The structure
of System/88,

a fault-tolerant computer
1

by E. S. Harrison

E. J. Schmitt
In recent years, there has been a growing requirement e Device support for the 5150 PC, 5262 printer, and
for continuous processing capability approaching 24 other selected 1BM devices

hours per day, 7 days per week. Industries such as

finance, transportation, securities, and telecommunica- * Software enhancements in support of national

tions have continuous-availability requirements that language requirements]

can approach downtimes of not more than three min- ¢ Systems Network Architecture (SNA) products
utes per year. This paper describes configurations of

the Stratus/32 continuous processing computer sys- :
tem that are marketed as the IBM System/88 through "l;lhe hardware and software E!Ct together.to pem;llt
an agreement with Stratus Computer, Inc. The system the operating system to continue operation in the
achieves its fault tolerance via hardware duplexing presence of a single hardware failure. The operating
coupled with a distributed operating system that al- system is a multiprogramming, multiprocessing sys-
Isoe“;;: rsa};:‘z': nfﬁf,?;'scﬁfhﬁﬁbnfa?ﬁgmﬁ z;ﬁé I'::% tem designed for virtual storage and multiple users
tems image to the end user. This single systems image and which provides a t(ans_alctlon-onented environ-
may also be extended across a network of multiple ment for customer applications. At the same time it
systems. The way in which software makes this distri- provides the facilities required to develop and exe-
bution possible and the way in which system re- cute interactive transaction-oriented applications.

sources are named to allow transparent distribution
across the system are described in the paper. Also
described are the transaction processing services that

The system is designed to operate in a nonstop mode
which is achieved mainly through the use of the

are part of the operating system and allow transaction following duplexed hardware components:
programs to be written to operate effectively over the

distributed system, by means of a requester-server ¢ Main memory

structured approach.

¢ CPU complex

¢ Input/output controllers
¢ System bus

e Power supplies

iscussed in this paper is the [BM System/ 88, © Copyright 1987 by International Business Machines Corporation.

whichisa fault-tqlerant comput;r system based Copying in printed form for private use is permitted without

on the concepts, design, and architecture of the payment of royalty provided that (1) each reproduction is done

Stratus/32, manufactured by Stratus Computer, Inc. without alteration and (2) the Journal reference and IBM copyright

1BM markets the Stratus system, both hardware and “Oﬁice afe,i"d“dff’d o the first page. The,‘i;le a‘(‘j‘.‘ at?;“acés but no

. other portions, of this paper may be copied or distributed royalty

software, under the name SyStem/ 88. Also provided free without further permission by computer-based and other

are value-added products, both hardware and soft- information-service systems. Permission to republish any other
ware, such as the following: portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 26, NO 3. 1987 HARRISON AND sCHMTT 293

Figure 1 Duplexed hardware component architecture

POWER

SUPPLY A BOARDS BUS A

POWER

BUSB BOARDS SUPPLY B

All duplexed components work on the same function
at the same time. Out-of-step conditions are imme-
diately recognized and diagnostics initiated. If the
diagnostic checks indicate a permanent failure, the
unit is taken out of service, and the duplexed partner
continues operation. Figure 1 illustrates the duplexed
hardware components. Figure 2 illustrates the com-
parator’s functions. The not-equal comparison on
Board A indicates a failure on that board. Processing
continues on Board B. Diagnostics are then run on
Board A, which is removed from service if the failure
proves to be permanent.

Each duplexed component comprises two identical
sets of customer-replaceable boards, and each board

294 HARRISON AND SCHMITT

contains duplexed Motorola 68000-based processing
elements and comparator circuits. Thus, there are
actually four copies of each processing element, two
on each duplexed board. If the comparator circuitry
on any board detects a difference in the outputs of
the processing elements of the board, the board is
taken out of service and diagnostics are initiated. If
the diagnostics detect a transient error, the board is
returned to operation. A permanent error requires
the board to be replaced. In any event, the duplexed
partner continues operation.

System overview

Fault tolerance begins with power-up diagnostics
that locate potential problems before they occur. By

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure2 Hardware self-checking via the comparator

PROCESSOR BOARD A

COMPARATOR

e LY

COMPARISON DOES NOT MATCH

PROCESSOR BOARD B

COMPARATOR

COMPARISON MATCHES

combining continuous hardware checking of parallel
processing operations with duplexed components,
the system provides an extremely reliable operating

The system is composed of multiple,
logically independent
microprocessors.

environment. Only in very rare instances does its
service become unavailable because of hardware fail-
ure.

If a hardware failure of one of the duplexed boards

occurs, this fact is reported automatically to a remote
service center. A replacement board is shipped by

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

the service center and usually arrives at the computer
center within 24 hours of the reported failure. In the
usual case, the system has to run with one of the
boards simplexed for a maximum of 24 hours.

Once the replacement board has arrived, the user
can replace the failing board by opening the cabinet,
removing the failing board, and inserting the new
board into the slot. The system continues to operate
during this time and automatically brings the new
board to the same state as its duplexed partner.

Diagnosing and repairing system failures remotely is
possible through service centers located in Boca Ra-
ton, FL, and Gaithersburg, MD, in the United States
and in Greenford, England, and Sydney, Australia.
These service centers are part of a network that
makes system service available on a worldwide basis
24 hours per day.

Hardware. The system is composed of multiple,
logically independent microprocessors that provide
the user with a multiprocessing shared-memory com-
puter that may be termed a module or processor.

HARRISON AND SCHMTT 295

The family of processors have the same system struc-
ture: a high-speed central bus with all component
boards attached to the bus and able to communicate
with one another. The major board types are the
following:

¢ Processors

¢ Memory

¢ Disk controllers

e Communication controllers

The latest product line of System/88 consists of
Models 81, 82, 83, and 84. The processors are based
on Motorola 68020 processing elements, which allow
for full 32-bit addressing and 32-bit data access in
addition to multiprocessing capabilities:

¢ Model 81 is a uniprocessor.

* Model 82 is a two-way multiprocessor.
e Model 83 is a three-way multiprocessor.
* Model 84 is a four-way multiprocessor.

The logical structuring of the processor boards is as
follows: Eight processor slots, numbered one through
eight, and pairs of adjacent slots [(1,2) (3,4) (5,6)

Processor configurations are also
extremely flexible, in that each
processor can run either in simplex
mode or duplex mode.

(7,8)] comprise the logical processors. A duplexed
Model 84 is illustrated in Figure 3. The processor
boards consist of duplexed elements. If one of the
processor boards fails, only that board is affected; all
other processor boards remain in operation. In the
case of a duplexed Model 84, only one of the four
processors runs in simplex mode; the other three
processors continue to run in duplex mode.

Processor configurations are also extremely flexible,
in that each processor can run either in simplex
mode or duplex mode. For example, a Model 81 can
be duplexed, which means that processor slots 1 and
2 are occupied. Without any additional boards, this
can be configured as a Model 82 working in simplex

296 HARRISON AND SCHMITT

Figure 3 Multiprocessing support illustrated by a duplexed
Model 84

DUPLEXED
BOARDS

DUPLEXED
BOARDS

DUPLEXED
BOARDS

DUPLEXED
BOARDS

mode by physically moving the processor board in
slot 2 to slot 3. Duplex mode for Model 81 is shown
in Figure 4A, and simplex mode for Model 82 is
shown in Figure 4B.

It is possible to increase the processing power by
adding processor boards dynamically while the sys-
tem continues to operate. Model 81, for example,
can be upgraded to Model 82 by inserting processor
boards in slots 3 and 4 (for duplexed operation).

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 4 (A) Model 81in duplex mode; (B) Model 82 in simplex mode

PROCESSOR SLOT 8
EMPTY
SLOTS
PROCESSOR SLOT 7
PROCESSOR SLOT 6
EMPTY
SLOTS
PROCESSOR SLOT 5 L
PROCESSOR SLOT 4
EMPTY
SLOTS
PROCESSOR SLOT 3
DUPLEXED
BOARDS

PROCESSOR SLOT 8

PROCESSOR SLOT 7

PROCESSOR SLOT 6

PROCESSOR SLOT 5

PROCESSOR SLOT 4

SLOT

PROCESSOR SLOT 2

This allows dynamic vertical growth within each
processing module of the system.

The system provides integrated, fault-tolerant disk
operation through the following two key mecha-
nisms:

» Duplexed self-checking disk controliers
* Mirrored disk files, where data are replicated on
two separate disk files

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Each individual controller uses dual logic and com-
parative circuitry to immediately detect and isolate
incorrect operations. A duplexed controller ensures
that processing continues, with no performance deg-
radation, should a controller fail.

Users are protected against lost data due to read/
write failures or head crashes through the use of
mirrored (replicated) data on two physically different
disks, each separately controlled by one of the du-
plexed disk controllers.

HARRISON AND SCHMITT 297

The mirroring is accomplished by the operating sys-
tem software. Writes are executed to both disks, and
reads are executed to the disk whose head is closer
to the data, to improve disk 1/0 performance.

Essentially, there are two physically separate data
paths to two separate copies of data on disk. Users
include the operating system itself, which has dupli-
cate copies of the system tables and control blocks
and 1s, therefore, protected from head crashes and

The system uses a general-purpose
operating system (OS) that provides
services to user processes.

controller failure. Figure 5 illustrates the duplexed
disk controllers and mirrored file operation.

Operating system

The system uses a general-purpose operating system
(0s) written in PL/I that provides services to user
processes. Each user process consists of an execution
point and a virtual address space. The low-order
portion is reserved for 0s and is mapped into the
address spaces of every user process. This is referred
to as the kernel space. Hence, all of the 0s is explicitly
shared by having ail processes mapped to the same
operating system code and data.

The user code and data are mapped into the high
portion of the address space. The user code requests
services from os via a normal call to an operating
system program that is usually handled entirely
within the user’s process without the need for a
process switch.

The operating system code that implements the call
is part of every user process address space, but it
usually runs at a higher level of privilege.

The actual process can operate at two levels of priv-
ilege: kernel mode and user mode. While in kernel

298 HARRISON AND SCHMITT

mode, the process has access to all kernel data; while
in user mode, kernel data are not accessible. When
a kernel call is made that requires access to kernel
data, the process is forced to “trap” into the kernel
by executing a specific hardware instruction. The os
code that handles the trap validates the user argu-
ments and enters kernel mode. Upon return from
the kernel program, the system goes into user mode
and returns to the user’s program.

Process creation and destruction. Processes are cre-
ated either by the kernel or by other processes. In
general, a process issues a system call, s$start_proc-
ess, with various parameters, such as priority level
and directory information. This calls an entry in the
kernel to allocate a structure to contain information
about the new process and to schedule the process
for execution. An option is provided to allow initial
execution of a user-supplied start-up command ma-
cro. This allows the user to customize any initiali-
zation (activation of terminals, connection to data-
base) that is needed before the process runs.

Process destruction is initiated either by the process
itself (in which case a simple call to the kernel is
sufficient) or by another process. In the latter case, a
program interrupt is used to force the process into
the destruct state. Process cleanup and resource re-
leasing are executed prior to placing the process in
the stopped state. Ultimately, the final destruction is
accomplished by a special system process called the
overseer.

Process types. The system distinguishes among the
following types of processes: log-in, slave, and batch.

Log-in processes are created by the overseer for
attached terminals. These processes are initialized to
a pre-log-in state, and some form of work invitation
message may appear on the terminal monitor. A user
may physically log in from a terminal to the oper-
ating system and begin an interactive session, issuing
commands, editing files, and running programs from
menu-driven interfaces. When finished, the user may
log out, and the terminal process reverts to the pre-
log-in state.

Processes that are not log-in processes are called slave
processes. These processes can be created by log-in
processes, by system processes (€.g., the overseer), or
by other slave processes. Slave processes present an
environment for executing application programs
that are typically not associated with terminals.
Baich processes are slave processes created by the

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 5 Duplexed disk controllers with mirrored file operation

WRITE TO
BOTH DISKS

READ FROM
SINGLE DISK

DUPLEXED DISK CONTROLLERS

DISK
CONTROLLER

IBM SYSTEMS JOURNAL, VOL 26, NO 3. 1987 HARRISON AND scHMiTT 299

overseer and run under control of a typical operating
system queued batch facility.

All processes in the Os present the exact same user
environment to the programs that run in the process.
This means that a program written to run from an
interactive log-in terminal can also be run in batch
(background) mode, as long as any required input is
prepared ahead of time and stored where the batch
process can access it. Similarly, any job typically run
as a batch job can be run in a log-in process with no
special action necessary.

Distributed operating system

A system may be a single module, and contains the
necessary hardware and software elements to operate
as a single, stand-alone system. The following hard-
ware elements are part of each module:

* CPU processing boards

e Main memory

e Power supplies with battery backup

e Disks, tapes, and communications 1/0 adapter
cards

e Terminals

e Controller boards for disk, tape, communications,
local-area network (LAN)

e (Cables and wires

The software consists of the following elements:

* Operating system and user applications that run
in the main CPU

¢ System programs running in the controllers

e System and user programs running in the line
adapters

Two or more modules can be interconnected; mod-
ules located at the same site (i.e., the same or neigh-
boring buildings) can be connected through a high-
speed local-area network. This connectivity is pro-
vided by the LINK facility, where the modules are all
members of a single system and can access and share
resources with one another.

The maximum distance the modules can be physi-
cally separated over the LINK is three miles. If mod-
ules must be separated farther than that, they may
be connected by means of an X.25-based network of
systems. The product that provides this support is
called NETWORK.

NETWORK allows systems to be connected over x.25
links or packet-switched data networks (PSDNs). In

300 HARRISON AND SCHMITT

Figure 6 A system of multiple processing modules

SYSTEM

LINK
1 (LOCAL AREA NETWORK)

this case, the system modules are controlied via
separate operating systems, and the modules are
parts of separate systems; still, it is possible to access
resources directly by their names. In this sense, there
exists over a network of systems the concept of a
single-system image. This means that resources may
be addressed directly, and the operating systems
support the distribution aspects involved by means
of system requesters and servers. (Distribution is
discussed in more detail later in this paper.)

The concept of a system is, therefore, that of a single
module or a group of modules connected via the
local-area network. All modules in a system behave
as an integrated unit with respect to resource sharing
and administration. Figure 6 illustrates the concept
of a system of processing modules, and Figure 7
illustrates NETWORK 1in the form of a network of
systems.

LINK details. The LINK interconnects multiple in-
dependent modules via a high-speed local-area ring
network. Interconnections may be duplexed to en-
sure continued operation in the event of a single

1BM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 7 A network of multiple systems

SYSTEM

AREA
NETWORK

NETWORK

LINK controller board failure. This also allows the
user to double the bandwidth between adjacent mod-
ules in the system. Each LINK runs at 1.4 megabytes
(MB) per second, and, when duplexed, multileaved
throughputs of 2.8 MB per second are possible.

Different models of the system may be mixed on
LINK, while maintaining a single system to the user.
This allows great flexibility when one is considering
“growing the system” horizontally. (Horizontal
growth is discussed later in this paper.)

The LINK controller uses dual logic and comparative
circuitry to control LINK operation and interface to
the main module bus. Modules are connected by
nonpowered, passive devices called LINK connectors
that provide for the connection of up to six modules.
The connector contains a relay for each controller,
and in the event a module on the LINK is discon-
nected, the relay provides an automatic bypass, thus
ensuring continuity between the remaining modules.
This is extremely important in a system that provides
continuous availability, because it would be imprac-

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

tical for the malfunctioning of a single system mod-
ule to bring down the whole system.

Each module passes a direct current down the center
wire of the coaxial cable that energizes the relays in
the connecter. This puts the module into the ring
and iluminates a diode within the module frame. If
the module develops a malfunction, the current is
cut off and the relays de-energize, thus bypassing the
module and extinguishing the diode. This is a great
improvement over designs in which one failed mod-
ule in a normal ring network disables the entire
network. This is not the case with LINK. Figure 8
illustrates the function of the link connectors.

To connect more than six modules, a LINK extender
can be used to connect two or more link connectors.
LINK extenders can also be used to increase inter-
module distances in increments of 1500 feet, up to
a maximum of three miles. The overall limit of the
configuration allows up to 32 modules on a single
link, and the maximum cable length achievable in a
system is ten miles.

HARRISON AND scHMTT 301

Figure8 Link connectors

CONNECTOR

DIRECT CURRENT

Ring network protocols are normally either Carrier
Sense Multiple Access with Collision Detection
(csMA/cD) or token-passing protocols. The CSMA/CD
protocols allow nodes to transmit at any time. If two
nodes start transmitting at the same time, causing a
collision, they both stop sending. After waiting a
variable amount of time, they retransmit. In a token
network, collisions are avoided by allowing trans-
mission by the token holder only. This avoids colli-
sions and thus allows high ring utilization, but lowers
the throughput at low ring utilization, because each
node must wait for possession of the token before
transmitting,

The approach used in the LINK product is a combi-
nation of the above two methods. In one case, the
LINK uses an implied token in that each module
assumes it has the right to transmit as long as it is
not currently transmitting. This means that colli-
sions may occasionally occur. Otherwise, when a
collision is detected, the transmitting module stops
and delays for a variable length of time before re-

302 HARRISON AND SCHMITT

transmitting. This delay is calculated by module
number, and the lowest-numbered module gains
control of the LINK in these cases.

The LINK controllers constantly transmit a stream of
one-bits to the next module in the ring when in an
idle condition. This acts as an [-am-here indication
and allows link controllers to recognize a failing
module.

Each transmission on the link is marked by a pre-
ceding zero bit to break a stream of one-bits and to
define the start of the data packet. Each packet
consists of a 16-byte header structured as follows:

Source

Destination

Control information

Data—up to 4 kilobytes

Two-byte cyclic redundancy check (CrC) character
Single-byte reply field (added by the destination
module)

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Each module receives and immediately retransmits
messages not destined for it, which involves a re-
transmission delay of two bits at each module. How-
ever, there i1s no main-CpU software or overhead
involved, because the transmission is executed en-
tirely by the link controller. Destination modules
append a response byte before retransmitting.

When a module receives a packet originated by it,
that packet has gone completely around the ring,
and therefore is removed. As the message is removed,
the crC and response bytes are checked. If an error
is detected, the packet is retransmitted.

Packets being transmitted around the ring also pro-
vide for collision detection. When a packet is trans-
mitted, it should be the first one received by the
transmitting module. If it is not first, a collision is
assumed to have occurred, and the delay and retrans-
mit procedure is executed.

NETWORK details. NETWORK provides for the in-
terconnection of multiple systems via routes based
on the CCITT X.25 standard that may traverse packet-
switched data networks (PSDNs) or point-to-point X.25
lines. A modem is required for each line and provides
the standard Rs-232¢ interface. This interface is con-
nected to a synchronous line adapter, which in turn
is connected to a communications controller board
in a module.

NETWORK supports the network interconnection
configurations illustrated in Figure 9. A connection
between two systems may be achieved in one or
more of the following ways:

A. Single direct line: One system assumes the role
of data circuit terminating equipment (DCE), and
the other assumes the role of data terminal equip-
ment (DTE).

B. Multiple direct lines, providing increased relia-
bility: Within each system, all lines can be con-
nected to the same or different modules.

C. Indirect routing through intermediate systems:
Each system is connected to one or more other
systems, and the NETWORK provides the best
route selection between any two of the systems.

D. Indirect routing through a packet-switched data
network between two systems.

E. Indirect routing through a hybnd network: This
may be a combination of direct and public net-

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

works, using the interconnections in Figures 9A
through 9D.

Best-path routing in NETWORK. In order to estab-
lish intersystem communications using NETWORK,
the system chooses a route through the various nodes
in the network. This is accomplished via a network
routing table that is maintained in each module (of
each system) to indicate all possible routes from the
current system to each system in the network. These

The best routes available to every
system are kept current.

routes are sorted in order of increasing end-to-end
delay time. The best routes available to every system
are kept current, and, if a route becomes inoperative,
the next best path route is automatically chosen.
This can be as simple as having two routes through
two different links between adjacent systems. This
function, termed best-path routing, is illustrated in
Figure 10. The support is accomplished by the op-
erating system in a manner that is nondisruptive to
the end user (either the application or the terminal
user). The end user does not have to carry out any
recovery procedures and does not have to be aware
that a link in the network has failed. The system
handles this rerouting dynamically on behalf of the
user. In Figure 10, paths | and 2 are two alternate
paths between systems. Path 2 is selected as the faster
path. In case of failure in path 2, path 1 is selected.

A special system process, called the “network watch-
dog” process, executes on every module of a system.
For both LINK and NETWORK communications, this
process periodically checks to see whether other
modules have either lost or regained contact with
the current module. As part of this procedure, the
network watchdog cleans up any resource attach-
ments that have become inoperative due to com-
munication failures. It also monitors for failed or
reinstated network routes and automatically causes
the updating of the network routing tables.

HARRISON AND scHMTT 303

Figure 9 System interconnections using NETWORK

DIRECT LINE

MULTIPLE DIRECT LINES

INDIRECT ROUTING THROUGH ANOTHER SYSTEM

PACKET SWITCHED DATA NETWORK

ANY COMBINATION OF ABOVE

304 HaRRISON AND SCHMITT IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 10 Best-path routing

PUBLIC DATA NETWORK

SYSTEM

Requesters and servers. The use of the LINK and
NETWORK facilities is completely transparent to the
end user. When the application references a remote
resource, whether it be in another module in the
same system or in another module of a different
system, the system automatically allocates and ac-
cesses that resource on behalf of the end user. It does
this via a series of message exchanges between a
requester process and a server process in the two
modules. The requester process is, in general, a user
process that needs service from a module other than
the one on which it is currently executing. To obtain
this service, the requester process sends a request

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

message to the server process in the appropriate
module. The server process is a system process that
is logically part of the operating system. The server
process performs the request and returns a reply to
the requester. This sequence is referred to as a net-
work transaction.

Intrasystem servers. Each module provides one or
more server processes to serve requesters in other
modules of the same system. These servers exchange
messages with requesters via the LINK attachment.
Because all modules within a single system contain
identical tables describing the total configuration,

HARRISON AND scHwiTT 305

Figure 11 Path of a NETWORK transaction

SYSTEM 1

NETWORK
SERVER

VIRTUAL
CIRCUIT

SYSTEM 2

NETWORK I}
i SERVER

each module is aware of the resources of the other
modules in the system. If an end user wants to access
arecord in a file, the system has a record of the disk/
module in which the file resides, via the system
directory and the file’s pathname (explained later).
The system routes the request to the particular server
on that module. The server executes the request and
transmits the record back to the requester. Multiple
server processes can be assigned to the same module,
thus allowing two or more network transactions to
be processed simultaneously. Requests are assigned
to idle servers as they arrive, and if all servers are
busy the request is queued.

Intersystem servers. Network transactions across
systems are accomplished by a pair of system-pro-
vided processes called a network client, running in
the requesting system, and a nefwork server, running
in the server system. Communication between the
two processes is achieved by means of an X.25 virtual
circuit. The virtual circuit is a bidirectional com-
munication path between two processes that is de-
signed to permit access to the CCITT X.25 packet layer
(level 3). The packet layer is implemented within the
system via a special process called an x.25 gateway
process. This process executes in the module (re-

306 HARRISON AND SCHMITT

ferred to as a gateway module) within the system
that contains the actual communication line connec-
tion to the external network. Figure 11 illustrates the
relationship between the network client and the net-
work server. NETWORK is in operation when a user
process requests services or resources that are in
another system; it is transparent to the user. The
following sequence of steps describes a NETWORK
transaction. Note that a NETWORK transaction can
also include LINK transactions. Figure 11 illustrates
the following example:

1. The requester user process needs service from a
remote system. NETWORK sends a request message
to the network client process within its system. If
the requester and network client processes are
located in different modules, the request is trans-
mitted to the gateway module via the LINK.

2. The network client forwards the request message
over the virtual circuit to the corresponding net-
work server process in the remote system.

3. If the request can be executed in the network
server module, e.g., if the file exists in this module,
it is executed; otherwise, the request is forwarded
via LINK to a link server in the target module of
the server system.

IBM SYSTEMS JOURNAL. VOL 26, NO 3, 1987

4. The reply message is eventually returned to the
requester, using the reverse path.

Both intrasystem and intersystem server perform-
ance are controlled by assigning scheduling priorities
and by the use of multiple server processes. Network
transactions vary widely in size.

At LINK speeds, these differences are not noticeable.
However, at NETWORK speeds a single large transac-
tion can monopolize a server for a relatively long
time, during which time other smaller transactions
must wait. The use of multiple client-server pairs
between two systems reduces this effect, because it is
unlikely that several large transactions will occur
simultaneously.

Naming conventions. All resources within a system
are uniquely identified via a resource name. Re-
sources that can be named include the following:

¢ Boards

¢ Processing modules

Devices: terminals, printers, and communication
channels

Disks

Tape units

File directories

File data sets

An overall naming convention is established to allow
users to reference certain resources within a system.
The convention identifies the resource name as a set
of qualified names called path names. The qualifiers
of the path name are as follows:

¢ System name, for example, %Sysl, where % is
the delimiter and Sys1 is the actual system name

The second qualifier may consist of the name of any
one of the following resources:

Module

Disk

Device: terminal, printer, and communication
channel

s Tape

The fully qualified path name uniquely identifies the
resource within the system. Because the full resource
name contains the system name, this name is also
unique within a network of systems connected via
the NETWORK product.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Examples of resource names are the following:

o %sysl#md identifies processing module m4 in
system sysl; the # and % signs are the delimiters
and are user-definable.

s %sys1#d02 identifies disk name d02 in system
sysl.

s %sysl#termS identifies terminal name termS in
system sysl.

Directories and files are identified via the disk on
which they reside. Consider the following example:
%sys1#d02>dir2>filel. This identification defines
filel contained in directory dir2 residing on disk d02
contained in system sysl. The delimiter is >. All
qualified names are user-definable.

Directory structure. The directory structure consists
of a hierarchical structure of objects, such as the
following:

¢ Subdirectories
¢ Files
¢ Links

Links are pointers to other objects, which are in
other directories. The directory structure is illus-
trated in Figure 12.

The root of a directory defines a logical disk, and all
objects on the directory must reside in a single logical
disk. A logical disk can be composed of more than
one physical disk, and each logical disk has a pack-
master directory on it that uniquely identifies it to
the system. The packmaster may be considered to
be the root of the directory.

One packmaster on each moduie is designated the
master disk, and this is used to keep the system and
group directories for that module. System directories
contain the following libraries and files:

System files
Command libraries
Object libraries
Include libraries
Tool libraries

Group directories are used to help categorize users.
For example, each department could have its own
group directory, and each group directory could
contain person directories, which are directories as-
sociated with each user. Group directories are illus-

HARRISON AND scHmTT 307

Figure 12 Directory structure

HARRISON - FIGURE 12

trated in Figure 13. Users of the system are known
by user names, which are of the form person-group.

Note that the accessing of resources in the system is
location-transparent, even though the path names of
the resources contain identification of the system
and module at which the resource is located. One
may conclude that if the resource is moved to a
different module or system, the name must be
changed. This is not the case, however. If the re-
source is to be moved, a LINK may be inserted in the
directory slot for the resource to indicate its new
location. The search then continues at the new di-
rectory location, and the resource is eventually lo-
cated by the system. Thus, it is possible to move
resources between modules of a system without
changing the resource names.

Starting a multimodule system. It is not necessary to
power-on every module in a system manually. All
the modules in a single system on the LINK can be
powered-on and started up from any one individual
module. This is accomplished via a special setting of
the key switch on the console of a module.

The key switch on the console of a processing mod-
ule can be set to the “System Master” position. When
this is set and the “Power On” switch is pressed, this

308 HarrisoN AND SCHMITT

module (as well as all other modules on the same
system) begins the power-on sequence. After power-
on, each module begins its own start-up sequence.
Thus, one person can start the entire system from a
single module.

At automatic start-up, the code in the programmable
read-only memory (PROM) on the CPU board runs
diagnostics and self-tests. After these have run suc-
cessfully, the module finds the master disk, and code
in the PROM starts up the master disk and reads a
utility program that loads the operating system from
the default boot partition of the master disk. The
operating system initializes all configured devices
and disks and then creates a process that executes
the commands in a special file called MODULE_
START_UP. In general, this file contains commands
that create other system processes for software pro-
gram products, such as NETWORK, X.25, and SNA.

System configuration concepts. The overall physical
configuration of a system is defined to the system by
a set of special files called table files that can be
created and modified only by a specific privileged
user of the system, who is known as the system
administrator. These files are always stored on the
master disk of each processing module in a directory
called system>configuration.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 13 Example of a group directory

FILES SUBDIRECTORIES

FILES SUBDIRECTORIES

THIS_WEEK THIS_.MONTH THIS_YEAR WEEK_OLD - DAY.OLD

FILES

WEEK02_06 | WEEK02_13 WEEK02_20 WEEK02_27

IBM SYSTEMS JOURNAL, VOL 26, NO 3. 1987 HARAISON AND scHMTT 309

Table files exist for the following components:

s Systems

« Modules

« Boards

« Disks

~ Devices

« Gateways

« Nodes

& User registration and access control

The system administrator manipulates these files via
a corresponding table input file .tin, which is essen-
tially a sequence of record descriptions that specify
the contents of the records in the table file. To change
the contents of a table file, the system administrator
modifies the contents of the corrssponding .tin file
and then executes a special system command, called
create_table, using the .tin file as input.

All modules within the system on the LINK each
maintain identical copies of all table files in their
respective system directories on their master disk.
The system administrator manages this via a system
command broadcast_file, which sends an updated
table file from the executing processing module to
all the other modules in the system. Thus, with one
command, the table is updated in the master disk
system directory of all modules. This reduces the
burden placed on the system administrator and al-
lows definition updates from a single module of the
system.

There are several privileged commands that tell the
operating system on a particular module to imme-
diately recognize new components added to the table
file. These are called the configure__components com-
mands. Thus new components, such as terminal
devices, disks, and modules, can be dynamically
added to the system and allocated to users without
requiring an IPL procedure. This is of immense im-
portance for a system in which services must be
continuously available to users.

This concept promotes horizontal growth of the
system by allowing nondisruptive growth of process-
ing modules and increased processing power and
function within the system. The additional mod-
ule(s) can be utilized for such purposes as the follow-
ing:

s Off-loading the current modules that may be at
full capacity
» Increasing the overall system performance

310 HarmsON AND SCHMITT

« Dedicating the module as an exclusive file server,
transaction processor, Or communication server

Administrator procedure: Adding a module. Assume
that we are to add module m3 on the LINK that
already contains two existing modules m1 and m2.
The system administrator actions to accomplish this
are as follows:

1. Physically connect m3 to the local-area network
LINK.

2. From a terminal at either m1 or m2, dynamically
update the module, disk, and device .tin files with
the new information about m3.

3. Issue create_table and broadcast_file com-
mands. This sends the updated table file to the
other modules of the system.

4. Issue configure__components commands on both
ml and m2 so that the new resources added on
module m3 are recognized in modules m1 and
m2.

5. 1pL m3 so that users on this module can access
resources available in the updated three-module
system.

Generic 1/O concepts

The operating system provides users with an 1/0
system that consists of a standard set of routines that
apply to all devices and files. These routines are
accessed directly through entry points into the op-
erating system space or more conveniently through
language 1/0 facilities supported by the system’s high-
level languages.

All 1/0 uses the concept of a port, which is a per-
process logical channel through which all 1/0 opera-
tions are performed. The operating system maps a
named file or device into a local port ID via an
application process call to the attach function. This
port ID is returned to the application process, and
from then on the application process simply refers
to this port iD for all subsequent 1/0 activity, such as
read and write.

Within the operating system space, the port ID ac-
tually maps to a unique set of pointers, called transfer
vectors, that invoke the unique file or device routines
to execute the requested function. In addition, if the
device or file is located in a remote processing mod-
ule, these vectors include calls to the appropriate
forwarding routines, either LINK or NETWORK, to
invoke the remote servers to carry out the request.
Figure 14 illustrates these concepts, which are em-

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 14 Generic Input/ Output structures

LOCAL O

LOCAL /O

bodied as generic 1/0 structures. If the artach request
specifies a local resource, the respective transfer vec-
tors for the local 1/0 handler are set up for the port
ID. Similarly, for a remote resource, the remote
router transfer vectors are associated with the port
iD. Thus, requests may be routed to the appropriate
server for execution in the target processing module.

Transaction processing capabilities

Up to this point, we have discussed fault tolerance
and the distributed nature of the operating system
over several processing modules and have seen that
in each module different levels of multiprocessing
are available. In this section, we discuss some basic
capabilities of the transaction processing system.
These facilities are important because a major use of
the system is in on-line transaction processing for
which continuous availability of services 1s required.

The system contains an integrated transaction pro-
cessing facility that allows programmers to write
programs in any one of the following six program-
ming languages:

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1887

* PL/I
* FORTRAN
COBOL
Pascal

e BASIC

e C

The system has no distinct transaction manager in
that terminal users do not have to log in to the
transaction system to use functions provided by it.
However, in each module there exists a transaction
processing (TP) overseer that takes note of changes
made by a protected transaction to the file system.
Any transaction may be protected; file changes made
by the transaction are either all made or all backed
out to maintain file consistency and integrity. Trans-
actions can be protected by calling a start transaction
system routine; protection can be ended by calling a
commit system routine. Transaction protection is not
mandatory. When the transaction does not need
protection, these statements need not be issued in
the transaction, so that nonprotected transactions
are not penalized with any performance overhead.

HARRISON AND soHMTT 311

Figure 15 Transaction requester server model

TP OVERSEER

All system facilities are available to the transaction.
This gives a more integrated software system because
all functions are contained within the operating sys-
tem and used by the transactions. No duplication of
function exists between the operating system and the
transaction system that can lead to problems in
maintenance and software development.

Because a single transaction may have work executed
in multiple modules or even systems, commit sup-
port is provided by a two-phase protocol that allows
the files at the different processing modules to be
either all updated or all backed out.

Discussed earlier in this paper was the system re-
quester/server model for providing distribution be-
tween modules (and systems). The user also has this

312 HARRISON AND SCHMITT

structure available when writing transaction pro-
grams, Basically, a requesting process is connected
to one terminal (or to several terminals, if multitask-
ing is used). The requesting process receives the input
(transaction requests) from the terminal operator.

The requesting process then requests service from
one or more servers that are located in the same or
different modules of the system to cause the trans-
action function to be carried out. Typically, these
server processes are located at the database site. For
example, a transaction may entail a simple database
lookup. Once this function has been executed, a
reply may be sent back to the requesting process,
which then sends a reply back to the terminal oper-
ator. The requester/server structure is very general,
and servers can either be single-threaded or multi-

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

threaded, depending on the demand made on the
service being provided. The server configurations are
illustrated in Figure 15.

Transaction protection. For transaction protection, a
TP overseer must be active in each module of the
system. Also required are the following two files: the
Transaction Work Area (Twa) file and the Transac-
tion Log File (TLF).

For the user to initiate protection within his appli-
cation program, a s$start_transaction instruction is
issued. To end this protection, either of two instruc-
tions, a s$commit or a s$abort, is issued. The only
changes protected are those to transaction files.

When the s$start_transaction command is issued,
an internal transaction ID is assigned by the system.
This allows the system to keep track of the changes
made to transaction files during the execution of the
transaction. The transaction ID is not seen by the
application. Therefore, only one protected transac-
tion can be active at any one time for a particular
application.

As changes are made to files throughout the system
(possibly in different modules) by the transaction,
the TP overseer in each module keeps a table of the
changes made to the transaction files for each pro-
tected transaction. These changes are kept in mem-
ory. All file records changed by the transaction are
locked automatically by the system so that data file
consistency is maintained for other system users. For
each server request, the system appends to the re-
quest the transaction ID that allows the TP overseer
to build the appropriate tables. The changes to the
file system can occur on any module of the system
in a manner transparent to the user.

The following occurs when a s$commit command is
issued. The system, on receiving the s$commit in the
module where the initiating transaction is executing,
communicates with each TP overseer involved for
this particular transaction. Each TP overseer then
sends the tables kept in memory to the TLF on disk.
When the transmission is completed, a response is
sent to the initiating module. Phase 1 of the commit
has been completed when responses have been re-
cetved from all TP overseers involved in the trans-
action. Should some crash occur in the system after
this point, the transaction system at re-IPL time can
continue applying the changes, because all changes

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

are on disk, along with the identification and status
of the transaction.

Phase 2 of the internal commit support works as
follows. The initiating TP overseer sends a request to
each participating TP overseer to begin writing out
the records that have been changed. This is essen-
tially a two-step process.

In the first step, all of the actual changed records are
created in the TLF file. Information regarding what
is in the TLF at any stage is kept in the TWA file. Both
the TWA and TLF are then written to disk.

At this point, the afterimages of the transaction
changes are stored on the TLF. The next step is to
apply these changes to the actual physical records.

As these are being applied, the TWA is updated to
indicate which of the records have been written out
to the actual physical locations of the records, so that
if a crash does occur the writing out of the records
can continue after re-1PL.

Once all records have been written out to disk for
the transaction, all locks held by the system for this
transaction are released. The file system now reflects
all changes made by the now-committed transaction.
This flow is illustrated in Figure 16, where the fol-
lowing steps are taken: (1) a protected transaction is
started that involves three processing modules; (2)
servers make changes to the file system in each of
the three modules; (3) an initiating transaction com-
mits changes made or not made.

System protection against deadly embrace. The sys-
tem continually checks for a “deadly-embrace” sit-
uation. That is, user A has locked record g and wants
record b, while user B has locked record b and wants
record a. If such a situation arises, the system backs
out one of the transactions on the basis of user
parameter settings. On s$start_transaction, a param-
eter is defined that allows the user to indicate how
he wants the system to handle a deadly-embrace
situation if it should arise. The user is given the
following two choices of deadly-embrace avoidance
parameters;

& Priority of process: Abort the lower-level process
that issues the request and causes a deadly em-
brace.

HARRISON AND scHMTT 313

Figure 16 Transaction processing

|| INITIATING TRANSACTION

| PoveRsEer

LOCAL AREA NETWORK

1 TP OVERSEER

TP OVERSEER i

*] ength of waiting time: Abort the transaction that
has been waiting for the lock (that creates a deadly
embrace) the shortest time.

Systems Network Architecture (SNA)
implementation

The system offers communications capabilities that
allow a wide attachment of asynchronous and bisyn-
chronous (BSC) terminals. In addition, it is possible

314 HaRRISON AND SCHMITT

to connect across a BSC link to a System/370 host,
thereby allowing applications to communicate with
System/370 applications. BSC terminals can also con-
nect downstream to the System/88, and a user pass-
through application allows terminal users to com-
municate with the System/370 host.

However, no significant SNA capability existed in the
system as originally announced. Many users required
that their system be incorporated fully into SNA

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 17 System Network Architecture capability

NETVIEW

SECONDARY
SUPPORT
{SNA NODE
TYPE 2.0)

CASM
SUPPORT

LuUo
Lh
Lu2
LU3

Lup
LUB.2 (CICS)

PEER
ALERTS SUPPORT
Lue.2

(SNA NODE
TYPE 2.1)

PRIMARY
SUPPORT
(SNA NODE
1YPE 5)

LUO
LU l’
LU2

327X 4700 PC 316X

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987 HARRISON AND sCHMTT 315

Figure 18 System communications capability

BSC

SNA
SECONDARY
APPC

B8SC
SNA
SECONDARY

BSC

NETWORK

BSC
SNA
SECONDARY

SNA SNA
SECONDARY SECONDARY

prmmy. SERIES/

. SYSTEM/36

— i
bvanlp SYSTEM/B8

SNA

RETAIL
FINANCE

networks and have an afhnity for System/370 sub-
systems and other sNA products. This connectivity
is particularly important for continuous-availability
applications within an SNA network, because the
system provides a fault-tolerant layer where routing
to System/370 hosts (and other systems) can be
achieved. In this fault-tolerant layer, limited stand-
in processing is possible in the case of host-availabil-
ity outages owing to network or system failures. In

316 HARRISON AND SCHMITT

essence, the system can provide a fault-tolerant view
of the network to a user.

The interesting challenge in adding the sNa function
is that of function placement within the distributed
operating system. It is important to take advantage
of the distribution characteristics already existing in
the system and not to introduce artificial constraints
in which the sNA function can execute within a

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

system configuration. These considerations give the
application programmer the ability to run the ap-
plication on any processing module indepen-
dently of the locations of the internal SNA function
and Synchronous Data Link Control (SDLC) links in
the system.

The sNa function has been modularized into the
following major components:

* SNA network administration provides system
administration capabilities to define SNA resources
to the system via a menu-driven interface.

* Configuration manager provides a common con-
figuration management for the SNA products.

e Control point provides a common control point
for the sNa functions.

* Logical unit services provide user session manage-
ment.

» Path control provides network layer routing func-
tion.

* sDLC link control manages the flow of data across
a physical link.

The sna function has been designed so that distri-
bution among the foregoing SNA components is pos-
sible. Each of these major components can execute
in separate processes by utilizing the interprocess
capabilities and can execute in any processing mod-
ule of the system. Similarly, transaction programs
using the SNA support can run in the same or another
processing module from the logical unit (LuU) that
supports it. The spLC link support can execute in yet
another processing module.

By making the SNA components completely distrib-
utable, the user can effectively place the sNa function
throughout the system as best fits requirements. The
SNA function consists of the following major func-
tional areas:

¢ Primary support is principally for downstream-
attached cluster controllers, including support for
LU types 0, 1, 2, and 3.

¢ Secondary support is upstream of an SNA host.
The system appears as a cluster controlier (Physi-
cal Unit Type 2.0) to the host and supports LU
types 0, 1, 2, and 3.

¢ Advanced Program-to-Program Communication
provides support for LU 6.2. This is a means of
providing advanced program-to-program support
to allow effective peer connection to such systems
as System/36 and System/38.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

e Communications and System Management
(casM) consists of two major components: (1) Alert
Generation causes alerts to be generated by the
system and sent to Netview in the SNA host. Alerts
generated by downstream-attached terminals are
also passed through to the SNa host. (2) Distributed
Systems Services (DsS) interfaces with Distributed
Systems Executive (DSX) in the SNA host. This
allows files and program fixes to be controlled at
a central System/370 database and to be distrib-
uted to System/88s in the SNA network.

The sNA capability is illustrated in Figure 17. The
total communications connectivity has been greatly
enhanced by the addition of the SNA function and is
illustrated in Figure 18.

Concluding remarks

The System/88 architecture is a design of Stratus
Computer, Inc. This system combines duplexed
hardware with distributed operating system software
to provide a high-availability, fault-tolerant comput-
ing system. Fault tolerance is built into the hardware
so that no special programming is required by the
application programmer and little is required by the
operating system. Fault tolerance is accomplished
with no system or application software overhead and
with no performance degradation.

All hardware operations are continuously checked at
every machine cycle, and component failures are
located when and where they occur. Failing compo-
nents are automatically taken out of service, and the
duplexed partner continues processing without in-
terruption. Service calls are placed automatically to
a support center, and replacement components are
sent directly to the customer site, usually within 24
hours. The user can replace boards dynamically.

The system is designed to grow easily, as customer
needs grow, by offering both horizontal and vertical
growth. Multiple systems can be interconnected lo-
cally or through communication networks. Addi-
tional users, terminals, printers, and DASD can be
added dynamically. With proper planning, this can
be accomplished without interrupting service, while
maintaining a single-system image to end users.

The operating system is an advanced virtual-mem-
ory system that supports multiprogramming, multi-
processing, multiple processors (processors con-
nected horizontally), and networking.

HARRISON AND schmTT 317

User-oriented software facilities provide a compre-
hensive interface between the operator, application
program, and operating system. A rich set of higher-
level languages and sophisticated development and
debugging tools are also provided. A powerful trans-
action processing facility includes all the tools and
structures required to develop transaction processing
applications that demand fast response time in a
high-volume, on-line environment.

This system provides an integrated solution for en-
terprises that require continuous processing capabil-
ities that approach 24 hours per day, 7 days per
week.

Acknowledgment

The authors thank Dave Van Voorhis for his rigor-
ous review of this paper.

General references

IBM System/88: Connectivity, GG66-0239, IBM Corporation;
available through IBM branch offices.

IBM System/88. Introduction to Operating System, SC34-0664,
[BM Corporation; available through IBM branch offices.

IBM System/88: Operating Systems Reference, SC34-0665, IBM
Corporation; available through IBM branch offices.

IBM System/88: Cobol Transaction Processing Services and Ref-
erence, SC34-0674, IBM Corporation; available through IBM
branch offices.

Edward S. Harrison /BM Communication Products Division,
1000 NW S1st Street, Boca Raton, Florida 33432. Dr. Harrison
joined IBM in Hursley, England, in 1970. He participated in the
design and development of DOS/VTAM until 1974. In 1975, he
was a member of the SNA architecture and design team that was
responsible for VTAM ACF (SNA 3). From 1976 to 1982, he was
lead communications designer for the IBM 8100/DPPX, for which
work he received an IBM Division Award. Since 1982, he has
been working on midrange, general-purpose, and fault-tolerant
computer systems. Dr. Harrison, Senior Technical Staff Member,
is currently lead architect on the System/88 program. He graduated
in 1966 from King’s College, London University, with a B.S.
honors degree in electrical engineering. In 1971, he was awarded
a Ph.D. degree in computing science by the University of New-
castle upon Tyne, England.

Edwin J. Schmitt /BM Communication Products Division, 1000
NW 51st Street, Boca Raton, Florida 33432. Mr. Schmitt joined
IBM in 1962 in Poughkeepsie, New York, as a diagnostic engineer
for System/360 Models 65 and 75. He is a senior programmer in
the fault-tolerant systems programming development group, where
he 1s engaged in design and support for Systern/88. Mr. Schmitt
received his B.S. in electrical engineering from Manhattan College
in 1962. In 1966 he joined the Kingston Programming Center,
where he worked on numerous OS/360-370 supervisor and recov-
ery management projects. From 1972 to 1975, he was the design

318 HARRISON AND SCHMITT

manager for the Systems Network Architecture implementation
for VTAM. Mr. Schmitt was team leader for the 8100/DPPX
communications development from 1976 to 1983. Since 1983, he
has been involved in the architecture and design of communica-
tions within minicomputers and fault-tolerant computer systems.

Reprint Order No. G321-5299.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

