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This  paper  describes a novel  technique  for the specifi- 
cation and implementation of layered  communication 
software. The technique  is called Parallel  Activity Spec- 
ification  Scheme  (PASS)  and  is  based  on  an  extended- 
state  machine  model of protocol automata. It allows a 
convenient  description of the  communication  behavior 
of concurrent  systems  and  semiaufomatic  generation 
of programming  language  code  from  the  specification. 
The  first large-scale experience  gained with this tech- 
nique  was  in the specification  and  implementation of 
an IS0 session layer. The  code  generation  process  and 
the  embedding of the  session  code  into a portable OS1 
operating  system  environment  are  described  in detail. 

I n recent years, the International Organization for 
Standardization (ISO) Reference Model for Open 

Systems Interconnection’ has gained increasing im- 
portance. It defines a framework for protocol stan- 
dards, allowing different systems from different man- 
ufacturers to communicate with one  another. Sys- 
tems meeting the  standards can exchange informa- 
tion with one  another  and  are said to be “open”  for 
communication with other systems. 

In the ISO Reference Model for Open Systems Inter- 
connection, complex communication protocols are 
structured in layers, and each layer  is further struc- 
tured in entities. An entity uses the services  of the 
layer  below for communicating with another entity 
in the  same layer but in a different system. This 
communication follows strict rules, called a protocol. 
An important part of a protocol standard is the exact 
specification of the allowable sequences of events in 
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time. For example, in a connection-oriented proto- 
col, a  data transfer request is allowed only after a 
connection has been established. An attempt  to send 
data before establishing a  connection results in an 
error message. 

In an ISO or Comiti Consultatif International  TBe- 
graphique et  Tellphonique  standards  document, the 
allowed sequences of events are usually described in 
the form of a state/event table. Translating  this table 
into code is a significant undertaking. The state/ 
event table in standards is only a semiformal descrip- 
tion of the protocol machine. Thus,  a tool to assist 
the  programmer in translating a  standards  document 
into code would be useful, and has been developed 
at  the IBM European Networking Center (ENC). 1s0 
is currently considering the formal description lan- 
guages LOTOS and ESTELLE for this purpose. This 
tool, called the Parallel Activity Specification 
Scheme   PASS),^ can be  used for specifying any sys- 
tem of parallel processes  (e.g., communication sys- 
tems, process control systems, etc.). The first practi- 
cal experience using PASS was gained with the imple- 
mentation of an ISO Session Layer (Layer 5 in the 
Reference Model). 

0 Copyright 1987 by International Business Machines  Corporation. 
Copying in printed  form  for private use is permitted  without 
payment  of royalty provided that ( 1 )  each reproduction is done 
without  alteration  and (2) the Journal reference and IBM copyright 
notice  are  included on the first page. The title and  abstract,  but  no 
other  portions, of this  paper  may be copied or distributed royalty 
free without  further permission by computer-based  and  other 
information-service systems. Permission to republish any  other 
portion of this  paper  must be obtained from the Editor. 

FLEISCHMANN.  CHIN, AND EFFELSBERG 255 



This paper describes the PASS technique and its use 
in the session  layer implementation. We introduce 
the basic concepts of PASS, give an overview of the 
ISO session  layer  service and protocol, and describe 
the specification and implementation of the session 
layer  with PASS. An operating system environment 
for OSI software  is then introduced, and it is  shown 
in detail how the generated session  layer code can be 
embedded into this environment. 

PASS: A specification  technique  for  parallel 
processes 

PASS is  based on extended finite-state machines. 
Basicjnite-state machines can only store status in- 
formation implicitly, as a consequence of being in a 
particular state. Extendedjnite-state machines allow 
the declaration of variables to store information. For 
example, the sequence number of a  current synchro- 
nization point or the  number of unacknowledged 
frames could be kept in a variable. This extension is 
essential for the practical use of state machines for 
protocol description. 

When PASS is  used for OSI software, it helps the 
programmer to produce code from a  standard doc- 
ument in a disciplined way. Without PASS, coding 
would be done directly from the ISO or CCITT docu- 
ment (traditional coding). With PASS, an intermedi- 
ate step is introduced. The PASS description of a 

The PASS graph  refinements  contain 
the  local  variables of a  process,  the 

operations,  and  the  functions 
defined on the  local  variables. 

protocol is more detailed than  the original standard 
document. All ambiguities have  been removed, and 
intermediate states have  been introduced that  are 
not visible at the level  of abstraction of the state/ 
event table in the  standard.  The PASS specification 
contains enough detail to produce code semiauto- 
matically. A code generator can be written for se- 
quential or parallel programming languages. Our 
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Figure 1 The  role of PASS in  the OS1 software  development 
process 

implementation of the code generator produces Pas- 
cal code. The role  of PASS in the Os1 software  devel- 
opment process is shown in Figure 1. 

Outline of PASS. A system described in PASS consists 
of a set  of  processes communicating with one  an- 
other via  messages.  Each  process has a unique name, 
and  the  number of  processes in a system is static. 
The messages  have names (message name)  and pa- 
rameters (message parameters). Messages  with the 
same name  are of the same message type. In PASS, 
the description of a process consists of a PASS graph 
and  a PASS graph refinement. 

The PASS graph describes the sequences in which a 
process sends messages,  receives  messages, and per- 
forms internal functions and operations. The PASS 
graph is described by nodes and edges between the 
nodes. The nodes correspond to  the main states and 
the edges to  the possible transitions. The arcs (edges) 
point from the starting state (node)  to  the successor 
state. The edges are marked with the event causing 
the transition. 

The PASS graph refinements contain  the local varia- 
bles  of a process, the operations, and  the functions 
defined on  the local  variables. (Operations change 
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the values of local variables, andfunctions leave them 
unchanged.) There are four different types of func- 
tions  and operations. For each message type that can 
be  received by a process, there exists a receive-mes- 
sage specijication that describes the message param- 
eters and  the effect  of a received  message on the 
values of the local variables. For each message type 
that is sent by a process, there is a send-message 
specijication that describes the message parameters 
and how the values of the message parameters are 
determined from the values of the local variables. 

An internal operation specijication describes how an 
internal  operation changes the values of the local 
variables. Besides these changes, an  internal opera- 
tion can yield different results. For example, a PUSH 
operation on a stack of limited depth can have the 
result dune or stack full. The  internal  operation 
specification also contains  the possible results. An 
internal function specijication shows the possible  re- 
sults of the  internal  functions in dependence of the 
values of the  internal variables. The values of all 
local variables define the local state. 

The execution of transitions from one  main state to 
another can have four reasons. A transition can be 
triggered by sending messages,  receiving  messages, 
results of internal functions, and results of internal 
operations. Accordingly, in a PASS graph, four types 
of nodes can be distinguished. There are two types 
of communication nodes-send nodes and receive 
nodes-and there are two types of internal nodes- 
internal  function  and  internal  operation.  The graph- 
ics representation of the four node types is shown in 
Figure 2. A complete PASS diagram (a PASS graph) 
describes the state-transition behavior of a process 
and all of its external interactions, i.e., all the mes- 
sages it will send or receive. Figure 3 shows an 
example of a PASS graph. 

A send node corresponds to a main state where one 
process wants to send a message to  another process. 
The send operation can be synchronous; that is, the 
sending process can continue only when the receiv- 
ing  process  is in a receive main state where it accepts 
a message of this type. Otherwise the send operation 
is an asynchronous one. 

For  asynchronous sending, PASS provides a buffer 
mechanism (i.e., input pools). The finite size  of these 
pools must be declared explicitly, and  the  maximum 
number of  buffered  messages must be declared. If 
the pool  of the receiving process is full, the sending 
process is blocked until at least one slot in the  input 
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Figure 2 The four node types of PASS 
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Figure 3 An example of a PASS graph 
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pool becomes free. The size  of the  input pool is a 
property of the receiving  process. Therefore, the 
receiving  process determines whether a message  is 
sent synchronously or asynchronously. 

If a process wants to send different messages alter- 
natively, send nodes can have multiple outgoing 
edges that  are marked with the message type and  the 
name of the process that will receive this message. 
Depending on  the message to be sent, the process 
performs the corresponding transition. If a send node 
has two or  more outgoing edges, and two or more 
messages can be sent, one of the possible transitions 
has to be chosen. For this purpose, a priority list can 
be  defined. The transition with the highest priority 
is then executed. If a process cannot send any mes- 
sage, and infinite blocking must be avoided, a time- 
out edge can be provided. If a process cannot send, 
the time-out transition is executed. 

The graphics representation of a send node is a box 
with  heavy-lined arrows for the transitions. A prior- 
ity  list can be entered in the lower  left  half  of the 
box. A time-out transition is represented by an edge 
marked “time,”  and the timer value is entered in the 
lower  right  half  of the box. In the PASS graph shown 
in Figure 3 state STA 1- 1 is a send state. In this state, 
the corresponding process wants to send the message 
T-ConnectRequest  to the process Trans. 

A receive node corresponds to a state where a process 
expects a message  from another process. If a process 
has an  input pool and if the expected message  is  in 
the  input pool, the transition to  the next state is 
executed. If a process has no  input pool but  the 
expected  message  is  offered by the corresponding 
process, the transition to  the successor state can be 
performed. If the expected  message  is not in the 
input pool (receiving process  with input pool) or if 
it is not offered  by the corresponding process  (receiv- 
ing process without input pool), the receiving  process 
will  be blocked. The receiving of different mes- 
sages-possibly from different processes-is allowed 
in one receive state and a corresponding number of 
edges  leave the state. The outgoing edges are marked 
with the message  type and  the name of the sending 
process from which the message  is expected. 

If a receive node has two or more outgoing edges, 
and two or more messages can be  received, one of 
the allowable transitions has to be chosen. For this 
purpose, a priority list can be defined, and  the  tran- 
sition with the highest priority is then executed. 
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When none of the expected messages arrives, the 
receiving  process  is blocked. In order to avoid per- 
manent blocking, a time-out mechanism is provided 
in PASS. A time-out transition is  specified  with its 
own  edge similarly to time-out edges in send states. 

The graphics representation of a receive node is a 
box  with  single-line arrows as the outgoing edges. 
The type of the expected  message and  the name of 
the sending process are marked on each edge. A 
priority list can be entered in the lower left half of 
the box. A time-out transition is represented by an 
edge marked “time,”  and  the  timer value  is entered 
in the lower  right  half  of the box. 

In the PASS graph shown  in  Figure 3, state STAl is 
a receive state. If in this state the process  receives the 
message S-ConnectRequest from the process  User, 
the transition to state S T A L I  is executed. If the 
process  receives any other message from the process 
User (the symbol * in  Figure 3 means any other 
message), the transition to state STALIO is per- 
formed. In state STAl  the message T-Connect 
Indication from the process Trans causes the transi- 
tion to state STA1-20.  All other messages from the 
process Trans are thrown away, i.e., the transition 
marked with (Trans)* is executed. 

An internal function corresponds to a main state 
where a process evaluates local  variables.  Because 
PASS is  based on extended finite-state machines, it 
must be  possible to evaluate the status of local  vari- 
ables and make transitions based on their values. 
For example, process execution can depend on  the 
contents of an arriving message.  Because a receive 
node distinguishes only types of amving messages, 
not their contents, message contents are evaluated 
in a subsequent internal function node. Another 
example for an internal evaluation is a counter for 
the number of unacknowledged frames. Because the 
result of an internal evaluation is deterministic, ex- 
actly one transition will  be executed. There are  no 
priorities, and there is no time-out. 

The graphics representation of an internal function 
is an oval  with  single-line arrows for the transitions. 
The lower  half of the oval contains the  name of the 
internal function.  The upper half contains  the op- 
tional state name. Each outgoing edge  is marked 
with the result  of the variable evaluation that leads 
to this transition. In the example, state STAZAl  is 
an internal function state. In this state, the internal 
function Interpret is executed. This function can 
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have several results, depending  on  the state of the 
internal variables. The results CN and JX and  the 
corresponding transitions  are shown in Figure 3. 

An internal operation corresponds to a state where a 
process  assigns new values to local variables. De- 
pending on  the  computed new  values, different tran- 
sitions to successor states can be made. As for inter- 
nal functions, the  internal  computation is determin- 
istic. Therefore, there are  no priorities and there is 
no time-out. 

The graphics representation of an internal  operation 
is an oval with heavy-lined arrows for the transitions. 
The lower half of the oval contains  the  name of the 
internal  operation.  The  upper half contains an op- 
tional state name. Each outgoing edge  is marked 
with the outcome of the  internal operation that leads 
to this  transition. A common case for an internal 
operation is to provide for an error exit. 

In the example, state STA1-2  is an  internal opera- 
tion state. In this state,  the  internal  operation S e t  
Vtcu is executed. If an internal operation can always 
be performed and always has the same effect on  the 
values of the local variables, then an internal opera- 
tion state has exactly one successor state. The tran- 
sition to the successor state means  that  the  internal 
operation is performed with the only possible  effect. 
In such a case, the marking for the corresponding 
arc can be omitted. 

In  the  current  version of PASS,  the 
graph  refinements are described in 

the  Pascal  language. 

In addition to specifying the  communication behav- 
ior of a process, it is  necessary to describe the func- 
tions and  operations in a formal language. Because 
functions  and  operations are purely sequential, any 
formal language for sequential processes may be 
used. This part of a PASS specification is called PASS 
graph refinement. In the  current version of PASS, the 
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graph refinements are described in the Pascal lan- 
guage,  which  was chosen for two reasons. The  lan- 
guage  is  very  widely used, and  the  current version of 
the  code generator generates Pascal code for the PASS 
graph part.  Thus it is  very straightforward to inte- 
grate the PASS graph refinements with the code gen- 
erated for the PASS graph. 

PASS is  a  specification  language for 
parallel  processes. 

A comparison of PASS with ESTELLE and LO- 
TOS. PASS is a specification language for parallel 
processes. Communication protocols are only one 
example of its use. For the specific purpose of de- 
scribing communication protocols, other specifica- 
tion languages have been developed. In particular, 
ISO is currently working on the standardization of 
two formal description techniques for protocols, 
ESTELLE3 and LOTOS4 In this section, some aspects 
of these ISO languages are described and compared 
with PASS. 

In  all three specification techniques (ESTELLE, LOTOS, 
and PASS), a system consists of communicating pro- 
cesses.  In each of these specification techniques a 
process5 can be defined in the following two steps: 

Communication mechanisms, through which the 
processes communicate with one  another 
Communication behavior, which  is the relation- 
ship between inputs  and  outputs in terms of the 
order in which inputs  and  outputs may occur, and 
their value dependencies 

Communication  mechanisms. In ESTELLE, processes 
are a class  of modules, and  the  abstract mechanism 
defined for communication between processes  is an 
interaction. Interactions  are exchanged via interac- 
tion points. A queue (FIFO buffer) is associated with 
each interaction  point.  The  queue stores interactions 
received from processes.  Because these queues have 
an infinite length, a process is never blocked when it 
sends an interaction (i.e., a message). This kind of 
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message exchange is called asynchronous, which im- 
plies that  the receiver cannot prevent the sender from 
putting  data in the  queue. Consequently, in ESTELLE, 
a formal description of back pressure is not possible 
without introducing an additional message.’ With 
this message, the process  tells its partners how many 
messages they can deposit in its queues (credit). After 
sending the  maximum  number of messages, they 
have to wait for  new credit. 

Because of the use  of FIFO message queues, additional 
interaction  points (queues) have to be introduced in 
an ESTELLE specification to allow priority messages 
to pass the messages in the  normal  queue. 

In  LOTOS, a similar interaction concept is used. The 
atomic form of a LOTOS interaction is an event, which 
is a unit of synchronized communication  that may 
exist  between  two  processes.  An event will only occur 
if both involved processes are prepared to engage in 
the event by making the  appropriate event offer 
(synchronous  communication).  Thus  communicat- 
ing processes are coupled tightly. Without  introduc- 
ing additional processes to execute buffering func- 
tions, asynchronous  communication is not possible. 
An example of a buffering  process can be found in 
Reference 6. 

In LOTOS, priorities for messages are not allowed. If 
more than  one event is  eligible  for execution, one is 
chosen at  random. Thus, one event cannot be de- 
scribed as having a higher priority, which  is an 

In PASS, both  synchronous  and 
asynchronous  communication are 

possible. 

important deficiency  in process control applications. 
For example, an alarm message might be more im- 
portant  than all other offered events. 

In PASS, both  synchronous  and  asynchronous  com- 
munication  are possible, as described earlier. An 
input pool  size  of zero corresponds to the synchro- 
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nous message exchange. The finite size of an  input 
pool makes it easy to describe back-pressure policies. 
The possibility of input-pool structures’ allows one 
to define for each message individually whether it is 
to be sent/received synchronously or asynchro- 
nously. 

PASS provides message priorities that  make it easy to 
describe the behavior of  processes  in a conflict. Be- 
cause the priorities of  messages can be different in 
different states (priority field), the priorities can be 
used  flexibly. 

Communication behavior. To model the dependency 
of outputs upon inputs, ESTELLE uses an extended 
finite-state-machine model. Starting from a predeter- 
mined initial state, a process makes transitions from 
one state to the next. A transition is normally trig- 
gered by an input,  and  outputs may or may not be 
produced during  a  transition. In ESTELLE, the state 
space is spanned by the values of  local variables. One 
of these variables is called STATE, or  the major state 
variable, and  the others are sometimes called minor 
state variables, or context variables. All variables are 
typed according to Pascal conventions, thereby al- 
lowing the use of  conventional Pascal operations on 
these types. In ESTELLE, the  operations executed 
during  a  transition are independent of the triggering 
input. This means  that  the  same message accepted 
in different major states can have different effects on 
the context variables. The description of the  com- 
munication behavior is spread out over the specifi- 
cation document.  This makes it difficult to deter- 
mine  the allowable input/output sequences. 

LOTOS defines a set of temporal  operators  to model 
the order in  which events may occur and their value 
dependencies. LOTOS is  based on Milner’s Calculus 
of Communicating Systems;’ examples of  processes 
these operators allow include 

Sequential composition 
Nondeterministic choice 
Parallel composition of processes 
Execution disruption of one process by another 

In LOTOS, the  communication behavior is described 
with behavior expressions that describe observable 
sequences of events. The behavior expressions can 
be parameterized, and recursion extends the model 
to transition systems where the  number of states may 
be infinite. In LOTOS, states do not exist explicitly. 
Instead of sequences of states (as in ESTELLE), se- 
quences of transitions are considered. 
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The model  used for PASS is similar to  the model used 
for ESTELLE in that  the  contents of the variable STATE 
in ESTELLE correspond to  the nodes in the PASS 
graph, and  the context variables in ESTELLE corre- 
spond to  the local variables in the PASS graph refine- 
ments. In ESTELLE, a transition cannot be  triggered 
by an output. PASS allows inputs (receive messages) 
and  outputs (send messages) for triggering transi- 
tions, which  is similar to the procedure in LOTOS. 

In PASS, receiving a message  always has the same 
effect on the local variables and is independent of 
the state in  which it is received.  In ESTELLE, the effect 
of a message (interaction) depends on  the state in 
which it is  received. If the same type of  message can 

It was  easy to implement  a 
generator  that  produces  Pascal  code 

for  the  PASS  graph. 

be received  in different ESTELLE states, different ef- 
fects can be  specified. In LOTOS, receiving a message 
only has the effect  of copying the values of the 
message parameters into local  variables.  In PASS, the 
communication behavior is described separately (i.e., 
by a PASS graph) from the effect  of a transition on 
the local  variables (receive) or message parameters 
(send). 

In ESTELLE, Pascal statements  are used to describe 
the transitions. This is  very  close to  an implemen- 
tation. In LOTOS, an abstract data-type language 
called ACT  ONE' is employed as a sublanguage to 
describe the data-value domains  and operations on 
variables. For the PASS graph refinements, any ap- 
propriate specification technique can be  used.  De- 
pending on  the stage  of a specification, natural lan- 
guage, a formal technique, or a programming lan- 
guage can be employed. 

The semantics of PASS graphs are simple. Therefore, 
it was  easy to  implement a generator that produces 
Pascal code for the PASS graph. If the PASS graph 
refinements are also described in Pascal, the two 
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parts can be combined to form a complete imple- 
mentation of a process. This is  discussed in the next 
section. Even though ESTELLE and LOTOS are both 
intended for international standardization, we be- 
lieve there is a place for PASS because PASS is  easy to 
understand and use, and because PASS is suitable for 
automatic code generation. 

The code for a PASS process consists of the code for 
the  communication behavior (PASS graph)  and  the 
code for the transitions (PASS graph refinements). 
This makes the code easy to understand and  to 
debug. 

Translating PASS into Pascal. A PASS specification 
is a formal description of the behavior of a process, 
including its communication control (message  pass- 
ing and finite-state machine) and its internal sequen- 
tial actions. For the  automatic generation of pro- 
gramming language code, each of these parts is con- 
sidered in turn. 

The message-passing operations for a certain mes- 
sage are translated into corresponding procedure 
calls.  If an  input pool  is  specified in PASS, the corre- 
sponding procedures will provide a buffer for the 
required number of  messages. For each send/receive 
edge for a specific  message type, a Pascal procedure 
call for the corresponding procedure is generated. 
The final mapping of the send and receive operations 
to operating system primitives depends largely on 
the operating system and network environment. 
Therefore, the complete body  of these procedures 
cannot be generated automatically. 

For the  internal  sequential  actions, 
no code  generation  is  required 

because  those  actions are already 
specified in  Pascal. 

The generation of code for the finite-state machine 
can be done in two ways: Either the state/event table 
(a sparse matrix) is stored in some internal format 
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and interpreted at run time, or the states and tran- 
sitions are compiled into sequential pieces  of code 
for which, typically, each piece  of code has a label 
and corresponds to a state/event combination. After 
the action in a  node has been performed, a GOTO to 
the successor  piece of code is computed dynamically. 
In the  current version, the code generator is  of the 
second type; that is, it produces pieces  of sequential 
Pascal code for each state/event combination,  a 
point that is discussed in more detail later in this 
paper. We are studying a generator of the first type 
(state/event table that is interpreted at run  time) in 
order to compare the code produced by the two 
approaches. 

For the internal sequential actions, no code genera- 
tion is required because those actions  are already 
specified in Pascal. The  generator simply copies them 
as procedures into  the Pascal output file. 

At the IBM European Networking Center in Heidel- 
berg, a complete tool set  is being developed for PASS. 
In addition to the code generator for Pascal, there is 
a code generator for Modula-2 on the PC and  an 
interactive, screen-oriented PASS editor for easy data 
entry  and modification of PASS specifications. There 
is also a set of consistency-checking routines for 
analyzing a PASS graph. Thus, unreachable states can 
be detected in the early  design phase. 

Having introduced PASS, we now discuss briefly the 
ISO session layer and  the use  of PASS for the session 
layer implementation. 

The IS0 session  layer  protocol 

Protocols are rules that govern the exchange of data 
in computer networks. Layered protocols result from 
the separation of functions, wherein each protocol 
layer uses the services provided by the layer below 
to provide its service to the layer above. A framework 
for  layered communication protocols was developed 
by the  International Organization for Standardiza- 
tion;  it is known as  the Reference Model for Open 
Systems Interconnection.’ Figure 4 shows the seven 
protocol layers of the ISO/OSI Reference Model and 
their main functionality. The session layer, which  is 
layer five in the Reference Model, provides services 
for synchronizing the communication of session 
 user^.^.'^ The session layer provides means to per- 
form the following functions: 

Establish a  connection with another session user, 
exchange data with that user  in a synchronized 
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manner,  and release the  connection in an orderly 
manner 
Negotiate for the use  of tokens to exchange data, 
synchronize and release the  connection,  and ar- 
range for half- or full-duplex data exchange 
Establish synchronization points within a dialogue 
and-in the event of errors-resume the dialogue 
from an agreed-upon synchronization point 
Interrupt a dialogue and resume it later at a pre- 
arranged point 

The services  of the session  layer are separated into 
functional  units, which are logical groupings of re- 
lated services. 

The kernel functional  unit  supports  the basic session 
services required to establish a session connection, 
transfer normal  data,  and release the session connec- 
tion. This functional  unit  must be available in each 
session implementation.  Optional  functional  units 
relate to the following aspects of  services: 

Negotiated release 
Half-duplex 
Duplex 
Typed data 
Expedited data 
Capability data exchange 
Minor synchronization 
Major synchronization 
Resynchronization 
Exceptions 
Activity 

During the  connection establishment phase (service 
primitive S-Connect-request), the  communication 
partners negotiate the functional units to be  used 
during the connection. Therefore, it is  possible for 
session entities with different sets of functional  units 
to communicate with one  another, provided they 
can agree on a  common subset of  session functional 
units they both support. 

For synchronizing the  communication between two 
session  users, the session provides the ability to sep- 
arate  the  data stream into logical units. Activities are 
one kind of  logical unit. When a user starts an 
activity, a name is  assigned to it, and  the activity can 
be discarded, interrupted  and  continued later, or 
finished without interruption.  The  name of an activ- 
ity is important for continuing an interrupted activ- 
ity, because the user must identify which activity 
should be continued. 
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Figure 4 The IS0 Reference  Model  for  Open  Systems  Interconnection 

Major and minor synchronization points can also be 
used  for separating a data stream. The main differ- 
ence between major and  minor synchronization 
points is that  an entity stops sending data until a 
requested major synchronization point is confirmed, 
whereas an entity can continue sending data after a 
minor synchronization point has been requested. If 
a rollback  is  necessary, the  data retransmission starts 
at a previously confirmed major or  minor synchro- 
nization point. 

Another important concept in the session  layer  is 
that of tokens. A communication entity can perform 
certain service requests only if it owns the corre- 
sponding tokens. The following four tokens have 
been defined: 

Data token 
Release token 
Synchronized minor token 
Major/activity token 

Service primitives are provided to request and give 
tokens. For example, consider the  data token. This 
token exists only if the session  uses the half-duplex 
functional unit,  and only the entity owning the  data 
token can send data. If a user wants to send data  and 
his  session entity does not own the  data token, he 
can ask  his partner for the  data token by using a 
please-token service. A user can give a token to his 
partner via a give-token service. During the connec- 
tion establishment phase, the initial distribution of 
the tokens is negotiated. 

Implementation of an IS0 session  layer  with 
PASS 

Because communication software  is  system  software, 
it depends to  a large extent on the operating system 
environment in which  it is executing. For example, 
interrupts from the network must be  passed on to 
the  communication software, and hardware timers 
are used for time-outs. On the  other hand, it is 
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desirable to write communication software in a  port- 
able way. In addition to reducing the coding effort, 
portable code  guarantees  compatibility of the  pro- 
tocol implementations on different systems. Also, 
conformance testing need be done only once. The 
inherent problem is to write portable communica- 
tion software for computer systems whose hardware 
and  operating system are typically very different. 

This can be done by providing an  operating system 
environment for the specific needs of OSI software. 
Its functionality includes buffer management,  timer 
management,  terminal I/O interface, etc. Instead of 
using the real operating system functions directly, 
the OSI layers use these services only indirectly 

Pascal  was  chosen as the 
implementation  language for the 

session  layer. 

through this environment.  The  code of all OSI layers 
thus becomes independent of the  operating system. 
Only the  environment  must be ported to  the various 
real operating systems and hardware architectures. 

Our session layer implementation is based on this 
approach.  The PASS specification and code genera- 
tion  are applied to  the session layer functionality 
only. The result is a session protocol machine (SPM) 
that is independent of the  operating system. The 
PASS language and tools were developed at  the IBM 
European Networking Center in Heidelberg, and  the 
experimental  operating system environment for OSI 
software and a session interface process (SIP) for it 
were designed and  implemented  at  the IBM com- 
munication software development  laboratory in Palo 
Alto, California. 

The session protocol machine is specified as  one PASS 
process. A PASS specification of a process consists of 
a PASS graph and  the PASS graph refinements. These 
are also the  main  parts of the session protocol ma- 
chine  implementation. 
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Implementation of a PASS graph. Pascal was chosen 
as the  implementation language for the session layer. 
Therefore, this  paper discusses only the  transforma- 
tion of a PASS graph  into Pascal. However, a PASS 
graph may be transformed  into  other types of pro- 
gramming languages.2 Because a  complete  mapping 
of the PASS semantics  into Pascal is  very difficult, the 
following restrictions were made: 

Each process has an  input pool so that  there  are 

Each process sends only one message in  a send 
no synchronous message exchanges. 

state so that  there is no alternative sending. 

In the special case of communication protocols, these 
restrictions have no impact because processes with 
input pools and send states with only one possible 
message are  the  most  common cases. 

There  are two main  considerations  in  transforming 
the PASS graph  into  a Pascal program: (1)  the imple- 
mentation of  message passing (send/receive), and ( 2 )  
the  simulation of processes in  a  sequential program- 
ming language. 

The implementation of message  passing. Because  of 
our restriction that only processes with input pools 
are allowed, message passing is implemented via a 
buffer with the following two functions associated 
with it: ( 1 )  A write function is invoked by a process 
that wants to send a message to  the owner of that 
input buffer. The write function deposits a message 
into  the buffer, and a  return  parameter shows 
whether it was possible to  put  the message into  the 
buffer. ( 2 )  A read function is invoked by the process 
that owns the  input buffer. A  parameter of the func- 
tion  contains  the type and sender of an expected 
message.  If this expected message is in  the  input 
buffer, the message  is transferred to  the reading 
process and is removed from the buffer. If the mes- 
sage is not  in  the buffer, a  corresponding  code is 
returned to the reading process. 

The simulation  ofprocesses  in  a sequential language. 
The PASS graph of the session corresponds to  one 
Pascal procedure. The invocation of this  procedure 
means  that  the session process gets control. In the 
procedure, each send state  corresponds to a piece of 
code similar  to  the  one shown in Figure 5. Each 
receive state  corresponds to a piece of code similar 
to the  one shown in Figure 6. 

A full  session layer at run time consists of a  number 
of  processes, each corresponding to  an active session 
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Figure 5 Code  structure  for a PASS send node 
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connection. A new process instance is created when 
a new connection is established. Each process exe- 
cutes  the PASS graph  procedure code. The invocation 
of such a process procedure means  that it must 
resume execution where it last gave up  control.  (This 
is the  concept of coroutines.) In the  context of a 
finite-state machine,  the PASS graph process must be 
continued in the  current  state, which is stored in a 
variable called “currentstate-of-Px” in the  exam- 
ples. Therefore,  the first statement in a process is a 
branch to  the  code piece corresponding to  the  current 
state. Figure 7 shows the  structure of this process 
procedure. 

The main  program, which gives control to  the differ- 
ent process procedures, contains  the scheduling strat- 
egy and is part  of  the osr-specific operating system 
environment,  not  the session protocol machine. 

We have illustrated the basic principle for converting 
the PASS graph  into  a  program.  For  the session im- 
plementation,  this  technique was improved in order 
to  optimize performance, but  the principle remains 
the same. 

We  chose  Pascal for portability  and 
easy  integration  with  the  code for 

the  PASS  graph. 

Implementation of the PASS graph refinements. We 
have mentioned  that  the PASS graph refinements can 
be  specified in any language for sequential programs. 
We chose Pascal for portability and easy integration 
with the  code for the PASS graph. 

The  internal  functions and operations of the PASS 
graph  refinements for the session protocol machine 
can be categorized as follows: 

Predicates are  conditions based on internal varia- 
bles, such as “synch point  number reaches 
999999”; predicates are specified in  the session 
standard. 
Actions are protocol actions, such as “increment 
synch point  number,”  and  are also specified in the 
session standard. 

Figure 7 The structure of a process procedure 

Conversion routines convert service element pa- 
rameters  into protocol data  unit  parameters, and 
vice versa. 

These functions  are specified  in the form of Pascal 
subroutine procedures. 

The  code for the  entire protocol machine is produced 
automatically by the  generator. The generator reads 
the PASS graph (in a table format)  and also reads the 
PASS graph refinements (already written in Pascal) as 
an  input  and produces a  complete Pascal program 
for the session protocol machine as an output. 

The  generator is also able  to  produce  a session pro- 
tocol machine  containing  any subset of session func- 
tional units, and it accepts the  names of the func- 
tional units  as  a  parameter.  The  generator  produces 
an internal PASS graph corresponding exactly to these 
given functional units, and then uses this reduced 
PASS graph to generate code. Thus, it is easy to tailor 
the session protocol machine to specific applications. 

Embedding the session layer into an operating 
system  environment 

In  the previous sections, we have shown that  the OSI 
session standard protocol may be specified unambig- 
uously by using the PASS technique. We have also 
seen how high-level language code  may be generated 
directly by automatic  means from the PASS descrip- 
tion. 
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In this section, we introduce  an OSI implementation 
environment  that  supports  the development of  lay- 
ered systems of communication protocols. We iden- 
tify the implementation-dependent issues in design- 
ing an OSI system and describe how these issues are 
solved  in this environment. We then describe the 
embedding of the session  layer into this environ- 
ment. 

An OS1 implementation environment. In our os1 
implementation environment,  a layer implementing 
an OSI standard is supported by many system com- 
ponents protecting it from the particulars of a native 
operating system.  In the following, this OSI imple- 
mentation environment is  called the Base. The Base 
provides the layers  with a set  of operating system 
services that constitute the kernel of a  modern lay- 
ered communication system. These services include 
work-request management, control-block manage- 
ment, buffer management, timer management, and 
message-log  service. The Application Program Inter- 
face (API) provides an interface between the native 
operating system application and layers supported 
by the Base. The Network Interface Sub-Layer (NISL) 
provides an interface between the native operating 
system network device handlers and layers supported 
by the Base. Systems Management provides to  the 
layers the system- or network-management-related 
services such as the directory service. Figure 8 shows 
the structure of the experimental OSI environment 
implemented at  the IBM laboratory in Palo Alto, 
California. The figure  shows only a  transport  and  a 
session layer, but any number of layers may be 
included in the system. 

System control  block structure. The experimental OSI 
implementation architecture defines the following 
control block structure, which  closely  resembles the 
ISO/OSI Reference Model: A layer is controlled by a 
Layer Control Block (LCB); a service  access point is 
controlled by a Service  Access Point (SAP) Control 
Block; and  a connection end point is controlled by 
a Connection Control Block (CCB). 

A SAP and  a CCB exist at  the interface of two layers, 
and  one half  of each block  exists  in each of the two 
layers. The half in the user  layer represents the 
provider of the service to the user  layer and  thus is 
called a Provider SAP (PSAP) and  a Provider CCB 
(PCCB). The half in the provider layer represents the 
user of the service to  the provider layer and  thus is 
called a User SAP (USAP) and  a User CCB (UCCB). 
Each  half block has its Base part  and  its Layer part. 
The Base parts are used to maintain the relationship 
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between the two halves of a control block. The Layer 
parts are used to  maintain layer-specific information. 
In particular, the Session Control Block (SCB) used 
by the Session Protocol Machine (SPM) is located in 
the User Connection Control Block in the session 
layer. Figure 9 shows an example of the control 
blocks. 

One of the  major  differences in 
different  implementations of layered 

communications  standards  is  the 
means of achieving  the  interlayer 
communications  within  a  system. 

Interlayer communication. One of the major differ- 
ences in different implementations of  layered com- 
munications standards is the means of achieving the 
interlayer communications within a system. The 
experimental implementation architecture at Palo 
Alto that we have  been  discussing provides system- 
independent functions for interlayer communica- 
tions. A layer requesting an information transfer 
prepares a work request, which  is functionally equiv- 
alent to  the Interface Data  Unit  (IDU) defined in the 
ISO/OSI Reference Model, and associates it  with a SAP 
or a Connection Control Block that is shared with 
the layer accepting the information transfer. The 
accepting layer  is then eventually called by the Base 
to perform the scheduled work request and return 
when done. If the accepting layer-in performing 
the scheduled work  request-requires the services of 
another layer, that  other layer produces work  re- 
quests while  it  is invoked. 

Execution environment. In a layered communication 
system, a work request originating at  one  end  (top 
or  bottom) of the layered  system starts a sequence of 
related  work requests that  are executed in a synchro- 
nous manner. Such a sequence is  called a thread of 
execution and is managed by a stack of work  re- 
quests. The experimental implementation architec- 
ture allows multiple threads  that may be concur- 
rently served. This multithread environment is a 
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Figure 8 OS1 implementation  environment  for  the  experimental  system  at IBM Palo  Alto 

highly  efficient execution  environment for a layered the task switch involved in processing an application 
communication system because it takes advantage program request and  a network message. 
of the  operating system multitasking feature (if avail- 
able)  and  at  the  same  time  minimizes  the task- Mapping and serialization. One function of the ses- 
switching overhead. Figure 10 shows an example of sion layer is to  map a session connection to a trans- 
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Figure 9 Example of system  control  blocks 
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Figure 10 Execution  environment 
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port connection. To achieve this, the session ties the 
UCCB representing the session connection with the 
PCCB representing the transport connection during 
the session connection establishment. This tie is not 

Implementation  issues of the  actual 
physical  location or makeup of  the 
buffer are divorced  from  the  layer 

design. 

restricted to  a one-to-one basis. Rather, the layers 
that support multiplexing may use many-to-one ties 
and  the layers that  support splitting may  use one-to- 
many ties.  Besides facilitating the mapping, the tie is 
used by the Base  in a multitasking environment  to 
serialize the access to  the Connection Control Block. 
Serialization provides that, although there is an in- 
stance of a session  layer invocation working on a 
UCCB or  on  the tied PCCB, no  other invocation of the 
session  layer  is  working on  the same CCBS. 

Interlayerflow control. The ISO/OSI Reference Model 
leaves  it as a local matter how one layer may exert 
back pressure to  the adjacent layers so as to prevent 
flooding  of requests into  the layer. In the experimen- 
tal os1 implementation, layers  may use a special 
autorecall work request to prevent a flood  of  re- 
quests. For example, when API begins a new thread 
to send data  to  an application, it places an autorecall 
at  the  bottom of the thread work stack. API then may 
not accept any more send data requests from the 
application program until it is  rescheduled  with the 
autorecall work request, indicating that  the previous 
application data have  been sent to  the network. The 
layer  below API may suspend the thread so as to 
prevent API from being invoked with the autorecall 
work request. 

Bufer management and timer  management. The 
Base  buffer management service  allows a layer to 
perform logical rather than physical operations on  a 
buffer. Thus  the  implementation issues of the actual 
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physical location or makeup of the buffer are di- 
vorced from the layer  design. 

The Base timer management service  allows a layer 
to start a timer. The Base manages the  timer requests, 
and, when a timer expires, the Base schedules a 
timer-pop work request. The layer that requested the 
timer service  is then invoked with the timer-pop 
work request and reacts according to  the  communi- 
cation protocol. 

Directory  service. In the rso/os~ Reference Model, 
the  communicating session entities cooperate 
through Transport SAPS. Finding the remote Trans- 
port SAP address to which the responding session 
entity is attached and  the local Transport SAP address 
to which the initiating session entity is attached is 
the function of the directory server. The organization 
and  the means of  accessing the directory are highly 
implementation-dependent. In our experimental im- 
plementation, the Systems Manager serves as the 
layer interface to the directory service. The directory 
service request and response work requests are ex- 
changed via a SAP between a layer and  the Systems 
Manager. 

Session layer in the experimental OSI implementa- 
tion environment. The PASS technique, like most 
formal definition techniques, requires an execution 
model to describe the protocol precisely. It is clear 

Generally,  the  more  complex  the 
execution  model,  the  more  difficult  it 
is to embed  the  generated  code into 

a product  environment. 

that this execution model cannot be an ideal archi- 
tecture under all product contexts. Generally, the 
more complex the execution model, the more diffi- 
cult it  is to embed the generated code into  a complete 
environment. We therefore retain only the essential 
features of the PASS execution model required to 
specify the implementation-independent aspects of 
the session protocol. We then build a complementary 
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Figure 11 Session  layer  in  the  experimental OS1 
implementation  environment 

component called Session Interface Process (SIP) to 
shield the SPM and  to complete the  implementation- 
dependent  functions of the session protocol. The 
SPM together with SIP then  forms  the os1 session layer 
in the experimental OSI implementation. Hierarchi- 
cally the SPM is a  subroutine called  by the SIP. Figure 
1 I shows a conceptual structure of the session entity. 

Session inteface process. The Session Interface Pro- 
cess (SIP) represents the session layer to the  other 
system components in our experimental OSI imple- 
mentation. It communicates with Session  Service 
User (ss-user) and  Transport Service Provider (TS- 
provider) using the work-request mechanism. In 
processing a work request, SIP handles the imple- 
mentation-dependent  functions previously discussed 
and requests the services from SPM to perform other 
protocol-related functions. An interface is estab- 
lished for SIP to access the services provided by the 
SPM. The following objectives are set in defining this 
interface: 

Define the  partitioning of the OSI session functions 

Define the syntactic and  semantic  nature of the 

Allow the  interactions between SIP and SPM to be 

between SIP and SPM. 

interactions between SIP and SPM. 

simple. 
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Prevent the need for any  other interface (such as 
a directory server) between SPM and system-de- 
pendent  components. 
Allow SIP to be minimally affected by changes in 
the ISO session standard. 
Allow SPM to be transparent to the changes in the 
implementation  environment. 
Minimize the effect on experimental designs in 
IBM Palo Alto and IBM Heidelberg. 

Message exchange between SIP and SPM. The in- 
teraction messages between SIP and SPM are called 
the SPM in-event and SPM out-event. The  format  and 
semantics of these messages  closely resemble the 
session  service primitives and  the  transport service 
primitives defined in the ISO session  service  specifi- 
cation and  the ISO transport service specification. 
These messages are exchanged using the  input buffer 
mechanism provided by the PASS technique. When 
the processing of a work request requires SIP to 
invoke the SPM services, SIP creates an SPM in-event 
and deposits it in the SPM input buffer. SPM is then 
invoked to process the in-event in its input buffer. 
Upon  returning from SPM, SIP finds SPM outputs in 
the SIP input buffer. SIP then  maps  the SPM out-event 
into  the work request to communicate with the next 
layer. 

In SPM, the  input buffer  is allocated from permanent 
storage. Where the OSI session protocol specification 
requires an SPM to  queue  an in-event, SPM simply 
leaves the in-event in the  input buffer. 

The IBM Palo Alto experimental implementation, 
however, allocates the  input buffer from automatic 
storage. In this case, SIP is responsible for preserving 
the  appearance of the  permanent  nature of the SPM 
input buffer. 

Session control block. An SCB, which exists for each 
active session connection,  contains all information 
related to the session connection. SIP is responsible 
for creating, initializing, and deleting the session 
control block. The local options subblock is initial- 
ized with implementation-dependent values. All 
other bytes are initialized to X'OO.' Once initialized, 
SPM is responsible for maintaining all but  the local 
options subblock of the session control block. 

SPM needs to know the values of the  implementation- 
dependent session entity parameters. The following 
local options are stored in the SCB by SIP for SPM: 
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Version number 
Availability of transport-expedited service 
Transport-connection reuse option 
Maximum TSDU sizes to be proposed 
Send-segmenting option (i.e.. local to remote) 
Receive-segmenting option (i.e., remote to local) 
User data-hiding option 
Functional  units  supported 

Concluding  remarks 

The specification technique PASS introduces an in- 
termediate  step  on the way from an informal  proto- 
col specification to the program code. A PASS descrip- 
tion is precise and allows a  semiautomatic  derivation 
of program code. This paper has presented the basic 
concepts of PASS and has demonstrated  the synthesis 
of code from a given specification. PASS was applied 
to  the ISO session protocol. A generator has been 
implemented to produce code from the specification 
automatically. With this method  the code develop- 
ment  time is considerably reduced. The os1 experi- 
mental project has proved the feasibility  of creating 
an implementation-independent (session) protocol 
machine that is generated directly from the PASS 
specification of the (OSI session) standard by auto- 
matic means. There are some path-length overheads 
introduced, such as  mapping  the interface records at 
the layer boundary to the SPM interface records. 
However, considering the size of the SPM and  the 
functions  it performs, we  feel that these overheads 
are negligible.  Besides, the clear separation of the 
functions may localize execution, thereby reducing 
the  number of page faults. In the testing phase, the 
clear separation of the  communication aspects (PASS 
graph)  and  the  internal aspects (PASS graph refine- 
ment) simplified the testing effort enormously. Be- 
cause of the  automatic code generation for the PASS 
graph, there can be no difference between the speci- 
fication and  the code. Further research is needed to 
analyze the performance of the generated code. 
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