Specification
and implementation
of an ISO session layer

This paper describes a novel technique for the specifi-
cation and implementation of layered communication
software. The technique is called Parallel Activity Spec-
ification Scheme (PASS) and is based on an extended-
state machine model of protocol automata. It aliows a
convenient description of the communication behavior
of concurrent systems and semiautomatic generation
of programming language code from the specification.
The first large-scale experience gained with this tech-
nique was in the specification and implementation of
an ISO session layer. The code generation process and
the embedding of the session code into a portable OSI
operating system environment are described in detail.

n recent years, the International Organization for

Standardization (1SO) Reference Model for Open
Systems Interconnection' has gained increasing im-
portance. It defines a framework for protocol stan-
dards, allowing different systems from different man-
ufacturers to communicate with one another. Sys-
tems meeting the standards can exchange informa-
tion with one another and are said to be “open” for
communication with other systems.

In the 1SO Reference Model for Open Systems Inter-
connection, complex communication protocols are
structured in layers, and each layer is further struc-
tured in entities. An entity uses the services of the
layer below for communicating with another entity
in the same layer but in a different system. This
communication follows strict rules, called a protocol.
An important part of a protocol standard is the exact
specification of the allowable sequences of events in

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

by A. Fleischmann
S.T. Chin
W. Effelsberg

time. For example, in a connection-oriented proto-
col, a data transfer request is allowed only after a
connection has been established. An attempt to send
data before establishing a connection results in an
error message.

In an 150 or Comité Consultatif International Télé-
graphique et Téléphonique standards document, the
allowed sequences of events are usually described in
the form of a state/event table. Translating this table
into code is a significant undertaking. The state/
event table in standards is only a semiformal descrip-
tion of the protocol machine. Thus, a tool to assist
the programmer in translating a standards document
into code would be useful, and has been developed
at the 1BM European Networking Center (ENC). ISO
is currently considering the formal description lan-
guages LOTOS and ESTELLE for this purpose. This
tool, called the Parallel Activity Specification
Scheme (PASS),? can be used for specifying any sys-
tem of parallel processes (e.g., communication sys-
tems, process control systems, etc.). The first practi-
cal experience using PASS was gained with the imple-
mentation of an ISO Session Layer (Layer 5 in the
Reference Model).

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and [BM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

FLEISCHMANN, CHIN, AND EFFELSBERG 255

This paper describes the PASS technique and its use
in the session layer implementation. We introduce
the basic concepts of PASS, give an overview of the
ISO session layer service and protocol, and describe
the specification and implementation of the session
layer with PASS. An operating system environment
for 0sI software is then introduced, and it is shown
in detail how the generated session layer code can be
embedded into this environment.

PASS: A specification technique for parallel
processes

PASS is based on extended finite-state machines.
Basic finite-state machines can only store status in-
formation implicitly, as a consequence of being in a
particular state. Extended finite-state machines allow
the declaration of variables to store information. For
example, the sequence number of a current synchro-
nization point or the number of unacknowledged
frames could be kept in a variable. This extension is
essential for the practical use of state machines for
protocol description.

When PASS is used for OSI software, it helps the
programmer to produce code from a standard doc-
ument in a disciplined way. Without PAsS, coding
would be done directly from the 1SO or CCITT docu-
ment (traditional coding). With PASS, an intermedi-
ate step is introduced. The PASS description of a

The PASS graph refinements contain
the local variables of a process, the
operations, and the functions
defined on the local variables.

protocol is more detailed than the original standard
document. All ambiguities have been removed, and
intermediate states have been introduced that are
not visible at the level of abstraction of the state/
event table in the standard. The PASS specification
contains enough detail to produce code semiauto-
matically. A code generator can be written for se-
quential or parallel programming languages. Our

256 FLEISCHMANN, CHIN, AND EFFELSBERG

Figure1 The role of PASS in the 0S| software development
process

1SO/CCITT DOCUMENT
i (TABLE FORMAT)

| PASS SPECIFICATION

1 (TABLE AND DIAGRAM FORMATS)

implementation of the code generator produces Pas-
cal code. The role of PASS in the 0sI software devel-
opment process is shown in Figure 1.

Outline of PASS. A system described in PASS consists
of a set of processes communicating with one an-
other via messages. Each process has a unique name,
and the number of processes in a system is static.
The messages have names (message name) and pa-
rameters (message parameters). Messages with the
same name are of the same message type. In PASS,
the description of a process consists of a PASS graph
and a PASS graph refinement.

The paSs graph describes the sequences in which a
process sends messages, receives messages, and per-
forms internal functions and operations. The PASS
graph is described by nodes and edges between the
nodes. The nodes correspond to the main states and
the edges to the possible transitions. The arcs (edges)
point from the starting state (node) to the successor
state. The edges are marked with the event causing
the transition.

The PASS graph refinements contain the local varia-

bles of a process, the operations, and the functions
defined on the local variables. (Operations change

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

the values of local variables, and functions leave them
unchanged.) There are four different types of func-
tions and operations. For each message type that can
be received by a process, there exists a receive-mes-
sage specification that describes the message param-
eters and the effect of a received message on the
values of the local variables. For each message type
that is sent by a process, there is a send-message
specification that describes the message parameters
and how the values of the message parameters are
determined from the values of the local variables.

An internal operation specification describes how an
internal operation changes the values of the local
variables. Besides these changes, an internal opera-
tion can yield different results. For example, a PUSH
operation on a stack of limited depth can have the
result done or stack full. The internal operation
specification also contains the possible results. An
internal function specification shows the possible re-
sults of the internal functions in dependence of the
values of the internal variables. The values of all
local variables define the local state.

The execution of transitions from one main state to
another can have four reasons. A transition can be
triggered by sending messages, receiving messages,
results of internal functions, and results of internal
operations. Accordingly, in a PASS graph, four types
of nodes can be distinguished. There are two types
of communication nodes—send nodes and receive
nodes—and there are two types of internal nodes—
internal function and internal operation. The graph-
ics representation of the four node types is shown in
Figure 2. A complete pass diagram (a PASS graph)
describes the state-transition behavior of a process
and all of its external interactions, i.e., all the mes-
sages it will send or receive. Figure 3 shows an
example of a PASS graph.

A send node corresponds to a main state where one
process wants to send a message to another process.
The send operation can be synchronous; that is, the
sending process can continue only when the receiv-
ing process is in a receive main state where it accepts
a message of this type. Otherwise the send operation
is an asynchronous one.

For asynchronous sending, PASS provides a buffer
mechanism (i.e., input pools). The finite size of these
pools must be declared explicitly, and the maximum
number of buffered messages must be declared. If
the pool of the receiving process is full, the sending
process is blocked until at least one slot in the input

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure2 The four node types of PASS

RECEIVE NODE

(P1)Ni

FUNCTION NODE

RESULT 3

OPERATION NOGDE

(P2)Ni

(P2)Nj

RESULT 1

RESULT 2

>

FLEISCHMANN, CHIN, AND EFFELSBERG 257

Figure3 Anexample of a PASS graph

(TRANS)*

(TRANS)T_CONNECT..INDICATION

(USER)S.CONNECT_REQUEST

(TRANS)T_CONNECT. _REQUEST

(USER)INVALID

(USER)SPAB_IND

{TRANS)T_CONNEGT.INDICATION

(TRANS)T_DATA

(TRANS)T_CONNECT..CONFIRMATION

(TRANS)T_DATA

TRANS)T_DISCONNECT_INDICATION
(TRANSY" { S

(TRANS)T_DATA

258 FLEISCHMANN, CHIN, AND EFFELSBERG IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

pool becomes free. The size of the input pool is a
property of the receiving process. Therefore, the
receiving process determines whether a message is
sent synchronously or asynchronously.

If a process wants to send different messages alter-
natively, send nodes can have multiple outgoing
edges that are marked with the message type and the
name of the process that will receive this message.
Depending on the message to be sent, the process
performs the corresponding transition. If a send node
has two or more outgoing edges, and two or more
messages can be sent, one of the possible transitions
has to be chosen. For this purpose, a priority list can
be defined. The transition with the highest priority
is then executed. If a process cannot send any mes-
sage, and infinite blocking must be avoided, a time-
out edge can be provided. If a process cannot send,
the time-out transition is executed.

The graphics representation of a send node is a box
with heavy-lined arrows for the transitions. A prior-
ity list can be entered in the lower left half of the
box. A time-out transition is represented by an edge
marked “time,” and the timer value is entered in the
lower right half of the box. In the PASS graph shown
in Figure 3 state STA1_1 is a send state. In this state,
the corresponding process wants to send the message
T_Connect_Request to the process Trans.

A receive node corresponds to a state where a process
expects a message from another process. If a process
has an input pool and if the expected message is in
the input pool, the transition to the next state is
executed. If a process has no input pool but the
expected message is offered by the corresponding
process, the transition to the successor state can be
performed. If the expected message is not in the
input pool (receiving process with input pool) or if
it is not offered by the corresponding process (receiv-
ing process without input pool), the receiving process
will be blocked. The receiving of different mes-
sages—possibly from different processes—is allowed
in one receive state and a corresponding number of
edges leave the state. The outgoing edges are marked
with the message type and the name of the sending
process from which the message is expected.

If a receive node has two or more outgoing edges,
and two or more messages can be received, one of
the allowable transitions has to be chosen. For this
purpose, a priority list can be defined, and the tran-
sition with the highest priority is then executed.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

When none of the expected messages arrives, the
receiving process is blocked. In order to avoid per-
manent blocking, a time-out mechanism is provided
in PASS. A time-out transition is specified with its
own edge similarly to time-out edges in send states.

The graphics representation of a receive node is a
box with single-line arrows as the outgoing edges.
The type of the expected message and the name of
the sending process are marked on each edge. A
priority list can be entered in the lower left half of
the box. A time-out transition is represented by an
edge marked “time,” and the timer value is entered
in the lower right half of the box.

In the PASS graph shown in Figure 3, state STAI is
a receive state. If in this state the process receives the
message S._Connect_Request from the process User,
the transition to state STA1_1 is executed. If the
process receives any other message from the process
User (the symbol * in Figure 3 means any other
message), the transition to state STA1_10 is per-
formed. In state STA! the message T_Connect_
Indication from the process Trans causes the transi-
tion to state STA1_20. All other messages from the
process Trans are thrown away, i.e., the transition
marked with (Trans)* is executed.

An internal function corresponds to a main state
where a process evaluates local variables. Because
PASS is based on extended finite-state machines, it
must be possible to evaluate the status of local vari-
ables and make transitions based on their values.
For example, process execution can depend on the
contents of an arriving message. Because a receive
node distinguishes only types of arriving messages,
not their contents, message contents are evaluated
in a subsequent internal function node. Another
example for an internal evaluation is a counter for
the number of unacknowledged frames. Because the
result of an internal evaluation is deterministic, ex-
actly one transition will be executed. There are no
priorities, and there is no time-out.

The graphics representation of an internal function
is an oval with single-line arrows for the transitions.
The lower half of the oval contains the name of the
internal function. The upper half contains the op-
tional state name. Each outgoing edge is marked
with the result of the variable evaluation that leads
to this transition. In the example, state STA2A__1 is
an internal function state. In this state, the internal
function Interpret is executed. This function can

FLEISCHMANN, CHIN, AND EFFELSBERG 25§

have several results, depending on the state of the
internal variables. The results CN and DC and the
corresponding transitions are shown in Figure 3.

An internal operation corresponds to a state where a
process assigns new values to local variables. De-
pending on the computed new values, different tran-
sitions to successor states can be made. As for inter-
nal functions, the internal computation is determin-
istic. Therefore, there are no priorities and there is
no time-out.

The graphics representation of an internal operation
is an oval with heavy-lined arrows for the transitions.
The lower half of the oval contains the name of the
internal operation. The upper half contains an op-
tional state name. Each outgoing edge is marked
with the outcome of the internal operation that leads
to this transition. A common case for an internal
operation is to provide for an error exit.

In the example, state STA1_2 is an internal opera-
tion state. In this state, the internal operation Set_
Vicu is executed. If an internal operation can always
be performed and always has the same effect on the
values of the local variables, then an internal opera-
tion state has exactly one successor state. The tran-
sition to the successor state means that the internal
operation is performed with the only possible effect.
In such a case, the marking for the corresponding
arc can be omitted.

In the current version of PASS, the
graph refinements are described in
the Pascal language.

In addition to specifying the communication behav-
ior of a process, it is necessary to describe the func-
ttons and operations in a formal language. Because
functions and operations are purely sequential, any
formal language for sequential processes may be
used. This part of a PASS specification is called p4Ss
graph refinement. In the current version of PASS, the

260 FLEISCHMANN, CHIN, AND EFFELSBERG

graph refinements are described in the Pascal lan-
guage, which was chosen for two reasons. The lan-
guage is very widely used, and the current version of
the code generator generates Pascal code for the PASS
graph part. Thus it is very straightforward to inte-
grate the PASS graph refinements with the code gen-
erated for the PASS graph.

PASS is a specification language for
parallel processes.

A comparison of PASS with ESTELLE and LO-
TOS. pass is a specification language for parallel
processes. Communication protocols are only one
example of its use. For the specific purpose of de-
scribing communication protocols, other specifica-
tion languages have been developed. In particular,
1SO is currently working on the standardization of
two formal description techniques for protocols,
ESTELLE® and LOTOS.* In this section, some aspects
of these 180 languages are described and compared
with PASS.

In all three specification techniques (ESTELLE, LOTOS,
and PASS), a system consists of communicating pro-
cesses. In each of these specification techniques a
process® can be defined in the following two steps:

~ Communication mechanisms, through which the
processes communicate with one another

« Communication behavior, which is the relation-
ship between inputs and outputs in terms of the
order in which inputs and outputs may occur, and
their value dependencies

Communication mechanisms. In ESTELLE, processes
are a class of modules, and the abstract mechanism
defined for communication between processes is an
interaction. Interactions are exchanged via interac-
tion points. A queue (FIFO buffer) is associated with
each interaction point. The queue stores interactions
received from processes. Because these queues have
an infinite length, a process is never blocked when it
sends an interaction (i.e., a message). This kind of

BM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

message exchange is called asynchronous, which im-
plies that the receiver cannot prevent the sender from
putting data in the queue. Consequently, in ESTELLE,
a formal description of back pressure is not possible
without introducing an additional message.® With
this message, the process tells its partners how many
messages they can deposit in its queues (credit). After
sending the maximum number of messages, they
have to wait for new credit.

Because of the use of FIFO message queues, additional
interaction points (gueues) have to be introduced in
an ESTELLE specification to allow priority messages
to pass the messages in the normal queue.

In LOTOS, a similar interaction concept is used. The
atomic form of a LOTOS interaction is an event, which
is a unit of synchronized communication that may
exist between two processes, An event will only occur
if both involved processes are prepared to engage in
the event by making the appropriate event offer
(synchronous communication). Thus communicat-
ing processes are coupled tightly. Without introduc-
ing additional processes to execute buffering func-
tions, asynchronous communication is not possible.
An example of a buffering process can be found in
Reference 6.

In LOTOS, priorities for messages are not allowed. If
more than one event is eligible for execution, one is
chosen at random. Thus, one event cannot be de-
scribed as having a higher priority, which is an

In PASS, both synchronous and
asynchronous communication are
possible.

important deficiency in process control applications.
For example, an alarm message might be more im-
portant than all other offered events.

In pAss, both synchronous and asynchronous com-

munication are possible, as described earlier. An
input pool size of zero corresponds to the synchro-

IBM SYSTEMS JOURNAL, VOL 26. NO 3, 1987

nous message exchange. The finite size of an input
pool makes it easy to describe back-pressure policies.
The possibility of input-pool structures® allows one
to define for each message individually whether it is
to be sent/received synchronously or asynchro-
nously.

PASS provides message priorities that make it easy to
describe the behavior of processes in a conflict. Be-
cause the priorities of messages can be different in
different states (priority field), the priorities can be
used flexibly.

Communication behavior. To model the dependency
of outputs upon inputs, ESTELLE uses an extended
finite-state-machine model. Starting from a predeter-
mined initial state, a process makes transitions from
one state to the next. A transition is normally trig-
gered by an input, and outputs may or may not be
produced during a transition. In ESTELLE, the state
space is spanned by the values of local variables. One
of these variables is called STATE, or the major state
variable, and the others are sometimes called minor
state variables, or context variables. All variables are
typed according to Pascal conventions, thereby al-
lowing the use of conventional Pascal operations on
these types. In ESTELLE, the operations executed
during a transition are independent of the triggering
input. This means that the same message accepted
in different major states can have different effects on
the context variables. The description of the com-
munication behavior is spread out over the specifi-
cation document. This makes it difficult to deter-
mine the allowable input/output sequences.

LOTOS defines a set of temporal operators to model
the order in which events may occur and their value
dependencies. LOTOS is based on Milner’s Calculus
of Communicating Systems;’ examples of processes
these operators allow include

* Sequential composition

* Nondeterministic choice

 Parallel composition of processes

e Execution disruption of one process by another

In LOTOS, the communication behavior is described
with behavior expressions that describe observable
sequences of events. The behavior expressions can
be parameterized, and recursion extends the model
to transition systems where the number of states may
be infinite. In LOTOS, states do not exist explicitly.
Instead of sequences of states (as in ESTELLE), se-
quences of transitions are considered.

FLEISCHMANN, CHIN, AND EFFELSBERG 261

The model used for PASS is similar to the model used
for ESTELLE in that the contents of the variable STATE
in ESTELLE correspond to the nodes in the PASS
graph, and the context variables in ESTELLE corre-
spond to the local vanables in the PASS graph refine-
ments. In ESTELLE, a transition cannot be triggered
by an output. PASS allows inputs (receive messages)
and outputs (send messages) for triggering transi-
tions, which is similar to the procedure in LOTOS.

In PASS, receiving a message always has the same
effect on the local variables and is independent of
the state in which it is received. In ESTELLE, the effect
of a message (interaction) depends on the state in
which it is received. If the same type of message can

It was easy to implement a
generator that produces Pascal code
for the PASS graph.

be received in different ESTELLE states, different ef-
fects can be specified. In LOTOS, receiving a message
only has the effect of copying the values of the
message parameters into local variables. In PASS, the
communication behavior is described separately (i.e.,
by a PASS graph) from the effect of a transition on
the local variables (receive) or message parameters
(send).

In ESTELLE, Pascal statements are used to describe
the transitions. This is very close to an implemen-
tation. In LOTOS, an abstract data-type language
called ACT ONE® is employed as a sublanguage to
describe the data-value domains and operations on
variables. For the PASS graph refinements, any ap-
propriate specification technique can be used. De-
pending on the stage of a specification, natural lan-
guage, a formal technique, or a programming lan-
guage can be employed.

The semantics of PASS graphs are simple. Therefore,
it was easy to implement a generator that produces
Pascal code for the PASS graph. If the PASS graph
refinements are also described in Pascal, the two

262 FLEISCHMANN, CHIN, AND EFFELSBERG

parts can be combined to form a complete imple-
mentation of a process. This is discussed in the next
section. Even though ESTELLE and LOTOS are both
intended for international standardization, we be-
lieve there is a place for PASS because PASS is easy to
understand and use, and because PASS is suitable for
automatic code generation.

The code for a PASS process consists of the code for
the communication behavior (PASS graph) and the
code for the transitions (PASS graph refinements).
This makes the code easy to understand and to
debug.

Translating PASS into Pascal. A PASS specification
is a formal description of the behavior of a process,
including its communication control (message pass-
ing and finite-state machine) and its internal sequen-
tial actions. For the automatic generation of pro-
gramming language code, each of these parts is con-
sidered in turn.

The message-passing operations for a certain mes-
sage are translated into corresponding procedure
calls. If an input pool is specified in PASS, the corre-
sponding procedures will provide a buffer for the
required number of messages. For each send/receive
edge for a specific message type, a Pascal procedure
call for the corresponding procedure is generated.
The final mapping of the send and receive operations
to operating system primitives depends largely on
the operating system and network environment.
Therefore, the complete body of these procedures
cannot be generated automatically.

For the internal sequential actions,
no code generation is required
because those actions are already
specified in Pascal.

The generation of code for the finite-state machine
can be done in two ways: Either the state/event table
(a sparse matrix) is stored in some internal format

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

and interpreted at run time, or the states and tran-
sitions are compiled into sequential pieces of code
for which, typically, each piece of code has a label
and corresponds to a state/event combination. After
the action in a node has been performed, a GOTO to
the successor piece of code is computed dynamically.
In the current version, the code generator is of the
second type; that is, it produces pieces of sequential
Pascal code for each state/event combination, a
point that is discussed in more detail later in this
paper. We are studying a generator of the first type
(state/event table that is interpreted at run time) in
order to compare the code produced by the two
approaches.

For the internal sequential actions, no code genera-
tion is required because those actions are already
specified in Pascal. The generator simply copies them
as procedures into the Pascal output file.

At the 1BM European Networking Center in Heidel-
berg, a complete tool set is being developed for PASS.
In addition to the code generator for Pascal, there is
a code generator for Modula-2 on the PC and an
interactive, screen-oriented PASS editor for easy data
entry and modification of PASS specifications. There
is also a set of consistency-checking routines for
analyzing a PASS graph. Thus, unreachable states can
be detected in the early design phase.

Having introduced PASS, we now discuss briefly the
1SO session layer and the use of PASS for the session
layer implementation.

The I1SO session layer protocol

Protocols are rules that govern the exchange of data
in computer networks. Layered protocols result from
the separation of functions, wherein each protocol
layer uses the services provided by the layer below
to provide its service to the layer above. A framework
for layered communication protocols was developed
by the International Organization for Standardiza-
tion; it is known as the Reference Model for Open
Systems Interconnection.' Figure 4 shows the seven
protocol layers of the 150/0s! Reference Model and
their main functionality. The session layer, which is
layer five in the Reference Model, provides services
for synchronizing the communication of session
users.”'® The session layer provides means to per-
form the following functions:

¢ Establish a connection with another session user,
exchange data with that user in a synchronized

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

manner, and release the connection in an orderly
manner

» Negotiate for the use of tokens to exchange data,
synchronize and release the connection, and ar-
range for half- or full-duplex data exchange

« Establish synchronization points within a dialogue
and—in the event of errors—resume the dialogue
from an agreed-upon synchronization point

¢ Interrupt a dialogue and resume it later at a pre-
arranged point

The services of the session layer are separated into
functional units, which are logical groupings of re-
lated services.

The kernel functional unit supports the basic session
services required to establish a session connection,
transfer normal data, and release the session connec-
tion. This functional unit must be available in each
session implementation. Optional functional units
relate to the following aspects of services:

Negotiated release
Half-duplex

Duplex

Typed data

Expedited data
Capability data exchange
Minor synchronization
Major synchronization
Resynchronization
Exceptions

Activity

During the connection establishment phase (service
primitive S-Connect-request), the communication
partners negotiate the functional units to be used
during the connection. Therefore, it is possible for
session entities with different sets of functional units
to communicate with one another, provided they
can agree on a common subset of session functional
units they both support.

For synchronizing the communication between two
session users, the session provides the ability to sep-
arate the data stream into logical units. Activities are
one kind of logical unit. When a user starts an
activity, a name is assigned to it, and the activity can
be discarded, interrupted and continued later, or
finished without interruption. The name of an activ-
ity is important for continuing an interrupted activ-
ity, because the user must identify which activity
should be continued.

FLEISCHMANN, CHIN, AND EFFELSBERG 263

Figure4 The ISO Reference Model for Open Systems Interconnection

APPLICATION >
LAYER

PRESENTATION
LAYER e <K

SESSION
LAYER el 5

TRANSPORT
LAYER ——P 4

NETWORK
LAYER

DATA LINK
LAYER

PHYSICAL
LAYER

LAYER PROTOCOLS

....................’

....................’

MAIN CHARACTERISTICS

HUMAN USERS, APPLICATION
PROGRAMS AND SERVICES, ETC.

UNIQUE REPRESENTATION OF THE
EXCHANGED DATA

MECHANISMS FOR ORGANIZING AND
STRUCTURING THE INTERACTIONS
BETWEEN APPLICATION PROCESSES

TRANSPARENT TRANSFER OF
DATA BETWEEN ENDSYSTEMS

SUBNETWORK ACCESS FUNCTIONS,
INTERNETTING

DETECTION AND CORRECTION
OF ERRORS WHICH MAY OCCUR
IN THE PHYSICAL LAYER

CONTROL OF THE PHYSICAL
MEDIUM

Major and minor synchronization points can also be
used for separating a data stream. The main differ-
ence between major and minor synchronization
points is that an entity stops sending data until a
requested major synchronization point is confirmed,
whereas an entity can continue sending data after a
minor synchronization point has been requested. If
a rollback is necessary, the data retransmission starts
at a previously confirmed major or minor synchro-
nization point.

Another important concept in the session layer is
that of tokens. A communication entity can perform
certain service requests only if it owns the corre-
sponding tokens. The following four tokens have
been defined:

¢ Data token

* Release token

¢ Synchronized minor token
¢ Major/activity token

264 FLEISCHMANN, CHIN, AND EFFELSBERG

Service primitives are provided to request and give
tokens. For example, consider the data token. This
token exists only if the session uses the half-duplex
functional unit, and only the entity owning the data
token can send data. If a user wants to send data and
his session entity does not own the data token, he
can ask his partner for the data token by using a
please-token service. A user can give a token to his
partner via a give-token service. During the connec-
tion establishment phase, the initial distribution of
the tokens is negotiated.

Implementation of an ISO session layer with
PASS

Because communication software is system software,
it depends to a large extent on the operating system
environment in which it is executing. For example,
interrupts from the network must be passed on to
the communication software, and hardware timers
are used for time-outs. On the other hand, it is

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

desirable to write communication software in a port-
able way. In addition to reducing the coding effort,
portable code guarantees compatibility of the pro-
tocol implementations on different systems. Also,
conformance testing need be done only once. The
inherent problem is to write portable communica-
tion software for computer systems whose hardware
and operating system are typically very different.

This can be done by providing an operating system
environment for the specific needs of 0OSI software.
Its functionality includes buffer management, timer
management, terminal 1/0 interface, etc. Instead of
using the real operating system functions directly,
the osI layers use these services only indirectly

Pascal was chosen as the
implementation language for the
session layer.

through this environment. The code of all 0sI layers
thus becomes independent of the operating system.
Only the environment must be ported to the various
real operating systems and hardware architectures.

Our session layer implementation is based on this
approach. The PASS specification and code genera-
tion are applied to the session layer functionality
only. The result is a session protocol machine (SPM)
that is independent of the operating system. The
PASS language and tools were developed at the 1BM
European Networking Center in Heidelberg, and the
experimental operating system environment for OSI
software and a session interface process (SIp) for it
were designed and implemented at the IBM com-
munication software development laboratory in Palo
Alto, California.

The session protocol machine is specified as one PASS
process. A PASS specification of a process consists of
a PASS graph and the PASS graph refinements. These
are also the main parts of the session protocol ma-
chine implementation.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Implementation of a PASS graph. Pascal was chosen
as the implementation language for the session layer.
Therefore, this paper discusses only the transforma-
tion of a PASS graph into Pascal. However, a PASS
graph may be transformed into other types of pro-
gramming languages.” Because a complete mapping
of the PASS semantics into Pascal is very difficult, the
following restrictions were made:

s Each process has an input pool so that there are
no synchronous message exchanges.

¢ Each process sends only one message in a send
state so that there is no alternative sending,

In the special case of communication protocols, these
restrictions have no impact because processes with
input pools and send states with only one possible
message are the most common cases.

There are two main considerations in transforming
the pass graph into a Pascal program: (1) the imple-
mentation of message passing (send/receive), and (2)
the simulation of processes in a sequential program-
ming language.

The implementation of message passing. Because of
our restriction that only processes with input pools
are allowed, message passing is implemented via a
buffer with the following two functions associated
with it: (1) A write function is invoked by a process
that wants to send a message to the owner of that
input buffer. The write function deposits a message
into the buffer, and a return parameter shows
whether it was possible to put the message into the
buffer. (2) A read function is invoked by the process
that owns the input buffer. A parameter of the func-
tion contains the type and sender of an expected
message. If this expected message is in the input
buffer, the message is transferred to the reading
process and is removed from the buffer. If the mes-
sage is not in the buffer, a corresponding code is
returned to the reading process.

The simulation of processes in a sequential language.
The PAsS graph of the session corresponds to one
Pascal procedure. The invocation of this procedure
means that the session process gets control. In the
procedure, each send state corresponds to a piece of
code similar to the one shown in Figure 5. Each
receive state corresponds to a piece of code similar
to the one shown in Figure 6.

A full session layer at run time consists of a number
of processes, each corresponding to an active session

FLEISCHMANN, CHIN, AND EFFELSBERG 265

Figure5 Code structure for a PASS send node

PROGRAM

{(P1N1

AV4

SUCCESSOR

Figure 6 Code structure for a PASS receive node

PROGRAM

ELFORTHE S oo
BPECTFICATION.
‘ ‘ Y.

CRIIND N BUFFER THER
74 EXECUTE: THE- CODE FOR. THE

©IRECEIVE MESSAGE- SPECIFICATION
PO PN ‘ “OF WESSAGE N2 ‘

A 4 h 4
SUCCESSOR 1 SUCCESSOR 2

266 FLEISCHMANN, CHIN, AND EFFELSBERG IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

connection. A new process instance is created when
a new connection is established. Each process exe-
cutes the PASS graph procedure code. The invocation
of such a process procedure means that it must
resume execution where 1t last gave up control. (This
is the concept of coroutines.) In the context of a
finite-state machine, the PASS graph process must be
continued in the current state, which is stored in a
variable called “current_state_of_Px” in the exam-
ples. Therefore, the first statement in a process is a
branch to the code piece corresponding to the current
state. Figure 7 shows the structure of this process
procedure.

The main program, which gives control to the differ-
ent process procedures, contains the scheduling strat-
egy and is part of the OSl-specific operating system
environment, not the session protocol machine.

We have illustrated the basic principle for converting
the PASS graph into a program. For the session im-
plementation, this technique was improved in order
to optimize performance, but the principle remains
the same.

We chose Pascal for portability and
easy integration with the code for
the PASS graph.

Implementation of the PASS graph refinements. We
have mentioned that the PASS graph refinements can
be specified in any language for sequential programs.
We chose Pascal for portability and easy integration
with the code for the PASS graph.

The internal functions and operations of the PASS
graph refinements for the session protocol machine
can be categorized as follows:

e Predicates are conditions based on internal varia-
bles, such as “synch point number reaches
999999”; predicates are specified in the session
standard.

* Actions are protocol actions, such as “increment
synch point number,” and are also specified in the
session standard.

BM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 7 The structure of a process procedure

ROCEDURE PX{LIST OF VARIABLES, CURRENT_STATE_OF_]

GOTO (CURRENT_STATE_OF_PX): /* INDIRECT JuMP *

STATET:

CODE FOR THE STATESAI

STATEN:

e Conversion routines convert service element pa-
rameters into protocol data unit parameters, and
vice versa.

These functions are specified in the form of Pascal
subroutine procedures.

The code for the entire protocol machine is produced
automatically by the generator. The generator reads
the PASS graph (in a table format) and also reads the
PASS graph refinements (already written in Pascal) as
an input and produces a complete Pascal program
for the session protocol machine as an output.

The generator is also able to produce a session pro-
tocol machine containing any subset of session func-
tional units, and it accepts the names of the func-
tional units as a parameter. The generator produces
an internal PASS graph corresponding exactly to these
given functional units, and then uses this reduced
PASS graph to generate code. Thus, it is easy to tailor
the session protocol machine to specific applications.

Embedding the session layer into an operating
system environment

In the previous sections, we have shown that the 0OsI
session standard protocol may be specified unambig-
uously by using the PASS technique. We have also
seen how high-level language code may be generated
directly by automatic means from the PASS descrip-
tion.

FLEISCHMANN, CHIN, AND EFFELSBERG 267

In this section, we introduce an OSI implementation
environment that supports the development of lay-
ered systems of communication protocols. We iden-
tify the implementation-dependent issues in design-
ing an 0sI system and describe how these issues are
solved in this environment. We then describe the
embedding of the session layer into this environ-
ment.

An OSI implementation environment. In our OSI
implementation environment, a layer implementing
an Osl standard is supported by many system com-
ponents protecting it from the particulars of a native
operating system. In the following, this OSI imple-
mentation environment is called the Base. The Base
provides the layers with a set of operating system
services that constitute the kernel of a modern lay-
ered communication system. These services include
work-request management, control-block manage-
ment, buffer management, timer management, and
message-log service. The Application Program Inter-
face (API) provides an interface between the native
operating system application and layers supported
by the Base. The Network Interface Sub-Layer (NISL)
provides an interface between the native operating
system network device handlers and layers supported
by the Base. Systems Management provides to the
layers the system- or network-management-related
services such as the directory service. Figure 8 shows
the structure of the experimental OSI environment
implemented at the 1BM laboratory in Palo Alto,
California. The figure shows only a transport and a
session layer, but any number of layers may be
included in the system.

System control block structure. The experimental OS]
implementation architecture defines the following
control block structure, which closely resembles the
150/0S1 Reference Model: A layer is controlled by a
Layer Control Block (LCB); a service access point is
controlled by a Service Access Point (SAP) Control
Block; and a connection end point is controlled by
a Connection Control Block (CCB).

A SAP and a CCB exist at the interface of two layers,
and one half of each block exists in each of the two
layers. The half in the user layer represents the
provider of the service to the user layer and thus is
called a Provider SAP (PsaP) and a Provider CCB
(pccB). The half in the provider layer represents the
user of the service to the provider layer and thus is
called a User SAP (USAP) and a User CCB (UCCB).
Each half block has its Base part and its Layer part.
The Base parts are used to maintain the relationship

268 FLEISCHMANN. CHIN, AND EFFELSBERG

between the two halves of a control block. The Layer
parts are used to maintain layer-specific information.
In particular, the Session Control Block (SCB) used
by the Session Protocol Machine (SPM) is located in
the User Connection Control Block in the session
layer. Figure 9 shows an example of the control
blocks.

One of the major differences in
different implementations of layered
communications standards is the
means of achieving the interlayer
communications within a system.

Interlayer communication. One of the major differ-
ences in different implementations of layered com-
munications standards is the means of achieving the
interlayer communications within a system. The
experimental implementation architecture at Palo
Alto that we have been discussing provides system-
independent functions for interlayer communica-
tions. A layer requesting an information transfer
prepares a work request, which is functionally equiv-
alent to the Interface Data Unit (IDU) defined in the
1S0/0s1 Reference Model, and associates it with a SAP
or a Connection Control Block that is shared with
the layer accepting the information transfer. The
accepting layer is then eventually called by the Base
to perform the scheduled work request and return
when done. If the accepting layer—in performing
the scheduled work request—requires the services of
another layer, that other layer produces work re-
quests while it is invoked.

Execution environment. In a layered communication
system, a work request originating at one end (top
or bottom) of the layered system starts a sequence of
related work requests that are executed in a synchro-
nous manner. Such a sequence is called a thread of
execution and is managed by a stack of work re-
quests. The experimental implementation architec-
ture allows multiple threads that may be concur-
rently served. This multithread environment is a

IBM SYSTEMS JOURNAL. VOL 26, NO 3, 1887

Figure 8 OSlimplementation environment for the experimental system at IBM Palo Alto

CONTROL
BLOCK MANAGEMENT

WORK MANAGEMENT

highly efficient execution environment for a layered
communication system because it takes advantage
of the operating system multitasking feature (if avail-
able) and at the same time minimizes the task-
switching overhead. Figure 10 shows an example of

BM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

the task switch involved in processing an application
program request and a network message.

Mapping and serialization. One function of the ses-
sion layer is to map a session connection to a trans-

FLEISCHMANN, CHIN, AND EFFELSBERG

269

- . . : : - - : : -
- o

&MMNWM -

i

it
el
b

i

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

9 Example of system control blocks

Figure

270 FLEISCHMANN, CHN, AND EFFELSBERG

Figure 10 Execution environment

PROCESSING PROCESSING
APPLICATION
TASK
APPLICATION
TASK
.
.
g THREAD
SERVE
TASK
THREAD
SERVE
TASK
°
.
P
NETWORK
DEVICE
HANDLER
TASK
NETWORK
DEVICE
HANDLER
TASK
ARRIVING PACKET

1BM SYSTEMS JOURNAL. VOL 26, NO 3, 1987 FLEISCHMANN, CHIN, AND EFFELSBERG 27 1

port connection. To achieve this, the session ties the
UCCB representing the session connection with the
PCCB representing the transport connection during
the session connection establishment. This tie is not

Implementation issues of the actual
physical location or makeup of the
buffer are divorced from the layer

design.

restricted to a one-to-one basis. Rather, the layers
that support multiplexing may use many-to-one ties
and the layers that support splitting may use one-to-
many ties. Besides facilitating the mapping, the tie is
used by the Base in a multitasking environment to
serialize the access to the Connection Control Block.
Serialization provides that, although there is an in-
stance of a session layer invocation working on a
UCCB or on the tied PCCB, no other invocation of the
session layer is working on the same CCBs.

Interlayer flow control. The 150/0s1 Reference Model
leaves it as a local matter how one layer may exert
back pressure to the adjacent layers so as to prevent
flooding of requests into the layer. In the experimen-
tal OSI implementation, layers may use a special
autorecall work request to prevent a flood of re-
quests. For example, when API begins a new thread
to send data to an application, it places an autorecall
at the bottom of the thread work stack. API then may
not accept any more send data requests from the
application program until it is rescheduled with the
autorecall work request, indicating that the previous
application data have been sent to the network. The
layer below API may suspend the thread so as to
prevent APl from being invoked with the autorecall
work request.

Buffer management and timer management. The
Base buffer management service allows a layer to
perform logical rather than physical operations on a
buffer. Thus the implementation issues of the actual

272 FLEISCHMANN, CHIN, AND EFFELSBERG

physical location or makeup of the buffer are di-
vorced from the layer design.

The Base timer management service allows a layer
to start a timer. The Base manages the timer requests,
and, when a timer expires, the Base schedules a
timer-pop work request. The layer that requested the
timer service is then invoked with the timer-pop
work request and reacts according to the communi-
cation protocol.

Directory service. In the 1S0/0S1 Reference Model,
the communicating session entities cooperate
through Transport SaPs. Finding the remote Trans-
port SAP address to which the responding session
entity is attached and the local Transport SAP address
to which the initiating session entity is attached is
the function of the directory server. The organization
and the means of accessing the directory are highly
implementation-dependent. In our experimental im-
plementation, the Systems Manager serves as the
layer interface to the directory service. The directory
service request and response work requests are ex-
changed via a SAP between a layer and the Systems
Manager.

Session layer in the experimental OSI implementa-
tion environment. The PASS technique, like most
formal definition techniques, requires an execution
model to describe the protocol precisely. It is clear

Generally, the more complex the
execution model, the more difficult it
is to embed the generated code into

a product environment.

that this execution model cannot be an ideal archi-
tecture under all product contexts. Generally, the
more complex the execution model, the more difhi-
cult it is to embed the generated code into a complete
environment. We therefore retain only the essential
features of the PASS execution model required to
specify the implementation-independent aspects of
the session protocol. We then build a complementary

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Figure 11 Session layer in the experimental 0S|
implementation environment

component called Session Interface Process (SIP) to
shield the SPM and to complete the implementation-
dependent functions of the session protocol. The
SPM together with SIP then forms the OSI session layer
in the experimental OS! implementation. Hierarchi-
cally the SPM is a subroutine called by the sip. Figure
11 shows a conceptual structure of the session entity.

Session interface process. The Session Interface Pro-
cess (SIP) represents the session layer to the other
system components in our experimental OSI imple-
mentation. It communicates with Session Service
User (ss-user) and Transport Service Provider (TS-
provider) using the work-request mechanism. In
processing a work request, SIP handles the imple-
mentation-dependent functions previously discussed
and requests the services from SPM to perform other
protocol-related functions. An interface is estab-
lished for SIP to access the services provided by the
spM. The following objectives are set in defining this
interface:

 Define the partitioning of the OSI session functions
between SIP and SPM.

e Define the syntactic and semantic nature of the
interactions between SIP and SPM.

¢ Allow the interactions between SIP and SPM to be
simple.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

* Prevent the need for any other interface (such as
a directory server) between SPM and system-de-
pendent components.

¢ Allow SIP to be minimally affected by changes in
the 1O session standard.

* Allow SPM to be transparent to the changes in the
implementation environment.

* Minimize the effect on experimental designs in
IBM Palo Alto and 1BM Heidelberg.

Message exchange between SIP and SPM. The in-
teraction messages between SIP and SPM are called
the SPM in-event and SPM out-event. The format and
semantics of these messages closely resemble the
session service primitives and the transport service
primitives defined in the 1SO session service specifi-
cation and the I1SO transport service specification.
These messages are exchanged using the input buffer
mechanism provided by the PASS technique. When
the processing of a work request requires SIP to
invoke the SPM services, SIP creates an SPM in-event
and deposits it in the SPM input buffer. SPM is then
invoked to process the in-event in its input buffer.
Upon returning from SPM, SIP finds SPM outputs in
the SIP input buffer. SIP then maps the SPM out-event
into the work request to communicate with the next
layer.

In SPM, the input buffer is allocated from permanent
storage. Where the 0SI session protocol specification
requires an SPM to queue an in-event, SPM simply
leaves the in-event in the input buffer.

The 1BM Palo Alto experimental implementation,
however, allocates the input buffer from automatic
storage. In this case, SIP is responsible for preserving
the appearance of the permanent nature of the SPM
input buffer.

Session control block. An SCB, which exists for each
active session connection, contains all information
related to the session connection. SIP is responsible
for creating, initializing, and deleting the session
control block. The local options subblock is initial-
ized with implementation-dependent values. All
other bytes are initialized to X‘00.” Once initialized,
SPM is responsible for maintaining all but the local
options subblock of the session control block.

SPM needs to know the values of the implementation-
dependent session entity parameters. The following
local options are stored in the SCB by SIP for SPM:

FLEISCHMANN, CHIN, AND EFFELSBERG 273

¢ Version number

¢ Availability of transport-expedited service

¢ Transport-connection reuse option

e Maximum TSDU sizes to be proposed

» Send-segmenting option (i.e., local to remote)

¢ Receive-segmenting option (i.e., remote to local)
e User data-hiding option

¢ Functional units supported

Concluding remarks

The specification technique PASS introduces an in-
termediate step on the way from an informal proto-
col specification to the program code. A PASS descrip-
tion is precise and allows a semiautomatic derivation
of program code. This paper has presented the basic
concepts of PASS and has demonstrated the synthesis
of code from a given specification. PASS was applied
to the 1SO session protocol. A generator has been
implemented to produce code from the specification
automatically. With this method the code develop-
ment time is considerably reduced. The 0OsI experi-
mental project has proved the feasibility of creating
an implementation-independent (session) protocol
machine that is generated directly from the PASS
specification of the (0SI session) standard by auto-
matic means. There are some path-length overheads
introduced, such as mapping the interface records at
the layer boundary to the SPM interface records.
However, considering the size of the SPM and the
functions it performs, we feel that these overheads
are negligible. Besides, the clear separation of the
functions may localize execution, thereby reducing
the number of page faults. In the testing phase, the
clear separation of the communication aspects (PASS
graph) and the internal aspects (PASS graph refine-
ment) simplified the testing effort enormously. Be-
cause of the automatic code generation for the PASS
graph, there can be no difference between the speci-
fication and the code. Further research is needed to
analyze the performance of the generated code.

Acknowledgments

We would like to thank our colleagues at the IBM
European Networking Center and the 1BM Palo Alto
osI research group for their helpful and constructive
comments. We thank particularly J. B. Staton for
his thorough review of the manuscript.

Cited references

1. ISO 7498. Information Processing Systems—Open Systems
Interconnection—Basic Reference Model, International Orga-
nization for Standardization, Geneva, Switzerland (1983);

274 FLEISCHMANN, CHIN, AND EFFELSBERG

may be obtained from Omnicom, Inc., 501 Church Street,
Vienna, Virginia 22180.

2. A. Fleischmann, Description of the Specification Technique
PASS, IBM ENC Technical Report (1987); may be obtained
from the IBM European Networking Center, Tiergartenstrasse
15, 6900 Heidelberg, Germany.

3. ISO 9074. Information Processing Systems—Estelle—A For-
mal Description Technique Based on an Extended State Tran-
sition Model, International Organization for Standardization,
Geneva, Switzerland; may be obtained from Omnicom, Inc.,
501 Church Street, Vienna, Virginia 22180.

4. ISO 8807. Information Processing Systems—Open Systems
Interconnection— LOTOS—A Formal Description Technique
Based on the Temporal Ordering of Observation Behavior,
International Organization for Standardization, Geneva, Swit-
zerland; may be obtained from Omnicom, Inc., 501 Church
Street, Vienna, Virginia 22180.

5. C. A. Vissers and G. Scollo, “Formal specification in OSI,”
Proceedings, Networking and Open Systems, Lecture Notes in
Computer Science No. 248, Springer-Verlag, Heidelberg
(1987).

6. E.Brinksma, “A tutorial on LOTQOS,” Proceedings of the IFIP
Conference on Protocol Specification, Testing, and Verification
V, North-Holland Publishing Co., Amsterdam (1986).

7. R. Milner, “A Calculus of Communicating Systems,” Lecture
Notes in Computer Science No. 92, Springer-Verlag, Berlin
(1980).

8. H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifica-
tion 1, Springer-Verlag, Berlin (1985).

9. ISO 8326. Information Processing Systems—Open Systems
Interconnection—Basic Connection Oriented Session Service
Description, International Organization for Standardization,
Geneva, Switzerland (1983); may be obtained from Omnicom,
Inc., 501 Church Street, Vienna, Virginia 22180.

10. ISO 8327. Information Processing Systems—Open Systems
Interconnection— Basic Connection Oriented Session Protocol
Specification, International Organization for Standardization,
Geneva, Switzerland (1983); may be obtained from Omnicom,
Inc., 501 Church Street, Vienna, Virginia 22180.

Albert Fieischmann IBM European Networking Center, Tiergar-
tenstrasse 15, 6900 Heidelberg, Germany. Dr. Fleischmann joined
IBM in 1985 as a guest scientist at the IBM Science Center in
Heidelberg, where he worked on software technology for specifying
and implementing communication protocols. He joined IBM Ger-
many in 1986 as a research staff member of the European Net-
working Center. Prior to joining IBM, he worked two years for the
DFN project (German Research Network), a government-spon-
sored project for establishing an open computer network for the
German research community. Albert Fleischmann received a Di-
ploma in computer science in 1981 and a doctoral degree in
computer science in 1984, both from the Friedrich Alexander
University of Erlangen, Germany.

Seung-tae Chin /BM Communication Products Division, P.O.
Box 10500, Palo Alto, California 94304. Mr. Chin joined IBM in
1981 in Research Triangle Park, North Carolina, where he worked
on meta-implementation and conformance testing of LU 6.2. He
is now a staff programmer at the CPD Advanced Programming
Center at Palo Alto, where he has worked on LU 0 and recently
on the development of OSl-related programs. Mr. Chin received
an M.S. in computer science in 1981 from the University of
Tennessee.

IBM SYSTEMS JOURNAL, VOL 26, NO 3, 1987

Wolfgang Effelsberg /BM European Networking Center, Tier-
gartenstrasse 15, 6900 Heidelberg, Germany. Dr. Effelsberg joined
IBM in 1983 as a Postdoctoral Fellow at the IBM Research Center
in San Jose, California, where he did research on highly available
database systems. He joined IBM Germany in 1984 as a research
staff member of the Heidelberg Scientific Center. Since 1985, he
has managed the Distributed Applications Research project at the
IBM European Networking Center in Heidelberg. Prior to joining
IBM, he spent two years as an assistant professor at the University
of Arizona in Tucson, where he worked on the optimization of
buffer management in database systems. Dr. Effelsberg received a
Diploma in computer science in 1976 and a doctoral degree in
computer science in 1981, both from the Technical University of
Darmstadt, Germany.

Reprint Order No. G321-5297.

IBM SYSTEMS JOURNAL. VOL 26, NO 3. 1987

FLEISCHMANN, CHIN, AND EFFELSBERG 275

