
system overview

by L. K. Loucks
C. H. Sauer

The Advanced Interactive Executive (AIX) is the operat-
ing system used in the RT Personal Computer. It is a
portable operating system architecture that is suitable
for a wide range of computer architectures and CUI-
tomer requirements. Discussed in this paper are the
structure and services of AIX.

T his paper discusses the operating system for the
RT Personal Computer'" that is known as the

Advanced Interactive Executive (A I X) ~ ~ . The RT Per-
sonal Computer system is a family of workstations
based on the IBM 32-bit (RISC) microprocessor-
named ROMP-and its corresponding high-function
memory management unit.' (RT Personal Computer,
Advanced Interactive Executive, and AIX are trade-
marks of the International Business Machines Cor-
poration.) With this level of performance and func-
tionality, IBM workstations reached the point at
which it was practical and imperative to provide
workstation users with an operating system that was
as sophisticated as those used in mainframe com-
puters. There were many considerations that com-
pelled us to build an operating system for the RT
Personal Computer that incorporated many of the
currently most advanced system concepts.

The RT Personal Computer system includes sophis-
ticated hardware features, such as high-function vir-
tual storage, advanced all-points-addressable (APA)
displays, real-time capability, and others, which can
be fully exploited only by equally sophisticated soft-
ware. Because most workstations operate in an in-
creasingly interconnected environment, the operat-
ing system must be able to deal with communication

326 LOUCKS AND SAVER

functions-especially those that are taking place at
the request of other users-without intervention by
the workstation's user. In many cases, the distribu-
tion of resources is not uniform. Users need to be
able to use programs, data, and peripheral devices
that are not local to their own workstations. Perhaps
most important is the fact that workstations require
an operating system that provides an application
execution environment that combines application
program portability from IBM and industry environ-
ments with efficient use of the hardware.

We decided to base the core of the RT Personal
Computer operating system on the AT&T UNIX@' Sys-
tem V. (UNIX is developed and licensed by AT&T,
and is a registered trademark of AT&T in the U.S.A.
and other countries.) In addition to System V, we
included many enhancements generally available in
the industry, most notably some features of System
V.2, and many from BSD (Berkeley Software Distri-
bution) 4.2 and 4.3. (BSD 4.2 and 4.3 are variants of the
UNIX system developed and distributed by the Uni-
versity of California at Berkeley.) We chose the UNIX
operating system because it provides significant
power to a workstation user, provides multiuser ca-
pabilities when needed, and is portable and open-
ended. Also important is the fact that the UNIX
system has a large user and application base. In
choosing the UNIX system, we accepted the need to

Copyright 1987 by International Business MachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL VOC 26, NO 4,1987

make significant upwardly compatible enhance-
ments over what was available in the industry to
meet our requirements. As is traditional for UNIX-
based operating systems, an acronym ending in IX
was chosen; thus we have AIX.

UNlX concepts

The UNIX operating system was originally created in
the 1970s to provide a test bed for computer science
experimentation.2 This operating system differs from
conventional operating systems in several key ways.
Essentially, all of the operating system code is written
in c to ensure easy portability from one processor
architecture to another. Most of the control struc-
tures of the operating system, such as configuration
tables, are bound as late as possible. Configuration
information is kept in editable files to allow easy
modification for experimental purposes. The file sys-
tem, often called the heart of the UNIX system, is a
tree-structured hierarchy consisting of directories
and jiles. Files are represented as linear byte spaces
rather than records and fields. Directories are struc-
tured files describing files and other directories. In
keeping with the objective of portability, most I/O is
performed through generic devices. The generic de-
vices are mapped to real I/O devices by user-replace-
able routines called device drivers. Any part of the
nucleus of the system (called the kernel) can be
modified by an appropriately authorized user. A
command-processing component (called a shell) per-
forms parameter substitution and calls appropriate
command programs. No real distinction is made
between command processors supplied with the op-
erating system and those written by the user that
accept the same invocation parameter conventions,
and several shells can coexist in a given system.

Figure 1 shows the overall structure of a typical UNIX
system. The most significant difference from ordi-
nary operating systems is the accessibility of all ele-
ments of the software to user modification. A UNIX
system is thus an operating system that provides
tools for its own redefinition. It is precisely this
characteristic that has made it the most popular
operating system in academic computer science.
Many of the commands and facilities that were
originally developed in the course of computer sci-
ence experiments have found their way into produc-
tion UNIX systems. This has greatly enriched the UNIX
functional power, while contributing a certain
amount of inconsistency, especially in the syntax of
the command language.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

AIX structure

The generality and portability of the UNIX system
are achieved at some cost in optimum use of the
underlying hardware. We had decided to start with
the UNIX system as a base. In view of our require-
ments, however, we were faced with the question of
how best to provide the required enhancements. Two
strategies could be followed. One was to rewrite the
entire kernel. Although theoretically possible, be-
cause of the amount of UNIX knowledge available in
IBM at the time, it was unlikely that such an approach
would achieve upward compatibility with t p stan-
dard UNIX system. The other was to provide! a set of
software services for the kernel and modify tbe kernel
and other functions to exploit the facilities provided
by that layer. We chose the second approach, which
led to the system structure shown in Figure 2.

The Virtual Resource Manager (VRM) controls the
real hardware and provides a stable, high-level ma-
chine interface to the advanced hardware features
and devices. (See Figure 3.) The kernel received
corresponding enhancements to use the services of
the VRM and to provide essential additional facilities.
Although the VRM and the AIX kernel proper have
been tuned to each other, we have not precluded the
ability to build other operating systems to exploit
the VRM services. Similarly, the techniques we used
to virtualize existing types of devices would work for
new device types as well. Both the VRM and the
kernel have been deliberately made open-ended to
allow the straightforward addition of new functions
and device support.

We were dealing with a new hardware architecture
and with large quantities of new and modified soft-
ware in the system. Because of that, we felt that
special efforts were required to ensure excellent per-
formance. We adopted a policy of continuous per-
formance assessment of the operating system, start-
ing with the earliest availability of hardware and
software. The performance group had to develop
new tools and procedures to assess the performance
of the system, while it was still immature. The results
of that effort are visible in the performance of the
completed product.

To achieve one of our primary goals of providing
users the widest possible choice of applications and
computing environments, we provided ways of mov-
ing applications and data to the RT Personal Com-
puter from other systems, such as the IBM Personal
Computer, other UNIX systems, and IBM mainframes,

Figure 1 Typical UNlX system structure n
COMMANDS

C COMPILER
DEVELOPMENT

SHELL

Figure 2 AIX system structure

COMMANDS

OTHER PROGRAM
LBRARtES

COMMANDS MANAGEMENT

328 LOUCKS AND SAUER IBM SYSTEMS JOURNAL, VOL Z, NO 4,1987

Figure 3 Interface levels of AIX

APPLICATION PROGRAM(S)

w

L AIX

as well as many ways to interconnect them. The
application development extensions above the kernel
were integrated into the existing operating system
structure. In some cases, the extensions were pack-
aged and priced separately, but they were designed
to operate as integral parts of the operating system
after installation.

Creating a virtual environment for the AIX kernel

The existing structure and functions of the UNIX
kernel were not sufficient for exploiting the advanced
features of the RT Personal Computer hardware. The
major deficiencies fell into the following areas:

Lack of virtual-memory support had been a per-
ceived deficiency in earlier systems. However,
there were UNJx-based systems, such as BSD 4.2,
that had provided virtual memory, but none of
these had the capabilities that were possible with
the RT Personal Computer.

There was limited program management with
code sharing only at the program level and static
binding of modules.
Real-time facilities, such as absolute priorities,
kernel-level pre-emption, and multiple-process
110, were lacking. These facilities were thought
useful not only for traditional real-time applica-
tions, but also for complex communications ser-
vices.
There were limited facilities for dealing with dy-
namic I/O configurations. Most I/O changes re-
quired the rebinding of the kernel.

Instead of making major changes to the architecture
of the kernel, we used the VRM to provide facilities
to overcome these shortcomings. The VRM provides
the services to implement a multitasking operating
system while insulating the kernel from most of the
details of the hardware implementation. The kernel
has to be aware of only the problem-state instruc-
tions. All the other services, such as I/O device sup-

IBM SYSTEMS JOURNAL, VOL 26. NO 4.1997

-~ ~~ ~~ ~

Figure 4 Virtual Resource Manager (VRM) structure

I I
NUCLEUS

SVC HANDLER

port, storage management of disk and memory, and
hardware initialization, are provided. The VRM ser-
vices are implemented in a comprehensive real-time
execution en~ironment .~ Figure 4 shows the overall
structure of the VRM.

VRM nucleus. The nucleus contains the basic ser-
vices for the control of the ROMP processor, Memory
Management Unit (MMU), and I/O Channel Control-
ler (IOCC). These services include multiple pre-empt-
able processes, process creation and priority control,

dynamic run-time binding of code, direct control of
virtual memory, millisecond-level timer control,
multiple pre-emptable interrupt levels, and an effi-
cient interprocess communication mechanism for
main and interrupt-level processes.

There is a virtual machine interface (VMI) that oper-
ates as follows. The kernel accesses the facilities of
the V R M via a set of supervisor calls (svc), virtual
interrupts, and shared memory control blocks. Ser-
vices may be executed synchronously as a call/return

330 LOUCKS AND SAVER IEM SYSTEMS JOURNAL, VOL 26. NO 4,1987

or asynchronously via a queue to a device driver or
process. These services provide the kernel with the
capability of enabling and disabling virtual inter-
rupts, returning from a virtual interrupt, processing
machine communications intempts such as a stor-
age exception, and dispatching an operating system
process. These are the basic facilities provided to
implement a multitasking operating system kernel.

Storage management. A minidisk manager (MDM)
provides the services to partition disk storage into
logical areas that are independently managed. A
minidisk is a contiguous area of disk storage that can
be accessed by a logical block number, the size of
which is specified by the kernel. This service also
provides error recovery and bad block relocation.
The VRM resides on a minidisk of its own in a
standard AIX file system. Installation and space man-
agement on that minidisk are performed with stan-
dard AIX utilities.
Virtual memory manager (VMM). The ROMP/MMU
virtual memory architecture, in combination with

the VRM, gives the RT Personal Computer a demand-
paged virtual memory of 1 terabyte, consisting of
4096 256-megabyte segments. Segments have a max-
imum of 256 megabytes, but typically they are much
smaller. The ROMP contains 16-segment registers,
permitting the addressing of 14 segments [plus I/O
and Direct Memory Access (DMA) operations] at any
time. (See Figure 5.) The VRM performs page-fault
handling and manages the allocation of real memory,
paging space, and virtual storage segments4 The VRM
also provides the AIX kernel with interfaces to control
these functions and to respond to a page fault by
dispatching another process. These services provide
a view of virtual memory as a collection of segments
and pages that can be managed via svcs. The segment
services include create, destroy, change length, and
protection, with a load-and-clear segment register(s)
to provide addressability. A copy service that delays
copying pages until they are referenced provides the
necessary support for the UNlX fork primitive. The
page services that pin, unpin, change protection, and
purge provide other basic mechanisms for the kernel

Figure 5 Virtual memory addressing

IBM SYSTEMS JOURNAL VOL 26. NO 4 , 1987 I .OUCKS AND SAUER 331

Figure 6 Device handler structure devices. The devices that the kernel typically sees are
those that are generic, such as generalized fixed-disk
drives (i.e., minidisks) or serial ports. In those cases
in which the generic devices are not appropriate or
in which the real-time capabilities of the VRM envi-
ronment are needed by the application, the user or
a third-party programmer can write c or assembler-
language code to implement the necessary function
and dynamically add that code to the VRM.

Configuration, The configuration services provide
facilities to add device support to the VRM. The
Define Code svc binds an executable module, called
a device handler, into the VRM and Define Device
provides the device-specific parameters to the han-
dler. The correct device handler is typically selected
on the basis of the currently installed hardware or
via operating system configuration files and is dy-
namically bound into the VRM at start-up. However,
these svcs may be issued to the VRM at any time. A
Query svc provides the ability to determine the
current configuration.

Device handler. A device handler is a very structured
module designed to provide a queued interface to a
device. There is a well-defined set of entry points
that implement the functions of the driver; the exe-
cution environment for those entry points is strictly
controlled by the VRM. (See Figure 6.) A device
handler is not a process. Therefore, it runs as a part
of the calling process, i.e., the kernel or another VRM
internal process, or on a hardware interrupt level.

Device manager. A device manager is a structured
VRM process designed to provide additional manage-
ment services that cannot be provided by a device
handler. (See Figure 7.) The execution environment
is a VRM process and therefore has all the standard
process attributes and capabilities, such as the ability
to exploit virtual memory as well as various inter-
process communication (IPC) mechanisms.

to use in controlling the virtual memory environ-
ment. Virtual terminal subsystem (VTSS). At the time AIX

was being implemented, no standard UNIX interface
The VRM also provides a map page service that maps for advanced-function APA displays existed. There-
memory pages within a given segment onto discon- fore, we provided a method to allow multiple appli-
tinuous disk file blocks, thus providing the primitive cations to access the local console hardware. The key
support for creating a single-level store that makes to this ability of AIX to support multiple simultane-
disk and memory access equivalent operations. ous interactive applications is the virtual tem~inal .~

A virtual terminal is a virtual counterpart of the real
I/O subsystem. The VRM provides the operating RT Personal Computer display(s), keyboard, locator
system with an extensive queued interface to the I/O (mouse or tablet), dials (valuator), and lighted pro-
devices, thereby insulating the kernel from the details gram function keys (LPFK). The virtual terminals
of specific devices and the management of shared time-share the use of the real displays and input

devices. A virtual terminal can function either as a
simulated ASCII terminal or as a high-function ter-
minal (HFT) equivalent in power to the real hardware.

ASCII terminal simulation. The simulated ASCII ter-
minal resembles a typical “glass teletype” (TTY), en-
hanced with functions to control sound, multiple
fonts, and color. The functions are made available
at the VMI through a set of standard I/O svcs and
through escapes in the data stream, as allowed in
ANSI 3.64.

Monitored mode. ASCII terminal support is obviously
not sufficient to support graphics and image on the
local console displays. Therefore, an additional mode
of an HFT (high-function terminal) virtual terminal
was provided. This facility, called monitored mode,
provides the support to allow an application in prob-
lem state to obtain controlled access to all hardware
functions of the display. Also in this mode, data
from the input devices are placed directly in the
process address space by the HFT support in the VRM.
The necessary services to control this access are also
provided. These functions can be accessed directly
by advanced applications through HFT facilities pro-
vided by the kernel, or more appropriately via the
advanced graphics and windowing services provided
by AIX.

HFT implementation. The HFT support is one ex-
ample of the type of high-function I/O that can be
implemented using the services provided by the VRM.
It currently consists of many device handlers, two
device-manager processes, and more lines of code
than any other single VRM function.

Serviceability. Problem determination in system- or
user-added code is supported by VRM serviceability
facilities that include trace capabilities, dump capa-
bilities, and an absolute debugger.

Personal Computer AT coprocessor. The VRM sup-
ports the Personal Computer AT coprocessor option
as though it were another, albeit rather specialized,
virtual machine.6 The coprocessor runs concurrently
with the execution of programs in the ROMP, but it
has access to the keyboard, locator, and display only
when the coprocessor virtual terminal is the active
virtual terminal-that is, when it has control of the
display. The inputs from the keyboard and locator
are presented to the coprocessor as though they had
been produced by the corresponding Personal Com-
puter AT devices. If no display has been dedicated to
the coprocessor, the display interface emulates a PC
display on the system display. The VRM manages the

IBM SYSTEMS JOURNAL, VOL 26 NO 4,1987

~~~ ~ ~ 

Figure 7 Device  manager  structure 

shared  system  resources to ensure that the ROMP and 
coprocessor  operate  cooperatively. 

Building  an  enhanced  kernel 

The structure of the UNIX kernel was  modified to 
allow  it to operate in a VRM execution  environment.’ 
The kernel,  and  all of its processes,  operate  within a 
single  virtual  machine,  as  shown in Figure 8, and it 
uses the execution  control  facilities of the VRM to 
multitask  within that machine. The kernel  has  been 
enhanced to use the VRM virtual  memory  services, 
and it now provides a demand-paged  virtual  memory 
system that fully supports the l-terabyte address 
space. The kernel  uses VRM page  fault information 
to control process  dispatching,  as  well  as  allowing 
the kernel  itself  to be paged. 

The  kernel  occupies one (256-megabyte)  segment. 
The code, computational data, and stacks  are  all 
contained  within that segment.  Each  process  is  allo- 
cated  three  segments: one for  program  text  (code), 
one  for computational data, and one for the stack, 
as  shown in Figure 9. This allocation of virtual 
memory  allows  very  large programs  with a very  large 
data space to execute  on the RT Personal Computer. 
This approach  also  simplifies  many  program and 
storage  management  functions. Functions such  as 

.OUCKS AND  SAVER 333 



F 
- 

igure 8 Operating system structure 

Figure 9 AIX virtual memory segment allocation 

SYSTEM 15 110 BUS 

VRM 14 DIRECT MEMORY  ACCESS 
(DMA)  ADDRESSING 

CURRENT 
PROCESS 

KERNEL 

334 LOUCKS AND SAVER 

program sharing, computational storage allocation, 
and  automatic stack  growth are easier  because  all  of 
the program sections are consistent among processes 
and  are obviously  large enough to allow simple tech- 
niques to be used. Additional segments can be ob- 
tained for use  with private or shared data, shared 
code, or for mapped files. 

Mapped files. A major extension of the file system 
was the exploitation of the VRM map page  service to 
create a single-level  store environment for program 
text (code) and data. This facility  is  called mapped 
jiles. A mapped file  is one  that is accessed through 
the virtual memory mechanism simply by loading 
data from the appropriate address. A segment can 
contain only one file.  Figure 10 shows  how  files are 
mapped into  the program’s address space. Executa- 
ble  files (programs) and static initialized data are 
automatically mapped by the kernel at program 
invocation. A user data file  can be mapped after it is 
opened via a simple extension to  an existing  system 
call.  After a  data file is mapped into  a segment it 
may  be  accessed using any of the traditional kernel 
file I/O facilities,  such as read, write, . . . , or it  may 
be treated as memory and accessed directly. 

Single-level  store. Single-level store (SLS) technology 
provides a  number of significant performance and 
space improvements over traditional methods. For 
programs, the load-and-execute method of execution 
requires that  the operating system load the entire 
program into its address space  before execution may 
begin. In addition, if the real memory is required for 
other purposes, the program must be  paged out to 
backing storage. Contrast that procedure with the 
SLS approach. First, the program is simply mapped 
into  the address space and given control at its entry 
point. Only the portions of the program that are 
needed for this invocation are ever actually read into 
real memory. Furthermore, if the real memory is 
required for other purposes, the program does not 
need to be paged out; it  is  simply  paged  in  when 
required again for execution. This procedure has the 
benefits of quicker program start-up, reduced  disk 
space  because only a single  copy of the program 
exists on disk, and elimination of paging out of 
program code. For data files, the advantages come 
from allowing the virtual memory manager to con- 
trol all of the  data of a process, both file data  and 
computational storage. Therefore, it can allocate real 
memory in a more efficient manner. For example, 
consider a database application that is  accessing a 
set  of tables 10 megabytes  in  size,  with that applica- 
tion executing on a machine that has 16 megabytes 

IBM SYSTEMS JOURNAL, VOL 26. NO 4,1987 



Figure 10 Virtual  memory of an  application  using  mapped  files 

of  real memory. After a few accesses, the essential 
portions of the database tables are  in real memory, 
and  the accesses that in traditional architectures were 
disk  accesses are now memory accesses. The char- 
acteristic of program execution time changes from 
being I/o-limited to processor-limited, and, since 
processor speeds are increasing at a more rapid rate 
than disk  access times, this change in the character- 
istic of the program is  very  beneficial. This is similar 
to the benefits of memory disks on personal com- 
puters, except that  the allocation of resources is done 
dynamically rather than statically and  the process  is 
totally transparent to the user as well as  to  the 
program. 

Database  enhancements. Historically, UNrx-based 
database programs have used  only the low-level  disk 
110 services of the kernel because the  standard UNIX 

file system  lacked  several key features necessary to 
support them. This resulted in database programs 
that were not integrated with the system, unique sets 
of utility commands  to be learned, and a general 
increase in the complexity of the system.  We wanted 
to provide an integrated environment. Therefore, 
the kernel file system  services  were extended to pro- 
vide the necessary  facilities to allow us to add  data 
management and relational database support  that is 
built on  top of the file  system.8 The enhancements 
included the ability to perform space management 
within a file,  buffer cache synchronization on a file 
basis, and file- and record-level  locking. 

Performance  and  structure. We have added many 
performance improvements to the file  system. The 
most notable are directory caching to speed up path- 
name lookup  and  the use of 2048-byte blocks.  We 

DUCKS AND  SAUER 335 IBM SYSTEMS JOURNAL, VOL 26. NO 4,1987 



Figure 11 File  system  structure 

VNQDE LAYER 

have restructured the file system  using the Sun Mi- 
crosystems'" vnode definition to  support multiple 
file system  types in the kernel.'  Figure I 1  illustrates 
this approach. (Sun Microsystems is a trademark of 
Sun Microsystems, Inc.) 

Interprocess communications (IPC). To assist in the 
writing  of multiprocess applications, several en- 
hancements were added to  the  standard system V 
IPC packages. 

Signal enhancements. The traditional signal  (asyn- 
chronous event notification) package has been aug- 
mented by a new  package, compatible with the 
BSD 4.2 package, that provides more signal manage- 
ment services and cures a number of race conditions 
that were inherent in the original services. The stan- 
dard signal  package remains available for compati- 
bility  with existing application programs. 

Message queueslsemaphoreslshared memory. Mes- 
sage queues were enhanced to provide an extended 
message structure  that contains information useful 
for implementing security controls in servers. An 
additional option of semaphores reduces the process 
dispatches required in typical multiple-process ap- 
plications, and new system calls were added that 
provide additional control over shared memory al- 
location and reclamation. 

1 / 0  management. The I/O management area of the 
kernel was restructured to make effective  use  of the 
110 facilities  of the VRM. Instead of a specialized 
device driver for each distinct device, we created a 
family of generic device drivers that  are capable of 
supporting a number of unique devices  of a given 
class. Unique device characteristics are supported by 

336 LOUCKS AND SAUER 

the VRM device handlers, which can be added or 
replaced dynamically. To implement this, the device- 
driver interfaces have  been extended to allow  dy- 
namic binding of a kernel driver to a VRM device 
handler. 

Configuration. In configuring a UNIX system, the 
administrator has historically needed an understand- 
ing of the internal structure  and logic of the UNIX 
system, to be able to edit the configuration files 
correctly. We believed that it was unrealistic to im- 
pose such a requirement on our prospective users. 
Therefore, we set out  to simplify the installation and 
configuration processes." For those devices that can 
be identified internally, such as displays, the system 
performs an automatic configuration process. For 
devices that require explicit description, such as 
printers, we built a set of menu-driven utilities that 
obtain the necessary information from the user and 
make the required coordinated changes to all of the 
affected VRM and kernel system files. The interfaces 
to these utilities have  been documented so that users 
or third-party programmers can  add devices to be 
selected and described  via the menus. These menus 
use the facilities shown in Figure 12, which  were 
provided to allow  users to  add device and real-time 
application support. 

The I/O is  typically  configured at system start-up. 
The vrmconfig program, along with the helpers for 
each unique device type, reads the configuration files 
and adds the current device support to  the  running 
system. Additional support may be added any time 
by simply running vrmconfig. 

Terminal support. The standard terminal support 
facilities  of the UNIX operating system  were extended 
to exploit the capabilities of the VRM local console 
support. In addition, several enhancements were 
made to  the general character support  that is appli- 
cable to all AscrI-class or teletype terminals (com- 
monly known as TTYS). Figure 13 describes the over- 
all AIX terminal structure. 

Activity manager. We developed an activity manager 
to provide the  support  to manage virtual terminals. 
It has facilities for programs and users, such as to 
create or to terminate a virtual terminal or to  start a 
program. 

Character  support. The TTY generic support was  ex- 
tended to provide support for screen paging. This 
facility is useful in controlling the  output of stream- 
oriented applications, as well as providing a mecha- 

IBM SYSTEMS JOURNAL, VOL 26. NO 4,1987 



~~ 

Figure 12 110 configuration 

FILES 

HARDWARE b 

nism to prevent unseen output from going to inactive 
virtual terminals. In addition, an input-editing 
model patterned after the  one provided in PC DOS 
was provided. 

To allow existing applications to  run unchanged and 
new character-oriented applications to use the RT 
Personal Computer facilities  fully, we extended the 
ASCII character-oriented terminal model via private 

escape codes in the  data stream and a new set of 110 
controls to access features such as fonts, character 
sets, color, sound,  and mouse input. These facilities 
are accessed through the kernel high-function ter- 
minal (HFT) device driver. 

A package known as CURSES, which  is a character- 
oriented window management package  designed for 
TTY ASCII terminals, has received performance en- 

IBM SYSTEMS JOURNAL. VOL 26 NO 4,1987 LOUCKS AND SAUER 337 



Figure 13 AIX terminal  support  structure 

MANAGER 

VIRTUAL 

CONTROL 
TERMINAL (VT) 

hancements and has been compatibly extended to 
provide access to  the extended font and other func- 
tions of the RT Personal Computer native displays. 
We also added functions such as screen division and 
layering logic to give applications a high-level, de- 
vice-independent interface. 

APA support. The monitored mode support provided 
by the VRM is managed by the kernel HFT device 
driver via a set  of I/O controls and signals. These 
facilities ensure proper behavior by applications us- 
ing this feature. If an application refuses to relinquish 
control of a virtual terminal, the HFT driver, after 
waiting for a specified time period, terminates  the 
application. The application selects the mode in 
which to use the virtual terminal. 

The Graphics Support Library (GSL) provides a set 
of high-performance graphic, text, and raster output 

primitives  and a set of input functions for the local 
console. These functions are designed to provide an 
application  programming interface to applications 
desiring  this  level of interface, as well as the APA 
device-driver function to higher-level  graphics and 
window services. 

Usability  extensions 

Single user. Because we expected RT Personal Com- 
puters to be  used both as single-user workstations 
and as traditional UNIX time-shared systems, we 
believed that some changes were required to support 
the workstation user.  We  have made some altera- 
tions to reduce the  number of situations in which a 
user has to exercise “superuser” authority. We added 
the ability to define more  than  one  group to which 
a user  belongs at any given time. This feature, de- 
rived from BSD 4.2, allowed  us to define users as 

338 LOUCKS AND SAUER IBM SYSTEMS JOURNAL. VOL  26, NO 4,1987 



members of the system group. System group mem- 
bers can perform a  number of operations that pre- 
viously could be performed only by a superuser; only 
the most hazardous commands are still restricted to 
superuser authority. This technique gives the user  of 
a private workstation a simpler environment  to work 
in, while  preserving the existing AIX authority struc- 
ture for multiuser environments. For users who wish 
to operate their systems in a  manner similar to PC 
systems, a configuration option was added to allow 
automatic log-on at system start-up  time. 

Menu shell. The UNIX system has a dual-purpose 
command language. The  commands have  been de- 
signed from the beginning to be primitives of a 
command procedure programming language, some- 
times at  the expense of ease  of  use  when individual 
commands  are submitted from the terminal. This 
makes the management of  files and  the performance 
of common operations unnecessarily camplex. 
Many UNIX installations solve this problem by build- 
ing sets of procedures that effectively constitute a 
command meta-language.  We chose to combine the 
solution to this problem with the construction of a 
full-screen interface to AIX.” The usability  package 
provides Files,  which  is a full-screen file management 
Utility similar to FILELIST on VM/CMS, and Tools, 
which is the ability to request the most common AIX 
commands via a menu interface. The dialog manager 
that is  used to implement these utilities is general 
enough to serve application programs as well as AIX 
commands.” 

The Files and Tools applications of the usability 
package can be extended tc cover new types  of files; 
new actions that can be performed against those files 
can be defined; and new tools-including complete 
full-screen  applications-can  be added. The dialog 
manager in the usability  package can also be  used to 
provide new full-screen applications with an inter- 
face that is consistent with the interface presented by 
Files and Tools. 

PC DOS compatibility. AIX also includes a new shell 
that processes PC DOS commands, conversion pro- 
grams that transform data from PC to RT Personal 
Computer format, and subroutines that allow appli- 
cations to read  Dos-formatted diskettes and mini- 
disks.” 

National-language support. The UNIX system has 
historically  been an English-only operating system. 
We have added significant national-language support 
in the following form: 

IBM SYSTEMS JOURNAL, VOL 26. NO 4,1987 

added. For example, characters such as a, 6 ,  ?r can 
be included in an RT Personal Computer  data 
stream. 
The formatting of data such as currency, date, and 
time in accordance with the requirements of a 
particular country has been included. For exam- 
ple, in some countries dates are traditionally writ- 
ten with the year  first; in other countries, dates are 
written with the  month first. 
Data processing has been included that is consist- 
ent with the characteristics of a particular national 
language. For example, the operating system can 
sort in alphabetic order, according to  the particular 
conventions of each supported country. 

The RT Personal Computer international-character 
support benefits more than  just non-U.S. English 
users. For example, an extensive character set  of over 
500 characters allows  users to create text that  in- 
cludes non-alphanumeric symbols (such as many 
mathematical symbols). 

Diagnosis and  debug. To simplify the diagnosis of 
problems in AIX, we added several  debugging tools 
that include a trace mechanism, a mechanism for 
logging  of errors and system  messages, and  a mem- 
ory-dump capability. The standard facilities  were 
extended where  necessary to deal with the unique 
features of AIX and  the RT Personal Computer hard- 
ware. 

Expanding  the  application  development 
environment 

To be able to support the full range of modern 
applications, AIX incorporated several functional ex- 
tensions. The most  significant enhancements have 
been the following: 

A broad spectrum of technical and commercial 

An SQL database manager and  an indexed access 

Industry standard graphics subsystems 
Connectivity enhancements  to allow RT Personal 
Computers to  communicate with both IBM and 
non-IBM systems, in Local-Area Networks (LANS) 
and over Wide-Area Network (WAN) telecommu- 
nications links 

programming languages 

method 

Window support services 
Distributed services  for interconnected RT Per- 
sonal Computers  to be used cooperatively and  to 

LOUCKS AND SAVER 339 



allow multiple applications to work  effectively on 
the RT Personal Computer 

Languages. The higher-level language compilers for 
the RT Personal Computer were chosen on  the basis 
of the  number  and types of programs that have been 
written in those languages. We selected dialects that 
would facilitate propagation of programs from the 
I B M  Personal Computer,  other IBM mainframes, and 
other UNIX systems, with language extensions where 
necessary to support  the AIX environment. In some 
cases, the compilers have two modes-one for pro- 
grams from the PC, and  one for programs from 
minicomputer or mainframe  environments. We de- 
veloped a new subroutine linkage convention  that 
supports  multimodule programs written in several 
languages. l 4  

Data  management. One of the most critical require- 
ments was  for a  database program supporting IBM 
SQL to provide both users and application program- 
mers with relational database facilities. We also 
added  a b-tree-based data  management program that 
permits  either record-level or field-level  access.  Al- 
though these subsystems are packaged separately 
from the operating system, they become an integral 
part of the file system when they are installed. 

Graphics  interfaces. AIX provides a family of  differ- 
ent interfaces to the console display. Versions of a 
standard Virtual Device Interface (VDI) and  a  Graph- 
ics Kernel System (GKS) are available from third- 
party vendors. We provide graPHrGs", an imple- 
mentation of the emerging Programmer's Hierarchi- 
cal Interactive Graphics  Standard (PHIGS). (graPHIGS 
is a  trademark of the  International Business Ma- 
chines Corporation.)  This  implementation provides 
application portability from IBM mainframes and 
supports all of the graphics device attachments of 
the RT Personal Computer, including the IBM 5085. 

Communications. Because the RT Personal Computer 
is intended to be able to communicate with both IBM 
and non-Im systems, AIX must include support for 
a wide variety of communications protocols. AIX 
supports Asynchronous, Bisynchronous (BSC), SDLC, 
CUT,  DFT, Ethernet'", and  Token-Ring connections. 
We have included both the industry-standard 
TCP/IP and  the IBM SNA protocols (LU I ,  2, 3, and 6.2) .  
The RT Personal Computer can be a bridge among 
multiple different LANS, able to support up  to two 
Ethernet  and two Token-Ring LANS from a single RT 
Personal Computer. Figure 14 summarizes the range 
of connectivity available. (Ethernet is a  trademark 
of Xerox, Inc.) 

340 LOUCKS AND SAUER 

RT PC 



ASYNC, 
SDLC 

RT PC I RT PC 

J 



Figure 15 X-Windows example 

Window  management. Another subsystem that is Distributed  Services 
available is the X-Window System. X is a space- 
shared, multiprocess window  service that was devel- 
oped under the auspices of Project Athena at  the 
Massachusetts Institute of Technology.” One of the 
key capabilities included in X is the TcPIIP-based 
network support that allows  windows to  contain  data 
from X applications running  on  other  computers 
that  are connected via Ethernet or Token Ring. See 
Figure 15. 

RT Personal Computer Distributed Services (RT/DS) 
provides distributed operating system capabilities for 
the A I X  operating system. These include distributed 
files  with local/remote transparency, a form of sin- 
gle-system image and distributed interprocess com- 
munication.  The distributed file  design supports tra- 
ditional AIX and UNIX file  system semantics. This 
allows applications, including data management/ 

342 LOUCKS AND SAUER IEM SYSTEMS JOURNAL, VOL 26, NO 4,1987 



database applications, such as SQL/RT, to be  used  in 
the distributed environment without modification to 
existing object code. The design incorporates IBM 
architectures such as SNA and  some of the architec- 
tures of Sun Microsystems N F S . ” . ’ ~  

Design goals. The primary goals in our design  of 
distributed services  were the following: 

Locallremote transparency in the services distrib- 
uted. From both the user’s perspective and  the 
application programmer’s perspective, local and 
remote access appear  the same. 
Adherence to A I X  semantics and UNIX operating 
system semantics. This is corollary to local/remote 
transparency. The  distribution of services cannot 
change the semantics of the services. Existing ob- 
ject code should run without modification, includ- 
ing database  management  and  other code that is 
sensitive to file-system semantics. 
Remote performance and  local performance. This 
is also corollary to transparency. If remote access 
is noticeably more expensive, transparency is lost. 

Note that caching effects can make some distrib- 
uted operations faster than  a  comparable single- 
machine  operation. 
Network media transparency. The system should 
be able to run on different local- and wide-area 
networks. 
Support of mixed administrative environments. 
We  believe networks are evolving toward hetero- 
geneous collections of private machines, Le., sin- 
gle-system-image clusters of machines, and ma- 
chines that act as servers for multiple machine/ 
system  images. This necessarily implies multiple 
administrators with complex interrelationships. 
Security and authorization. Comparable to these 
are those for a single multiuser machine. 

File system. Distributed Services  uses remote 
mounts  to achieve local-remote transparency. A re- 
mote  mount is much like a  conventional  mount in 
the UNIX operating system, but  the  mounted file 
system is on a different machine  than  that  mounted 
on directory. Once  the  remote  mount is established, 
local and  remote files appear in the  same directory 

Figure 16 Example shared file system 

;AUER 343 IEM SYSTEMS JOURNAL  VOL 26. NO 4.1987 LOUCKS AND E 



Figure 17 Architectural structure of Distributed Services file system 

SYSTEM CALLS 

I 

I J 

I SYSTEM CALLS 

hierarchy, and-with minor exceptions-file  system 
calls  have the same effect  regardless of whether files 
(directories) are local or remote. Mounts, both con- 
ventional and remote, are typically made as part of 
system start-up, and  thus  are established  before  users 
log on. Additional remote mounts can be established 
during normal system operation. 

Figure 16 gives an example view  of a shared file 
system  seen by one machine in a single  system image 
cluster. Figure 17 illustrates the  structure of the RT 
Personal Computer Distributed Services files system 
(RT/DS). 

Concluding  remarks 

AIX is a portable operating system. Written mostly 
in the c language, it is intended to be migratable to 
new hardware platforms as they  emerge. We  believe 
that in AIX we have combined a portable and versatile 
industry-standard application programming envi- 
ronment with contemporary hardware and operating 
system architecture. The resulting operating system 
is suitable for use with a wide  range of computer 
architectures and customer requirements. 

344 LOUCKS  AND SAUER 

Cited  references 

I .  R. 0. Simpson  and P. D. Hester, “The IBM RT PC  ROMP 
processor and  memory  management  unit  architecture,” IBM 
Systems Journal 26, No. 4, 346-360 (1987,  this issue). 

2. D.  M.  Ritchie  and K. Thompson,  “The  UNlX time-sharing 
system,” Communications of the ACM 17, No. 7, 365-375 
(July 1974). 

3. T.  G. Lang, M. S. Greenberg,  and C. H. Sauer,  “The  virtual 
resource manager,” RT Personal Computer Technology (pp. 
119-125), SA23-1057, IBM Corporation: available through 
IBM branch offices. 

4. J.  C. OQuin,  J.  T.  OQuin, M. D. Rogers, and  T. A. Smith, 
“Design of the IBM RT PC Virtual Memory  Manager,” RT 
Personal Computer Technology (pp. 126-133), SA23-1057, 
IBM Corporation; available through IBM branch offices. 

5. D.  C. Baker, G. A. Flurry, and K. D. Nguyen, “Implementa- 
tion of a virtual terminal  subsystem,” RT Personal Computer 
Technology (pp. 134-1 36), SA23-1057, IBM Corporation; 
available through IBM branch offices. 

6.  R.  Krishnamurty  and  T. Mothersole, “Coprocessor software 
support,” RT Personal Computer Technology (pp. 
142-148), SA23-1057, IBM Corporation: available through 
IBM branch offices. 

7. L. K. Loucks, “IBM RT  PC AIX kernel-modifications and 
extensions,” RT Personal Computer Technology (pp. 
96-109), SA23-1057, IBM Corporation: available through 
IBM branch offices. 

8. J. M. Bissell, “Extended file management for AIX,” RT Per- 
sonal Computer Technology (pp. 114-125), SA23-1057, IBM 
Corporation; available through IBM branch offices. 

IEM SYSTEMS JOURNAL,  VOL 26. NO 4,1987 



9. S. R. Kleinman, “Vnodes: An architecture  for  multiple file ance Modeling, also co-authored with E.  A. MacNair.  He has 
system types in Sun  UNIX,” USENIX Conference Proceed- received IBM Outstanding  Innovation Awards for  the  creation 
ings. Atlanta,  June 1986, pp. 238-247. and basic design of the Research Queueing Package (RESQ)  and 

for  a  personal  computer  system,” RT Personal Computer 

able through IBM branch offices. 
Technology (pp. 91-95), SA23-1057, IBM Corporation; avail- ~ ~ ~ r i ~ ~  Order N ~ ,  ~ 3 2 1 - 5 3 0 0 ,  

1 I .  P. J.  Kilpatrick  and  C.  Greene,  “Restructuring  the AIX user 
interface,” RT Personal Computer Technology (pp. 88- 
90). SA23-1057, IBM Corporation; available through IBM 
branch offices. 

12. T.  Murphy  and D. Verburg, “Extendable high-level AIX user 
interface,” RT Personal Computer Technology (pp. 1 10-1 I3), 
SA23-1057, IBM Corporation; available through IBM branch 
offices. 

13.  L. F. Brissette, R. A. Clauson,  and J. E. Olson,  “PC DOS 
emulation in a  UNIX  environment,” RT Personal Computer 
Technology (pp. 147-148), SA23-1057, IBM Corporation; 
available through IBM branch offices. 

14. J. C. OQuin,  “The IBM RT  PC  subroutine linkage conven- 
tion,” RT Personal Computer Technology (pp. 131-133), 
SA23-1057, IBM Corporation; available through IBM branch 
offices. 

15. C. H.  Sauer,  D. W. Johnson, L. Loucks, A.  A. Shaheen- 
Gouda,  and  T. A. Smith, “RT PC  Distributed Services: File 
system,” ACM Operating Systems Review (July 1987). 

16. C. H. Sauer,  D. W. Johnson, L. Loucks, A.  A. Shaheen- 
Gouda,  and  T. A. Smith, “RT PC  Distributed Services: Over- 
view,” ACM Operating Systems Review, 18-29 (July 1987). 

17. R. W. Scheifler and J. Gettys,  “The X window  system,” ACM 
Transactions on Graphics 5, No. 2, 79-109 (April 1986). 

IO. S. Lerom, L. Terrell, and  H. Advani, “Configuration  methods  for  the RT Personal Computer  Virtual Resource Manager. 

Larry  Loucks IBM Advanced Engineering Systems IBU, 11400 
Burnet Road,  Austin.  Texas 78759. Mr. Loucks, the lead architect 
of the  RT system, is a  member  of  the IBM Senior  Technical Staff. 
He received a B.A. in  mathematics  in 1967 from  Minot  State 
University, Minot,  North  Dakota. Mr. Loucks  joined IBM in 1967 
in  the Fargo, North  Dakota,  branch office. In 1970, he transferred 
to Raleigh, North  Carolina, where he worked on SNA and  other 
communications products. In 1977, he transferred to Austin, 
Texas, where he worked on  the IBM 5520  Administrative System 
and  the RT system. He has received three IBM Invention Achieve- 
ment Awards and  has been honored with IBM Outstanding  In- 
novation Awards for his work on SNA, on  the 5520, and  on  the 
RT system. 

Charles H. Sauer IBM Advanced Engineering Systems  IBU, 
11400 Burnet Road,  Austin,  Texas 78759. Dr.  Sauer received his 
B.A. in mathematics  and  Ph.D.  in  computer sciences from the 
University of Texas  at Austin in 1970 and 1975, respectively. He 
joined IBM at  the  Thomas  J.  Watson Research Center  in 1975. 
From 1977 to 1979, Dr. Sauer was an Assistant Professor of 
computer sciences at  the University of Texas  at  Austin.  In 1979, 
he returned to IBM Research, and  in 1982 transferred to  the IBM 
Communication  Products Division Laboratory  in  Austin, Texas. 
Currently, Dr. Sauer is a  Senior  Technical Staff Member  and lead 
architect  for  AIX. Dr. Sauer has published three textbooks, Com- 
puter System  Peformance Modeling, co-authored with K. M. 
Chandy, Simulation of Computer Communication Systems, co- 
authored with E. A. MacNair,  and Elements of  Practical Peflorm- 

IBM SYSTEMS JOURNAL, VOL 26, NO 4,1987 LOUCKS  AND  SAUER 345 


