An incidence-matrix-driven
panel system
for the IBM PC

A set of programs called TRYLON is discussed which
permits the application developer to design and create
a set of intelligent full-screen panels. These panels
serve as a user interface for application programs. The
panels and the linkages between them are uncoupled
from the application code, thereby reducing program-
ming effort and development time. An incidence matrix
is used to describe the graph of a network composed
of the panels. Because the paths among the panels
are specified by entries in the incidence matrix at
panel creation time, there is no need to program the
logical constructs for the network.

he introduction of the personal computer has

seen an explosion of software development that
has placed complex application programs in the
hands of both the first-time user and the experienced
user. To obtain the maximum benefit from these
programs, the user must have a detailed understand-
ing of how to use specific options. Thus, the program
developer has the burden of making his application
easy to use and to understand. Prior to the advent
of the personal computer, the program developer
could anticipate the level of expertise that a user of
his program would possess. The user was often an
expert in a particular discipline or the user was the
programmer himself. For these users the interface
could be primitive and was often added as an after-
thought. Software designed for the personal com-
puter is often directed at a less experienced user, so
an additional dimension is added to the program
development effort: the need for an effective user
interface. The program developer must devote seri-
ous time and energy to designing and implementing
an intelligent user front end for his program. Such
an effort requires a significant increase in the amount

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

by P. Halpern
S. M. Roberts
L. Lopez

of code to be written and logically integrated into
the application code. A common user interface is
the full-screen panel. (A panel is a recallable full
screen of information containing text and fields for
input and output of data.) In many applications these
are written in the language of the application or in
one callable from the application. The amount of
code needed to display, to logically link the panels,
and to support a keyboard handler can be equal to
or greater than the amount of application code gen-
erated.

This paper presents a novel approach to recasting
the traditional relationship between the function
specification in the application code and the user
interface, thereby reducing the programming effort
and development time for application creation. In
this formulation, the panels and the relationships
among them are uncoupled from the application
code. The panels and their logical connections are
considered to be a network in which the nodes are
the panels and the connections are the paths. The
functional relationship between nodes and paths re-
sides not in the main line of the application program
but external to it. The repository for this logical
structure is an incidence matrix. The user sees the
nodes and paths as full-screen panels and the linkages
between panels. At panel definition time, the panels

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

HALPERN, ROBERTS, AND LOPEZ 201

are linked in a logical manner to form the network.
During execution, the end user supplies the required
input, requests help, and receives output through the
panels. The network is traversed on the basis of
decisions captured by the panels and controlled by
entries in the incidence matrix.

Early dialog management systems such as ISPF' were
based on a conversational monitor system? and were

To meet the need to create
full-screen panels for use with
application programs, several

PC-based panel systems have been
developed.

mainframe-based programs. These programs pro-
vided screen generation as part of an overall appli-
cation development programming environment.

To meet the need to create full-screen panels for use
with application programs, several PC-based panel
systems have been developed. These systems permit
the program developer to write text which is used to
create “help” panels. Such panels can be invoked by
the end user at execution time to obtain on-line help.
Furthermore, available systems permit the creation
of panels into which an end user can either enter
data or display results from the application program.
Panels of this type act as input and output mecha-
nisms for the application programs.

Existing PC systems such as EZ-VU? help the program-
mer with panel design by supplying an editor. Al-
though the editors differ in the function they provide,
they have many features in common. They usually
permit the programmer to specify text as well as
input and output data fields that can be arranged
into an overall panel design. As part of the data field
definitions, the user can select a number of field
attributes—for example, field name, data type, max-
imum and minimum values, output only. At exe-
cution time, range checking is carried out for input

202 HALPERN, ROBERTS, AND LOPEZ

data. Functions for drawing lines and boxes are
frequently provided by the editor.

The panel systems usually have several high-level
language interfaces. These enable applications writ-
ten in FORTRAN or Pascal, for example, to access the
panels created and to capture data entered into the
panels for use by the application program. Similarly,
these interfaces transfer output data from the appli-
cation to panels. These systems take the orthodox
approach of accessing the panels serially from within
the application program. They do not view the
panels as part of a network. As a consequence,
although current panel systems have relieved the
programmer of the burden of writing code to create
and design the panels, the programmer still must
write control flow or linkages among the panels and
must integrate these into the application code.

TRYLON overview

Figure 1 is a schematic representation of the com-
ponents of the experimental panel system called
TRYLON. TRYLON uses an incidence matrix as the
logic repository for panels created and connected in
a network. The panels are designed using a full-
screen panel editor (Block 1). In addition to the
standard data field definitions and other ancillary
attributes, the editor permits the definition of branch
fields. These are used by the panel linker in defining
paths to other panels (Block 2). Associated with each
application is a set of files which contains the textual
material of the panels, the data field and branch field
definitions, and the incidence matrix. In our work,
the rows of the incidence matrix may be thought of
as destination panels and the columns as source
panels. To be more specific, if the source panel
includes a menu of options or items, each menu
option for that source panel has its own column.
Files are used for data interchange between the
panels and the application, and for a work area. The
panel linker creates the incidence matrix in a file
which is accessed at execution time. By using the
panel previewer (Block 3), the linked panels can be
viewed for desired panel sequencing.

The application program (Block 4) uses the appro-
priate interface code (Block 5) to access the panels
and perform data input and output. The interface
code also captures branch field selections and se-
quences the panels in the order determined by entries
in the incidence matrix that was created during the
panel-linker sessions. Input and output data transfer
between the application program and the interface

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

Figure1 Schematic representation of TRYLON

T T T e e e, e, e e m e e, e e, e e, e e e s e e e e |
| |
| |
| i
| }
] e
| R
l DATA APPLICATION 4 F i
| INTERCHANGE CODE oo
| |
| |
| * |
| |
| |
| |
| |
I I
| WORK AREA I
| |
f |
| |
[INTERFACE o
] CODE) ‘
| |
} |
} |
| PANEL AND |
| LINKAGE '
| DEFINITIONS |
| |
| |
] -
| o
| oo
b o e e e e e o o e e e e e e] jou)

code is accomplished by using a data interchange
field or by directly referencing a field on a displayed
panel.

An example

The following example illustrates how TRYLON proc-
esses panels with the aid of an application program.

Figures 2A through 2E show a series of panels created
as the user interface for making two simple calcula-
tions involving trigonometry of a right triangle. The
extents (lengths) of the input and output areas are
designated by the “#” sign. The selection of branches
to other panels or exits is specified by the “@” sign.
Both signs are special characters which the interface
code recognizes and can distinguish from normal
text.

Let us briefly examine the sample problem TEXAMP3,
Panel 1 contains text announcing a sine and a hy-

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

potenuse calculation. Panel 2 accepts user inputs for
five angles whose sines are to be computed. Panel 3
is an output panel that lists the sines of the five
angles. In addition, Panel 3 contains a menu with
three branching options: (1) to redo the sine calcu-
lation; (2) to do a hypotenuse calculation; and (3) to
exit to DOS through the application program. If the
first option is selected, a branch to Panel 2 is exe-
cuted. If the second option is chosen, the input panel,
Panel 4, is displayed and requests that the sides of a
right triangle be entered. Panel 5, which presents the
results of the hypotenuse calculation, is then dis-
played.

Figure 2G is a panel summary showing the details
of the data fields and the number of branches on a
panel. A field name, field type, input or output type,
and maximum and minimum field values, as well as
a default value, may be specified for each field de-
fined on a panel. For example, during the creation
of Panel 4, the first data field was given the name

HALPERN, ROBERTS, AND LOPEZ 203

Figure2 (A,B,C,D,E) A series of panels created as the user interface for making two simple calculations involving trigonometry of a
right triangle; (F panel linkage summary for sine and hypotenuse caiculation

SINE CALCULATION AND HYPOTENUSE CALCULATION

---> PRESS F1 TO CONTINUE <--~

INPUT ANGLES IN DEGREES

ANGLE 1 HHA#EH ANGLE 2 H####

NGLE 3 H####Y ANGLE U HH#H#H

NGLE 5 ######

--=> PRESS F1 TO CONTINUE <---

D

PANEL 4

INPUT FOR HYPOTENUSE CALCULATION
SIDE 1 ... HHKH# SIDE 2 ... HHH#H#

--=> PRESS F1 TO CONTINUE <---

SIN #i#H##R = HUHHIE
SIN HERREH = BHAUHA
SIN HEHHHN = HEHARE
SIN #ERR#E = BRHBHH
SIN HAHHAR = RHBHHH

---> PRESS F1 TO CONTINUE <--~

@ ReDO SINE CALCULATION
@ EXIT To DOS

@ HYPOTENUSE CALCULATIO!

~==> PLACE AN ’'X OR X' NEXT TO CHOICE <==-

204 HALPERN, ROBERTS, AND LOPEZ

HYPOTENUSE CALCULATION

1
HveoTenuse = [(Stpe D? + (StpE 2)°]7

SIDE 1 ,...####

HYPOTENUSEHHHH#HSEAREH
SIDE 2HH#H# .

---> PRESS F1 TO CONTINUE <-~-

PANEL 1 ("TEXT1”) 1S LINKED To PANEL 2 ("ANGIN")

PANEL 2 (”ANGIN”) IS LINKED TO EXIT

PANEL 3 (“ANGOUT"):
BRANCH FIELD 1 IS LINKED TO PANEL 2 ("ANGIN")
BRANCH FIELD 2 IS LINKED TO PANEL 4 (”SIDES")
BRANCH FIELD 3 1S LINKED TO EXIT

PANEL 4 (”SIDES") 1S LINKED TO EXIT

PANEL 5 ("HYPOTEN") IS LINKED TO EXIT

LINKAGE L1ST FINISHED
PRESS ANY KEY TO RETURN TO MAIN SCREEN <---

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

Figure 2 (G) Panel summary for sine and hypotenuse calculation

BRANCH DECISIONS LOCATED IN: TEXAMP3.AID

PANEL 3 ("ANGOUT"):
1 THERE ARE 3 POSSIBLE BRANCHES ON THIS PANEL

DATA FIELDS LOCATED IN: TEXAMP3.VBL

FIELD NAME TYPE

PANEL 2 ("ANGIN")
1 AN1 SINGLE PREC. INPUT 360.00
2 AN2 SINGLE PREC. INPUT 360.00
3 AN3 SINGLE PREC. INPUT 360.00
4 ANY4 SINGLE PREC, INPUT 360.00
5 ANS SINGLE PREC. InPUT 360,00

170 TYPE MAXTMUM MINIMUM DEFAULT VALUE

PANEL 3 (“ANGOUT*)
6 ANGLET CHARACTER QuTPUT
7 SIM CHARACTER OuTpPUT
8 ANGLE2 CHARACTER QuTPUT
9 SIN2 CHARACTER ouTPUT
10 ANGLE3 CHARACTER ouTPUT
11 SIN3 CHARACTER OuTPUT
12 ANGLEY CHARACTER OuTPUT
13 SINY CHARACTER OuTPUT
14 ANGLES ~ CHARACTER OuTPUT
15 SINS CHARACTER QuTPUT

PANEL 4 ("SIDES")
16 SIDE1 SINGLE PREC. INPUT
17 SIDE2 SINGLE PREC. INPUT

PANEL 5 ("HYPOTEN")
.8 CHAR

SIDE!. It was defined as an input field for a single-
precision number. The allowable range of values was
0.0 to 10.0. During execution, user input values were
checked for numerical values falling outside the spec-
ified range. A default value of 3.00 would be dis-
played in that field. Note that all the fields in Panel
3 are defined as output for 1/0 type, and as character
for data type.

The panel linkages for the set of five panels are shown
in Figure 2F. The information in Figures 2F and
2G is produced by TRYLON using the editor and
linker referred to in Figure 1. Figure 3 shows the
traditional graph of the panel linkages (see Figure

iBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

2F) and its relationship to the application program.
The application requires panel input or output at
four locations in the graph. These accesses are indi-
cated by the arrows from the application program to
the graph. The arrows mean that the application
program invokes the interface program, which dis-
plays the indicated panel. The first access is the initial
access to Panel 1, which serves as an introduction to
the user. A second access follows the sine calculation.
The third access follows selection of the hypotenuse
calculation, and the final access is after the hypote-
nuse calculation. Each of the EXIT blocks denotes a
return to the application program. The user can
choose the EXIT from BR3 of Panel 3, but the

HALPERN, ROBERTS, AND LOPEZ 25

Figure 3 Flowchart of sine and hypotenuse calculation

Figure4 Compact form of incidence matrix for sine and
hypotenuse calculation

paneL I3

(FIGURE 2D)

APPLICATION
PROGRAM

SOURCE PANELS

PANEL B

(FIGURE 2E)

206 HALPERN, ROBERTS, AND LOPEZ

interface code determines the EXIT from Panels 2, 4,
and 5.

The compact incidence matrix for the graph shown
in Figure 3 is depicted in Figure 4. The panels which
exit have an E in the cell defined by the source panel
(row) and the branch number (column). For those
panels which do not exit, or do not have branches,
a destination panel is specified in the first column
(see Panel 1).

The entering of data into a large incidence matrix
can be a time-consuming and error-prone chore. The
alignment of the entries in the correct rows and
columns requires visual, graphic, or text aids. TRY-
LON eliminates these problems by providing a linker
which permits the user to link panels in context.
When a source panel is specified, the panel linker
displays the panel to be linked (source panel), and
the program developer specifies the destination panel
for each branching option. The destination panel
can be displayed before linking to verify whether the
correct link is being specified. Links can be made
between any two panels regardless of their positions
in the network. Neither the end user nor the program
developer ever sees the incidence matrix in any form
because the system internally creates the compact
form of the incidence matrix from the data supplied.
To be specific, consider Figure 5, which shows Panel
3 being displayed by the TRYLON linker program.
The destination panel for the branch “Redo Sine
Calculation” is set to be Panel 2. The message at the

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

Figure 5 Creating panel linkages using TRYLON

PANEL 3

SIN H#H#H#HH = RUHHEHHHARERRAR
SIN HH#HHR = HRHRRRBBAHARHRY
SIN HE#HHE = BHERHHENHERRRAY
SIN HihuH#t = HEBABHERRHANHAY
SIN HERHRE = BUHHHHBHEEARANY

X REDO SINE CALCULATION @ HYPOTENUSE CALCULATION
8 Ex1T To DOS
---> PLACE AN 'X OR X' NEXT TO CHOICE <---

~==> ENTER DESTINATION PANEL NAME OR NUMBER <---
(ESCAPE CANCELS) > 28R#H##Y

PANEL 3 (”ANGOUT”) LINKING BRANCH FIELD 1 ON PANEL 3

Figure 6 Displaying panel linkages using TRYLON

CURRENT LINKAGE HHRRRRRRIAAGY

FIED DESTe) wnnnannunnnns

z 4 BERBARBRHBIRY
3 EXIT

DEFAULT = * BURHHRRRRAREE

SIN HHHREE = RHBHERHRERAAHRS
@ REDO SINE CALCULATION 8 HYPOTENUSE CALCULATION
a ExIT 10 DOS
---> PLACE AN ‘X OR X' NEXT TO CHOICE <---
--=> PRESS ESCAPE TO REMOVE WINDOW <---

PANEL 3 (”ANGOUT"”) DISPLAYING LINKAGE FOR PANEL 3

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987 HALPERN, ROBERTS, AND LOPEZ 207

bottom of the screen gives the current branch field
being linked. By pressing the “Enter” key the pro-
gram developer moves to the next branch field and
enters its destination panel. The current linkages for
any panel can be reviewed as shown in the pop-up
window in Figure 6. Here all the branches and their
destination panels have been defined. A choice for
the default positioning of the cursor at execution
time has also been made by placing an “x” in the
desired branch field.

A function for which these panels were designed is

the carrying out of two calculations in tandem. That
is to say, the problem path consists of the following

The TRYLON editor is a full-screen
editor capable of accepting both
character and numerical data.

steps: (1) entering the input data values for the angles,
(2) computing the sines, and (3) displaying the results
of the sine calculation. Next, the input data for the
hypotenuse calculation are entered. Another func-
tion consists of running the sine calculation more
than once and then exiting without executing the
hypotenuse calculation. Other possibilities include
running the sine calculation multiple times before
executing the hypotenuse computation. These var-
ious scenarios are made possible by the menu options
in Panel 3.

Editor

The TRYLON editor is a full-screen editor capable of
accepting both character and numerical data. The
panels displayed in Figures 2A to 2E were created
by the editor prior to running the sample problem.
The user has at his disposal a number of convenient
editing functions, such as (1) left and right as well as
up and down scrolling of the screen, (2) creation of
horizontal, vertical, and perpendicular lines, (3) gen-
eration of boxes with single or double lines, (4) use
of the available AScl characters as fill patterns for
screen areas and boxes, (5) creation of pop-up panels,

208 HALPERN, ROBERTS, AND LOPEZ

(6) display of panels with foreground and back-
ground colors, (7) inserting, moving, deleting, copy-
ing, joining, and splitting lines, and (8) standard
keyboard functions such as insert, delete, tab, page
up, and page down.

The editor also has global functions for copying,
deleting, inserting, and renaming panels within the
same application.

In addition, with the editor the user may define data
fields and branch fields on the screen within lines 1-
23 and as much as 80 characters in width. Lines 24—
25 are reserved for messages and instructions. The
data fields are identified by a “pound” sign (#) for
each character in the field. The branch fields are
identified by an “at” sign (@). A panel can have a
maximum of 50 data fields and 50 branch fields. The
user can define or alter the attributes of a field by
pressing Function Key 5 (F5). A window will then
pop up adjacent to the field in question, so that the
field is visible. The input areas of the window require
the user to supply such attribute data as field name
(associated with a variable in the application code),
field type (character, two- and four-byte integer, and
single- and double-precision floating-point), field
mode (input, output, or both). A fourth entry in the
pop-up window permits the user the option of spec-
ifying more attributes, such as default value and
maximum and minimum values for the field. At
execution time, the default value is displayed in the
data field and data entered must conform to data
type and mode defined for the field. As a check on
the data fields, the user may press Function Key 7
(F7), which displays all the current attributes of the
data fields.

For the branch fields the principal attribute set by
the user is the default position of the cursor, that is,
the initial location of the cursor when the panel is
first displayed by the application program. After a
panel is designed and its attributes determined, the
user saves the panel by pressing the ESC key.

Upon completion of an editing session, the editor
produces a panel summary (Figure 2G) and creates
three files for each panel. The filename for each file
is always the application name. The .PAN file contains
the panel text, panel names, and panel colors for this
application. The .PDF file contains the attribute in-
formation for all the data fields on the panel, for
example, the total number of data fields on the panel
and the width of each field. The information for the
branch fields, such as the total number of branch

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

fields on the panel and the location of these fields on
the panel, is stored in the .PCM file. All of these files

It is understood that each language
has its particular constructs for
dealing with its interface code and
TRYLON files.

are used by the interface code at execution time to
display the requested panel.

Interface code

To illustrate the interface code, we will use the
previous example as a vehicle. Rather than limit the
discussion to a language-specific representation of
the sine and hypotenuse application, we present a
discussion of the application and the interface code
using generic terms. It is understood that each lan-
guage has its particular constructs for dealing with
its interface code and TRYLON files. Thus, the inter-
face code written in FORTRAN will have different
constructs from that written in BASIC. However, it is
informative to describe the data flow to and from
panels and the interaction of the incidence matrix
for sequencing the panels.

An initialization call to the interface code from the
application code is required. The term call refers to
a generic invocation of the interface code; it does
not take on a specific meaning associated with a
particular application language. This first call per-
forms a number of housekeeping functions such as
defining file numbers and opening files containing
the panels and their attributes. A second call is issued
to display the first panel. The interface code reads
the panel file and ancillary files and displays Panel
1. Control now resides with the interface code. Since
Panel 1 has text only, the user presses the F1 key to
display the destination panel for Panel 1, namely,
Panel 2. The F1 key has been defined as the execution
key by passing it as a parameter in the call to the
interface code. Panel 2 contains input data fields.
The interface code now is in a pause state waiting

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

for the user to enter the angle data. When the user
enters the data, the interface code checks for valid
number formation and determines whether the data
are within the specified range for the data fields.
When the user presses Fi, the entered angle values
are read from the panel. This is achieved by using
the information on the ancillary files created by the
editor. The x, y location of each data field, the data
field extent, type of field (for example, integer or
floating-point), and input or output type are avail-
able to the interface code. A field name on a panel
and its variable name in the application can be
associated by parameters passed in calls to access
field data. Data read from a large number of input
data fields can also be stored in a transfer file to be
read by the application code using standard file 1/0.
After control has been passed to the application
program, the data can be read from the transfer file.
In either case, Panel 2 has as its destination panel an
exit to the application program. Using the supplied
angle data, the application program computes the
sines.

A call to the interface code sets the next panel
number to be displayed as Panel 3, and the values
of the sines are written to the screen using the same
information as that employed in capturing the data.
The format of the data can also be specified.

Panel 3 contains both branch fields and data output
fields. The user now chooses one of three available
options. The interface code will use the incidence
matrix to branch to the destination panel for the
option chosen. The decision to redo the calculation
will result in Panel 2 being displayed, since it is the
destination panel for that choice. When the hypote-
nuse calculation option is selected, Panel 4 is dis-
played. Panel 4 contains data input fields for entering
information about the length of two sides of a right
triangle. The procedure followed is the same as that
described for Panel 2. Upon completion of the data
input, control is passed to the destination panel for
Panel 4, which is an exit to the application. The
application reads the values of the sides of the tri-
angle from the transfer file and then computes the
hypotenuse. A final call to the interface code specifies
that Panel 5 should be displayed, with the value of
the hypotenuse and the two other sides of the triangle
being displayed in the output fields. Since the desti-
nation of Panel 5 is an exit, control returns to the
application code and an exit to DOS is executed.

Returning to our discussion of Panel 3, when the
Exit to DOs option is selected, its destination panel
is an exit to the application code. Once in the appli-

HALPERN, ROBERTS, AND LoPEZ 209

Figure 7 (A) Simple tree graph; (B) vertex-edge incidence

Figure 8 Simple tree graph: (A) Revised incidence matrix;

matrix (B) source-node, destination-node incidence matrix
A A
: 1 0 0 0
| Co
e n(1) 0 1 0 0
/1N
// ! \\ 0 0 1 0
/7 1\ [0 0 0 1
/ 1 \
/ I \
/ I \
i)
B SOURCE NODE
B l—;THS
| En
@ 0 1 0 0 Lé
[a]
P4
2 1 1 1 1 z
=
0 0 0 1 3 0 1 0 0
E
1 0 0 0 L | EER] o 0 1 0
(i} 0 1 0 0 0 0 1

cation, control will be returned from the program to
DOS.

Incidence-matrix representation of graphs

TRYLON uses the incidence matrix in a novel method
for linking panels. The incidence matrix can be
derived by considering that a graph of a network
may be represented by a matrix.* If we consider a
graph with z vertices (or nodes) and p edges (or paths
connecting the nodes), and with no self loops, we
may define its matrix representation through the
n X p matrix A. The n rows of A correspond to the

210 HALPERN, ROBERTS, AND LOPEZ

n vertices (nodes) and the p columns correspond to
the p edges (paths). The matrix A with the elements
a;; 1s defined as

a;=1, if the jth edge (path) is incident on the
ith vertex (that is, the path j is connected
to the ith node);

a; =0, otherwise.

The matrix A is called the vertex-edge incidence
matrix. It is a binary matrix because it contains only
the elements 1 or 0.

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

Figure 7A shows a graph and its vertex-edge inci-
dence matrix. In the figure the vertices (nodes) are
labeled n(1), n(2), - - -, n(5) and the edges (paths) are
labeled e, f, g, h. Upon adopting the definition of the
vertex-edge incidence matrix, we may represent the
graph by the incidence matrix in Figure 7B. Here we
see, for example, that Path e in Column 1 hasa 1 in
Row 2 and Row 4, indicating that Path ¢ joins Nodes
2 and 4. Inspection of the incidence matrix in Figure
7B shows that it portrays faithfully the information
in the graph in Figure 7A.

The matrix representation in Figure 7B is not the

only way to describe the graph in Figure 7A. If we
are willing to consider Figure 7A as a directed graph,

The network may be expressed as a
graph in which panels are nodes and
paths are linkages between panels.

that is, a graph in which the paths are oriented in a
specified direction, other interesting representations
can be written.

Consider, for example, Figure 7A as a directed graph
when the paths are directed from Root n(3) to n(2),
and then from n(2) to n(1), n(2) to n(5), and n(2) to
n(4). The incidence matrix may be revised to repre-
sent this, as shown in Figure 8A.

Another useful representation for the directed graph

described in Figure 8A is the incidence matrix in

Figure 8B. Here we think of the beginning of a path
as a source node and the end of a path as a destina-
tion node. For example, in Path h, n(3) is the source
node and n(2) is the destination node. An examina-
tion of Figure 8 B shows that it represents the directed
graph as faithfully as Figure 8A. Relative to source
and destination nodes, Figure 8B is a particularly
useful representation of a directed graph, a form that
will be treated more fully in the discussion of the
sequencing of panels.

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

An incidence matrix for panel sequencing

The network through which panels are to be se-
quenced may be expressed as a graph in which panels
are nodes and paths are linkages between panels.
The display of one panel followed by another may
be thought of as having a source node/destination
node relationship. When treated appropriately, such
a graph may be processed without writing or rewrit-
ing code whenever the graph is altered or traversed.
The alteration may include modifying various paths
through the graph or adding or deleting nodes in the

graph.

Our concern is with the display of panels in a se-
quence determined by the programmer. Each panel
(with the possible exception of the initial root panel)
may be considered to be both a source panel and a
destination panel. The source panel is the current
panel, and the destination panel is the one to which
the source panel branches or connects (if there are
no branch options). If a panel contains a menu, it
may be thought of as Panel P with Branch Option 1
(first menu choice), Panel P with Branch Option 2
(second menu choice), and so on. In other words, a
panel with a menu behaves as if it were multiple
source panels.

To strengthen our understanding of these concepts,
let us consider a graph of panels in Figure 9. Panel
1, the initial panel, contains a menu with two op-
tions, labeled BR1 (Branch 1) and BR2 (Branch 2).
Panel 1 BRI is the source panel for the destination
panel, Panel 2, while Panel 1 BR2 is the source panel
for the destination panel, Panel 6. Panel 2, as a
source panel with a menu of three options, branches
to Destination Panels 3, 4, and 5 for Branch Options
BRI, BR2, and BR3, respectively. Panel 4 differs from
the other panels because it branches back to Panel
1. Observe that Panels 3, 5, and 6 branch to EXIT,
which is a special destination panel designed to exit
the graph or terminate the processing of the graph.
In the code, it represents a return to the program
that called for the processing of the incidence matrix.

The graph in Figure 9 may be expressed as an
incidence matrix in Figure 10. The rows are labeled
as the destination panels; the columns are labeled as
source panels with menu options for the various
branches. For example, Column 1 represents Source
Panel 1 BR1 (Branch Option 1), Column 2 represents
Source Panel 1 BR2 (Branch Option 2), and Column
3 represents Source Panel 2 BRi. The number 1

HALPERN, ROBERTS, AND LOPEZ 211

Figure9 Sample panel network

paneL B

entered in the cell at the intersection of the column
labeled Panel 1 BRI and the row labeled Destination
Panel 2 indicates that Source Panel 1, Branch Option
1, connects Source Panel 1 to Destination Panel 2.
The entry of a | in the cell at the intersection of the
column labeled Panel 2 BR2 and the row labeled
Destination Panel 4 means that Source Panel 2,
Branch Option 2, connects Source Panel 2 to Desti-
nation Panel 4. Similarly, one can verify that the
incidence matrix in Figure 10 captures the relation-
ships in the graph in Figure 9.

It is interesting that each source panel (with each
branch option) connects to one, and only one, des-
tination panel (or EXIT, which may be considered a
special destination panel). In the incidence matrix,
this translates into one, and only one, entry of 1 in

212 HALPERN, ROBERTS, AND LOPEZ

each column. That is to say, the graph is unequivo-
cal.

For substantial systems, the incidence matrix be-
comes extremely large. If T = the total number of
panels excluding the EXIT possibility and b; = the
number of branch options for the ith panel (where
b; = 1 for the ith panel that contains no branching
option), then the incidence matrix consists of (7" +
1) rows and ¥L, b; columns, or a total of (T + 1) *
sT, b, entries.

Because the incidence matrix is sparse, the size of
the matrix can be considerably reduced by storing
only the nonzero entries. We now define a matrix C
which contains the same information as the inci-
dence matrix but in a compact representation form.

1BM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

Figure 10 Incidence matrix for sample panel network

SOURCE PANEL

DESTINATION PANEL

EXIT

m @ @

In the matrix C, the rows refer to the source panels.
That is, Row i refers to Source Panel i. The columns
refer to branch options for each source panel. For
example, Column 1 refers to Branch Option 1, and
Column 2 refers to Branch Option 2. The entries in
the cells contain the destination panel numbers cor-
responding to the source panels and branch options.
To illustrate, let us consider Figure 11, which is the
compact representation of the incidence matrix in
Figure 10. Figure 11 exhibits, for Source Panel 1 in
Row 1, two destination panels, 2 and 6, in sequence
as specified by the branching options BR1 and BR2 of
Source Panel 1. Source Panel 2 in Row 2 lists in
sequence Destination Panels 3, 4, and 5 correspond-
ing to BRI, BR2, and BR3 options of Source Panel 2.
In Row 3 for Source Panel 3, the E in Column 1
refers to EXIT as the destination panel. When there
are no branching options, as in Source Panels 3, 4,
5, and 6, the destination panel appears in Column 1
(under BR1). The reader can verify that Figure 11
does indeed reproduce the sequence of events speci-
fied by Figures 9 and 10.

During execution, the panels are sequenced on the
basis of the paths specified in the incidence matrix
or its compact representation. To change the se-
quencing would require altering the entries in the
incidence matrix or the compact representation. In

1BM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

Figure 11 Compact form of incidence matrix

SOURCE PANELS

actual practice, the compact representation is em-
ployed. .

The processing of the incidence matrix is completely
independent of the entries in the incidence matrix.

HALPERN, ROBERTS, AND LOPEZ 213

Thus the processing code, supplied with the number
of rows and columns in the compact form of the
incidence matrix, can handle the addition or deletion
of panels without the need for logic programming by
the program developer.

Conclusion

We have presented a novel way to link panels with-
out the use of a command language or logic program-
ming on the part of the programmer. This linkage

Text panels may be added, deleted,
or reordered in any sequence
without recompiling the application
code.

was achieved by the introduction and use of the
incidence matrix. Since the incidence matrix is cre-
ated independently of the application program, text
panels may be added, deleted, or reordered in any
sequence without recompiling the application code.
These alterations are possible because the processing
of the incidence matrix is independent of the con-
tents of the matrix.

The incidence matrix can be expanded to enhance a
variety of tasks. These include (1) linking to other
programs, as well as to panels, (2) linking graphics
screen displays, and (3) linking to a host for carrying
out computationally intensive functions. In fact, the
incidence matrix may be used as an executive that
directs the flow of a series of related programs.

We have implemented a running program, TRYLON,
consisting of an editor for creating panels and a
linker for generating connections among the panels
and linking them to the application program. TRY-
LON is being evaluated and used at IBM internal sites,
and, in addition, has been sent to a small number of
university researchers for their evaluation and use.

214 HALPERN, ROBERTS, AND LOPEZ

Cited .references

1. Interactive System Productivity Facility, Dialog Management
Services, Program No. 5668-960, IBM Corporation; available
through IBM branch offices.

2. Structured Programming Facility/Conversational Monitor Sys-
tem, Program No. 6C20-0370, IBM Corporation; available
through IBM branch offices.

3. EZ-VU Development Facility for the IBM Personal Computer,
Product No. 6410980, IBM Corporation; available through
IBM branch offices.

4. N. Deo, Graph Theory with Applications to Engineering and
Computer Science, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1974.

Paul Halpern IBM Academic Information Systems, Palo Alto
Scientific Center, P.O. Box 10500, Palo Alto, California 94303.
Dr. Halpern has been with IBM since 1968. He has published
papers in the fields of numerical weather prediction, air pollution
meteorology, terrestrial radiative transfer, solar energy harvesting,
real-time data acquisition, and digital image processing. He re-
ceived a B.S. degree from the City College of New York in 1961,
an M.S. from New York University in 1963, and a Ph.D. in
atmospheric science from the University of California at Davis in
1975. Dr. Halpern is a member of the American Meteorological
Society and the American Geophysical Union. He is currently a
staff member at the ACIS, Palo Alto Scientific Center.

Sanford M. Roberts /BM Academic Information Systems, Palo
Alto Scientific Center, P.O. Box 10500, Palo Alto, California
94303. Dr. Roberts is currently associated with the IBM Corpo-
ration’s Palo Alto Scientific Center. In 1948 he received a B.S. in
petroleum engineering from the University of Pittsburgh, where
he held an honor scholarship; he was a Research Fellow at the
University of California at Berkeley, and received an M.S. in
mechanical engineering from that institution in 1950; his Ph.D.
in chemical engineering was awarded by Stanford University in
1953. Dr. Roberts has worked as a research engineer and applied
mathematician in the areas of process control, optimization, and
numerical analysis; he has published a book on dynamic program-
ming in process control.

Louis Lopez IBM Academic Information Systems, Palo Alto Sci-
entific Center, P.O. Box 10500, Palo Alto, California 94303.
Dr. Lopez joined IBM at the Houston Scientific Center in 1966,
working on the application of computers to engineering and sci-
entific problems. From 1974 to 1979 he was manager of process
analysis, first at the Houston Scientific Center and then at the Palo
Alto Scientific Center. In 1980 he took a one-year sabbatical to
the General Products Division plant in San Jose, returning in 1981

" in his current position as a member of the technical staff of the

Palo Alto Scientific Center. Dr. Lopez received a BM.E. in 1961
and an M.S.E. in 1962 from the University of Florida, and a Ph.D.
in 1966 from Rice University, all in mechanical engineering.

Reprint Order No. G321-5294.

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987

