
An incidence-matrix-driven 
panel  system 
for the IBM PC 

A set  of programs  called TRYLON is discussed  which 
permits the application  developer to design  and create 
a set  of intelligent  full-screen  panels.  These  panels 
serve  as a  user  interface for application  programs.  The 
panels  and the linkages  between  them are uncoupled 
from  the  application  code,  thereby  reducing  program- 
ming  effort  and  development  time.  An  incidence  matrix 
is  used to describe  the  graph of a  network  composed 
of the panels.  Because the paths  among  the  panels 
are  specified by entries  in the incidence  matrix  at 
panel  creation time, there is no need to program the 
logical  constructs for the network. 

T he introduction of the personal computer has 
seen an explosion of  software development that 

has placed complex application programs in the 
hands of both  the first-time user and  the experienced 
user. To obtain the maximum benefit from these 
programs, the user must have a detailed understand- 
ing of  how to use  specific options. Thus, the program 
developer has the burden of making his application 
easy to use and  to understand. Prior to  the advent 
of the personal computer,  the program developer 
could anticipate the level  of expertise that  a user of 
his program would possess. The user was often an 
expert in a particular discipline or  the user was the 
programmer himself. For these users the interface 
could be primitive and was often added as  an after- 
thought. Software designed for the personal com- 
puter is often directed at  a less experienced user, so 
an additional dimension is added to  the program 
development effort: the need for an effective  user 
interface. The program developer must devote seri- 
ous time and energy to designing and implementing 
an intelligent user front end for his program. Such 
an effort requires a significant increase in the  amount 

by P. Halpern 
S. M. Roberts 
L. Lopez 

of code to be written and logically integrated into 
the application code. A common user interface is 
the full-screen panel. (A panel is a recallable  full 
screen of information containing text and fields for 
input  and  output of data.) In many applications these 
are written in  the language of the application or in 
one callable from the application. The  amount of 
code needed to display, to logically link the panels, 
and  to  support  a keyboard handler can be equal to 
or greater than  the  amount of application code gen- 
erated. 

This paper presents a novel approach to recasting 
the traditional relationship between the function 
specification in the application code and  the user 
interface, thereby reducing the programming effort 
and development time for application creation. In 
this formulation, the panels and  the relationships 
among  them  are uncoupled from the application 
code. The panels and their logical connections are 
considered to be a network in which the nodes are 
the panels and  the connections are the paths. The 
functional relationship between nodes and paths re- 
sides not in the  main line of the application program 
but external to it. The repository for this logical 
structure is an incidence matrix. The user  sees the 
nodes and paths as full-screen panels and the linkages 
between  panels. At panel definition time, the panels 

Copyright 1987 by International  Business Machines Corporation. 
Copying  in  printed  form  for  private use is permitted without 
payment of royalty  provided  that (1) each reproduction is done 
without  alteration and (2) the Journal reference and IBM copyright 
notice are included on the first page. The title and abstract,  but no 
other portions, of this paper may be copied or distributed  royalty 
free  without  further permission by  computer-based and other 
information-service systems. Permission to republish any other 
portion of this paper  must be obtained from the Editor. 

IBM SYSTEMS JOURNAL, VOL 26, NO 2, 1987 HALPERN, ROBERTS. AND LOPEZ 201 



are linked  in a logical manner to form the network. 
During execution, the end user  supplies the required 
input, requests  help, and receives output through the 
panels. The network is traversed on the basis of 
decisions captured by the panels and controlled by 
entries in the incidence matrix. 

Early  dialog management systems  such  as ISPF’ were 
based on a conversational monitor system2 and were 

To meet  the  need  to  create 
full-screen  panels for use  with 
application  programs,  several 

PC-based  panel  systems  have  been 
developed. 

mainframe-based  programs.  These  programs  pro- 
vided  screen  generation  as part of an overall appli- 
cation development programming environment. 

To meet the need to create  full-screen  panels  for  use 
with application programs,  several PC-based panel 
systems  have  been  developed.  These  systems permit 
the program  developer to write  text  which  is  used to 
create “help” panels.  Such  panels can be  invoked by 
the end user at execution time to obtain on-line help. 
Furthermore, available  systems permit the creation 
of panels into which an end user can either enter 
data or display  results from the application program. 
Panels of this type act as input and output mecha- 
nisms  for the application programs. 

Existing PC systems  such  as EZ-VU3 help the program- 
mer  with  panel  design by supplying an editor. Al- 
though the editors differ in the function they  provide, 
they  have many features in common. They  usually 
permit the programmer to specify text  as well as 
input and output data fields that can be  arranged 
into  an overall panel design. As part of the data field 
definitions, the user can select a number of  field 
attributes-for  example,  field name, data type,  max- 
imum and minimum values, output only. At  exe- 
cution time, range  checking is camed  out for input 

202 HALPERN,  ROBERTS,  AND LOPEZ 

data. Functions for  drawing  lines and boxes are 
frequently  provided by the editor. 

The panel  systems  usually  have  several  high-level 
language  interfaces.  These enable applications writ- 
ten in FORTRAN or Pascal,  for  example, to access the 
panels  created and to capture data entered into the 
panels  for  use  by the application program.  Similarly, 
these  interfaces  transfer output data from the appli- 
cation to panels.  These  systems take the orthodox 
approach of  accessing the panels  serially  from  within 
the application program.  They do not view the 
panels  as part of a network. As a consequence, 
although current panel  systems  have  relieved the 
programmer of the burden of writing  code to create 
and design the panels, the programmer still must 
write control flow or linkages among the panels and 
must integrate these into the application code. 

TRYLON overview 

Figure 1 is a schematic representation of the com- 
ponents of the experimental panel  system  called 
TRYLON. TRYLON uses an incidence matrix as the 
logic repository  for  panels  created and connected in 
a network. The panels are designed  using a full- 
screen  panel editor (Block 1). In addition to the 
standard data field definitions and other ancillary 
attributes, the editor permits the definition of branch 
fields. These are used  by the panel linker in defining 
paths to other panels  (Block 2). Associated  with  each 
application is a set  of  files  which contains the textual 
material of the panels, the data field and branch field 
definitions, and the incidence  matrix. In our work, 
the rows  of the incidence matrix may  be thought of 
as destination panels and the columns as  source 
panels. To be more specific, if the source  panel 
includes a menu of options or items, each menu 
option for that source  panel  has its own column. 
Files  are  used  for data interchange  between the 
panels and the application, and for a work area. The 
panel linker creates the incidence matrix in a file 
which is accessed at execution time. By using the 
panel  previewer  (Block 3),  the linked panels can be 
viewed for  desired  panel  sequencing. 

The application program  (Block 4) uses the appro- 
priate  interface  code  (Block 5 )  to access the panels 
and perform data input and output. The interface 
code  also captures branch field selections and se- 
quences the panels  in the order determined by entries 
in the incidence matrix that was created during the 
panel-linker  sessions. Input and output  data transfer 
between the application program and the interface 

IBM SYSTEMS JOURNAL, VOL 2 6 ,  No 2,1987 



Figure 1 Schematic  representation of TRYLON 

r""""""""""""""""""""""""- 1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

rc U I I 
I 
I 
I 
I I t 

I 
I 
I 
I 
I 

code is accomplished by using a  data interchange 
field or by directly referencing a field on  a displayed 
panel. 

An example 

The following example illustrates how TRYLON proc- 
esses panels with the aid of an application program. 

Figures 2A through 2E show a series of panels created 
as the user interface for making two simple calcula- 
tions involving trigonometry of a right triangle. The 
extents (lengths) of the  input  and  output areas are 
designated by the "#" sign. The selection of branches 
to other panels or exits is  specified  by the "a" sign. 
Both  signs are special characters which the interface 
code recognizes and can distinguish from normal 
text. 

Let us briefly examine the sample problem TEXAMP3. 
Panel 1 contains text announcing  a sine and  a hy- 

potenuse calculation. Panel 2 accepts user inputs for 
five angles  whose sines are to be computed. Panel 3 
is an  output panel that lists the sines of the five 
angles. In addition, Panel 3 contains  a menu with 
three branching options: (1) to redo the sine calcu- 
lation; (2) to  do a hypotenuse calculation; and (3) to 
exit to DOS through the application program. If the 
first option is  selected, a branch to Panel 2 is  exe- 
cuted. If the second option is chosen, the  input panel, 
Panel 4, is  displayed and requests that  the sides of a 
right triangle be entered. Panel 5 ,  which presents the 
results  of the hypotenuse calculation, is then dis- 
played. 

Figure 2G is a panel summary showing the details 
of the  data fields and  the  number of branches on a 
panel. A field name, field type, input or output type, 
and  maximum  and  minimum field  values,  as well as 
a default value, may be  specified for each field de- 
fined on  a panel. For example, during  the creation 
of Panel 4, the first data field  was  given the name 

IEM SYSTEMS JOURNAL,  VOL 2 6 .  NO 2, 1987 



Figure 2 (A, B, C, D, E) A series  of  panels created as the user interface for  making two simple  calculations  involving  trigonometry  of  a 
~~ 

right  triangle; (F panel linkage summary  for  sine and hypotenuse  calculation 

A D 

B E 

F 

PANEL LINKAGE SUMMARY 
V;B B 

. PANEL 1 ("TEXTl") I S  LINKED TO PANEL 2 ("ANGIN") -.a "" 

PANEL 2 ("ANGIN") IS  LINKED TO EXIT 

PANEL 3 ("ANGOUT") : 
BRANCH FIELD 1 IS LINKED TO PANEL 2 ("ANGIN") ' 
BRANCH FIELD 2 IS LINKED TO PANEL 4 ("SIDES") 
BRANCH FIELD 3 IS LINKED TO EXIT 



Figure 2 (G) Panel  summary  for sine and hypotenuse calculation 

SIDE]. It was  defined as an  input field for a single- 
precision number.  The allowable  range of values  was 
0.0 to 10.0. During execution, user input values  were 
checked for numerical values falling outside the spec- 
ified  range. A default value of 3.00 would be  dis- 
played in  that field. Note  that all the fields in Panel 
3 are defined as output for I/O type, and as character 
for data type. 

The panel linkages for the set  of five panels are shown 
in Figure 2F. The information in Figures 2F  and 
2G is produced by TRYLON using the editor and 
linker referred to in Figure 1. Figure 3 shows the 
traditional graph of the panel linkages  (see Figure 

2F) and its relationship to the application program. 
The application requires panel input  or  output  at 
four locations in  the graph. These accesses are indi- 
cated by the arrows from the application program to 
the graph. The arrows mean that  the application 
program invokes the interface program, which  dis- 
plays the indicated panel. The first  access  is the initial 
access to Panel 1, which  serves as an introduction  to 
the user. A second access  follows the sine calculation. 
The third access  follows selection of the hypotenuse 
calculation, and  the final  access  is after the hypote- 
nuse calculation. Each  of the EXIT blocks denotes a 
return to  the application program. The user can 
choose the EXIT from BR3 of Panel 3, but  the 

IBM SYSTEMS JOURNAL. VOC 26, NO 2.1987 



Figure 3 Flowchart of sine  and  hypotenuse calculation Figure 4 Compact  form  of incidence matrix  for  sine  and 
hypotenuse  calculation 

.--“ 

(FIGURE 2D) 

PANEL 
(FIGURE  2E) 4 

Y 

206 HALPERN, ROBERTS, AND LOPEZ 

interface code determines the EXIT from Panels 2, 4, 
and 5. 

The compact incidence matrix for the graph shown 
in Figure 3 is depicted in Figure 4. The panels which 
exit have an E in the cell defined by the source panel 
(row) and the branch number (column). For those 
panels which do not exit, or do not have branches, 
a destination panel is  specified in the first column 
(see Panel 1). 

The entering of data  into  a large incidence matrix 
can be a time-consuming and error-prone chore. The 
alignment of the entries in the correct rows and 
columns requires visual, graphic, or text aids. TRY- 
LON eliminates these problems by providing a linker 
which permits the user to link panels in context. 
When a source panel is  specified, the panel linker 
displays the panel to be linked (source panel), and 
the program developer specifies the destination panel 
for each branching option.  The destination panel 
can be displayed before linking to verify whether the 
correct link is  being  specified. Links can be made 
between any two panels regardless  of their positions 
in the network. Neither the end user nor  the program 
developer ever  sees the incidence matrix in any form 
because the system internally creates the compact 
form of the incidence matrix from the  data supplied. 
To be  specific, consider Figure 5 ,  which  shows Panel 
3 being displayed by the TRYLON linker program. 
The destination panel for the branch “Redo Sine 
Calculation” is set to be Panel 2. The message at  the 

IBM SYSTEMS JOURNAL, VOL 26 NO 2, 1987 



I 

Figure 5 Creating  panel  linkages  using TRYLON 

PANEL 3 
.. 

, I 

S I N  # # # # # #  = # # # # # # # # # # # # # # #  

S I N  # # # # # #  = # # # # # # # # # # # # # # #  
S I N  # # # # # #  = # # # # # # # # # # # # # # #  

S I N  # # # # # #  = # # # # # # # # # # # # # # #  
SIN # # # # # #  = # # # # # # # # # # # # # # #  

I 

x REOO SINE CALCULATION 8 HYPOTENUSE CALCULATION 
8 EXIT TO DOS 

---> PLACE AN ' X  OR x '  NEXT  TO  CHOICE <"- 

"-> ENTER DESTINATION  PANEL NAME OR NUMBER <"- I 
( ESCAPE CANCELS ) ""-> 2####### 

PANEL 3 ("ANGOUT") LINKING BRANCH FIELD 1 ON PANEL 3 

Figure 6 Displaying  panel  linkages  using TRYLON 

~~~ ~ 

IBM SYSTEMS JOURNAL, VOL 2 6 .  NO 2, 1987 



bottom of the screen gives the current branch field 
being  linked. By pressing the “Enter” key the pro- 
gram  developer  moves to the next branch field and 
enters its destination panel. The current linkages  for 
any panel can be  reviewed  as  shown  in the pop-up 
window  in  Figure 6. Here  all the branches and their 
destination panels  have  been  defined. A choice  for 
the default  positioning of the cursor at execution 
time has  also  been  made by placing an “x” in the 
desired branch field. 

A function for which these  panels were  designed  is 
the carrying out of  two calculations in tandem. That 
is to say, the problem path consists of the following 

The  TRYLON  editor  is a  full-screen 
editor  capable of accepting  both 
character  and  numerical  data. 

steps: ( 1) entering the input data values  for the angles, 
(2) computing the sines, and (3)  displaying the results 
of the sine calculation. Next, the input  data for the 
hypotenuse calculation are entered. Another func- 
tion consists of running the sine calculation more 
than once and then exiting without executing the 
hypotenuse calculation. Other possibilities include 
running the sine calculation multiple times before 
executing the hypotenuse computation. These  var- 
ious scenarios are made possible by the menu options 
in Panel 3. 

Editor 

The TRYLON editor is a full-screen editor capable of 
accepting both character and numerical data. The 
panels  displayed in Figures 2A to 2E  were created 
by the editor prior to running the sample problem. 
The user  has at his  disposal a number of convenient 
editing functions, such as (1) left and right as well as 
up and down  scrolling  of the screen,  (2) creation of 
horizontal, vertical, and perpendicular lines,  (3)  gen- 
eration of  boxes  with  single or double lines, (4) use 
of the available ASCII characters as fill patterns for 
screen  areas and boxes, (5) creation of pop-up  panels, 

208 HALPERN, ROBERTS. AND LOPEZ 

(6) display of panels  with  foreground and back- 
ground colors, (7) inserting,  moving,  deleting,  copy- 
ing, joining, and splitting  lines, and (8) standard 
keyboard functions such as  insert,  delete, tab, page 
up, and page down. 

The editor also  has  global functions for  copying, 
deleting,  inserting, and renaming panels  within the 
same application. 

In addition, with the editor the user  may  define data 
fields and branch fields on the screen  within  lines 1- 
23 and as much as 80 characters in width.  Lines 24- 
25 are reserved  for  messages and instructions. The 
data fields are identified by a “pound” sign (#) for 
each character in the field. The branch fields are 
identified by an  “at” sign (a). A panel can have a 
maximum of 50 data fields and 50 branch fields. The 
user can define or alter the attributes of a field  by 
pressing Function Key 5 (F5). A window  will then 
pop up adjacent to the field in question, so that the 
field  is  visible. The input areas of the window require 
the user to supply  such attribute data as field name 
(associated  with a variable in the application code), 
field type (character, two- and four-byte  integer, and 
single- and double-precision  floating-point), field 
mode (input, output, or both). A fourth entry in the 
pop-up window permits the user the option of  spec- 
ifying more attributes, such  as default value and 
maximum and minimum values  for the field.  At 
execution time, the default  value is displayed in the 
data field and data entered must conform to data 
type and mode defined  for the field.  As a check on 
the data fields, the user  may  press Function Key 7 
(F7), which  displays  all the current attributes of the 
data fields. 

For the branch fields the principal attribute set by 
the user  is the default  position of the cursor, that is, 
the initial location of the cursor when the panel  is 
first  displayed by the application program. After a 
panel is  designed and its attributes determined, the 
user  saves the panel by pressing the ESC key. 

Upon completion of an editing session, the editor 
produces a panel summary (Figure 2G) and creates 
three files for each  panel. The jilename for  each file 
is  always the application name. The .PAN file contains 
the panel text, panel names, and panel  colors  for this 
application. The .PDF file contains the attribute in- 
formation for  all the data fields on the panel, for 
example, the total number of data fields on the panel 
and the width of each field. The information for the 
branch fields, such as the total number of branch 

IBM SYSTEMS JOURNAL, VOL 26. NO 2,1987 



fields on  the panel and  the location of these fields on 
the panel, is stored in the .PCM file.  All  of these files 

It  is  understood  that  each  language 
has  its  particular  constructs  for 

dealing with its  interface  code  and 
TRYLON files. 

are used  by the interface code at execution time  to 
display the requested panel. 

Interface  code 

To illustrate the interface code, we  will  use the 
previous example as a vehicle. Rather  than limit the 
discussion to a language-specific representation of 
the sine and hypotenuse application, we present a 
discussion of the application and  the interface code 
using  generic terms. It is understood that each lan- 
guage has its particular constructs for dealing with 
its interface code and TRYLON files. Thus, the inter- 
face code written in FORTRAN will have different 
constructs from that written in BASIC. However, it is 
informative to describe the  data flow to  and from 
panels and the interaction of the incidence matrix 
for sequencing the panels. 

An initialization call to  the interface code from the 
application code is required. The  term cull refers to 
a generic invocation of the interface code; it does 
not take on a specific meaning associated with a 
particular application language. This first  call  per- 
forms a number of housekeeping functions such as 
defining file numbers and opening files containing 
the panels and their attributes. A second call is issued 
to display the first panel. The interface code reads 
the panel file and ancillary files and displays Panel 
1. Control now  resides with the interface code. Since 
Panel 1 has text only, the user presses the FI key to 
display the destination panel for Panel 1, namely, 
Panel 2. The FI key has been defined as  the execution 
key by passing it as a parameter in the call to  the 
interface code. Panel 2 contains  input  data fields. 
The interface code now  is in a pause state waiting 

IBM SYSTEMS JOURNAL, VOL 2 6 ,  NO  2. 1987 

for the user to  enter  the angle data. When the user 
enters the  data,  the interface code checks for valid 
number formation and determines whether the  data 
are within the specified  range for the  data fields. 
When the user  presses FI ,  the entered angle values 
are read from the panel. This is achieved by using 
the information on  the ancillary files created by the 
editor. The x, y location of each data field, the  data 
field extent, type of  field (for example, integer or 
floating-point), and  input  or  output type are avail- 
able to  the interface code. A field name  on a panel 
and its variable name  in the application can be 
associated by parameters passed in calls to access 
field data.  Data read from a large number of input 
data fields can also be stored in a transfer file to be 
read by the application code using standard file I/O. 
After control has been  passed to  the application 
program, the  data  can be read from the transfer file. 
In either case, Panel 2 has as its destination panel an 
exit to  the application program. Using the supplied 
angle data,  the application program computes the 
sines. 

A call to  the interface code sets the next panel 
number  to be displayed as Panel 3, and  the values 
of the sines are written to  the screen  using the  same 
information as that employed in capturing the  data. 
The  format of the  data  can also be specified. 

Panel 3 contains both branch fields and data  output 
fields. The user  now chooses one of three available 
options. The interface code will use the incidence 
matrix to branch to  the destination panel for the 
option chosen. The decision to redo the calculation 
will result in Panel 2 being displayed, since it is the 
destination panel for that choice. When the hypote- 
nuse calculation option is  selected, Panel 4 is  dis- 
played. Panel 4 contains  data  input fields for entering 
information about  the length of two sides of a right 
triangle. The procedure followed  is the same as that 
described for Panel 2. Upon completion of the  data 
input, control is  passed to the destination panel for 
Panel 4, which  is an exit to  the application. The 
application reads the values of the sides of the tri- 
angle from the transfer file and  then computes the 
hypotenuse. A final  call to  the interface code specifies 
that Panel 5 should be displayed, with the value of 
the hypotenuse and the two other sides  of the triangle 
being displayed in  the  output fields. Since the desti- 
nation of Panel 5 is an exit, control returns to  the 
application code and  an exit to DOS is executed. 

Returning to  our discussion of Panel 3, when the 
Exit to DOS option is  selected, its destination panel 
is an exit to the application code. Once  in  the appli- 



Figure 7 (A) Simple tree graph; (6) vertex-edge  incidence 
~ ~~ 

matrix 
Figure 8 Simple tree graph: (A) Revised incidence matrix; 

~~ 

(B) source-node, destination-node incidence matrix 

B PATHS 

0 1 0 0 

1 1 1 1 

0 0  0 1 

1 0 0 0 

0 0 1 0 

cation, control will  be returned from the program to 
DOS. 

Incidence-matrix  representation of graphs 

TRYLON uses the incidence matrix in a novel method 
for linking panels. The incidence matrix can be 
derived by considering that  a graph of a network 
may be represented by a r n a t r i ~ . ~  If  we consider a 
graph with n vertices (or nodes) and p edges (or paths 
connecting the nodes), and with no self loops, we 
may define its matrix representation through the 
n x p matrix A. The n rows  of A correspond to  the 

n vertices (nodes) and  the p columns correspond to 
the p edges (paths). The matrix A with the elements 
a,, is defined as 

a,, = 1, if the jth edge (path) is incident on  the 
ith vertex (that is, the path j is connected 
to  the  ith node); 

a, = 0, otherwise. 

The matrix A is called the vertex-edge incidence 
matrix. It is a binary matrix because it contains only 
the elements 1 or 0. 

210 HALERN, ROBERTS, AND  LOPEZ IBM SYSTEMS JOURNAL, VOL  26, NO 2,1987 



Figure 7A shows a graph and its vertex-edge inci- 
dence matrix. In the figure the vertices (nodes) are 
labeled n( l), n(2), . . e ,  n(5)  and  the edges (paths) are 
labeled e, f,  g,  h. Upon adopting the definition of the 
vertex-edge incidence matrix, we may represent the 
graph by the incidence matrix in Figure 7B. Here we 
see,  for example, that  Path e in  Column 1 has a 1 in 
Row 2 and Row 4, indicating that  Path e joins Nodes 
2 and 4. Inspection of the incidence matrix in Figure 
7B  shows that it portrays faithfully the information 
in  the graph in Figure  7A. 

The matrix representation in Figure  7B  is not the 
only way to describe the graph in Figure 7A.  If  we 
are willing to consider Figure 7A as a directed graph, 

The  network  may  be  expressed  as  a 
graph  in  which  panels  are  nodes  and 
paths are linkages  between  panels. 

that is, a graph in which the paths are oriented in a 
specified direction, other interesting representations 
can be written. 

Consider, for example, Figure 7A as a directed graph 
when the paths are directed from Root n(3) to  n(2), 
and  then from n(2) to n( l ) ,  n(2) to n(5), and n(2) to 
n(4). The incidence matrix may be  revised to repre- 
sent this, as shown in Figure 8A. 

Another useful representation for the directed graph 
described in Figure 8A is the incidence matrix in 
Figure 8B. Here we think of the beginning of a path 
as a source node and  the  end of a path as a destina- 
tion node. For example, in Path h, n(3) is the source 
node and  n(2) is the destination node.  An examina- 
tion of  Figure 8B shows that it represents the directed 
graph as faithfully as Figure 8A. Relative to source 
and destination nodes, Figure 8B is a particularly 
useful representation of a directed graph, a form that 
will  be treated more fully in the discussion of the 
sequencing of panels. 

An incidence  matrix  for  panel  sequencing 

The network through which panels are  to be se- 
quenced may be  expressed as a graph in which panels 
are nodes and paths are linkages  between  panels. 
The display of one panel followed  by another may 
be thought of as having a source node/destination 
node relationship. When treated appropriately, such 
a graph may be  processed without writing or rewrit- 
ing code whenever the graph is altered or traversed. 
The alteration may include modifying various paths 
through the graph or adding or deleting nodes in  the 
graph. 

Our concern is  with the display of panels in a se- 
quence determined by the programmer. Each panel 
(with the possible exception of the initial root panel) 
may be considered to be both a source panel and a 
destination panel. The source panel is the current 
panel, and the destination panel is the  one  to which 
the source panel branches or connects (if there are 
no branch options). If a panel contains a menu,  it 
may  be thought of as Panel P with Branch Option 1 
(first menu choice), Panel P with Branch Option 2 
(second menu choice), and so on. In other words, a 
panel with a menu behaves as if it were multiple 
source panels. 

To strengthen our understanding of these concepts, 
let  us consider a graph of panels in Figure 9. Panel 
1, the initial panel, contains a menu with two op- 
tions, labeled B R I  (Branch 1) and BR2 (Branch 2). 
Panel 1 B R I  is the source panel for the destination 
panel, Panel 2, while Panel 1 BR2 is the source panel 
for the destination panel, Panel 6 .  Panel 2, as a 
source panel with a menu of three options, branches 
to Destination Panels 3,4, and 5 for Branch Options 
B R I ,  BR2, and BR3, respectively. Panel 4 differs from 
the  other panels because it branches back to Panel 
1. Observe that Panels 3, 5 ,  and 6 branch to EXIT, 
which  is a special destination panel designed to exit 
the graph or  terminate  the processing  of the graph. 
In the code, it represents a return to  the program 
that called for the processing of the incidence matrix. 

The graph in Figure 9 may be  expressed as  an 
incidence matrix in Figure 10. The rows are labeled 
as the destination panels; the  columns  are labeled as 
source panels with menu  options for the various 
branches. For example, Column 1 represents Source 
Panel 1 BR1 (Branch Option I) ,  Column 2 represents 
Source Panel 1 BR2 (Branch Option 2), and  Column 
3 represents Source Panel 2 BR1. The  number 1 

IBM SYSTEMS KHJRNAL, VOC 26. NO 2.1987 HALPERN, ROBERTS, AND LOPEZ 211 



Figure 9 Sample  panel network 

entered in the cell at  the intersection of the  column 
labeled Panel 1 BR1 and  the row labeled Destination 
Panel 2 indicates that Source Panel 1, Branch Option 
1, connects Source Panel 1 to Destination Panel 2. 
The entry of a 1 in the cell at  the intersection of the 
column labeled Panel 2 B R ~  and  the row labeled 
Destination Panel 4 means  that Source Panel 2, 
Branch Option 2, connects Source Panel 2 to Desti- 
nation Panel 4. Similarly, one can verify that  the 
incidence matrix in Figure 10 captures the relation- 
ships in the graph in Figure 9. 

It is interesting that each source panel (with each 
branch option) connects to  one,  and only one, des- 
tination panel (or EXIT, which may be considered a 
special destination panel). In the incidence matrix, 
this translates into one, and only one, entry of 1 in 

each column. Ths 
cal. 

it is to say, th e graph is unequivo- 

For substantial systems, the incidence matrix be- 
comes extremely large. If T = the  total  number of 
panels excluding the EXIT possibility and b, = the 
number of branch options for the ith panel (where 
bi = 1 for the ith panel that  contains  no branching 
option),  then  the incidence matrix consists of (T  + 
1) rows and bi columns, or a total of (T  + 1) * 
cZ, b, entries. 

Because the incidence matrix is sparse, the size  of 
the matrix can be considerably reduced by storing 
only the nonzero entries. We  now define a matrix C 
which contains  the same information as the inci- 
dence matrix but  in a compact representation form. 

IBM SYSTEMS JOURNAL, VOL 2 6 ,  NO 2, 1987 212 HALPERN, ROBERTS, AND LOPEZ 



Figure 10 Incidence  matrix  for  sample  panel network 

In the matrix C, the rows  refer to  the source panels. 
That is,  Row i refers to Source Panel i. The columns 
refer to branch options for each source panel. For 
example, Column 1 refers to Branch Option 1, and 
Column 2 refers to Branch Option 2. The entries in 
the cells contain  the destination panel numbers cor- 
responding to  the source panels and branch options. 
To illustrate, let us consider Figure 1 1, which  is the 
compact representation of the incidence matrix in 
Figure 10. Figure I 1  exhibits, for Source Panel 1 in 
Row 1, two destination panels, 2 and 6, in sequence 
as specified by the branching options BR1 and BR2 of 
Source Panel 1. Source Panel 2 in Row 2 lists in 
sequence Destination Panels 3,4, and 5 correspond- 
ing to BRI, B R ~ ,  and B R ~  options of Source Panel 2. 
In Row 3 for Source Panel 3, the E in Column I 
refers to EXIT as the destination panel. When there 
are no branching options, as in Source Panels 3, 4, 
5 ,  and 6, the destination panel appears in  Column 1 
(under BRI).  The reader can verify that Figure 1 1  
does indeed reproduce the sequence of events speci- 
fied by Figures 9 and 10. 

During execution, the panels are sequenced on  the 
basis of the paths specified in the incidence matrix 
or its compact representation. To change the se- 
quencing would require altering the entries in the 
incidence matrix or the compact representation. In 

Figure 11 Compact  form of incidence  matrix 

actual practice, the compact representation is em- 
ployed. 

The processing  of the incidence matrix is completely 
independent of the entries in the incidence matrix. 

IBM  SYSTEMS JOURNAL,  VOL 26 NO 2,1987 



Thus the processing  code,  supplied  with the number 
of  rows and columns in the compact form of the 
incidence matrix, can handle the addition or deletion 
of panels without the need  for  logic programming by 
the program  developer. 

Conclusion 

We  have  presented a novel way to link  panels  with- 
out the use  of a command language or logic program- 
ming on the part of the programmer. This linkage 

Text  panels  may  be  added,  deleted, 
or reordered  in  any  sequence 

without  recompiling  the  application 
code. 

was achieved by the introduction and use  of the 
incidence matrix. Since the incidence matrix is cre- 
ated independently of the application program, text 
panels  may  be added, deleted, or reordered in any 
sequence without recompiling the application code. 
These alterations are possible  because the processing 
of the incidence matrix is independent of the con- 
tents of the matrix. 

The incidence matrix can be expanded to enhance a 
variety of tasks.  These include (1) linking to other 
programs, as well as to panels, (2) linking graphics 
screen  displays, and (3) linking to a host  for  carrying 
out computationally intensive functions. In fact, the 
incidence matrix may  be  used as an executive that 
directs the flow  of a series of related  programs. 

We have implemented a running program, TRYLON, 
consisting of an editor for  creating  panels and a 
linker for  generating connections among the panels 
and linking them to the application program. TRY- 
LON is  being evaluated and used at IBM internal sites, 
and, in addition, has  been sent to a small number of 
university  researchers  for their evaluation and use. 

Cited  references 

1. Interactive System Productivity Facility, Dialog Management 
Services, Program  No.  5668-960, IBM Corporation; available 
through IBM branch offices. 

2. Structured  Programming FacilitylConversational Monitor Sys- 
tem, Program No. 6C20-0370, IBM Corporation; available 
through IBM branch offices. 

3. EZ- VU Development Facility for the IBM Personal Computer, 
Product No.  6410980,  IBM Corporation; available through 
IBM branch offices. 

4.  N. Deo, Graph  Theory  with  Applications to Engineering  and 
Computer Science, Prentice-Hall, Inc.,  Englewood  Cliffs, NJ, 
1974. 

Paul  Halpern IBM Academic Information Systems, Palo Alto 
Scientific Center, P.O. Box 10500, Palo Alto, California 94303. 
Dr. Halpern has  been  with  IBM  since  1968. He has published 
papers in the fields  of numerical weather prediction, air pollution 
meteorology, terrestrial radiative transfer, solar  energy  harvesting, 
real-time data acquisition, and digital  image  processing. He re- 
ceived a B.S. degree from the City College  of  New York in 1961, 
an M.S.  from  New  York  University in 1963, and a Ph.D. in 
atmospheric science  from the University of California at Davis in 
1975. Dr. Halpern is a member of  the  American  Meteorological 
Society and  the American  Geophysical Union. He  is currently a 
staff member at the ACIS, Palo  Alto  Scientific Center. 

Sanford Y. Roberts IBM Academic Information Systems, Palo 
Alto Scientific Center, P.O. Box 10500, Palo Alto, California 
94303. Dr. Roberts is currently associated  with the IBM Corpo- 
ration’s Palo Alto  Scientific Center. In 1948  he  received a B.S. in 
petroleum engineering from the University  of Pittsburgh, where 
he  held an honor scholarship; he  was a Research  Fellow at the 
University  of California at Berkeley, and received an M.S. in 
mechanical  engineering from that institution in 1950;  his Ph.D. 
in  chemical  engineering was awarded by Stanford University in 
1953.  Dr. Roberts has  worked as a research  engineer and applied 
mathematician in the areas of process control, optimization, and 
numerical analysis; he has published a book on dynamic program- 
ming in process control. 

Louis  Lopez IBM Academic Information Systems, Palo Alto Sci- 
entific Center, P.O. Box 10500, Palo Alto, California 94303. 
Dr. Lopez joined IBM at the Houston Scientific Center in 1966, 
working on  the application of computers to engineering and sci- 
entific problems. From 1974 to 1979  he  was manager of  process 
analysis,  first at the Houston Scientific Center and then at the Palo 
Alto  Scientific Center. In 1980 he took a one-year  sabbatical to 
the General Products Division plant in San Jose, returning in 198 1 
in  his current position as a member of the technical staff of the 
Palo  Alto  Scientific Center. Dr. Lopez  received a B.M.E. in 1961 
and  an M.S.E. in  1962 from the University  of Florida, and a Ph.D. 
in 1966 from Rice  University,  all  in mechanical engineering. 

Reprint Order No. G32 1-5294. 

IBM SYSTEMS JOURNAL, VOC 8. NO 2.1987 


