
The structure 
of Systeml88, 
a fault-tolerant computer 

In  recent  years,  there  has  been a growing requirement 
for continuous processing capability approaching 24 
hours per day, 7 days per  week. Industries such as 
finance, transportation, securities, and telecommunica- 
tions have continuous-availability requirements that 
can approach downtimes of not  more than three min- 
utes per  year. This  paper  describes configurations of 
the Stratusl32 continuous processing computer  sys- 
tem that are  marketed  as the IBM Systeml88 through 
an  agreement with Stratus  Computer, Inc. The system 
achieves its fault tolerance via  hardware  duplexing 
coupled with a distributed operating system that al- 
lows system  resources to be distributed over  many 
separate computers while maintaining a single sys- 
tems  image to the end  user.  This single systems  image 
may also  be  extended across a network of multiple 
systems.  The  way in which software makes this distri- 
bution possible and the way in which system re- 
sources  are named to allow transparent distribution 
across the system  are described in the paper.  Also 
described  are the transaction processing services that 
are  part  of the operating system and allow transaction 
programs to be written to operate effectively over the 
distributed system, by  means  of a requester-server 
structured approach. 

D iscussed in this paper is the IBM System/88, 
which  is a fault-tolerant computer system based 

on the concepts, design, and  architecture of the 
Stratus/32, manufactured by Stratus  Computer, Inc. 
IBM markets the  Stratus system, both hardware and 
software, under  the  name System/88. Also provided 
are value-added products, both hardware and soft- 
ware, such as  the following: 

by E. S. Harrison 
E. J. Schmitt 

Device support for the 5 150 PC, 5262 printer,  and 

Software enhancements in support of national 

Systems Network Architecture (SNA) products 

The hardware and software act together to permit 
the operating system to continue  operation in the 
presence of a single hardware failure. The operating 
system is a multiprogramming, multiprocessing sys- 
tem designed for virtual storage and multiple users 
and which provides a transaction-oriented environ- 
ment for customer applications. At the same time it 
provides the facilities required to develop and exe- 
cute interactive transaction-oriented applications. 
The system is designed to operate in a  nonstop  mode 
which  is achieved mainly through the use of the 
following duplexed hardware components: 

other selected IBM devices 

language requirements 

Main memory 
CPU complex 
Input/output controllers 
System bus 
Power supplies 
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Figure 1 Duplexed  hardware  component  architecture 
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All duplexed components work on the same function 
at the same time. Out-of-step conditions are imme- 
diately  recognized and diagnostics initiated. If the 
diagnostic  checks indicate a permanent failure, the 
unit is taken out of  service, and the duplexed partner 
continues operation. Figure 1 illustrates the duplexed 
hardware components. Figure 2 illustrates the com- 
parator’s functions. The not-equal comparison on 
Board A indicates a failure on that board. Processing 
continues on Board B. Diagnostics are then run on 
Board A, which is  removed  from  service if the failure 
proves to be permanent. 

Each  duplexed component comprises two identical 
sets  of  customer-replaceable  boards, and each board 

contains duplexed Motorola 68000-based  processing 
elements and comparator circuits. Thus, there are 
actually four copies of each  processing element, two 
on each  duplexed board. If the comparator circuitry 
on any board  detects a difference in the outputs of 
the processing elements of the board, the board is 
taken out of  service and diagnostics are initiated. If 
the diagnostics detect a transient error, the board  is 
returned to operation. A permanent error requires 
the board to be  replaced.  In any event, the duplexed 
partner continues operation. 

System overview 

Fault tolerance begins  with  power-up  diagnostics 
that locate potential problems before  they  occur. By 
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Figure 2 Hardware  self-checking  via  the  comparator 
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combining continuous hardware checking of  parallel 
processing operations with duplexed components, 
the system provides an extremely reliable operating 

the service center and usually amves  at the  computer 
center within 24 hours of the reported failure. In the 
usual  case, the system has to  run with one  of  the 
boards simplexed for a maximum of  24 hours. 

The  system  is  composed of multiple, 
logically  independent 

microprocessors. 

environment. Only in very rare instances does its 
service become unavailable because of hardware fail- 
ure. 

If a hardware failure of one of the duplexed boards 
occurs, this fact is reported automatically to a remote 
service center. A replacement board is shipped by 

Once the replacement board has arrived, the user 
can replace the failing board by opening the cabinet, 
removing the failing board, and inserting the new 
board into  the slot. The system continues  to operate 
during this time and automatically brings the new 
board to  the same state as its duplexed partner. 

Diagnosing and repairing system failures remotely is 
possible through service centers located in Boca Ra- 
ton, FL, and Gaithersburg, MD, in the United States 
and in Greenford, England, and Sydney, Australia. 
These service centers are part of a network that 
makes system  service available on a worldwide  basis 
24 hours per day. 

Hardware. The system  is composed of multiple, 
logically independent microprocessors that provide 
the user  with a multiprocessing shared-memory com- 
puter that may be termed a module or processor. 
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The family  of  processors  have the same system struc- 
ture: a high-speed central bus with  all component 
boards attached to  the bus and able to  communicate 
with one  another.  The major board types are  the 
following: 

Processors 
Memory 
Disk controllers 
Communication controllers 

The latest product line of System/88 consists of 
Models 8 I ,  82, 83, and 84. The processors are based 
on Motorola 68020 processing elements, which  allow 
for  full  32-bit addressing and 32-bit data access in 
addition to multiprocessing capabilities: 

Model 8 I is a uniprocessor. 
Model 82  is a two-way multiprocessor. 
Model 83 is a three-way multiprocessor. 
Model 84 is a four-way multiprocessor. 

The logical structuring of the processor boards is as 
follows:  Eight  processor  slots, numbered one through 
eight, and pairs of adjacent slots [( 1,2) (3,4) (5,6) 

Processor  configurations are also 
extremely  flexible,  in  that  each 

processor  can  run  either  in  simplex 
mode or duplex  mode. 

(7,8)] comprise the logical  processors. A duplexed 
Model 84 is illustrated in Figure  3. The processor 
boards consist of duplexed elements. If one of the 
processor boards fails, only that board is  affected; all 
other processor boards remain in operation. In the 
case  of a duplexed Model 84, only one of the four 
processors runs in simplex mode; the  other three 
processors continue to run in duplex mode. 

Processor configurations are also extremely flexible, 
in that each processor can  run either in simplex 
mode or duplex mode. For example, a Model 8 I can 
be duplexed, which means  that processor slots 1 and 
2 are occupied. Without any additional boards, this 
can be configured as a Model 82 working in simplex 
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Figure 3 Multiprocessing  support  illustrated by a  duplexed 
Model 84 
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mode by physically moving the processor board in 
slot 2 to slot 3. Duplex mode for Model 8 1 is shown 
in Figure  4A, and simplex mode for Model 82  is 
shown in Figure 4B. 

It is possible to increase the processing  power by 
adding processor boards dynamically while the sys- 
tem continues to operate. Model 8 1, for example, 
can be upgraded to Model 82 by inserting processor 
boards in slots 3 and 4 (for duplexed operation). 
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Figure 4 (A) Model 81 in  duplex  mode; (B) Model 82 in  simplex  mode 
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This allows dynamic vertical growth within each 
processing module of the system. 

The system provides integrated, fault-tolerant disk 
operation  through  the following two key mecha- 
nisms: 

Duplexed self-checking disk controllers 
Mirrored disk files, where data  are replicated on 
two separate disk files 

Each individual  controller uses dual logic and com- 
parative circuitry to immediately  detect and isolate 
incorrect operations. A duplexed  controller  ensures 
that processing continues, with no performance deg- 
radation.  should  a  controller fail. 

Users are  protected against lost data  due  to read/ 
write failures or head crashes through  the use of 
mirrored  (replicated) data on two physically different 
disks, each separately controlled by one of the  du- 
plexed disk controllers. 
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The mirroring is accomplished by the operating sys- 
tem software. Writes are executed to both disks, and 
reads are executed to  the disk  whose head is closer 
to  the  data, to improve disk 110 performance. 

Essentially, there are two physically separate data 
paths to two separate copies of data on disk. Users 
include the operating system  itself,  which has dupli- 
cate copies of the system tables and  control blocks 
and is, therefore, protected from head crashes and 

The  system  uses  a  general-purpose 
operating  system (OS) that  provides 

services to user  processes. 

controller failure. Figure 5 illustrates the duplexed 
disk controllers and mirrored file operation. 

Operating system 

The system  uses a general-purpose operating system 
(os) written in PL/I that provides services to user 
processes. Each  user process consists of an execution 
point and  a virtual address space. The low-order 
portion is reserved for os and is mapped into  the 
address spaces of  every  user process. This is referred 
to  as  the kernelspace. Hence, all ofthe OS is explicitly 
shared by having all  processes mapped to the same 
operating system code and  data. 

The user code and  data are mapped  into  the high 
portion of the address space. The user code requests 
services from os via a  normal call to  an operating 
system program that is usually handled entirely 
within the user’s process without the need for a 
process switch. 

The operating system code  that  implements  the call 
is part of every user process address space, but it 
usually runs  at  a higher  level of privilege. 

The actual process can operate at two levels  of priv- 
ilege: kernel mode and user mode. While in kernel 
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mode, the process has access to all kernel data; while 
in  user mode, kernel data  are  not accessible. When 
a kernel call  is made  that requires access to kernel 
data,  the process is forced to  “trap”  into the kernel 
by executing a specific hardware instruction.  The OS 
code that handles the  trap validates the user argu- 
ments  and  enters kernel mode.  Upon  return from 
the kernel program, the system  goes into user mode 
and  returns to the user’s program. 

Process  creation  and  destruction. Processes are cre- 
ated either by the kernel or by other processes. In 
general, a process  issues a system call, s$startproc- 
ess, with various parameters, such as priority level 
and directory information.  This calls an entry in the 
kernel to allocate a  structure  to  contain  information 
about  the new process and  to schedule the process 
for execution. An option is provided to allow initial 
execution of a user-supplied start-up  command ma- 
cro. This allows the user to customize any initiali- 
zation (activation of terminals, connection to data- 
base) that is needed before the process runs. 

Process destruction is initiated either by the process 
itself (in which  case a simple call to the kernel is 
sufficient) or by another process. In the  latter case, a 
program interrupt is  used to force the process into 
the destruct state. Process cleanup  and resource re- 
leasing are executed prior to placing the process in 
the stopped state. Ultimately, the final destruction is 
accomplished by a special system process called the 
overseer. 

Process  types. The system distinguishes among  the 
following types of  processes: log-in, slave, and batch. 

Login processes are created by the overseer for 
attached terminals. These processes are initialized to 
a pre-log-in state, and  some form of work invitation 
message may appear on the  terminal  monitor. A user 
may  physically  log in from a  terminal to the oper- 
ating system and begin an interactive session, issuing 
commands, editing files, and  running programs from 
menu-driven interfaces. When finished, the user may 
log out,  and  the  terminal process reverts to the pre- 
log-in state. 

Processes that are not log-in  processes are called slave 
processes. These processes can be created by log-in 
processes, by system  processes  (e.g., the overseer), or 
by other slave  processes.  Slave  processes present an 
environment for executing application programs 
that are typically not associated with terminals. 
Batch processes are slave  processes created by the 
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Figure 5 Duplexed  disk  controllers with mirrored file operation 
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overseer and  run  under  control of a typical operating 
system queued batch facility. 

All processes  in the os present the exact same user 
environment to the programs that  run in the process. 
This means that  a program written to run from an 
interactive log-in terminal can also be run in batch 
(background)  mode,  as long as any required input is 
prepared ahead of time  and stored where the batch 
process can access it. Similarly, any job typically run 
as  a batch job can be run in a log-in  process  with no 
special action necessary. 

Distributed  operating  system 

A system may be a single module, and  contains  the 
necessary hardware and software elements to operate 
as  a single, stand-alone system. The following hard- 
ware elements are  part of each module: 

CPU processing boards 
Main memory 
Power supplies with battery backup 
Disks, tapes, and  communications I/O adapter 

Terminals 
Controller boards for disk, tape, communications, 

Cables and wires 

The software consists of the following elements: 

Operating system and user applications that  run 

System programs running in the controllers 
System and user programs running in the line 

cards 

local-area network (LAN) 

in the  main CPU 

adapters 

Two or more modules can be interconnected; mod- 
ules located at the same site (i.e., the  same  or neigh- 
boring buildings) can be connected through a high- 
speed local-area network. This connectivity is pro- 
vided by the LINK facility, where the  modules  are all 
members of a single system and can access and share 
resources with one  another. 

The  maximum distance the modules can be  physi- 
cally separated over the LINK is three miles. If mod- 
ules must be separated farther  than  that, they may 
be connected by means of an x.25-based network of 
systems. The  product  that provides this  support is 
called NETWORK. 

NETWORK allows systems to be connected over x.25 
links or packet-switched data networks (PSDNS). In 
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Figure 6 A system of multiple  processing  modules 

SYSTEM 

LINK 
(LOCAL AREA NETWORK) 

this case, the system modules are controlled via 
separate operating systems, and  the modules are 
parts of separate systems; still, it is possible to access 
resources directly by their names. In this sense, there 
exists over a network of systems the concept of a 
single-system image. This  means  that resources may 
be addressed directly, and  the  operating systems 
support  the  distribution aspects involved by means 
of  system requesters and servers. (Distribution is 
discussed in more detail later in this paper.) 

The concept of a system is, therefore, that of a single 
module or  a  group of modules connected via the 
local-area network. All modules in  a system behave 
as  an integrated unit with respect to resource sharing 
and  administration. Figure 6 illustrates the concept 
of a system of processing modules, and Figure 7 
illustrates NETWORK in the form of a network of 
systems. 

LINK details. The LINK interconnects multiple in- 
dependent modules via a high-speed local-area ring 
network. Interconnections may be duplexed to en- 
sure continued  operation in the event of a single 
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Figure 7 A network of multiple systems 

LINK controller board failure. This also allows the 
user to  double  the bandwidth between adjacent mod- 
ules in the system. Each LINK runs at 1.4 megabytes 
(MB) per second, and, when duplexed, multileaved 
throughputs of 2.8 MB per second are possible. 

Different models of the system may be  mixed on 
LINK,  while maintaining  a single system to the user. 
This allows great flexibility when one is considering 
“growing the system” horizontally. (Horizontal 
growth is discussed later in this  paper.) 

The L I N K  controller uses dual logic and  comparative 
circuitry to  control LINK operation and interface to 
the main  module bus. Modules are connected by 
nonpowered, passive devices called LINK connectors 
that provide for the  connection of up  to six modules. 
The  connector  contains  a relay  for each controller, 
and in the event a  module  on  the LINK is discon- 
nected, the relay provides an automatic bypass, thus 
ensuring continuity between the  remaining modules. 
This is extremely important in a system that provides 
continuous availability, because it would be imprac- 

tical for the malfunctioning of a single  system mod- 
ule to bring down the whole system. 

Each module passes a direct current down the center 
wire  of the coaxial cable that energizes the relays  in 
the  connecter.  This  puts  the module into  the ring 
and illuminates a  diode within the  module frame. If 
the module develops a  malfunction,  the  current is 
cut off and  the relays de-energize, thus bypassing the 
module and extinguishing the  diode.  This is a great 
improvement over designs in which one failed mod- 
ule  in a normal ring network disables the  entire 
network. This is not the case  with LINK.  Figure 8 
illustrates the  function of the link connectors. 

To  connect  more  than six modules, a LINK extender 
can be  used to connect two or more link connectors. 
LINK extenders can also be  used to increase inter- 
module distances in increments of 1500 feet, up to 
a  maximum of three miles. The overall limit of the 
configuration allows up  to 32 modules on a single 
link, and  the  maximum cable length achievable in a 
system  is ten miles. 
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Figure 8 Link  connectors 
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Ring network protocols are normally either Camer 
Sense Multiple Access with  Collision Detection 
(CSMA/CD) or token-passing protocols. The CSMAKD 
protocols allow nodes to  transmit  at  any  time. If two 
nodes start  transmitting at the same time, causing a 
collision, they both stop sending. After  waiting a 
variable amount of time, they retransmit. In a token 
network, collisions are avoided by allowing trans- 
mission by the token holder only. This avoids colli- 
sions and  thus allows  high ring utilization, but lowers 
the throughput  at low ring utilization, because  each 
node must wait for possession  of the token before 
transmitting. 

The approach used in the LINK product is a combi- 
nation of the above two methods. In one case, the 
LINK uses an implied token in that each module 
assumes it has the right to  transmit as long as it is 
not currently transmitting. This means that colli- 
sions may  occasionally occur. Otherwise, when a 
collision  is detected, the transmitting module stops 
and delays for a variable length of time before  re- 

transmitting. This delay is calculated by module 
number,  and  the lowest-numbered module gains 
control of the LINK in these cases. 

The LINK controllers constantly transmit  a stream of 
one-bits to  the next module in  the ring when in an 
idle condition. This acts as  an I-am-here indication 
and allows link controllers to recognize a failing 
module. 

Each transmission on the link is marked by a pre- 
ceding zero bit to break a stream of one-bits and  to 
define the  start of the  data packet. Each packet 
consists of a 16-byte header structured as follows: 

Source 
Destination 
Control information 
Data-up to 4 kilobytes 
Two-byte cyclic redundancy check (CRC) character 
Single-byte  reply  field (added by the destination 
module) 
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Each module receives and  immediately  retransmits 
messages not destined for it, which involves a re- 
transmission delay of two bits at each module. How- 
ever, there is no main-cpu software or overhead 
involved, because the transmission is executed en- 
tirely by the link controller. Destination modules 
append  a response byte before retransmitting. 

When  a  module receives a packet originated by it, 
that packet has gone completely around  the ring, 
and therefore is removed. As the message  is removed, 
the CRC and response bytes are checked. If an  error 
is detected,  the packet is retransmitted. 

Packets being transmitted  around  the ring also pro- 
vide for collision detection.  When  a packet is trans- 
mitted, it should be the first one received by the 
transmitting  module. If it is not first, a collision is 
assumed to have occurred, and the delay and retrans- 
mit procedure is executed. 

NETWORK details. NETWORK provides for the  in- 
terconnection of multiple systems via routes based 
on the CCITT x . 2 5  standard  that may traverse packet- 
switched data networks (PSDNS) or point-to-point X.25 
lines. A  modem is required for each line and provides 
the  standard R S - ~ C  interface. This interface is con- 
nected to a  synchronous  line  adapter, which in turn 
is connected to a  communications  controller  board 
in a  module. 

NETWORK supports  the network interconnection 
configurations illustrated in Figure 9. A connection 
between two systems may be achieved in one or 
more of the following  ways: 

A. Single direct line: One system assumes  the role 
of data  circuit  terminating  equipment  (DCE),  and 
the  other  assumes  the role of data  terminal  equip- 
ment  (DTE). 

B. Multiple direct lines, providing increased relia- 
bility: Within each system, all lines can be con- 
nected to  the same  or different modules. 

C .  Indirect routing  through  intermediate systems: 
Each system is connected to  one or more  other 
systems, and the NETWORK provides the best 
route selection between any two of the systems. 

D. Indirect routing  through  a packet-switched data 
network between two systems. 

E. Indirect routing  through  a hybrid network: This 
may be a  combination of direct and public net- 

works, using the  interconnections in Figures 9A 
through  9D. 

Best-path routing in NETWORK. In  order  to estab- 
lish intersystem communications using NETWORK, 
the system chooses a  route  through  the various nodes 
in the  network.  This is accomplished via a network 
routing table that is maintained in each module  (of 
each system) to  indicate all possible routes from the 
current system to each system in the network. These 

The  best  routes  available to every 
system  are  kept  current. 

routes are sorted in order of increasing end-to-end 
delay time. The best routes available to every system 
are kept current,  and, if a  route becomes inoperative, 
the next best path  route is automatically  chosen. 
This  can be as simple  as having two routes through 
two different links between adjacent systems. This 
function,  termed best-path routing, is illustrated in 
Figure 10. The  support is accomplished by the op- 
erating system in a  manner  that is nondisruptive to 
the  end user (either  the  application or the  terminal 
user). The  end user does  not have to carry out  any 
recovery procedures and does not have to be aware 
that  a link in the network has failed. The system 
handles this  rerouting dynamically on behalf of the 
user. In Figure 10, paths 1 and 2 are two alternate 
paths between systems. Path 2 is selected as  the faster 
path. In case of failure in  path 2, path 1 is selected. 

A special system process, called the  “network watch- 
dog” process, executes on every module of a system. 
For both LINK and NETWORK communications,  this 
process periodically checks to see whether  other 
modules have either lost or regained contact with 
the  current  module. As part of this procedure, the 
network watchdog cleans up  any resource attach- 
ments  that have become  inoperative  due to com- 
munication failures. It also monitors for failed or 
reinstated network routes and automatically causes 
the  updating of the network routing tables. 
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gure 9 System  interconnections  using NETWORK 
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Figure 10 Best-path  routing 
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Requesters  and  servers. The use  of the LINK and 
NETWORK facilities is completely transparent  to  the 
end user. When the application references a  remote 
resource, whether it be in another module in the 
same system or in another module of a different 
system, the system automatically allocates and ac- 
cesses that resource on behalf of the  end user. It does 
this via a series of message exchanges between a 
requester  process and  a server  process in the two 
modules. The requester process is, in general, a user 
process that needs service from a  module  other  than 
the  one  on which it is currently executing. To obtain 
this service, the requester process sends a request 

message to the server process in the  appropriate 
module. The server process is a system process that 
is logically part of the operating system. The server 
process performs the request and  returns  a reply to 
the requester. This sequence is referred to as  a net- 
work transaction. 

Intrasystern  servers. Each module provides one  or 
more server processes to serve requesters in other 
modules of the same system. These servers exchange 
messages  with requesters via the LINK attachment. 
Because all modules within a single system contain 
identical tables describing the total configuration, 
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igure 11 Path of a NETWORK transaction 
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each module is aware of the resources of the  other 
modules in the system. If an  end user wants to access 
a record in a file, the system has a record of the disk/ 
module in which the file resides,  via the system 
directory and the file’s pathnarne (explained later). 
The system routes the request to  the particular server 
on that module. The server executes the request and 
transmits  the record back to the requester. Multiple 
server processes can be assigned to the  same module, 
thus allowing two or more network transactions to 
be processed simultaneously. Requests are assigned 
to idle servers as they arrive, and if all servers are 
busy the request is queued. 

Intersystem servers. Network transactions across 
systems are accomplished by a pair of system-pro- 
vided  processes called a network client, running in 
the requesting system, and  a network  server, running 
in the server system. Communication between the 
two  processes is achieved by means of an x.25 virtual 
circuit. The virtual circuit is a bidirectional com- 
munication  path between two  processes that is de- 
signed to  permit access to the CCITT x.25 packet layer 
(level 3). The packet layer is implemented within the 
system  via a special  process called an x.25 gateway 
process. This process executes in the  module (re- 

ferred to as  a gateway module) within the system 
that  contains  the actual communication line connec- 
tion  to  the external network. Figure 1 1 illustrates the 
relationship between the network client and  the net- 
work server. NETWORK is in operation when a user 
process requests services or resources that are in 
another system; it is transparent to the user. The 
following sequence of steps describes a NETWORK 
transaction.  Note  that  a NETWORK transaction  can 
also include LINK transactions. Figure 1 1  illustrates 
the following example: 

1. The requester user process needs service from a 
remote system. NETWORK sends a request message 
to the network client process within its system. If 
the requester and network client processes are 
located in different modules, the request is trans- 
mitted to the gateway module via the LINK. 

2. The network client forwards the request message 
over the virtual circuit to the corresponding net- 
work server process in the  remote system. 

3. If the request can be executed in the network 
server module, e.g., ifthe file exists in this module, 
it  is executed; otherwise, the request is forwarded 
via LINK to a link server in the target module of 
the server system. 
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4. The reply  message  is eventually returned to the 
requester, using the reverse path. 

Both intrasystem and intersystem server perform- 
ance are controlled by assigning scheduling priorities 
and by the use of multiple server processes. Network 
transactions vary  widely in size. 

At LINK speeds, these differences are not noticeable. 
However, at NETWORK speeds a single large transac- 
tion can monopolize a server for a relatively long 
time, during which time  other smaller transactions 
must wait. The use of multiple client-server pairs 
between  two systems reduces this effect, because it is 
unlikely that several  large transactions will occur 
simultaneously. 

Naming conventions. All resources within a system 
are uniquely identified via a resource name. Re- 
sources that can be named include the following: 

Boards 
Processing modules 
Devices: terminals, printers, and  communication 
channels 
Disks 
Tape  units 
File directories 
File data sets 

An overall naming  convention is established to allow 
users to reference certain resources within a system. 
The convention identifies the resource name as a set 
of qualified names called path names. The qualifiers 
of the path name are as follows: 

System name, for example, %Sysl, where % is 
the  delimiter  and Sysl  is the actual system name 

The second qualifier may consist of the  name of any 
one of the following resources: 

Module 
Disk 
Device: terminal,  printer,  and  communication 

Tape 

The fully qualified path name uniquely identifies the 
resource within the system. Because the full resource 
name contains  the system  name, this  name is also 
unique within a network of systems connected via 
the NETWORK product. 

channel 
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Examples of resource names are the following: 

%sysl#m4 identifies processing module m4 in 
system sysl;  the # and % signs are the delimiters 
and are user-definable. 
%sysl#d02 identifies disk name d02 in  system 
sysl .  
%sysl#term5 identifies terminal  name term5 in 
system sysl .  

Directories and files are identified via the disk on 
which they reside. Consider the following example: 
%sysl#d02>dir2>filel. This identification defines 
file1 contained in directory dir2 residing on disk d02 
contained in system sys l .  The delimiter is >. All 
qualified names are user-definable. 

Directory structure. The directory structure consists 
of a hierarchical structure of objects, such as the 
following: 

Subdirectories 
Files 
Links 

Links are pointers to other objects, which are in 
other directories. The directory structure is  illus- 
trated in Figure 12. 

The root of a directory defines a logical disk, and all 
objects on the directory must reside in a single  logical 
disk. A logical disk can be composed of more than 
one physical disk, and each logical disk has a pack- 
master directory on it that uniquely identifies it to 
the system. The packmaster may be considered to 
be the root of the directory. 

One packmaster on each module is designated the 
master disk, and this is  used to keep the system and 
group  directories for that module. System directories 
contain  the following libraries and files: 

System files 
Command libraries 
Object libraries 
Include libraries 
Tool libraries 

Group directories are used to help categorize users. 
For example, each department could have its own 
group directory, and each group directory could 
contain person directories, which are directories as- 
sociated with each user. Group directories are illus- 
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Figure 12 Directory  structure 

I I V 

HARRISON - FIGURE 12 

trated in Figure 13. Users  of the system are known 
by user names, which are of the form person-group. 

Note that the accessing of resources in the system is 
location-transparent, even though the path names of 
the resources contain identification of the system 
and module at which the resource is located. One 
may conclude that if the resource is moved to a 
different module or system, the  name  must be 
changed. This is not  the case, however. If the re- 
source is to be moved, a LINK may be inserted in the 
directory slot for the resource to indicate its new 
location. The search then  continues at the new di- 
rectory location, and  the resource is eventually lo- 
cated by the system. Thus, it is  possible to move 
resources between modules of a system without 
changing the resource names. 

Starting a multimodule system. It is not necessary to 
power-on every module in a system manually. All 
the modules in  a single system on  the LINK can be 
powered-on and started up from any  one individual 
module. This is accomplished via a special setting of 
the key switch on  the console of a module. 

The key  switch on the console of a processing mod- 
ule can be  set to the “System Master” position. When 
this is set and  the “Power On” switch is pressed, this 

module (as well as all other modules on  the same 
system) begins the power-on sequence. After power- 
on, each module begins its own start-up sequence. 
Thus,  one person can start  the  entire system from a 
single module. 

At automatic  start-up,  the code in the programmable 
read-only memory (PROM) on  the CPU board runs 
diagnostics and self-tests. After these have run suc- 
cessfully, the module finds the master disk, and code 
in the PROM starts up  the master disk and reads a 
utility program that loads the operating system from 
the default boot partition of the master disk. The 
operating system initializes all configured devices 
and disks and  then creates a process that executes 
the commands in a special file called MODULE- 
START-UP. In general, this file contains  commands 
that create other system processes for software pro- 
gram products, such as NETWORK, x.25, and  SNA. 

System configuration concepts. The overall physical 
configuration of a system is defined to  the system by 
a set of special files called table files that  can be 
created and modified only by a specific  privileged 
user of the system, who is known as  the system 
administrator. These files are always stored on  the 
master disk of each processing module in a directory 
called system>configuration. 
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Figure 13 Example of a  group  directory 
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Table files  exist for the following components: 

Systems 
Modules 
Boards 
Disks 
Devices 
Gateways 
Nodes 
User registration and access control 

The system administrator manipulates these files  via 
a corresponding table input file .tin, which  is  essen- 
tially a sequence of record descriptions that specify 
the contents of the records in the table file. To change 
the  contents of a table file, the system administrator 
modifies the  contents of the corrTsponding .tin file 
and then executes a special  system command, called 
create-table, using the .tin file as input. 

All modules within the system on  the LINK each 
maintain identical copies of all table files in their 
respective  system directories on their master disk. 
The system administrator manages this via a system 
command broadcast-file, which sends an updated 
table file from the executing processing module to 
all the  other modules in the system. Thus, with one 
command,  the table is updated in the master disk 
system directory of all modules. This reduces the 
burden placed on  the system administrator  and al- 
lows definition updates from a single module of the 
system. 

There are several  privileged commands  that tell the 
operating system on  a particular module to imme- 
diately recognize new components added to  the table 
file. These are called the configure-components com- 
mands. Thus new components, such as terminal 
devices,  disks, and modules, can be dynamically 
added to  the system and allocated to users without 
requiring an IPL procedure. This is  of immense im- 
portance for a system  in  which  services must be 
continuously available to users. 

This concept promotes horizontal growth  of the 
system by allowing nondisruptive growth of process- 
ing modules and increased processing  power and 
function within the system. The additional mod- 
ule(s) can be utilized for such purposes as the follow- 
ing: 

Off-loading the  current modules that may be at 

Increasing the overall  system performance 
full capacity 
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Dedicating the module as  an exclusive file server, 
transaction processor, or communication server 

Administrator  procedure:  Adding a module. Assume 
that we are  to add module m3 on the LINK that 
already contains two existing modules m l  and m2. 
The system administrator actions to accomplish this 
are as  follows: 

1. Physically connect m3 to  the local-area network 

2. From a terminal at either m l  or m2, dynamically 
update the module, disk, and device .tin files  with 
the new information about m3. 

3. Issue createfable and broadcas t l e  com- 
mands. This sends the updated table file to  the 
other modules of the system. 

4. Issue configureromponents commands  on both 
m l  and m2 so that  the new resources added on 
module m3 are recognized in modules m l  and 
m2. 

5 .  IPL m3 so that users on this module can access 
resources available in  the updated three-module 
system. 

LINK. 

Generic 1/0 concepts 

The operating system provides users  with an  I/O 
system that consists of a  standard set of routines that 
apply to all devices and files. These routines are 
accessed directly through entry points into  the op- 
erating system space or more conveniently through 
language I/O facilities supported by the system’s  high- 
level languages. 

All I/O uses the concept of a port, which  is a per- 
process  logical channel through which  all 110 opera- 
tions are performed. The operating system maps a 
named file or device into  a local port ID via an 
application process  call to  the attach function. This 
port I D  is returned to  the application process, and 
from then  on  the application process simply refers 
to this port I D  for all subsequent I/O activity, such as 
read and write. 

Within the operating system space, the port I D  ac- 
tually maps to  a unique set of pointers, called transfer 
vectors, that invoke the  unique file or device routines 
to execute the requested function. In addition, if the 
device or file  is located in  a remote processing mod- 
ule, these vectors include calls to the  appropriate 
forwarding routines, either LINK or NETWORK,  to 
invoke the remote servers to carry out  the request. 
Figure  14 illustrates these concepts, which are em- 
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igure 14 Generic  Input /Output structures 

bodied as generic I/O structures. If the attach request 
specifies a local resource, the respective transfer vec- 
tors for the local 110 handler are set up for the port 
ID. Similarly, for a  remote resource, the remote 
router transfer vectors are associated with the  port 
ID. Thus, requests may  be routed to the  appropriate 
server for execution in the target processing module. 

Transaction  processing  capabilities 

Up  to this point, we have discussed fault tolerance 
and the distributed  nature of the operating system 
over several processing modules and have seen that 
in each module different levels of multiprocessing 
are available. In this section, we discuss some basic 
capabilities of the  transaction processing system. 
These facilities are  important because a  major use  of 
the system is in on-line transaction processing for 
which continuous availability of  services is required. 

The system contains an integrated transaction pro- 
cessing  facility that allows programmers to write 
programs in any one of the following  six program- 
ming languages: 

P1.11 
FORTRAN 
COBOL 
Pascal 
BASIC 

* C  

The system has no distinct transaction manager in 
that terminal users do not have to log  in to the 
transaction system to use functions provided by it. 
However, in each module there exists a transaction 
processing (TP) overseer that takes note of changes 
made by a protected transaction to the file system. 
Any transaction may be protected; file changes made 
by the  transaction  are either all made or all backed 
out  to maintain file consistency and integrity. Trans- 
actions can be protected by calling a start transaction 
system routine; protection can be ended by calling a 
commit system routine.  Transaction protection is not 
mandatory. When the transaction does not need 
protection, these statements need not be  issued in 
the transaction, so that  nonprotected  transactions 
are not penalized with any performance overhead. 
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Figure 15 Transaction  requester  server  model 

All system  facilities are available to  the transaction. 
This gives a more integrated software system  because 
all functions are contained within the operating sys- 
tem and used by the transactions. No duplication of 
function exists  between the operating system and the 
transaction system that can lead to problems in 
maintenance and software development. 

Because a single transaction may have  work executed 
in multiple modules or even  systems, commit sup- 
port is provided by a two-phase protocol that allows 
the files at  the different processing modules to be 
either all updated or all backed out. 

Discussed earlier in this paper was the system  re- 
quester/server model for providing distribution be- 
tween modules (and systems). The user also has this 

structure available when writing transaction pro- 
grams. Basically, a requesting process  is connected 
to one terminal (or  to several terminals, if multitask- 
ing is used). The requesting process  receives the input 
(transaction requests) from the terminal operator. 

The requesting process then requests service from 
one  or more servers that are located in the same or 
different modules of the system to cause the trans- 
action function to be camed out. Typically, these 
server  processes are located at the database site. For 
example, a transaction may entail a simple database 
lookup. Once this function has been executed, a 
reply may be sent back to the requesting process, 
which then sends a reply  back to  the terminal oper- 
ator.  The requester/server structure is  very general, 
and servers can either be single-threaded or multi- 
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threaded, depending on  the  demand  made on the 
service being provided. The server configurations are 
illustrated in Figure 15. 

Transaction protection. For transaction protection, a 
TP overseer must be active in each module of the 
system.  Also required are  the following two files: the 
Transaction Work Area (TWA) file and the Transac- 
tion Log  File (TLF). 

For the user to initiate protection within his appli- 
cation program, a s$starttransaction instruction is 
issued. To end this protection, either of two instruc- 
tions, a s$commit or a s$abort, is  issued. The only 
changes protected are those to transaction files. 

When the s$starttransaction command is  issued, 
an internal transaction ID is  assigned by the system. 
This allows the system to keep track of the changes 
made to transaction files during the execution of the 
transaction. The transaction I D  is not seen by the 
application. Therefore, only one protected transac- 
tion can  be active at any one time for a particular 
application. 

As changes are made to files throughout the system 
(possibly in different modules) by the transaction, 
the TP overseer  in  each module keeps a table of the 
changes made to  the transaction files for each pro- 
tected transaction. These changes are kept in mem- 
ory. All file records changed by the transaction are 
locked automatically by the system so that  data file 
consistency  is maintained for other system  users. For 
each  server request, the system appends  to  the re- 
quest the transaction ID that allows the TP overseer 
to build the appropriate tables. The changes to the 
file  system can occur on any module of the system 
in a  manner transparent to  the user. 

The following occurs when a s$commit command is 
issued. The system, on receiving the s$commit in the 
module where the initiating transaction is executing, 
communicates with each TP overseer  involved for 
this particular transaction. Each TP overseer then 
sends the tables kept in memory to  the TLF on disk. 
When the transmission is completed, a response is 
sent to the initiating module. Phase I of the commit 
has been completed when  responses  have  been  re- 
ceived from all TP overseers  involved in the trans- 
action. Should some crash occur in the system after 
this point, the transaction system at re-IpL time can 
continue applying the changes, because  all changes 
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are on disk, along with the identification and  status 
of the transaction. 

Phase 2 of the internal commit support works as 
follows. The initiating TP overseer sends a request to 
each participating TP overseer to begin writing out 
the records that have  been changed. This is  essen- 
tially a two-step process. 

In the first step, all of the actual changed records are 
created in the TLF file. Information regarding  what 
is in the TLF at any stage  is  kept in the TWA file.  Both 
the TWA and TLF are  then written to disk. 

At this point, the afterimages of the transaction 
changes are stored on  the TLF. The next step is to 
apply these changes to  the actual physical records. 

As these are being applied, the TWA is updated to 
indicate which of the records have  been written out 
to the actual physical locations of the records, so that 
if a crash does occur the writing out of the records 
can continue after re-IPL. 

Once all records have  been written out  to disk  for 
the transaction, all  locks  held by the system for this 
transaction are released. The file system  now  reflects 
all changes made by the now-committed transaction. 
This flow is illustrated in Figure 16, where the fol- 
lowing steps are taken: (1)  a protected transaction is 
started that involves three processing modules; (2) 
servers make changes to  the file system in each  of 
the three modules; (3) an initiating transaction com- 
mits changes made or not made. 

System protection against deadly embrace. The sys- 
tem continually checks for a “deadly-embrace’’ sit- 
uation. That is, user A has locked record a and wants 
record b, while  user B has locked record b and wants 
record a. If such a situation arises, the system backs 
out  one of the transactions on  the basis  of  user 
parameter settings. On  s$starttransaction, a param- 
eter is  defined that allows the user to indicate how 
he wants the system to handle a deadly-embrace 
situation if it should arise. The user  is  given the 
following two choices of deadly-embrace avoidance 
parameters: 

Priority of  process: Abort the lower-level  process 
that issues the request and causes a deadly em- 
brace. 

HARRISON AND S C H M I ~  313 



igure 16 Transaction  processing 

Length of waiting time: Abort the transaction that 
has been  waiting for the lock (that creates a deadly 
embrace) the shortest time. 

Systems  Network  Architecture  (SNA) 
implementation 

The system  offers communications capabilities that 
allow a wide attachment of asynchronous and bisyn- 
chronous (BSC) terminals. In addition, it  is  possible 

to connect across a BSC link to a System/370 host, 
thereby allowing applications to  communicate with 
System/370 applications. BSC terminals can also con- 
nect downstream to the System/88, and a user  pass- 
through application allows terminal users to  com- 
municate with the System/370 host. 

However, no significant SNA capability existed in the 
system as originally announced. Many users required 
that their system be incorporated fully into SNA 
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Figure 17 System Network Architecture capability 
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Figure 18 System  communications  capability 
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networks and have an affinity for System/370 sub- 
systems and  other SNA products. This connectivity 
is particularly important for continuous-availability 
applications within an SNA network, because the 
system provides a fault-tolerant layer  where routing 
to System/370 hosts (and  other systems) can be 
achieved. In this fault-tolerant layer, limited stand- 
in processing  is  possible in the case  of host-availabil- 
ity outages owing to network or system failures. In 

essence, the system can provide a fault-tolerant view 
of the network to  a user. 

The interesting challenge in adding the SNA function 
is that of function placement within the distributed 
operating system.  It  is important  to take advantage 
of the distribution characteristics already existing in 
the system and  not  to  introduce artificial constraints 
in which the SNA function can execute within a 
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system configuration. These considerations give the 
application programmer  the ability to run the ap- 
plication on any processing module indepen- 
dently of the locations of the  internal SNA function 
and  Synchronous  Data Link Control (SDLC) links in 
the system. 

The SNA function has been modularized into  the 
following major  components: 

SNA network administration provides system 
administration capabilities to define SNA resources 
to the system  via a menu-driven interface. 
Configuration manager provides a  common  con- 
figuration management for the SNA products. 
Control  point provides a  common  control point 
for the SNA functions. 
Logical unit services provide user  session manage- 
ment. 
Path  control provides network layer routing func- 
tion. 
SDLC link control manages the flow  of data across 
a physical link. 

The SNA function has been designed so that distri- 
bution  among  the foregoing SNA components is  pos- 
sible. Each of these major  components can execute 
in separate processes by utilizing the interprocess 
capabilities and  can execute in any processing mod- 
ule of the system. Similarly, transaction programs 
using the SNA support  can run in the  same  or  another 
processing module from the logical unit (LU) that 
supports  it.  The SDLC link support can execute in  yet 
another processing module. 

By making the SNA components completely distrib- 
utable, the user can effectively  place the SNA function 
throughout  the system as best  fits requirements. The 
SNA function consists of the following major func- 
tional areas: 

Primary support is principally for downstream- 
attached cluster controllers, including support for 
LU types 0, 1, 2, and 3. 
Secondary support is upstream of an SNA host. 
The system appears as a cluster controller (Physi- 
cal Unit Type 2.0) to the host and  supports LU 
types 0, I ,  2, and 3. 
Advanced Program-to-Program Communication 
provides support for LU 6.2. This is a  means of 
providing advanced program-to-program support 
to allow  effective peer connection to such systems 
as System/36 and System/38. 

Communications  and System Management 
(CASM) consists of  two major  components: ( 1 )Alert 
Generation causes alerts to be generated by the 
system and sent to Netview  in the SNA host. Alerts 
generated by downstream-attached terminals  are 
also  passed through to the SNA host. ( 2 )  Distributed 
Systems Services (DSS) interfaces with Distributed 
Systems Executive (DSX) in the SNA host. This 
allows  files and program fixes to be controlled at 
a  central System/370 database and  to be distrib- 
uted to System/88s in the SNA network. 

The SNA capability is illustrated in Figure 17. The 
total communications connectivity has been greatly 
enhanced by the  addition of the SNA function  and is 
illustrated in Figure 18. 

Concluding remarks 

The System/88 architecture is a design  of Stratus 
Computer, Inc. This system combines duplexed 
hardware with distributed operating system software 
to provide a high-availability, fault-tolerant comput- 
ing system. Fault tolerance is built into  the hardware 
so that no special programming is required by the 
application programmer  and little is required by the 
operating system. Fault tolerance is accomplished 
with no system or application software overhead and 
with no performance degradation. 

All hardware operations  are continuously checked at 
every machine cycle, and  component failures are 
located when and where they occur. Failing compo- 
nents are automatically taken  out of  service, and  the 
duplexed partner  continues processing without in- 
terruption. Service calls are placed automatically to 
a  support  center,  and replacement components are 
sent directly to the  customer site, usually within 24 
hours. The user can replace boards dynamically. 

The system is designed to grow easily, as  customer 
needs grow,  by  offering both horizontal and vertical 
growth. Multiple systems can be interconnected lo- 
cally or through communication networks. Addi- 
tional users, terminals, printers, and DASD can be 
added dynamically. With proper planning, this can 
be accomplished without interrupting service, while 
maintaining  a single-system image to  end users. 

The operating system is an advanced virtual-mem- 
ory system that  supports multiprogramming, multi- 
processing, multiple processors (processors con- 
nected horizontally), and networking. 
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User-oriented software facilities provide a  compre- manager for the Systems Network Architecture  implementation 
hensive interface between the operator, application for VTAM. Mr.  Schmitt was team leader for the  8100/DPPX 

program, and Operating system. A rich set Of higher- has been involved in  the  architecture  and design of  communica- 
communications  development  from 1976 to 1983. Since 1983, he 

level languages and sophisticated development and tions within minicomouters  and  fault-tolerant  computer systems. 
debugging tools are also provided. A powerful trans- 
action processing facility includes all the tools and Reprint  Order NO. G32 1-5299. 
structures required to develop transaction processing 
applications  that  demand fast response time  in  a 
high-volume, on-line  environment. 

This system provides an integrated solution for en- 
terprises that require continuous processing capabil- 
ities that  approach 24 hours  per  day, 7 days per 
week. 
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