

velopment. Loucks and Sauer? have discussed some
of the motivation behind this choice, as well as some
of the characteristics and enhancements of the AIx
kernel and application development environment.

Additional motivation for providing a rich and pow-
erful set of development tools was provided by the
reduced instruction set computer (RISC) architecture
of the underlying RT pC hardware. Given the reliance
by RISC architects on sophisticated compiler tech-
nology to shield the normal application programmer
from the underlying architecture, an advanced op-
timizing compiler is critical to allow applications to
exploit the performance benefits of the machine (see
Radin®). The emphasis is on making function and
performance available to the end user without intro-
ducing additional complexity.

Thus, the combination of a RISC architecture and a
UNIx-based operating system on a high-performance
workstation and microcomputer requires an ad-
vanced set of program development environment
tools and a friendly development environment. The
following sections of this paper describe some of the
characteristics of UNIX and A1x application develop-
ment, some of the features of the Arx system that
influence application design, and the basic AIX pro-
gram development tools.

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

CORDELL, MISRA, AND WOLFE 361

UNIX program development tools and
environment

The UNIX system was originally developed by a group
of researchers at the AT&T Bell Laboratories to pro-
vide an effective computing environment within
which they could pursue their own work in program-
ming research (see Mcllroy et al.*). From the begin-
ning, the system was designed to be simple and
extendible by the programmers who used it. The
model of a trusted kernel providing a small but

The UNIX shell provides an
interactive user environment above
the level of the kernel.

powerful nucleus allowed for easy extendibility with
minimal complexity. Many programs that comprise
part of the operating system base in more complex
systems are simply application programs in the UNIX
environment.

From this origin, the UNIX system has had a history
not unlike that of the Virtual Machine/Conversa-
tional Monitor System (vVM/CMS) within 1BM, where
the programmers who used the system enhanced it
by providing numerous tools in areas such as com-
mand processors, interpretive languages, text proc-
essing, library systems, and compiler development.
The uNix philosophy, like that of cMs, has been to
build small, independent tools rather than large,
interrelated ones, and to build software quickly while
expecting to adapt it over time to a considerable
degree in order to meet users’ needs (see Dolotta et
al.%).

This process has resulted in a proliferation of tools.
Over time, a subset of these tools have become
standard to the AT&T UNIX System V, much as XEDIT
as an editor and REXX as a language have become
mainstays of vM/cMs. The AIx programming envi-
ronment attempts to provide the standard set of
System V tools, as well as extensions in key areas.
Some of the basic tools and characteristics of the
UNiX System V programming environment are dis-
cussed briefly below.

362 CORDELL, MISRA, AND WOLFE

Shell. The UNix shell is a command-processing pro-
gram that provides an interactive user environment
(though it will also execute commands read from a
file) above the level of the kernel. The shell provides
an interface to the UNIX operating system services. It
includes an interpretive programming language
which contains control-flow primitives, parameter
passing, and string-valued variables. Although the
shell is simply a utility program above the level of
the trusted kernel, it provides the basic command
interface and user environment and, hence, plays a
very visible role in the user’s perception of the sys-
tem.

Many variants of the original UNIX shell currently
exist, including the Bourne shell, C shell, and Korn
shell. Users may write additional shells. No real
distinction is made between the shell provided with
the operating system and those written by users, as
long as the user shells accept the basic shell conven-
tions for invocation, parameter passing, etc.

Several shells can coexist in the same system. The
AIX system, for example, provides both the Bourne
and C shells, as well as a menu-oriented Usability
shell and an 1BM Personal-Computer-oriented DOS
shell. Which shell is invoked at log-in time is an
option which may be specified on a per-user basis.
In the AIX system, a user may log in and execute one
shell (e.g., the Bourne shell), and then open a virtual
terminal, creating another process that executes a
different shell (e.g., the C shell; processes and virtual
terminals are described later in this paper).

Editors and text processing. The UNIX system has
been from the first a general-purpose time-sharing
system designed to provide an effective environment
supporting programmers. This fact is one of the
primary motivations behind the development of a
varied and powerful set of tools. One area in which
the UNIX system has had a particularly rich history
is that of document preparation and text processing.
UNIX tools in this area include editors and text-
formatting tools.

Like the shell, these text-processing programs are all
standard applications. A major advantage of the
UNIX system is that the vast bulk of utilities, tools,
and other programs run as application programs
above the level of the kernel. This arrangement
lessens the effort of developing new applications,
since only the most complex programs require more
than the standard user services available through the

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

kernel system calls. This also increases the degree to
which tools can build on top of each other, since
they all run in the same basic environment.

Programmer’s Workbench. The Programmer’s
Workbench UNix system (referred to as PWB/UNIX),
developed at the AT&T Bell Laboratories in the 1970s,
attempted to improve the standard UNIX program-
ming environment. The PWB/UNIX system separated
program development from execution of the result-
ing programs, and attempted to provide a uniform
front-end development environment for UNIX code
which could execute on several target systems, in-
cluding the 1BM System/370.

The PwB/UNIX project had the important goals of
providing a single, uniform programming environ-
ment, of enhancing the existing set of UNIX devel-
opment tools, and of showing that the UNIX system
could be not only a productive program develop-
ment environment but also an effective target exe-
cution environment. This combination of an inter-
active environment for application development and
a powerful set of system functions supporting the
resulting applications is a primary characteristic of
the UNIX system, and one which the Alx system on
the RT pC attempts to extend still further.

AIX extensions to UNIX program development. The
AIX program development environment starts with
a System V base and extends this base in several key
areas, including

Berkeley Software Distribution (BsD) 4.2 enhance-
ments such as extended signals.

Exploiting A1x advanced features such as distrib-
uted processing, mapped files that provide a single-
level store, virtual terminals, and windowing
capabilities.

A rich set of program libraries along with capabil-
ities to facilitate interlanguage calling for applica-
tions that are written in multiple languages.

The following sections describe some fundamental
design considerations for application programmers
who desire to take advantage of the capabilities of
the AIx system on the RT PC and also describe the
AIX program development tools available with which
to implement, maintain, and debug AIX applications.

Application programming design considerations

The AIXx system and the RT PC provide application
designers with a large set of capabilities, including

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

the basic features of UNIX System V and many
extensions. The result is a very sophisticated system
which makes available to applications many features
found in much larger systems, such as multiprocess-
ing, mapped files, shared memory, data management

An AIX process is the current state
of a program that is running.

and relational database, high-function graphics and
windowing, and distributed processing. Many of
these features extend beyond traditional UNIX capa-
bilities to provide a system more suitable for sup-
porting commercial applications in areas such as
computer-aided design/computer-aided manufac-
turing (CAD/CAM), decision support, workstation
publishing, and expert systems.

Process model. The uNix system was designed from
its beginning to be an interactive, multiprocessing
operating system, a design point combining power,
flexibility, and usability. This choice has proved over
time to be extremely important as computing has
moved away from batch processing to an interactive
emphasis, and as the subsequent user demands on
machine capacity and operating system function
have mandated the ability to perform multiple tasks.
The ease with which application programmers are
able to exploit this function has contributed greatly
to the rapid growth of a base of sophisticated appli-
cations. This application base would have been sig-
nificantly retarded either by a less interactive envi-
ronment or by a less powerful process model.

An AIX process is the current state of a program that
Is running. A process is the operating system con-
struct that is allocated CPU resources. The AIX system
associates various contextual information with a
process, such as a virtual address space, a current
directory, and the status of open files used by that
process (see the data model description below for a
discussion of directories and files).

Process address space. A process includes a memory
image consisting of 16 segments each up to 256

CORDELL, MISRA, AND WOLFE 363

Figure 1 AlX process creation

PROCESS #1 (PAREN

PROCESS #2 (CHILD)

megabytes in size, as defined by the 16-segment
registers in the RT PC virtual memory management
hardware (see Loucks and Sauer® for a description
of the AIX virtual memory segment allocation). The
virtual memory manager pages processes in and out
of memory as necessary. Processes may run in user
mode or may switch to kernel mode by issuing a
system call to the aIx kernel.

Process creation and execution states. A process can
create a copy of itself via the fork system call. The
created process, referred to as the child, gets a sepa-
rate address space which is a copy of that of the
creating process (referred to as the parent) at the
time of creation, and the two processes share open
files. The program running in the child process may
subsequently issue an exec system call, which causes
the process to overlay the information it contains
with new information. This is illustrated in Figure
1.

Interprocess communication. Because the UNIX sys-
tem provides features allowing applications to ex-
ploit the ability to use multiple processes, the need
for communication among processes becomes criti-
cal. The Aix system provides the standard UNIX
System V interprocess communication (IPC) capa-
bilities for signals, semaphores, and message queues,
and extends these capabilities to provide a richer set
of services supporting a multitasking program exe-
cution environment.

In addition to the standard uNIX System V signal
facilities, the AIX system incorporated BSD 4.2 en-
hanced signals, which allow a program to mask and
block each type of signal while it is executing. Block-

364 coRoELL, MISRA, AND WOLFE

ing a signal causes that signal to be held when it is
received and then handled when the signal type is
unblocked.

The ai1x system has extended the System V message
queue services by providing a new function that
returns an extended message structure containing
more information, such as user 1D (identification),
group ID, message send time, process ID, etc.

Processes can also communicate by allocating shared
memory segments via the shmat (shared-memory
attach) system call.

Data model. The A1x system provides programmers
with a powerful and flexible set of data manipulation
capabilities, building on the standard uNix file sys-
tem model with additional services to provide more
granular and sophisticated data management capa-
bilities to support commercial applications.

File system structure. The arx file system is charac-
terized by the two properties of being hierarchical in
nature and of representing files as linear byte streams
rather than organized into larger units such as rec-
ords and fields. This model is familiar to users of the
1BM Personal Computer Disk Operating System (1BM
PC DOS) on the 1BM Personal Computer.

Figure 2 illustrates the a1x file system structure. At
the top of the file system tree is the root file system,
represented as a “/”. Leaf nodes (i.e., nodes which
cannot have any other nodes below them) are files,
which may contain user data. Directories are inter-
mediate points in the file system tree, which may
have other nodes below them in the tree, either files

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure2 AIX file system structure

ROOT FILE SYSTEM
U USER FILES

etc usr

misra

rob
rc getty celio Ipp
: bin desktop
sh grep pingo.doc

or other directories. Directories are just AI1X files with
a special structure describing the files and subdirec-
tories contained in the directory. However, an AIX
user cannot write to a directory using the normal
file-manipulation mechanisms, but must use a spe-
cial set of directory-manipulation commands in or-
der to preserve the directory structure. In Figure 2,
the names etc, bin, usr, u, rob, misra, cello, desktop,
and Ipp are all directories. In the AIx system, the
utility program installp, used to install licensed pro-
gram products, uses the directory fusr, and the di-
rectory /u contains subdirectories for each user de-
fined to the system, each of which contains user data.
Thus, the directory /u/misra (i.e., the subdirectory
misra in the subdirectory u off the root) contains
data for the user logged in as misra.

Portions of the file system tree are referred to as
filesystems and have the property of being individ-
ually mountable from a directory. For example, the
directory /u is a mount point for the filesystem that
contains user data. Filesystems are used for alloca-
tion purposes and for administrative control. The RT
pc Distributed Services extends the notion of a
mountable portion of the file system tree to provide

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

local or remote file system transparency, as described
later in this paper.

A file may always be accessed via a direct path name,
i.e., a path name starting at the root and ending with
the file name. For example, in Figure 2, the direct
path /u/misra/desktop/pingo.doc identifies the copy
of the Workstation Publishing Software™ document
known as pingo available to the user logged in as
misra. Alternatively, a file may be accessed via its
relative path name to the current working directory.
For example, if a user logged in to the AIX system as
misra, the working directory would probably be
Ju/misra, in which case the file pingo.doc in the
subdirectory desktop could simply be referenced as
desktop/pingo.doc. If the current directory were
changed to the subdirectory desktop, the file could
be referenced as just pingo.doc, which is the actual
file name. AIX file names may be up to 14 characters
long. A single file can be known (accessed) by several
names.

In addition to directories and ordinary files, special
files are used to provide a convenient way to access
the 170 mechanisms of devices. For each 170 device

CORDELL, MISRA, AND WOLFE 369

there is a special file that provides an interface be-
tween the application and the kernel support for that
device. Most special files are found in the /dev

All files have read, write, and
execute permissions for the file
owner, group, and other users.

directory. Thus, the file system provides applications
with a consistent mechanism for accessing all de-
vices, not just disk data.

File permissions and sharing. All files have read,
write, and execute permissions for the file owner,
group, and other users. Any user with a given per-
mission on a file is allowed access to the file for that
specific type of access.

Permissions are treated differently for directories
than for ordinary files, in the sense that the system
does not allow users direct access to the contents of
a directory entry to avoid corruption of directory
information. Read permission on a directory means
that the user will be able to use the standard directory
utilities to read the information in the directory;
write permission means that the user will be able to
use the standard directory utilities to create or re-
move directory entries; and execute permission
means that the user will be able to search the direc-
tory for a file name. This last permission provides a
useful mechanism for allowing or denying users the
ability to use files in that directory.

Mapped files. A1x mapped file support provides an
explicit interface whereby programmers can choose
to have data files mapped to the large virtual address
space supported by the AIX system on the RT PC,
achieving a “single-level store” rather than the tra-
ditional two-level (memory and disk) storage model.
Once a file is mapped to memory, programmers can
subsequently access mapped file data by direct loads
and stores rather than by reads and writes, with the
virtual memory paging system managing the physi-
cal 1/0 activity.

366 CORDELL. MiSRA, AND WOLFE

The shmat system call with the map option is used
to map an open file to virtual memory. Optional
flags supplied with the shmat system call specify how
the file is to be mapped, with possible options in-
cluding read-only, read-write, and copy-on-write,
(Copy-on-write means that changes applied to the
file in memory do not affect the file resident on disk
until an fsync system call is issued for the mapped
file.) In order for the shmat call to succeed, the file
must have been opened with the appropriate access
options; e.g., the file must have been opened with
write access in order to map the file read-write.

A single virtual memory segment is used to support
all processes that map a given file read-only or read-
write. The segment remains mapped until the last
process mapping the file closes the file. A separate
segment is used to support a file that is mapped copy-
on-write.

Mapped file support provides both a useful program-
ming model with a single-level store and a consid-
erable improvement in performance. These combine
to make mapped files a particularly attractive feature
of the A1X operating system.

Database and data management. The representation
of files as linear byte streams rather than as being
organized into records and fields has been noted as
a major advantage of the UNIX model over many
other systems. This representation allows program-
mers considerable power and flexibility to choose
whatever structure is best suited to a particular ap-
plication (see Ritchie®). As Bissell” has noted, how-
ever, this freedom of choice often results in the
programmers who require random access to define
substructures within a file (such as records and fields)
having to develop their own access methods, thereby
increasing application size, complexity, and devel-
opment time. The AIX system attempts to combine
the best of both worlds by providing three discrete
levels of data representation and management: the
base file system, an indexed data management ca-
pability, and a relational database.

The 1BM RT PC Data Management Services provides
a general-purpose indexed access method. Data man-
agement files may contain fixed- or variable-length
records. Access to data management files may be
sequential by record, by relative byte address of the
record within the file, or by indexed access using
B-tree techniques.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Data management also provides a set of catalog
services which extend the amount of information
about files beyond that available in the base file
system. The catalog structure for data management
files is an extension of the AIx file system directory
structure, so that the user views data management
files as being handled in the same manner as normal
AIX files.

For programs that require still more sophisticated
data facilities, such as field-level access within records
and transaction control for data integrity, program-
mers may use the Structured Query Language/RT
(sQL/RT) relational database management system.
SQL/RT provides a relational data model in which
data are represented as a table consisting of rows
subdivided into individually accessible columns. Ac-
cess to data stored in SQL/RT tables is via the IBM SQL
language.

Both data management and the SQL/RT relational
database exploit many of the extended features of
the Alx system, particularly the mapped file support
described above.

User interface and terminal support. A wide range
of display terminals can be connected to the RT PC.
These can be as simple as character glass teletypes,
such as a Digital Equipment Corporation VT 100 or
an I1BM 3161, or as sophisticated as bit-mapped dis-
plays, such as an 1BM 6154 or an 1BM 6155. The glass
teletype (TTY) devices are ASCII terminals connected
to the RT PC via standard asynchronous communi-
cation lines. The bit-mapped displays are directly
connected to the RT PC via an associated display
adapter.

The aix system provides programmers efficient and
flexible interfaces to take full advantage of the ca-
pabilities of these display terminals. These interfaces
can range from simple character-based applications
to complex applications running in a window, or
even highly sophisticated three-dimensional graphic
applications. This choice allows programmers to se-
lect the level of interface most suited for their appli-
cation demands.

The simplest interface for writing application pro-
grams requiring only character support is referred to
as keyboard-send-receive (KSR) mode. Services that
build on the kSR mode include the curses and ex-
tended curses library routines and the Alx dialog
manager included in the arx Usability Services.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

In order to take advantage of the advanced capabil-
ities of displays directly connected to the RT pcC,
multiple interfaces are provided to support a wide
range of graphic applications. These interfaces in-
clude multiple virtual terminals, extended Ascn
mode, monitor mode, graphics support library (GSL),

The curses interface permits
manipulation of data structures
called windows.

X-Windows, and graPHIGS™. Support is provided for
using all-points-addressable (apA) displays, the key-
board, locator (mouse), speaker, and optional input
devices such as tablets and valuators.

Figure 3 illustrates the relationship among the var-
ious terminal support components. These are de-
scribed in more detail below.

Curses. To provide for migration of existing appli-
cations, the AIx system includes the UNIX curses
library routines to support input and output to a
terminal. The curses interface permits manipulation
of data structures called windows, which can be
thought of as two-dimensional arrays of characters
representing all or part of a screen. Input characters
received from the user can be echoed back to the
window or handled directly by the application with-
out echoing. Most interactive, screen-oriented pro-
gramsrequire character-at-a-time input without echo-
ing. These library routines provide programmers
with the ability to control multiple, overlapping areas
on the display and to assist in managing the data
presented. In addition, these routines use the system
“terminfo” routines, which provide access and proc-
essing for terminal description files for each type of
terminal supported.

Extended curses. To take advantage of more ad-
vanced KSR displays and to provide a more efficient
handling of window-oriented screen presentations,
the A1X system provides extensions to the UNIX curses
through the extended curses routines. The extended

CORDELL, MSRA. AND WOLFE 367

Figure 3 AIX terminal interfaces

APPLICATION INTERFACES

HFT DD

CONSOLE DDs

curses routines provide functions for handling ex-
panded character sets, color, multiple character dis-
play attributes, and error detection.

These routines also enhance the programmer’s abil-
ity to efficiently handle window-oriented screen pre-
sentations. Some of these enhanced capabilities in-
clude the linking and scrolling of windows, scrolling
data in windows that are partially covered, the ability
to stack and layer windows, the ability to subdivide
windows into panels and panes, and the automatic
tracking of panes. The extended curses routines can
be used to develop new character-oriented display

368 CoRDELL, MiISRA, AND WOLFE

applications or to increase the function of existing
programs.

Dialog manager. A dialog manager facility was de-
veloped on top of the curses and extended curses
routines to provide application control and services
supporting processing of interactive dialogs. The
dialog manager monitors operator input and per-
forms conditional processing based on this input as
specified in the dialog. This is accomplished through
dialog definitions that allow the dialog manager to
direct the flow of control from one screen panel to
another based on the user’s actions. Some of the

BM SYSTEMS JOURNAL, VOL 26, NO 4, 1887

additional capabilities of the dialog manager include
the definition of actions to be performed on select-
able field input, the ability to define user exits based
on these actions, the definition of help text appro-
priate for the context of the dialog, and data entry
validation, verification, and access by the application
program through named variables.

The dialog definitions are stored outside of the pro-
gram that uses them. This condition gives program-
mers the ability to change the dialogs without re-
quiring any modification, compilation, or recon-

Monitor mode is the lowest-level
graphic interface supported by the
AIX system.

struction of the program. These dialog definitions
are preprocessed from a readable/editable form to
one that is more efficient for run-time processing.
This makes the dialog manager a useful tool for
prototyping and developing user interfaces for pro-
grams (see Murphy and Verburg?). The dialog man-
ager is used by user interfaces provided with the Arx
system, such as the Usability Services.

The AIx facilities provided by the curses, extended
curses, and the dialog manager all operate in the KSR
mode of operation. Thus, applications written using
these AIX facilities are supported on attached RT PC
terminals and displays.

Multiple virtual terminals. One of the key design
tenets of the Arx system is the concept of multiple
virtual terminals. Multiple virtual terminals allow
the “multiplexing” of individual full-screen images
on a single system display. This multiplexing is con-
trolled by the Virtual Terminal Manager subsystem
of the Virtual Resource Manager (see Loucks and
Sauer?). A user simply “hot keys” to a different
foreground process and the screen of that process is
automatically displayed by the Virtual Terminal
Manager, thus permitting efficient use of the system
by the user. For example, the user can have a System/

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

370 host connection on one screen, be editing a
program on another screen, have a shell running in
a third screen, and be able to quickly switch from
one to another among all these foreground processes.

An important feature about multiple virtual termi-
nals is that most applications need not be aware of
this capability. Additionally, the design of the mul-
tiple virtual terminals of the AIX system exploits and
extends the UNIX multitasking capabilities by per-
mitting more than one foreground application to
share the display.

Extended ASCII mode. The default mode for a
virtual terminal is the extended ascii mode of oper-
ation. This mode is essentially the standard Ascn
terminal character mode of operation and allows
programs written to that interface to execute prop-
erly. The extended Ascu mode also permits new
applications to access and make use of the locator
and sound functions of the RT PC.

Monitor mode. Monitor mode is the lowest-level
graphic interface supported by the Alx system. This
mode allows programs to deal directly with the dis-
play hardware adapter by storing to the memory-
mapped 1/0 section of the display buffer. As such,
monitor mode provides the optimal performance for
graphic display applications. However, since an ap-
plication addresses the display adapter directly, sup-
port must be added for each display supported by an
application.

Conventions have been established to ensure that
applications written to this interface permit the vir-
tual terminal mode of display sharing. These con-
ventions require the application to relinquish the
display upon demand by the Virtual Terminal Man-
ager when the user switches to another foreground
process. This is accomplished through AIX extensions
to the UNIX signal protocols described earlier in this
paper. Thus, the environment of the virtual terminal
manager support of the A1x system is protected.

Dealing directly with the display hardware in moni-
tor mode is complex but does permit applications to
have the speed of direct hardware access. It is not
recommended that applications use the monitor
mode interface unless the optimal performance of a
display is required.

Graphics Support Library. The Graphics Support
Library (GsL) allows applications to perform graphics
operations without the need to directly address the

CORDELL, MiSRA, AND WOLFE 369

display adapter hardware as in the monitor mode
interface. Additionally, GsL supports the display of
fixed-space characters within text lines.

GSL assumes that each application runs in its own
virtual terminal using monitor mode. It provides an
interface that allows a program to generate graphics
interactively without detailed knowledge of the dis-
play adapter and input data formats.

The GsL routines are a set of graphics output func-
tions that permit applications to write directly to a
frame buffer—a memory storage containing a rep-
resentation of a display image. A set of attributes
govern the GSL functions and determine the charac-
teristics of the display image. For example, color
display adapters may be considered to have multiple
storage planes; each plane acts as a single frame
buffer of a monochrome display. An attribute iden-
tifies which planes of the frame buffer GsL functions
will modify. Additionally, some attributes affect only
a class of GSL functions, such as line style and color.

GsL provides control functions for initializing, lock-
ing, unlocking, and terminating the virtual terminal
of an application, and provides various output, serv-
ice, block transfer, and input functions. Some of the
GSL output functions allow applications to draw
straight and curved lines, mark points, write anno-
tated and geometric text, and fill areas. GSL routines
allow the definition of circular or elliptical arcs.
These functions convert circular or elliptical arc
definitions into a set of vertices that can be displayed
via polyline draw or fill functions to produce more
complex shapes. GSL also provides functions to move
rectangular blocks of pixels to or from the display
frame buffer to storage, or within the frame buffer
or storage.

For simplicity and optimized performance, GSL does
not perform any general clipping or transformation
on coordinates. Most of the output functions convert
coordinates as necessary to the target required for
the frame buffer of the particular display. Thus, the
coordinate system is device-dependent, and appli-
cations written using GSL need to be aware of the
physical attributes of the display.

GSL accepts input from several sources—keyboard,
locator, lighted programmed function keys, valuator,
or pick device. Input from these devices is viewed as
a series of discrete events, with input data associated
with each event. GSL provides subroutines to enable
or disable input from any device and to permit the

370 compELL, MISRA, AND WOLFE

application to suspend execution until an event oc-
curs from an enabled input device.

GSL is a powerful tool for writing sophisticated
graphic applications. This efficiency requires that
applications understand the underlying display hard-
ware capabilities, but it insulates them from dealing
directly with the display hardware.

X-Windows. The X-Window System was developed
at the Massachusetts Institute of Technology to pro-
vide high-performance/high-level device-indepen-
dent graphics capability supporting a windowing in-
terface on UNix systems. This system was the basis
for the rRT PCc X-Windows.

The rT pCc X-Windows uses the functions of GSL and
is a tool designed to help enhance the usability of
the application-processing environment. Facilities
are provided for users working with existing appli-
cations as well as for developers who are designing
and implementing new applications.

X-Windows allows multiple application processes to
operate within a given window and have multiple
simultaneous windows on a display. These windows
can be managed by the user or by the application.
Each window may be hidden, with only an icon to
note its existence, or it may be completely obscured,
or partially obscured by other windows. Obscured
windows can still be updated by the user or the
application program (see Scheifler and Gettys®).

Each window can have a specific character style and
size associated with it. Additionally, each window
can have its own keyboard mapping, permitting
different character sets to be supported in each win-
dow for international languages. Users can open and
close windows, change window size and location,
and move a window to the foreground or back-
ground.

Additionally, X-Windows provides the ability to
manage local and remote windows through a client-
server model. This provision allows remote display
management of processes executing on other RT PCs
connected via Ethernet™ or Token Ring local-area
networks supporting TCP/IP.

X-Windows is designed to support character-based
applications as well as graphic applications. Most
character-based applications can run unmodified in
a window. For graphic applications, X-Windows

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

provides an extensive set of graphic primitives. Each
window is able to support both text and graphic data
simultaneously.

Included in the X-Window program product is a set
of library routines to interface with applications to

X-Windows provides application
developers with the ability to build
easy-to-use interfaces on a single

display.

support X-Window servers. These routines provide
services or access functions to

 Establish the terminal server for users and appli-
cations on the same RT PC or other RT PCs in the
network.

* Provide support for applications that operate in
KSR mode.

¢ Provide automatic user log-on to the windowing
system at the beginning of a terminal session.

¢ Print window image to a bit-map printer.

¢ Build keyboard mapping file to correlate key-
boards to character sets.

+ Display time in a separate window in either digital
or analog form.

e Open and monitor full screen (virtual terminal)
applications from inside a window.

¢ Provide access control for the display.

X-Windows provides application developers with the
ability to build easy-to-use interfaces on a single
display without worrying about the underlying de-
vice characteristics. Additionally, with the client-
server model of X-Windows, these applications can
be run remotely.

graPHIGS. graPHIGS is a tool that helps program-
mers in building complex, interactive graphic appli-
cations. It was developed using the facilities of GsL
to provide a device-independent interface for ex-
tremely sophisticated graphic applications.

1BM SYSTEMS JOURNAL. VOL 26, NO 4, 1987

graPHIGS is based on the American National Stan-
dards Institute (ANSI) proposed Programmer’s Hier-
archical Interactive Graphics System (PHIGS) stan-
dard. It supports the definition, modification, and
display of hierarchically organized graphics data.
This system supports three-dimensional capabilities
to enhance the design and visualization process of
the application. The ability to organize graphics
primitives into hierarchical structures makes it easy
to edit, modify, and transform graphic entities.

grapHIGS is ideally suited for developing complex
interactive graphic applications such as computer-
aided design/computer-aided manufacturing, com-
puter-aided engineering, and robotics.

Distributed Services. The rRT pC Distributed Services
extends the basic capabilities of the AIX system avail-
able to software developers across a local-area net-
work of interconnected RT PCs. Sauer et al.'® describe
in detail the design goals and implementation deci-
sions of RT PC Distributed Services. Key goals include

¢ Local/remote transparency of the services which
are distributed, including no noticeable perform-
ance degradation in the remote case, and no alter-
ation of the basic Arx and UNIX operating system
semantics.

¢ User isolation from network media and transport
mechanisms. Distributed Services runs over SNA
LU 6.2 on an Ethernet network. The design allows
for possible future extensions to support other
protocols, such as the 1BM Token Ring network.

¢ Administrative control. This control includes the
ability to administer a set of interconnected RT PCs
as a single domain, or to independently administer
machines such as servers or private machines. It
also includes providing security and authorization
capabilities sufficient to administer the distributed
configuration.

Distributed Services provides distributed operating
system capabilities including local/remote file sys-
tem transparency, distributed message queues, and
administration of the interconnected configuration.

Distributed data. Distributed Services uses remote
mounts to allow users to mount filesystems on a
different machine than the directory off which the
filesystem is mounted. Once the remote mount is
established, the files contained in the file system
appear in the same directory hierarchy across the
distributed configuration, and filesystem calls gen-

CORDELL, MSRA, AND WOLFE 371

erally work 1dentically regardless of whether the file
is local or remote to the user. Authorization mech-
anisms are provided to allow an installation to con-
trol remote mounting of file systems.

Distributed processing. Distributed Services provides
distributed process support via AIX message queues,
using the extended message queue capabilities de-
scribed earlier. A common use of distributed message

Common linkage conventions were
established to support applications
written in more than one
programming language.

queues is to allow transparent access across the local-
area network (LAN) to a server process.

Other considerations. Other capabilities of the AIx
system of interest to application developers include
floating-point support, interlanguage calling, and
shared libraries.

Floating point. The RT PC main processor, being a
RISC processor, does not contain floating-point in-
structions. Floating-point computations can be per-
formed either by one of the three supported floating-
point processors—the Advanced Floating-Point Ac-
celerator (AFPA), the MC68881, or the Floating-Point
Accelerator (FPa)—or emulated by software.

In the AIX system, the object code of applications
can be independent of the floating-point processor
without sacrificing significant floating-point per-
formance. This is accomplished by the cooperation
of the aIx compilers and the kernel through the so-
called compatible mode interface.

When the kernel is initialized at initial program load
(1pL) time for a machine, the kernel tests for the kind
of floating-point hardware present. Depending on
the result of this test, it loads floating-point routines
needed for various operations, always selecting the
fastest routine possible for the hardware combina-
tion. Fixed memory locations are assigned to most

372 CORDELL, MISRA, AND WOLFE

frequently used operations where the corresponding
routines are loaded. Also, the register usage of these
routines is known to the compilers.

When a program is compiled in compatible mode,
the compilers generate code to invoke the kernel
routines for floating-point operations. For most-fre-
quently-used operations, these invocations are faster
than subroutine calls. A direct branch is possible
since the routine is at a fixed location, and only those
registers that are used by the routine (which is known
to the compiler) need to be saved. Thus, with mini-
mum overhead, the compatible mode provides ob-
ject code portability between different machine con-
figurations.

Some applications prefer greater execution speed
over object code portability. The A1x compilers can
optionally generate AFPA instructions to meet this
need.

Interlanguage calling. Many applications on the RT
PC are written in more than one programming lan-
guage. In order to make this possible, a common
linkage convention was established. The linkage con-
vention specifies register usage rules, program stack
structure and usage rules, and identifies the respon-
sibilities of the calling and called routines. All the
AIX compilers follow the common linkage conven-
tions in generating code for calls and for procedure
entry and exits, making calls between routines com-
piled with different compilers possible.

However, the languages themselves impose some
problems in interlanguage calls. Data types of one
language are not always understood by another lan-
guage. Therefore, the programmer has to be aware
of the semantics of both languages involved in an
interlanguage call.

Although interlanguage calling is currently possible,
it can be inconvenient at times, especially when the
called routine was not designed to anticipate such a
call. This is true for some of the original System V
library routines. New libraries provided with the Arx
system (such as GsL) were designed to be callable
from FORTRAN, Pascal, and C.

Shared libraries. A UNIX library is a file constructed
from one or more object files using the archive utility
ar. Usually the object files in a library are related by
their function, such as the math library, or their
usage, such as a language-specific library. If a pro-
gram references a member in a library, the library is

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

linked with the object files of the program and be-
comes part of the executable file. When a library is
referenced by multiple processes, each process has a
private copy of the library files. When a large library
is often used by many processes, the redundant
copies lead to the following effects:

s Too much disk space is used by the multiple
copies.
¢ The number of page faults increases.

Although the RT PC provides large virtual memory
and disk space, it also supports very large applica-
tions where the redundancy of code shared by mul-
tiple processes is not acceptable. Therefore, the aAIx
system was extended to reduce this redundancy by
enabling multiple processes to share one copy of an
object file or library.

The Aix operating system uses its mapped file feature
to implement sharing of libraries. An A1x object file
contains a text segment and a data segment. The
executable code is placed in the text segment. The
initialized data used by the program and external
references are placed in the data segment. When an
object file is to be shared among many processes, it
is transformed by a utility, sA/ib, which strips the
text segment from the object file and moves it to a
shared library. When a program is linked with a
shared library, it gets a copy of the data segments of
the members in the shared library, but the text is not
duplicated.

In addition to separating the program text and data
sections, shlib and the linker (Id) manipulate the
external references so that a program can branch
and return to the right place when referencing a
shared routine. The linker also builds a table of
shared libraries used by the program and the segment
number it has assigned to it. At execution time, the
kernel looks at this table and maps the shared librar-
ies into the assigned segment.

In the spirit of the UNIX philosophy, the AIX system
is its own user, and many of the library routines
provided with the A1x system are shared.

AIX programming tools

The capabilities of the AIX system on the RT PC
described in the previous section make it an attrac-
tive base for applications. In order to facilitate ap-
plication development on the RT PC, a wide array of
program development tools have been provided,

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

building on the UNIX System V tool base with exten-
sions in several key areas.

Editors. The AIx system provides three editors for
entering and modifying programs: a line editor, ed,
and two full-screen editors, vi and INed.™ Each suits
the needs of a particular class of users and provides
facilities to manage the editing of program source
material.

Line editor. The simplest editor is ed, a line-editing
program that allows users to work with the contents
of a file in line mode. This editor works on the
principle of an edit buffer—a temporary storage area
that holds the file and modifications during editing.
ed provides all the typical line-editing functions, such
as appending data to the end of the edit buffer,
manipulating the current line pointer, and display-
ing, locating, inserting, deleting, moving, and chang-
ing lines. It is useful for fast efficient editing of small
programs or editing programs from printing TTY
devices.

Full-screen editor vi. Based on the ed editor is the
screen editor, vi. It was developed by William Joy of
the University of California at Berkeley as part of
the Berkeley UNIX project to remedy the shortcom-
ings of ed. Whereas ed is simple and understands
few commands, vi is extremely powerful and under-
stands over a hundred commands. This difference
makes vi difficult to learn and use.!! However, two
subsets of vi, ex and edit, are also provided with the
AIX system for the novice or casual user.

The concept of editing files with vi is similar to ed.
The file is copied to the edit buffer and edited there.
However, vi provides a “window” on the edit buffer
to display lines on a display screen. vi can be used
to move this window around the edit buffer and to
display it on the screen. Editing operations of vi are
determined by the screen cursor position, consisting
of a current line and offset within that line. In order
to efficiently support glass TTY devices that send and
receive a keystroke at a time, vi allows movement of
a character as well as a word at time within the
current line.

Commands are entered when vi is in the “quiescent
state,” i.e., when not inserting text at the screen
cursor position. All editing commands are analogous
to those of ed and, additionally, vi offers an “undo”
command which can reverse the effects of most
incorrect command execution.

CORDELL, MISRA, AND WOLFE 373

The advantages of the vi editor are that it is efhicient
on slow-speed glass TTY devices and, even though it
may be difficult to learn, once learned it is available
on almost all UNIX systems.

INed full-screen editor. The other a1x full-screen text
editor is INed. INed was developed by INTERACTIVE
Systems Corporation and has the same concept as
the vi editor of an “editor window” that is scrolled
(positioned) on top of a file. The screen cursor posi-
tion is changed by the cursor movement keys.

INed provides all of the standard facilities of a text
editor for inserting, deleting, copying, and moving
lines and blocks of text. INed, in addition, provides
a menu-driven interface through menu and message
boxes. The hierarchy of these menus is controlled
through a zoom facility to display the available op-
tions at the cursor position. Associated with the
menus and messages of INed is an extensive help
facility for assisting the user.

Another feature of INed is the capability to divide
the editor window into two or more windows for
editing the same file at two or more places, editing
two or more files at one time, or copying text from
one file to another file.

INed has an additional feature to assist users in the
manipulation of files within the aix file directories
through the file manager screen. With the file man-
ager and command keys, one can create new files
and directories, rename or delete existing files and
directories, access or copy one of the displayed files
or directories, and move a directory or a file to a
different location in the file tree.

Text editing. The AIX system contains the UNIX text-
editing utility programs, which are useful for modi-
fying programs on the RT PC. Some of the more
useful utility programs are grep, egrep, fgrep, awk,
and sed.

The grep, egrep, and fgrep utilities are used to search
one or more files at a time. These programs deter-
mine such information as in which files a string
occurs, on how many lines in each file the string
occurs (and the numbers of the lines), which lines in
which files do not contain a string, and the disk block
number of each place where the specified string
OCCurs.

The awk utility finds and changes strings in text files.
In addition, it provides numeric processing, varia-

374 compeLL, MSRA, AND wOLFE

bles, more general pattern selection for finding
strings, and flow control statements. In general, awk
is useful for processing input to find numeric counts,
sums, and subtotals, verifying that a field contains

The AIX system has a number of
alternatives available for text
processing.

only numeric information, processing data con-
tained in fields within lines, and changing data from
one program into a form that can be used by a
different program.

The sed utility is a batch text editor that has functions
similar to those of ed. It receives input from standard
input, changes the input as directed by commands
in a command file (or on the command line), and
writes the resulting stream to standard output. This
method of operation allows sed to edit very large
files, perform complex editing operations many
times without requiring extensive typing and cursor
positioning, and perform global changes in one pass
through the input.

Text processing. A programming environment is
incomplete without text-processing capabilities. Nor-
mally, in a development process more documents
are written than code. With the AIx system, a number
of alternatives are available for processing text, in-
cluding traditional UNIX tools such as nroff and troff
as well as the modern typesetting system T:Xx™ and
METAFONT.™

The nroff and troff formatters accept the same re-
quests. nroff generally assumes that a printer has a
single font and type size available at a fixed pitch,
whereas froff assumes that there are four fonts avail-
able in 15 type sizes and uses smaller internal units
leading to higher resolution.

The filters mm, egn, and tbl make nroff and trofff
easier to use. Memorandum Macros (mm) is a macro

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

package that predefines formatting rules for various
document styles, from simple memorandums to
books. For formatting mathematical equations the
filter egn is available, and for formatting tables a
filter called tb/ is used. These filters are preprocessors
for the text formatters and together provide the
ability to format fairly complex documents.

The typesetting system for the RT PC contains TeX,
METAFONT, L*T:X, and other programs that may be
used in conjunction with T.x. It also contains the
necessary fonts and the programs for viewing the
formatted output.

Tex'? is the well-known typesetting system of
Donald Knuth. Its powerful typesetting language has
been traditionally used for writing books because the
output looks just like a published book. LATex'? pro-
vides another layer on top of T:x and is designed to
make Tex easier to use. The relationship between
L*TeX and Tex can be compared to that of a Gener-
alized Markup Language and the Script/vs text for-
matter used on 1BM mainframe computers. With
L*TeX, use of T:x for technical documents other than
books is increasing.

The type fonts used by Tex and L*T:x were designed
by Donald Knuth and generated by his METAFONT
program,'* which consists of an entire family of type
styles designed to look good when used together. The
output from T.X is device-independent, making LAT:X
and T:Xx documents highly portable from one system
to another. The device-independent output from
TeX, and the fonts generated by METAFONT are then
combined by a program and sent to the appropriate
device. Because the fonts are generated by META-
FONT, the characters look the same (except for the
resolution) across different devices.

To the power and portability provided by T:x and
L*T:X, implementation of the typesetting system on
the aIx system adds formatting speed and the capa-
bility to preview the formatted document on bit-
mapped displays available on the RT PC before print-
ing it on a supported printer. The TeX source, which
1s in Pascal, and the view and print programs written
in C were compiled using the optimizing PL.8 com-
pilers described in the foliowing section.

Compilers. Compilers on the RT PC are designed with
two major goals. The first goal is to generate highly
optimized code so that the programmer can focus

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

on algorithm selection and program design, and not
on tuning the code for a specific machine. The
second goal is to recognize existing language dialects
above and beyond the ANsI standards so that the
programmer can easily port existing programs from
other machines to the RT PC.

Optimized code generation. Since the AIX system is
based on the UNIX system, the RT PC C compiler is
based on the Portable C Compiler (PCC; see
Johnson'®), and the RT PC FORTRAN compiler is based
on the UNIX FORTRAN 77 compiler. The quality of
the code generated by the pcc and FORTRAN 77
compilers did not meet the first goal described above,
that of producing optimized code. Therefore, a global
code optimizer based on the pco (Portable C Opti-
mizer; see Kelly and Mclntosh'®) was added to both
the pcc and FORTRAN 77 compilers. The global code
optimizer improves the quality of the code by opti-
mizing the intermediate code before the generation
of assembly language code. Then a peephole opti-
mizer improves it further by making local optimi-
zations, such as reducing the number of branches.
Finally, an “inliner” was added which can combine
several subroutines together as one, thus extending
the scope of the global optimizer.

The global optimizer eliminates unused variables
and evaluates expressions involving constants whose
values are known at compilation time, replacing
them with their results. It analyzes loops and moves
loop invariants (code that would produce the same
result if it were outside the loop) out of loops. It
identifies common subexpressions within a program
and determines whether recomputing the subexpres-
sion is more time-consuming than storing and reus-
ing its value. If so, it replaces the former with the
latter. The optimizer also allocates registers to vari-
ables and intermediate results.

A further advance toward meeting the goal of pro-
ducing optimized code is the Advanced C Compiler.
This compiler is based on the PL.8 compiler (see
Auslander and Hopkins'’). The PL.8 compiler and
the rRT PC processor were developed together and for
each other, each exploiting and influencing the de-
sign of the other. The algorithms used for global
optimizations and especially for register allocation
(see Chaitin et al.'®) lead to excellent code for the RT
pC, with the efficiency of the code generated by the
Advanced C Compiler approaching that of code
written in assembly language by an experienced as-
sembly language programmer. The Advanced C
Compiler was initially developed as an internal tool

CORDELL, MSRA, AND WOLFE 375

for compiling the AIX operating system and is now
available externally.

In addition to understanding program flow and mak-
ing global optimizations, the A1x compilers also try

The AIX compilers try to minimize
subroutine call overhead.

to minimize subroutine call overhead. Normally,
parameters passed to a routine are placed in the
program stack. The called routine has to load it into
a register to operate on it. The register usage conven-
tions were established to minimize the number of
loads and stores during a subroutine call and return.
First of all, the first four parameters are placed in
general-purpose registers rather than on the program
stack. The called routine seldom has to move them
elsewhere. Second, two sets of registers are identified,
a volatile set used to store values with short lives,
such as the intermediate result of a computation,
and a nonvolatile set used to store values having
longer lives that must not change across subroutine
calls. The called routine only saves the nonvolatile
registers it uses, which in many cases is none.

Support for existing dialects. The second goal, that
of accommodating existing language dialects, led to
the RT PC VS FORTRAN and the RT PC vs Pascal
compilers. The RT PC VS FORTRAN compiler provides
a vs dialect with most of the 1BM extensions to
FORTRAN and a vax™ dialect with most of the bec™
extensions to FORTRAN. Similarly, the vs Pascal com-
piler matches the language level of the Pascal/vs
compiler on the System/370. Thus, applications
written in FORTRAN and Pascal can be ported to the
AIX system on the RT PC with few changes. It is
possible for application developers to maintain con-
sistency of source code among different versions of
applications running on different machines.

Program maintenance facilities. The A1x system pro-
vides two UNIX facilities to assist programmers in the

376 coroELL, MsSRA, AND WOLFE

orderly development, building, and maintenance of
a collection of files that comprise a program. These
are the make program and the Source Code Control
System (SCCS) library.

Make. The make program assists users in building
up-to-date versions of programs. A user of make
supplies a description file containing a set of rules
that specify how executable programs are to be con-
structed. make uses time stamps to determine which
source files have changed. It only builds those target
files that are out-of-date and does not build files that
are already current.

The make program is most useful for small to me-
dium-sized programming projects.

Source Code Control System. sccs gives program
administrators the ability to control and account for
changes made to source code and documentation
files. It stores changes made to a file instead of storing
the entire file. This method allows several versions
of the same file to exist in the system. SCCS can then
build versions of a file based on stored information
about any previous changes.

sccs forms a complete library system for a program

repository. As such, it has its own set of commands

and programs for manipulating the sccs library.

These sccs commands allow one to

* Create an SCCS library.

e Get a version of a file stored in the sccs library
and save changes made as a new version.

« Define who can change a file and record when and
why changes were made to a file.

Files stored in the sccs library have two major sec-
tions, called the header and the body. The header
has five subsections which identify who created the
file, who can change it, and other administrative
details. The body has one or more subsections con-
sisting of the text portions of the file. A set of changes
made to a file stored in sccs is called a delta. Each
delta 1s assigned an sccs Identification (SID). An SID
has up to four parts, as shown in Figure 4.

Most sccs libraries only use release and level num-
bers and grow in a straight line. In these cases, the
latest version of a file uses every previous delta to
construct the contents of a file. However, sccs also
supports the concept of a branch, where versions of
files consist only of a subset of all the deltas. For
example, a common file can be used by two different

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

releases of a programming project. A branch is made
when development work starts on the new release
and maintenance changes are isolated against the
original release without affecting the new develop-
ment work on the file. In this case, a branch delta
allows each release to add deltas to a common base.
Only one text portion for each delta of the file is
stored on SCCS.

The three major commands that manipulate files
stored on an sccs library are admin, get, and delta.
The admin command is used to create an SCCS library
or to change the characteristics and permissions of
an existing sccs library. The get command obtains a
specified version of a file from the sccs library for
editing or compilation, and the delta command adds
sets of changes (deltas) to the text portion of the file
stored on the sccs library.

Using sccs reduces the storage requirements and
helps track the development of a project that requires
keeping many versions of large programs. Together,
the facilities of sccs and the make program allow
teams of programmers to effectively maintain and
build large and complex programs.

Debuggers. The function of a debugger is to help the
programmer find and correct errors in application
programs. A symbolic debugger usually has the fol-
lowing capabilities:

Setting breakpoints in a program at source level
Displaying program variables and their attributes
Modifying the value of variables

Controlling execution of the program

Executing the program one source statement at a
time as well as one machine instruction at a time
Accessing the source file through an editor

« Keeping the history of program execution

¢ Displaying the status of the debugger

Debuggers vary in how well they perform in each of
the above functions. The A1x system provides the
UNIX System V symbolic debugger sdb. Although
sdb is useful for debugging some programs, it fails
when it comes to debugging complex applications
with multiple processes. Also, sdb is not very user-
friendly, and its structure makes it difficult to modify
or enhance. On the basis of a survey of several
debuggers, the UNIX 4.2 BSD debugger dbx has been
chosen as the base for a prototype debugging envi-
ronment. This prototype environment provides a
better user interface and the ability to debug multiple
processes.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure4 SCCS identification (SID)

SEQUENCE

Figure5 xdbx

STATUS
WINDOW

SOURCE
WINDOW

MENU
POP-UP
WINDOW

1 COMMAND
WINDOW

Debugger interface. First, dbx was ported to the Alx
system by making it understand the aix debug tables.
The next step was to provide a more convenient user
interface for interactive debugging of programs. This
was done by providing a multiwindow environment
called xdbx that runs as an application of the RT PC
X-Windows. The xdbx environment contains several
windows, some of which are shown in Figure 5.

Shown at the top is the staTUs window, which
displays status information such as the file currently
being processed and the place where the program
stopped.

CORDELL, MISRA, AND WOLFE 377

The window shown directly below the status window
is the SOURCE window, which automatically displays
the source code around the line where the debugger
is currently stopped. It displays markers indicating
the location of breakpoints and the current line. The
source window is also used to display any part of
any source file as the user wishes.

The MENU window pops up when the proper button
on the mouse is depressed. It displays dbx commands
in the form of a menu. One can use the mouse to
select a particular action from the menu. For exam-
ple, to set a breakpoint at a line, select the line from
the source window and then select the stop at com-
mand from the menu. To see the contents of a
variable, select the variable from the source window
and then select the print command from the menu.

When dbx commands are selected with a mouse
from the menu window, they are echoed in the
COMMAND window shown below the source window.
The user may also type any dbx command here if
the keyboard is preferred to the mouse or if the
command is not selectable with the mouse.

A MESSAGE window (not shown) pops up when dbx
or xdbx detects an error. The error messages are
displayed in this window.

A TRACE window (not shown) pops up to automati-
cally display the result of certain actions, such as the
trace command.

The user may tailor xdbx by modifying the xdbx
parameters such as the font for each window, the
position of each window, the size of each window,
and the name of the editor to be invoked as a result
of the edit command. This is done by modifying the
default settings in the xdbx profile in the user’s home
directory (i.e., the default directory when the user
logs in to the AIX system).

Multiprocess debugging. Normally, in a UNIX envi-
ronment a debugger and the program it is debugging
run as parent and child processes. For a debugger to
be able to debug multiple processes, a debugger
should be able to debug a process that is not a child.
To provide this operation for the prototype environ-
ment, the AIX kernel is modified to support a new
kind of relationship called “attaching.” The dbx
debugger can debug a program that is running as a
child process or as an attached process. When a user
process exits, the parent as well as the attached dbx
1s notified.

378 CORDELL, MISRA, AND WOLFE

When the process dbx is debugging forks, dbx also
forks. The parent dbx still is the debugger of the user
program, running in the parent user process. The
child dbx then forks again. The child of this fork,

The profiling feature collects
execution time data.

which is a new instance of dbx, is attached to the
child of the user process. The parent of this fork then
invokes xdbx. Thus, there is an xdbx/dbx pair for
each process that needs debugging. This scenario is
illustrated in Figure 6. The multiprocess debugging
capability does not require xdbx and can operate in
a virtual environment without xdbx.

Other debugging tools. In addition to the symbolic
debuggers, there are a few other UNIX tools that one
may find useful for debugging, particularly if the
symbolic information needed by the symbolic de-
buggers was not created or was removed because of
its large size. An absolute debugger adb is available
that can set breakpoints and display parts of a pro-
gram, taking absolute addresses as input. A dump
program produces formatted dumps of various parts
of an object file. For debugging the kernel itself, a
utility called crash is provided. crash works interac-
tively with system programmers and examines and
analyzes an operating system image created auto-
matically at the time of a kernel crash.

Monitoring program activities. In large applications
one often wants to identify the key areas of the
application, where most of the execution time is
spent. This is not usually intuitively obvious. The
profiling feature collects execution time data such as
the number of times a routine is called, and the
average time spent in the routine. The monitoring
activity is invoked by the compilers and the linker.
The collected data can be examined using the prof
command.

There is also a way to trace key events occurring in

an application. Trace points can be placed at stra-
tegic places in the execution path. Each trace point

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure6 Multiprocess debugging using xdbx

PROCESS #1 (X-Windows)

ey

%m
N

PROCESS #2 (xdbx) % fork

N ——

"
PROCESS #3 (dbx) (wake up) % fork (xdbx)
L
Y/ fork
PROCESS #7
(dbx)
N
L
PROCESS #4 (user's program 1) J7
; fork (attach)
- I

L

PROCESS #5 (user's program 2)

belongs to an event class, which can be activated or
deactivated. During execution, trace points of all
active event classes generate trace entries that are
logged in a trace log file. There is a trace formatter
that formats the trace entries in the trace log file into
a readable format. Predefined trace points of various
events exist in the kernel components, which can be
traced when needed.

Similar to the trace facility is the error log facility to
record the errors occurring in the system. The errors
can be in hardware or software and can be of many
different types. The error logging and the trace func-
tions are available to the user through the run-time
library.

Run-time libraries. The tools are usually accessed
through commands issued from a shell. The a1x
system also provides numerous services in the form
of system calls and subroutines in various system
libraries. These services are used by the tools and
application programs.

IBM SYSTEMS JOURNAL. VOL 26. NO 4, 1987

System calls. System calls provide controlled access
to the kernel. To the programmer, a system call
looks exactly like a subroutine call. Normally, a
program runs in user mode. When a program makes
a system call, a mode change takes place, causing
the system routine to run in kernel mode, which
allows access to information maintained by the ker-
nel. Only very basic primitives are identified as sys-
tem calls. They perform functions of the following
categories:

* Basic input/output functions for all types of de-
vices

« File maintenance functions such as creating direc-
tories, mounting file systems, and changing access
permissions

e Process control functions such as creating, oper-
ating, stopping, and identifying processes

* Interprocess communication functions such as us-
ing signals, semaphores, and message queues

¢ Memory management functions such as mapping
files and sharing memory segments

CORDELL, MSRA, AND WOLFE 379

Figure 7 AIX program development environment

¢ Functions to set and obtain the time from the
system clock

System libraries. The AIX system provides a number
of subroutines functionally grouped into libraries.
These subroutines use system calls to perform more
complex tasks. User applications use the library
functions more than the system calls. The more
general-purpose libraries are discussed below. Some
of the special-purpose libraries were discussed earlier.

The C library, although initially designed for C usage,
contains most of the general functions all program-
ming languages use. The routines in this library
perform input/output control functions, string and
character manipulation functions, and many other
miscellaneous functions such as hashing and search-
ing binary trees.

The run-time services library provides services to
configure minidisks and other devices and to log
run-time error messages. It also provides services to
record trace log entries and to retrieve predefined
messages.

The math library consists of trigonometric functions
such as sine, cosine, and tangent, other commonly
used functions such as power, exponential, loga-

380 coRDELL. MISRA, AND WOLFE

rithm, and square root, and also gamma, bessel, and
hyperbolic functions. Initially, the math library was
the same as the UNIX System V math library. The
speed of many of the math library routines is very
critical to graphics applications. Therefore, these rou-
tines were moved into the floating-point services in
the a1x kernel. The Advanced Floating-Point Accel-
erator has built-in instructions for many of these
functions. The AIx kernel math routines use such
functions when the AFPA is present, and are therefore
very fast. Also, the math library routines in the kernel
use the algorithms used by the routines in the math
library of the UNIX 4.2 BSD system, which are math-
ematically more complete in the sense that they can
operate on all floating-point numbers defined by the
IEEE Standard for Binary Floating-Point Arithmetic'®
to produce accurate results.

AIX application development and build
environments

The aIx program development tools described in the
previous section combine to provide a powerful and
integrated set of facilities, from editing to debugging.
The relationship among these tools ts illustrated in
Figure 7. At each step, the AIx system has extended
the capabilities of traditional UNIX systems, with
features such as more sophisticated compiler opti-
mization.

Maintenance of source code is an important part of
any development cycle. The a1x program build and
maintenance facilities provide the ability to manage
source program libraries, including versioning and
change management, and to merge the appropriate
versions and modifications at build time. The result-
ing source program is then used as input to the
appropriate high-level language compiler. This sce-
nario is shown in Figure 8.

The combination of these tools results in an ex-
tremely effective and friendly program development
environment. As stated at the beginning of this pa-
per, this was a key requirement for the RT Personal
Computer, given the capabilities of the system, which
make it an attractive target for a variety of applica-
tions.

Concluding remarks

The UNIX system has proved over time to be an
extremely good base for application programs, pro-
viding a combination of flexibility and function to
the application programmer without enormous com-
plexity. This fact, along with the historical evolution

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

of the UNIX system as a base for programmer activity,
has led to the development of a strong application
support base for application programmers. These
reasons, among others, made UNIx System V a strong
choice as the base for the AIX operating system on
the RT PC.

The AIx system, in turn, extends the basic UNIX
capabilities for both application programs and appli-
cation program development. As the operating sys-
tem exploits the power of the RT pc hardware and
provides enhanced capabilities to support sophisti-
cated application programs, the program develop-
ment environment is enhanced to better support the
development of applications to take advantage of
these capabilities. The result is a system that com-
bines the advantages of the UNIX operating system
and UNIX program development tools with new fea-
tures required to support commercial applications.
This combination is critical in supporting the exist-
ing variety of applications on the AIXx system, such
as desktop publishing (Workstation Publishing Soft-
ware), artificial intelligence (Li1SP and the KEE™ expert
system shell), office systems (Applix 1A™), CAD/CAM
(CATIA™, CIEDS™, AutocAD®), and decision support
(Solomon m™).

These capabilities make the AIX system on the RT PC
attractive both for developing applications and for
running applications which have previously required
the power of a large system environment, without
the concomitant complexity.

AIX, RT, RT Personal Computer, RT PC, CIEDS, and graPHIGS
are trademarks of International Business Machines Corporation.

UNIX is developed and licensed by AT&T, and is a registered
trademark of AT&T in the U.S.A. and other countries.

Workstation Publishing Software is a trademark of Interleaf, Inc.
Ethernet is a trademark of Xerox, Inc.

INed is a trademark of INTERACTIVE Systems Corporation.
TeX is a trademark of the American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Publishing Com-
pany.

DEC and VAX are trademarks of Digital Equipment Corporation.
KEE is a trademark of Intellicorp.

Applix IA is a trademark of Applix, Inc.

CATIA is a trademark of Dassault Systems.

AutoCAD is a registered trademark of Autodesk, Inc.

Solomon Ill is a trademark of TLB, Inc.

Cited references
1. G. G. Henry, “IBM small-system architecture and design—

Past, present, and future,” IBM Systems Journal 25, Nos. 3/
4, 321-333 (1986).

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 8 AIX program build environment

EDITOR SOURCE
K== FILE
SCCSs SCCs
<> LIBRARY
Makefile make LINKER
HLL
COMPILER

2.

L. K. Loucks and C. H. Sauer, “Advanced Interactive Exec-
utive (AIX) operating system overview,” IBM Systems Journal
26, No. 4, 326~345 (1987, this issue).

. G. R. Radin, “The 801 minicomputer,” IBM Journal of

Research and Development 27, No. 3, 237-246 (1983).

. M. D. Mcllroy, E. N. Pinson, and B. A. Tague, “UNIX time

sharing system: forward,” Bell System Technical Journal 57,
No. 6, Part 2, 1899-1904 (1978).

. T. L. Dolotta, R. C. Haight, and J. R. Mashey, “The Program-

mer’s Workbench,” Bell System Technical Journal 57, No. 6,
Part 2, 2177-2200 (1978).

. D. M. Ritchie, “A retrospective,” Bell System Technical Jour-

nal 57, No. 6, Part 2, 1947-1970 (1978).

. J. M. Bissell, “Extended file management for AIX,” RT Per-

sonal Computer Technology (pp. 114-125), SA23-1057, IBM
Corporation (1986); available through IBM branch offices.

. T. Murphy and D. Verburg, “Extendable high-level AIX user

interface,” RT Personal Computer Technology (pp. 110~113),
SA23-1057, IBM Corporation (1986); available through IBM
branch offices.

. R. W. Scheifler and J. Gettys, “The X-Window System,”

Transactions on Graphics, Special Issue on User Interface
Software, Part I, Association of Computing Machinery 5, No.
2, 78-109 (April 1987).

. C. H. Sauer, D. W. Johnson, L. K. Loucks, A. A. Shaheen-

Gouda, and T. A. Smith, “RT PC Distributed Services over-
view,” ACM Operating Systems Review 21, No. 3, 18-29 (July
1987).

. P. P.Silvester, The UNIX System Guidebook, Springer-Verlag,

New York (1984).

. D. E. Knuth, The T Xbook, Addison-Wesley Publishing Co.,

Inc., Reading, MA (1984).

. L. Lamport, LATeX—A Document Preparation System, Ad-

dison-Wesley Publishing Co., Inc., Reading, MA (1986).

. D. E. Knuth, The METAFONTbook, Addison-Wesley Pub-

lishing Co., Inc., Reading, MA (1986).

CORDELL, MiSRA, AND woLFE 381

15. S. C. Johnson, “A tour through the portable C compiler,”
UNIX Programmer’s Manual, Volume 2, Bell Telephone Lab-
oratories, Inc., Murray Hill, NJ (1979).

16. T. J. Kelly and A, McIntosh, “A portable intermediate code
optimizer for C,” USENIX Conference Proceedings (Summer
1985). pp. 577-589.

17. M. Auslander and M. E. Hopkins, “An overview of the PL.§
compiler,” Proceedings of the SIGPLAN ‘82 Symposium on
Compiler Writing, Boston (June 23-25, 1982), pp. 22-31.

18. G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, P.
E. Hopkins, and P. W. Markstein, “Register allocation via
graph coloring,” Computer Languages 6, No. 1, 47-57 (1981).

19. IEEE Standard 754 for Binary Floating-Point Arithmetic,
Institute of Electrical and Electronics Engineers, 345 East 47th
Street, New York, NY (1984).

General references

M. J. Bach, The Design of the UNIX Operating System, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1986).

S. R. Bourne, “The UNIX shell,” Bell System Technical Journal
57, No. 6, Part 2, 1971-1990 (1978).

D. M. Ritchie and K. Thompson, “The UNIX time-sharing sys-
tem,” Bell System Technical Journal 57, No. 6, Part 2, 1905-1930
(1978).

IBM RT PC AIX Operating System Programming Tools and
Interfaces, Version 2.1, SC23-0789, IBM Corporation; available
through IBM branch offices.

IBM RT PC AIX Operating System Commands Reference, Version
2.1, SC23-0790, IBM Corporation; available through IBM branch
offices.

IBM RT PC AIX Operating System Technical Reference, Version
2.1, Volumes 1 and 2, $C23-0808 and SC23-0809, IBM Corpora-
tion; available through IBM branch offices.

IBM RT PC AIX Operating System Managing the AIX Operating
System, Version 2.1, SC23-0793, IBM Corporation; available
through IBM branch offices.

IBM RT PC Using the AIX Operating System, Version 2.1, SC23-
0794, IBM Corporation; available through IBM branch offices.
IBM RT PC INed, Version 2.1, SC23-0799, IBM Corporation;
available through IBM branch offices.

Introducing graPHIGS, SC23-8100, IBM Corporation; available
through IBM branch offices.

Understanding graPHIGS, SC23-8102, IBM Corporation; avail-
able through 1BM branch offices.

IBM RT Personal Computer Technology, SA23-1057, IBM Cor-
poration (1986); available through IBM branch offices.

Robert Q. Cordell Il Entry Svstems Division, 11400 Burnet Road,
Austin, Texas 78758. Mr. Cordell is manager of application de-
velopment architecture in the Advanced Engineering Systems
Development organization.

Mamata Misra Entry Systems Division, 11400 Burnet Road, Aus-
tin, Texas 78758. Ms. Misra is an Advisory Programmer in the
Advanced Engineering Systems Development organization.

382 corpELL, MsRA, AND WOLFE

Roger F. Wolfe /BM Research Division, Thomas J. Watson Re-
search Center, P. O. Box 218, Yorktown Heights, New York 10598.
Mr. Wolfe is a member of the Research Division currently on
assignment to IBM’s Entry Systems Division, Austin, Texas.

Reprint Order No. G321-5302.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

