Advanced Interactive
Executive (AlX) operating
system overview

The Advanced Interactive Executive (AIX) is the operat-
ing system used in the RT Personal Computer. It is a
portable operating system architecture that is suitable
for a wide range of computer architectures and cus-
tomer requirements. Discussed in this paper are the
structure and services of AlIX.

his paper discusses the operating system for the

RT Personal Computer™ that is known as the
Advanced Interactive Executive (A1x)™. The RT Per-
sonal Computer system is a family of workstations
based on the 1BM 32-bit (RISC) microprocessor—
named RoOMP—and its corresponding high-function
memory management unit.' (RT Personal Computer,
Advanced Interactive Executive, and A1x are trade-
marks of the International Business Machines Cor-
poration.) With this level of performance and func-
tionality, 1BM workstations reached the point at
which it was practical and imperative to provide
workstation users with an operating system that was
as sophisticated as those used in mainframe com-
puters. There were many considerations that com-
pelled us to build an operating system for the rT
Personal Computer that incorporated many of the
currently most advanced system concepts.

The RT Personal Computer system includes sophis-
ticated hardware features, such as high-function vir-
tual storage, advanced all-points-addressable (APA)
displays, real-time capability, and others, which can
be fully exploited only by equally sophisticated soft-
ware. Because most workstations operate in an in-
creasingly interconnected environment, the operat-
ing system must be able to deal with communication

326 Loucks aND sAUER

by L. K. Loucks
C. H. Sauer

functions—especially those that are taking place at
the request of other users—without intervention by
the workstation’s user. In many cases, the distribu-
tion of resources is not uniform. Users need to be
able to use programs, data, and peripheral devices
that are not local to their own workstations. Perhaps
most important is the fact that workstations require
an operating system that provides an application
execution environment that combines application
program portability from 1BM and industry environ-
ments with efficient use of the hardware.

We decided to base the core of the rRT Personal
Computer operating system on the AT&T UNIX® Sys-
tem V. (UNix is developed and licensed by AT&T,
and is a registered trademark of AT&T in the U.S.A.
and other countries.) In addition to System V, we
included many enhancements generally available in
the industry, most notably some features of System
V.2, and many from BsD (Berkeley Software Distri-
bution) 4.2 and 4.3. (BSD 4.2 and 4.3 are variants of the
UNIX system developed and distributed by the Uni-
versity of California at Berkeley.) We chose the UNIX
operating system because it provides significant
power to a workstation user, provides multiuser ca-
pabilities when needed, and is portable and open-
ended. Also important is the fact that the UNIX
system has a large user and application base. In
choosing the UNIX system, we accepted the need to

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and 1BM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

make significant upwardly compatible enhance-
ments over what was available in the industry to
meet our requirements. As is traditional for UNIX-
based operating systems, an acronym ending in IX
was chosen; thus we have AIX.

UNIX concepts

The UNIX operating system was originally created in
the 1970s to provide a test bed for computer science
experimentation.” This operating system differs from
conventional operating systems in several key ways.
Essentially, all of the operating system code is written
in C to ensure easy portability from one processor
architecture to another. Most of the control struc-
tures of the operating system, such as configuration
tables, are bound as late as possible. Configuration
information is kept in editable files to allow easy
modification for experimental purposes. The file sys-
tem, often called the heart of the UNIX system, is a
tree-structured hierarchy consisting of directories
and files. Files are represented as linear byte spaces
rather than records and fields. Directories are struc-
tured files describing files and other directories. In
keeping with the objective of portability, most 1/0 is
performed through generic devices. The generic de-
vices are mapped to real 1/0 devices by user-replace-
able routines called device drivers. Any part of the
nucleus of the system (called the kernel) can be
modified by an appropriately authorized user. A
command-processing component (called a shell) per-
forms parameter substitution and calls appropriate
command programs. No real distinction is made
between command processors supplied with the op-
erating system and those written by the user that
accept the same invocation parameter conventions,
and several shells can coexist in a given system,

Figure 1 shows the overall structure of a typical UNIX
system. The most significant difference from ordi-
nary operating systems is the accessibility of all ele-
ments of the software to user modification. A UNIX
system is thus an operating system that provides
tools for its own redefinition. It is precisely this
characteristic that has made it the most popular
operating system in academic computer science.
Many of the commands and facilities that were
originally developed in the course of computer sci-
ence experiments have found their way into produc-
tion UNIX systems. This has greatly enriched the UNIX
functional power, while contributing a certain
amount of inconsistency, especially in the syntax of
the command language.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

AIX structure

The generality and portability of the UNIX system
are achieved at some cost in optimum use of the
underlying hardware. We had decided to start with
the UNIX system as a base. In view of our require-
ments, however, we were faced with the question of
how best to provide the required enhancements. Two
strategies could be followed. One was to rewrite the
entire kernel. Although theoretically possible, be-
cause of the amount of UNIX knowledge available in
IBM at the time, it was unlikely that such an approach
would achieve upward compatibility with the stan-
dard uUNIX system. The other was to provide a set of
software services for the kernel and modify the kernel
and other functions to exploit the facilities provided
by that layer. We chose the second approach, which
led to the system structure shown in Figure 2.

The Virtual Resource Manager (VRM) controls the
real hardware and provides a stable, high-level ma-
chine interface to the advanced hardware features
and devices. (See Figure 3.) The kernel received
corresponding enhancements to use the services of
the vRM and to provide essential additional facilities.
Although the vRM and the AIx kernel proper have
been tuned to each other, we have not precluded the
ability to build other operating systems to exploit
the VRM services. Similarly, the techniques we used
to virtualize existing types of devices would work for
new device types as well. Both the vRM and the
kernel have been deliberately made open-ended to
allow the straightforward addition of new functions
and device support.

We were dealing with a new hardware architecture
and with large quantities of new and modified soft-
ware in the system. Because of that, we felt that
special efforts were required to ensure excellent per-
formance. We adopted a policy of continuous per-
formance assessment of the operating system, start-
ing with the earliest availability of hardware and
software. The performance group had to develop
new tools and procedures to assess the performance
of the system, while it was still immature. The results
of that effort are visible in the performance of the
completed product.

To achieve one of our primary goals of providing
users the widest possible choice of applications and
computing environments, we provided ways of mov-
ing applications and data to the RT Personal Com-
puter from other systems, such as the 1BM Personal
Computer, other UNIX systems, and IBM mainframes,

LOUCKS AND SAUER 327

Figure1 Typical UNIX system structure

COMMANDS

C COMPILER PROGRAM

DEVELOPMENT

LIBRARIES

FILE
SYSTEM - GRAPHICS

" TEAMINAL
Mo

SYSTEM
MANAGEMENT

EDITORS

Figure2 AIX system structure

328 Loucks anp sauer

COMMANDS

PROGRAM
DEVELOPMENT

OTHER
APPLICATIONS LIBRARIES

OTHER SUBSYSTEMS

LANGUAGES

SYSTEM

USER
COMMANDS MANAGEMENT

USER
INTERFACE
SHELL

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure3 Interface levels of AIX

COMMUNICATIONS

DATA MANAGEMENT

ENHANCED TERMINAL SUPPORT

APPLICATION PROGHAM(S)

USABILITY SERVICES

SQL/RT DATABASE

COMMAND PROCESSING

LOCAL TERMINAL
SUPPORT

GENERIC
DEVICE
DRIVERS

COMMUNICATIONS

; AlX

COMMUNICATIONS | COPROCESSOR
SERVICES

L e || e || sevoes | J

as well as many ways to interconnect them. The
application development extensions above the kernel
were integrated into the existing operating system
structure. In some cases, the extensions were pack-
aged and priced separately, but they were designed
to operate as integral parts of the operating system
after installation.

Creating a virtual environment for the AIX kernel

The existing structure and functions of the UNIX
kernel were not sufficient for exploiting the advanced
features of the RT Personal Computer hardware. The
major deficiencies fell into the following areas:

» Lack of virtual-memory support had been a per-
ceived deficiency in earlier systems. However,
there were UNIx-based systems, such as BSD 4.2,
that had provided virtual memory, but none of
these had the capabilities that were possible with
the RT Personal Computer.

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

e There was limited program management with
code sharing only at the program level and static
binding of modules.

* Real-time facilities, such as absolute priorities,
kernel-level pre-emption, and multiple-process
170, were lacking. These facilities were thought
useful not only for traditional real-time applica-
tions, but also for complex communications ser-
vices.

e There were limited facilities for dealing with dy-
namic 1/0 configurations. Most 1/0 changes re-
quired the rebinding of the kernel.

Instead of making major changes to the architecture
of the kernel, we used the VRM to provide facilities
to overcome these shortcomings. The VRM provides
the services to implement a multitasking operating
system while insulating the kernel from most of the
details of the hardware implementation. The kernel
has to be aware of only the problem-state instruc-
tions. All the other services, such as 1/0 device sup-

LOUCKS AND Sauer 329

Figure 4 Virtual Resource Manager (VRM) structure

NUCLEUS
SVC HANDLER

MINIDISK
MANAGER
{NDM)

DISPATCHER

g
CONFIGURATION

port, storage management of disk and memory, and
hardware initialization, are provided. The VRM ser-
vices are implemented in a comprehensive real-time
execution environment.* Figure 4 shows the overall
structure of the VRM.

VRM nucleus. The nucleus contains the basic ser-
vices for the control of the ROMP processor, Memory
Management Unit (MMU), and 170 Channel Control-
ler (10cc). These services include multiple pre-empt-
able processes, process creation and priority control,

330 Loucks AND SAUER

dynamic run-time binding of code, direct control of
virtual memory, millisecond-level timer control,
multiple pre-emptable interrupt levels, and an effi-
cient interprocess communication mechanism for
main and interrupt-level processes.

There is a virtual machine interface (vMI) that oper-
ates as follows. The kernel accesses the facilities of
the VRM via a set of supervisor calls (svc), virtual
interrupts, and shared memory control blocks. Ser-
vices may be executed synchronously as a call/return

IBM SYSTEMS JOURNAL, VOL 26, NO 4,1987

or asynchronously via a queue to a device driver or
process. These services provide the kernel with the
capability of enabling and disabling virtual inter-
rupts, returning from a virtual interrupt, processing
machine communications interrupts such as a stor-
age exception, and dispatching an operating system
process. These are the basic facilities provided to
implement a multitasking operating system kernel.

Storage management. A minidisk manager (MDM)
provides the services to partition disk storage into
logical areas that are independently managed. A
minidisk is a contiguous area of disk storage that can
be accessed by a logical block number, the size of
which is specified by the kernel. This service also
provides error recovery and bad block relocation.
The vRM resides on a minidisk of its own in a
standard AIx file system. Installation and space man-
agement on that minidisk are performed with stan-
dard Aix utilities.

Virtual memory manager (VMM). The ROMP/MMU
virtual memory architecture, in combination with

the VRM, gives the RT Personal Computer a demand-
paged virtual memory of 1 terabyte, consisting of
4096 256-megabyte segments. Segments have a max-
imum of 256 megabytes, but typically they are much
smaller. The ROMP contains 16-segment registers,
permitting the addressing of 14 segments [plus 1/0
and Direct Memory Access (DMA) operations] at any
time. (See Figure 5.) The vRM performs page-fault
handling and manages the allocation of real memory,
paging space, and virtual storage segments.* The VRM
also provides the aix kernel with interfaces to control
these functions and to respond to a page fault by
dispatching another process. These services provide
a view of virtual memory as a collection of segments
and pages that can be managed via svCs. The segment
services include create, destroy, change length, and
protection, with a load-and-clear segment register(s)
to provide addressability. A copy service that delays
copying pages until they are referenced provides the
necessary support for the uNix fork primitive. The
page services that pin, unpin, change protection, and
purge provide other basic mechanisms for the kernel

Figure5 Virtual memory addressing

2 BITS PROTECTION

12 BITS SEGMENT 1D

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Loucks AND sAUER 331

Figure 6 Device handler structure

DEVICE HANDLER

EXCEPTION
HANDLER

CHECK
PARAMETERS

10
INITIATE

INTERRUPT
HANDLER

OFF LEVEL
INTERRUPT
HANDLER

to use in controlling the virtual memory environ-
ment.

The vRM also provides a map page service that maps
memory pages within a given segment onto discon-
tinuous disk file blocks, thus providing the primitive
support for creating a single-level store that makes
disk and memory access equivalent operations.

I/O subsystem. The vrRM provides the operating
system with an extensive queued interface to the 1/0
devices, thereby insulating the kernel from the details
of specific devices and the management of shared

332 Loucks aND sauER

devices. The devices that the kernel typically sees are
those that are generic, such as generalized fixed-disk
drives (i.e., minidisks) or sertal ports. In those cases
in which the generic devices are not appropriate or
in which the real-time capabilities of the VRM envi-
ronment are needed by the application, the user or
a third-party programmer can write C or assembler-
language code to implement the necessary function
and dynamically add that code to the VRM.

Configuration. The configuration services provide
facilities to add device support to the VRM. The
Define Code svc binds an executable module, called
a device handler, into the VRM and Define Device
provides the device-specific parameters to the han-
dler. The correct device handler is typically selected
on the basis of the currently installed hardware or
via operating system configuration files and is dy-
namically bound into the VRM at start-up. However,
these SvCs may be issued to the vRwm at any time. A
Query svc provides the ability to determine the
current configuration.

Device handler. A device handler is a very structured
module designed to provide a queued interface to a
device. There is a well-defined set of entry points
that implement the functions of the driver; the exe-
cution environment for those entry points is strictly
controlled by the vRM. (See Figure 6.) A device
handler is not a process. Therefore, it runs as a part
of the calling process, i.e., the kernel or another VRM
internal process, or on a hardware interrupt level.

Device manager. A device manager is a structured
VRM process designed to provide additional manage-
ment services that cannot be provided by a device
handler. (See Figure 7.) The execution environment
is a VRM process and therefore has all the standard
process attributes and capabilities, such as the ability
to exploit virtual memory as well as various inter-
process communication (IPC) mechanisms.

Virtual terminal subsystem (VTSS). At the time AIX
was being implemented, no standard UNix interface
for advanced-function Apa displays existed. There-
fore, we provided a method to allow multiple appli-
cations to access the local console hardware. The key
1o this ability of AIX to support multiple simultane-
ous interactive applications is the virtual terminal.’
A virtual terminal is a virtual counterpart of the real
RT Personal Computer display(s), keyboard, locator
(mouse or tablet), dials (valuator), and lighted pro-
gram function keys (LPFK). The virtual terminals
time-share the use of the real displays and input

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

devices. A virtual terminal can function either as a
simulated Ascn terminal or as a high-function ter-
minal (HFT) equivalent in power to the real hardware.

ASCII terminal simulation. The simulated AsCII ter-
minal resembles a typical “glass teletype” (TTY), en-
hanced with functions to control sound, multiple
fonts, and color. The functions are made available
at the vMi through a set of standard 1/0 svCs and
through escapes in the data stream, as allowed in
ANSI 3.64.

Monitored mode. ascn terminal support is obviously
not sufficient to support graphics and image on the
local console displays. Therefore, an additional mode
of an HFT (high-function terminal) virtual terminal
was provided. This facility, called monitored mode,
provides the support to allow an application in prob-
lem state to obtain controlled access to all hardware
functions of the display. Also in this mode, data
from the input devices are placed directly in the
process address space by the HFT support in the VRM.
The necessary services to control this access are also
provided. These functions can be accessed directly
by advanced applications through HFT facilities pro-
vided by the kernel, or more appropriately via the
advanced graphics and windowing services provided
by AIX.

HFT implementation. The HFT support is one ex-
ample of the type of high-function 1/0 that can be
implemented using the services provided by the VvRM™.
It currently consists of many device handlers, two
device-manager processes, and more lines of code
than any other single VRM function.

Serviceability. Problem determination in system- or
user-added code is supported by VRM serviceability
facilities that include trace capabilities, dump capa-
bilities, and an absolute debugger.

Personal Computer AT coprocessor. The VRM sup-
ports the Personal Computer AT coprocessor option
as though it were another, albeit rather specialized,
virtual machine.® The coprocessor runs concurrently
with the execution of programs in the ROMP, but it
has access to the keyboard, locator, and display only
when the coprocessor virtual terminal is the active
virtual terminal—that is, when it has control of the
display. The inputs from the keyboard and locator
are presented to the coprocessor as though they had
been produced by the corresponding Personal Com-
puter AT devices. If no display has been dedicated to
the coprocessor, the display interface emulates a pC
display on the system display. The VRM manages the

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 7 Device manager structure

DEVICE MANAGER

EXCEPTION
HANDLER

CHECK
PARAMETERS

shared system resources to ensure that the RoMP and
COProcessor operate cooperatively.

Building an enhanced kernel

The structure of the UNIX kernel was modified to
allow it to operate in a VRM execution environment.’
The kernel, and all of its processes, operate within a
single virtual machine, as shown in Figure 8, and it
uses the execution control facilities of the VRM to
multitask within that machine. The kernel has been
enhanced to use the VRM virtual memory services,
and it now provides a demand-paged virtual memory
system that fully supports the 1-terabyte address
space. The kernel uses VRM page fault information
to control process dispatching, as well as allowing
the kernel itself to be paged.

The kernel occupies one (256-megabyte) segment.
The code, computational data, and stacks are all
contained within that segment. Each process is allo-
cated three segments: one for program text (code),
one for computational data, and one for the stack,
as shown in Figure 9. This allocation of virtual
memory allows very large programs with a very large
data space to execute on the RT Personal Computer.
This approach also simplifies many program and
storage management functions. Functions such as

LOUCKS AND SAUER 333

Figure 8 Operating system structure

VIRTUAL MACHINE

Figure® AIX virtual memory segment allocation

USED BY SEGMENT

SYSTEM 15 1O BUS

DIRECT MEMORY ACCESS
(DMA) ADDRESSING

VAM 14

SHARED MEMORY,
MEMORY-MAPPED
DISK FILES

CURRENT
PROCESS

KERNEL

334 Loucks anp sauer

program sharing, computational storage allocation,
and automatic stack growth are easier because all of
the program sections are consistent among processes
and are obviously large enough to allow simple tech-
niques 1o be used. Additional segments can be ob-
tained for use with private or shared data, shared
code, or for mapped files.

Mapped files. A major extension of the file system
was the exploitation of the VRM map page service to
create a single-level store environment for program
text (code) and data. This facility is called mapped
files. A mapped file is one that is accessed through
the virtual memory mechanism simply by loading
data from the appropriate address. A segment can
contain only one file. Figure 10 shows how files are
mapped into the program’s address space. Executa-
ble files (programs) and static initialized data are
automatically mapped by the kernel at program
mvocation. A user data file can be mapped after it is
opened via a simple extension to an existing system
call. After a data file is mapped into a segment it
may be accessed using any of the traditional kernel
file 1/0 facilities, such as read, write, ..., or it may
be treated as memory and accessed directly.

Single-level store. Single-level store (sLS) technology
provides a number of significant performance and
space improvements over traditional methods. For
programs, the load-and-execute method of execution
requires that the operating system load the entire
program into its address space before execution may
begin. In addition, if the real memory is required for
other purposes, the program must be paged out to
backing storage. Contrast that procedure with the
SLS approach. First, the program is simply mapped
into the address space and given control at its entry
point. Only the portions of the program that are
needed for this invocation are ever actually read into
real memory. Furthermore, if the real memory is
required for other purposes, the program does not
need to be paged out; it is simply paged in when
required again for execution. This procedure has the
benefits of quicker program start-up, reduced disk
space because only a single copy of the program
exists on disk, and elimination of paging out of
program code. For data files, the advantages come
from allowing the virtual memory manager to con-
trol all of the data of a process, both file data and
computational storage. Therefore, it can allocate real
memory in a more efficient manner. For example,
consider a database application that is accessing a
set of tables 10 megabytes in size, with that applica-
tion executing on a machine that has 16 megabytes

BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 10 Virtual memory of an application using mapped files

SEGMENT REGISTERS

of real memory. After a few accesses, the essential
portions of the database tables are in real memory,
and the accesses that in traditional architectures were
disk accesses are now memory accesses. The char-
acteristic of program execution time changes from
being 1/0-limited to processor-limited, and, since
processor speeds are increasing at a more rapid rate
than disk access times, this change in the character-
istic of the program is very beneficial. This is similar
to the benefits of memory disks on personal com-
puters, except that the allocation of resources is done
dynamically rather than statically and the process is
totally transparent to the user as well as to the
program,

Database enhancements. Historically, UNix-based

database programs have used only the low-level disk
1/0 services of the kernel because the standard UNIX

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

file system lacked several key features necessary to
support them. This resulted in database programs
that were not integrated with the system, unique sets
of utility commands to be learned, and a general
increase in the complexity of the system. We wanted
to provide an integrated environment. Therefore,
the kernel file system services were extended to pro-
vide the necessary facilities to allow us to add data
management and relational database support that is
built on top of the file system.® The enhancements
included the ability to perform space management
within a file, buffer cache synchronization on a file
basis, and file- and record-level locking.

Performance and structure. We have added many
performance improvements to the file system. The
most notable are directory caching to speed up path-
name lookup and the use of 2048-byte blocks. We

LouCKs AND SAUER 335

Figure 11 File system structure

KERNEL APPLICATION PROGRAMMING INTERFACE (API)

VNODE LAYER

have restructured the file system using the Sun Mi-
crosystems™ vnode definition to support multiple
file system types in the kernel.’ Figure 11 illustrates
this approach. (Sun Microsystems is a trademark of
Sun Microsystems, Inc.)

Interprocess communications (IPC). To assist in the
writing of multiprocess applications, several en-
hancements were added to the standard system V
IPC packages.

Signal enhancements. The traditional signal (asyn-
chronous event notification) package has been aug-
mented by a new package, compatible with the
BSD 4.2 package, that provides more signal manage-
ment services and cures a number of race conditions
that were inherent in the original services. The stan-
dard signal package remains available for compati-
bility with existing application programs.

Message queues/semaphores/shared memory. Mes-
sage queues were enhanced to provide an extended
message structure that contains information useful
for implementing security controls in servers. An
additional option of semaphores reduces the process
dispatches required in typical multiple-process ap-
plications, and new system calls were added that
provide additional control over shared memory al-
location and reclamation.

I/O management. The 1/0 management area of the
kernel was restructured to make effective use of the
1/0 facilities of the vrM. Instead of a specialized
device driver for each distinct device, we created a
family of generic device drivers that are capable of
supporting a number of unique devices of a given
class. Unique device characteristics are supported by

336 Loucks anp saUER

the veM device handlers, which can be added or
replaced dynamically. To implement this, the device-
driver interfaces have been extended to allow dy-
namic binding of a kernel driver to a VRM device
handler.

Configuration. In configuring a UNIX system, the
administrator has historically needed an understand-
ing of the internal structure and logic of the UNIx
system, to be able to edit the configuration files
correctly. We believed that it was unrealistic to im-
pose such a requirement on our prospective users.
Therefore, we set out to simplify the installation and
configuration processes.'® For those devices that can
be identified internally, such as displays, the system
performs an automatic configuration process. For
devices that require explicit description, such as
printers, we built a set of menu-driven utilities that
obtain the necessary information from the user and
make the required coordinated changes to all of the
affected veM and kernel system files. The interfaces
to these utilities have been documented so that users
or third-party programmers can add devices to be
selected and described via the menus. These menus
use the facilities shown in Figure 12, which were
provided to allow users to add device and real-time
application support.

The 1/0 is typically configured at system start-up.
The vrmconfig program, along with the helpers for
each unique device type, reads the configuration files
and adds the current device support to the running
system. Additional support may be added any time
by simply running vrmconfig.

Terminal support. The standard terminal support
facilities of the UNIX operating system were extended
to exploit the capabilities of the vrRM local console
support. In addition, several enhancements were
made to the general character support that is appli-
cable to all Ascil-class or teletype terminals (com-
monly known as TTYs). Figure 13 describes the over-
all A1x terminal structure.

Activity manager. We developed an activity manager
to provide the support to manage virtual terminals.
It has facilities for programs and users, such as to
create or to terminate a virtual terminal or to start a
program,

Character support. The TTY generic support was €x-
tended to provide support for screen paging. This
facility is useful in controlling the output of stream-
oriented applications, as well as providing a mecha-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Figure 12 1/0 configuration

- —_———'-

CONFIGURATION
FILES] >

DEVICE DRIVER INIT()

ESOURCES MANAGER (VRM)

VRMCONFIG
PROGRAM

CONFIGURATION

DEVICE DRIVER

DEFINE CODE
DEFINE DEVICE

I

HARDWARE

nism to prevent unseen output from going to inactive
virtual terminals. In addition, an input-editing
model patterned after the one provided in pc pOs
was provided.

To allow existing applications to run unchanged and
new character-oriented applications to use the RT
Personal Computer facilities fully, we extended the
AScll character-oriented terminal model via private

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

escape codes in the data stream and a new set of 1/0
controls to access features such as fonts, character
sets, color, sound, and mouse input. These facilities
are accessed through the kernel high-function ter-
minal (HFT) device driver.

A package known as CURSES, which is a character-
oriented window management package designed for
TTY ASCH terminals, has received performance en-

Loucks anp saver 337

Figure 13 AIX terminal support structure

TERMINFO

USER LEVEL

ACTIVITY
MANAGER
VIRTUAL

TERMINAL (VT)
CONTROL

ASYNCHRONOQUS DEVICE DRIVER

HIGH-FUNCTION TERMINAL (HFT) DEVICE DRIVER

VIRTUAL RESOURCE MANAGER (VRM)

hancements and has been compatibly extended to
provide access to the extended font and other func-
tions of the RT Personal Computer native displays.
We also added functions such as screen division and
layering logic to give applications a high-level, de-
vice-independent interface.

APA support. The monitored mode support provided
by the vRM is managed by the kernel HFT device
driver via a set of 1/0 controls and signals. These
facilities ensure proper behavior by applications us-
ing this feature. If an application refuses to relinquish
control of a virtual terminal, the HFT driver, after
waiting for a specified time period, terminates the
application. The application selects the mode in
which to use the virtual terminal.

The Graphics Support Library (GsL) provides a set
of high-performance graphic, text, and raster output

338 Loucks AND saer

HIGH-FUNCTION TERMINAL (HFT)

i

MONITORED
MODE

primitives and a set of input functions for the local
console. These functions are designed to provide an
application programming interface to applications
desiring this level of interface, as well as the Apa
device-driver function to higher-level graphics and
window services.

Usability extensions

Single user. Because we expected RT Personal Com-
puters to be used both as single-user workstations
and as traditional UNIX time-shared systems, we
believed that some changes were required to support
the workstation user. We have made some altera-
tions to reduce the number of situations in which a
user has to exercise “superuser” authority. We added
the ability to define more than one group to which
a user belongs at any given time. This feature, de-
rived from BSD 4.2, allowed us to define users as

IBM SYSTEMS JOURNAL, VOL. 26, NO 4, 1987

members of the system group. System group mem-
bers can perform a number of operations that pre-
viously could be performed only by a superuser; only
the most hazardous commands are still restricted to
superuser authority. This technique gives the user of
a private workstation a simpler environment to work
in, while preserving the existing A1x authority struc-
ture for multiuser environments. For users who wish
to operate their systems in a manner similar to PC
systems, a configuration option was added to allow
automatic log-on at system start-up time.

Menu shell. The UNIX system has a dual-purpose
command language. The commands have been de-
signed from the beginning to be primitives of a
command procedure programming language, some-
times at the expense of ease of use when individual
commands are submitted from the terminal. This
makes the management of files and the performance
of common operations unnecessarily complex.
Many UNIX installations solve this problem by build-
ing sets of procedures that effectively constitute a
command meta-language. We chose to combine the
solution to this problem with the construction of a
full-screen interface to Arx.!' The usability package
provides Files, which is a full-screen file management
utility similar to FILELIST on vM/cMs, and Tools,
which is the ability to request the most common AIx
commands via a menu interface. The dialog manager
that is used to implement these utilities is general
enough to serve application programs as well as A1x
commands.'?

The Files and Tools applications of the usability
package can be extended tc cover new types of files;
new actions that can be performed against those files
can be defined; and new tools—including complete
full-screen applications—can be added. The dialog
manager in the usability package can also be used to
provide new full-screen applications with an inter-
face that is consistent with the interface presented by
Files and Tools.

PC DOS compatibility. Arx also includes a new shell
that processes PC DOS commands, conversion pro-
grams that transform data from pC to RT Personal
Computer format, and subroutines that allow appli-
cations to read pos-formatted diskettes and mini-
disks."?

National-language support. The UNIX system has
historically been an English-only operating system.
We have added significant national-language support
in the following form:

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

* An extensive character set including mathematics
symbols and multinational characters has been
added. For example, characters such as &, €, = can
be included in an Rt Personal Computer data
stream.

¢ The formatting of data such as currency, date, and
time in accordance with the requirements of a
particular country has been included. For exam-
ple, in some countries dates are traditionally writ-
ten with the year first; in other countries, dates are
written with the month first.

« Data processing has been inciuded that is consist-
ent with the characteristics of a particular national
language. For example, the operating system can
sort in alphabetic order, according to the particular
conventions of each supported country.

The RT Personal Computer international-character
support benefits more than just non-U.S. English
users. For example, an extensive character set of over
500 characters allows users to create text that in-
cludes non-alphanumeric symbols (such as many
mathematical symbols).

Diagnosis and debug. To simplify the diagnosis of
problems in AIX, we added several debugging tools
that include a trace mechanism, a mechanism for
logging of errors and system messages, and a mem-
ory-dump capability. The standard facilities were
extended where necessary to deal with the unique
features of A1x and the RT Personal Computer hard-
ware.

Expanding the application development
environment

To be able to support the full range of modern
applications, AIX incorporated several functional ex-
tensions. The most significant enhancements have
been the following:

e A broad spectrum of technical and commercial
programming languages

* An sQL database manager and an indexed access
method

* Industry standard graphics subsystems

¢ Connectivity enhancements to allow RT Personal
Computers to communicate with both 1BM and
non-IBM systems, in Local-Area Networks (LANs)
and over Wide-Area Network (WAN) telecommu-
nications links

¢ Window support services

¢ Distributed services for interconnected RT Per-
sonal Computers to be used cooperatively and to

Loucks AND saver 339

allow multiple applications to work effectively on Figure 14 Summary of RT Personal Computer connectivity
the rRT Personal Computer

Languages. The higher-level language compilers for
the RT Personal Computer were chosen on the basis
of the number and types of programs that have been
written in those languages. We selected dialects that
would facilitate propagation of programs from the
1BM Personal Computer, other 1BM mainframes, and
other UNIX systems, with language extensions where
necessary to support the AIX environment. In some
cases, the compilers have two modes—one for pro-
grams from the pc, and one for programs from
minicomputer or mainframe environments. We de-
veloped a new subroutine linkage convention that
supports multimodule programs written in several
languages."

ASYNC

TCPAP

Data management. One of the most critical require-
ments was for a database program supporting IBM
SQL to provide both users and application program-
mers with relational database facilities. We also
added a b-tree-based data management program that
permits either record-level or field-level access. Al-
though these subsystems are packaged separately
from the operating system, they become an integral
part of the file system when they are installed.

Graphics interfaces. A1x provides a family of differ-
ent interfaces to the console display. Versions of a
standard Virtual Device Interface (vDI) and a Graph-
ics Kernel System (GkS) are available from third-
party vendors. We provide graPHIGS™, an imple-
mentation of the emerging Programmer’s Hierarchi-
cal Interactive Graphics Standard (PHIGS). (graPHIGS
is a trademark of the International Business Ma-
chines Corporation.) This implementation provides
application portability from 1BM mainframes and RT PC
supports all of the graphics device attachments of
the RT Personal Computer, including the 1BM 5085.

Communications. Because the RT Personal Computer
is intended to be able to communicate with both 1BM
and non-1BM systems, AIX must include support for
a wide variety of communications protocols. AIX
supports Asynchronous, Bisynchronous (BSC), SDLC,
CUT, DFT, Ethernet™, and Token-Ring connections.
We have included both the industry-standard
TCP/IP and the IBM SNA protocols (LU 1, 2, 3, and 6.2).
The rT Personal Computer can be a bridge among
multiple different LANs, able to support up to two
Ethernet and two Token-Ring LANs from a single RT
Personal Computer. Figure 14 summarizes the range
of connectivity available. (Ethernet is a trademark
of Xerox, Inc.)

340 Loucks anD sauer IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

HHHUIHE T nn

IBM HOST

ASYNC
TERMINAL

HEHIHRRI LSBT RE

TOKEN RING

A

BT NNt

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

Loucks anp sauer 341

Figure 15 X-Windows example

OQUTPUT OF
REMOTE RT PC
APPLICATION

ETHERNET OR TOKEN RING

Window management. Another subsystem that is
available is the X-Window System. X is a space-
shared, multiprocess window service that was devel-
oped under the auspices of Project Athena at the
Massachusetts Institute of Technology.!” One of the
key capabilities included in X is the Tcp/ip-based
network support that allows windows to contain data
from X applications running on other computers
that are connected via Ethernet or Token Ring. See
Figure 15.

342 Loucks anp sauer

Distributed Services

RT Personal Computer Distributed Services (RT/DS)
provides distributed operating system capabilities for
the arx operating system. These include distributed
files with local/remote transparency, a form of sin-
gle-system image and distributed interprocess com-
munication. The distributed file design supports tra-
ditional A1x and uUNiIx file system semantics. This
allows applications, including data management/

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

database applications, such as SQL/RT, to be used in
the distributed environment without modification to
existing object code. The design incorporates IBM
architectures such as SNA and some of the architec-
tures of Sun Microsystems NFs.'>!¢

Design goals. The primary goals in our design of
distributed services were the following:

s Local/remote transparency in the services distrib-
uted. From both the user’s perspective and the
application programmer’s perspective, local and
remote access appear the same.
Adherence to Arx semantics and UNIX operating
system semantics. This is corollary to local/remote
transparency. The distribution of services cannot
change the semantics of the services. Existing ob-
ject code should run without modification, includ-
ing database management and other code that is
sensitive to file-system semantics.
« Remote performance and local performance. This
is also corollary to transparency. If remote access
is noticeably more expensive, transparency is lost.

Note that caching effects can make some distrib-
uted operations faster than a comparable single-
machine operation.

s Network media transparency. The system should
be able to run on different local- and wide-area
networks.

o Support of mixed administrative environments.
We believe networks are evolving toward hetero-
geneous collections of private machines, i.e., sin-
gle-system-image clusters of machines, and ma-
chines that act as servers for multiple machine/
system images. This necessarily implies multiple
administrators with complex interrelationships.

s Security and authorization. Comparable to these
are those for a single multiuser machine.

File system. Distributed Services uses remote
mounts to achieve local-remote transparency. A re-
mote mount is much like a conventional mount in
the UNIX operating system, but the mounted file
system is on a different machine than that mounted
on directory. Once the remote mount is established,
local and remote files appear in the same directory

Figure 16 Example shared file system

T™MP

LOUCKS:
- | sAuer

ese

| ADM

U (USERS' “HOME" DIRECTORIES) - SHARED FnbeDAfrA SERVER"

~ SHARED FROM "APPLICATION SERVER” MAGHINE

"~ SHARED FROM "APPLICATION SERVER"
LPP - SHARED FROM “APPLICATION SERVER"

1BM SYSTEMS JOURNAL, VOL 26, NO 4,1987

Loucks AND saUER 343

Figure 17 Architectural structure of Distributed Services file system

SYSTEM CALLS

VNODES

CLIENT SIDE

SYSTEM CALLS

VNODES

SERVER SIDE

hierarchy, and—with minor exceptions—file system
calls have the same effect regardless of whether files
(directories) are local or remote. Mounts, both con-
ventional and remote, are typically made as part of
system start-up, and thus are established before users
log on. Additional remote mounts can be established
during normal system operation.

Figure 16 gives an example view of a shared file
system seen by one machine in a single system tmage
cluster. Figure 17 illustrates the structure of the RT
Personal Computer Distributed Services files system
(RT/DS).

Concluding remarks

AIX is a portable operating system. Written mostly
in the ¢ language, it is intended to be migratable to
new hardware platforms as they emerge. We believe
that in A1X we have combined a portable and versatile
industry-standard application programming envi-
ronment with contemporary hardware and operating
system architecture. The resulting operating system
is suitable for use with a wide range of computer
architectures and customer requirements.

344 Loucks anD sauer

Cited references

1. R. Q. Simpson and P. D. Hester, “The IBM RT PC ROMP
processor and memory management unit architecture,” /BM
Systems Journal 26, No. 4, 346-360 (1987, this issue).

2. D. M. Ritchie and K. Thompson, “The UNIX time-sharing
system,” Communications of the ACM 17, No. 7, 365-375
(July 1974).

3. T. G. Lang, M. S. Greenberg, and C. H. Sauer, “The virtual
resource manager,” RT Personal Computer Technology (pp.
119-125), SA23-1057, IBM Corporation; available through
IBM branch offices.

4. J. C. O’Quin, J. T. O’Quin, M. D. Rogers, and T. A. Smith,
“Design of the IBM RT PC Virtual Memory Manager,” RT
Personal Computer Technology (pp. 126-133), SA23-1057,
IBM Corporation; available through IBM branch offices.

5. D. C. Baker, G. A. Flurry, and K. D. Nguyen, “Implementa-
tion of a virtual terminal subsystem,” RT Personal Computer
Technology (pp. 134-136), SA23-1057, IBM Corporation;
available through IBM branch offices.

6. R. Krishnamurty and T. Mothersole, “Coprocessor software
support,” RT Personal Computer Technology (pp.
142-148), SA23-1057, IBM Corporation; available through
IBM branch offices.

7. L. K. Loucks, “IBM RT PC AIX kernel—modifications and
extensions,” RT Personal Computer Technology (pp.
96-109), SA23-1057, IBM Corporation; available through
IBM branch offices.

8. J. M. Bissell, “Extended file management for AIX,” RT Per-
sonal Computer Technology (pp. 114-125), SA23-1057, IBM
Corporation; available through IBM branch offices.

1BM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

9. S. R. Kleinman, “Vnodes: An architecture for multiple file
system types in Sun UNIX,” USENIX Conference Proceed-
ings. Atlanta, June 1986, pp. 238-247.

10. S. Lerom, L. Terrell, and H. Advani, “Configuration methods
for a personal computer system,” RT Personal Computer
Technology (pp. 91-95), SA23-1057, IBM Corporation; avail-
able through IBM branch offices.

11. P. J. Kilpatrick and C. Greene, “Restructuring the AIX user
interface,” RT Personal Computer Technology (pp. 88-
90), SA23-1057, IBM Corporation; available through IBM
branch offices.

12. T. Murphy and D. Verburg, “Extendable high-level AIX user
interface,” RT Personal Computer Technology (pp. 110-113),
SA23-1057, IBM Corporation; available through IBM branch
offices.

13. L. F. Brissette, R. A. Clauson, and J. E. Olson, “PC DOS
emulation in a UNIX environment,” RT Personal Computer
Technology (pp. 147-148), SA23-1057, IBM Corporation;
available through IBM branch offices.

14. J. C. O’Quin, “The IBM RT PC subroutine linkage conven-
tion,” RT Personal Computer Technology (pp. 131-133),
SA23-1057, IBM Corporation; available through IBM branch
offices.

15. C. H. Sauer, D. W. Johnson, L. Loucks, A. A. Shaheen-
Gouda, and T. A. Smith, “RT PC Distributed Services: File
system,” ACM Operating Systems Review (July 1987).

16. C. H. Sauer, D. W. Johnson, L. Loucks, A. A. Shaheen-
Gouda, and T. A. Smith, “RT PC Distributed Services: Over-
view,” ACM Operating Systems Review, 18-29 (July 1987).

17. R. W. Scheifler and J. Gettys, “The X window system,” ACM
Transactions on Graphics 5, No. 2, 79-109 (April 1986).

Larry Loucks /BM Advanced Engineering Systems IBU, 11400
Burnet Road, Austin, Texas 78759. Mr. Loucks, the lead architect
of the RT system, is a member of the IBM Senior Technical Staff.
He received a B.A. in mathematics in 1967 from Minot State
University, Minot, North Dakota. Mr. Loucks joined IBM in 1967
in the Fargo, North Dakota, branch office. In 1970, he transferred
to Raleigh, North Carolina, where he worked on SNA and other
communications products. In 1977, he transferred to Austin,
Texas, where he worked on the IBM 5520 Administrative System
and the RT system. He has received three IBM Invention Achieve-
ment Awards and has been honored with IBM Outstanding In-
novation Awards for his work on SNA, on the 5520, and on the
RT system.

Charles H. Sauer IBM Advanced Engineering Systems IBU,
11400 Burnet Road, Austin, Texas 78759. Dr. Sauer received his
B.A. in mathematics and Ph.D. in computer sciences from the
University of Texas at Austin in 1970 and 1975, respectively. He
joined IBM at the Thomas J. Watson Research Center in 1975.
From 1977 to 1979, Dr. Sauer was an Assistant Professor of
computer sciences at the University of Texas at Austin. In 1979,
he returned to IBM Research, and in 1982 transferred to the IBM
Communication Products Division Laboratory in Austin, Texas.
Currently, Dr. Sauer is a Senior Technical Staff Member and lead
architect for AIX. Dr. Sauer has published three textbooks, Com-
puter System Performance Modeling, co-authored with K. M.
Chandy, Simulation of Computer Communication Systems, co-
authored with E. A. MacNair, and Elements of Practical Perform-

IBM SYSTEMS JOURNAL, VOL 26, NO 4, 1987

ance Modeling, also co-authored with E. A. MacNair. He has
received IBM Outstanding Innovation Awards for the creation
and basic design of the Research Queueing Package (RESQ) and
for the RT Personal Computer Virtual Resource Manager.

Reprint Order No. G321-5300.

LOUCKS AND SAUER 345

