Data communications:

The implications

of communication systems
for protocol design

The construction of a communication network archi-
tecture, specifying protocols by which systems com-
municate, is a complex art. Much has been written
about the optimal protocols for theoretical models of
systems. This paper points out that protocol design
must depend on the “nuts and bolts” of the systems
which implement the protocols. Numerous examples
are provided to support this thesis. The paper also
briefly discusses other issues that influence protocol
design and draws lessons for standards activities.

In the past several years there have been a signifi-
cant number of publications describing various
aspects of computer network protocols.'”> Papers
have described specific network architectures,®’
standards activities,® particular protocols,” perform-
ance of protocols,'? local-area networks (LANs), wide-
area networks (WaNs), validation of protocols,'! etc.
Every angle of this topic has been studied in great
detail.

At the same time there has been considerable move-
ment to standardize network architectures.® An en-
vironment in which all systems communicate with
the same protocols is ideal. It allows maximum
connectivity among systems and maximum inter-
connectivity among systems of different vendors,
and removes impediments to network growth that
network operators would experience if they had to
spend time resolving disparities in protocols.

As a minimum, if one cannot guarantee common-
ality of protocols across all systems, it is useful to
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have a reference model to which all systems can be
converted. One aspect of the Open Systems Inter-
connection (osI) reference model is that it allows
maximum interoperability among different network
architectures. This is achieved not by having a com-
mon architecture, but by ensuring that gateways can
be built to the standard reference architecture.

While much has been going on in the architecture
and theory of protocols, few papers have provided
insight into the structure of the systems that must
implement these protocols. This oversight is unfor-
tunate, for there is a close relationship between the
particular protocols that are desirable in a specific
environment and the particular machine for which
the protocols are targeted. We attempt to substanti-
ate this claim in this paper.

This relationship helps to explain why there are so
many different architectures in use. Each vendor,
while devising its protocols, has a different mental
model of what the implementing system will look
like. Thus, each architect is led to design very differ-
ent protocols. Although these are not the only factors
that govern the selection of protocols, they are im-
portant ones.
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A result of these observations is an understanding of
why it is difficult to expect a single standard to be
“best” for all environments. We do not disagree with
efforts to try; certainly there are many disparities that
arise, for historical and arbitrary reasons. But many
disparities can be explained by understanding the
different mental models used by different architects.
Once the reasons for disparities are understood, they
can suggest ways to resolve those differences.

Another viewpoint is that communication systems
should be designed to allow usage of the “best”
protocols. This is a reasonable perspective to take.
Unfortunately, it is rarely clear which protocol is
best. Moreover, communication function must often
be provided to existing machines. Finally, there are
always design trade-offs among protocol design, sys-
tem design, and cost. At best, we can expect protocols
and communication systems to be built together,
with the constraints of one influencing the design of
the other.

The purpose of this paper is to illustrate the close
coupling between protocol design and communica-
tion system design. In particular, we discuss two
areas in which the particular choices made for pro-
tocols should depend on the system, and vice versa.
These areas are network control protocols and flow
control protocols. Many more examples are avail-
able, but these serve as useful illustrations of the
theme. With detailed examples, we substantiate the
aforementioned close relationship.

Before developing this theme in detail, we first define
the key terms used. In the following two sections we
describe the interrelationships between systems and
protocols, which is the principal point of the paper.
In succeeding sections, we attempt to draw conclu-
sions from this for standards activities and protocol
design. Next we illustrate how the problem will
become increasingly complex as the diversity of high-
level protocols increases. Finally, the last section
before the summary describes other issues that are
important in protocol design.

Definitions. The two key subjects we discuss herein
are protocols and communication systems:

e Protocols consist of all the rules that govern com-
munications between computing systems, includ-
ing rules at any of the seven layers of architectures
such as Systems Network Architecture (SNA)® or
osL.® See Figure 1.

* A communication system is any system that im-
plements protocols, including systems running
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end-user function such as mainframes, minicom-
puters, or workstations, or dedicated communi-
cation controllers such as 1BM 3725s, or X.25 packet
switch nodes (data circuit-terminating equipment,
or DCE).

Network control: Protocols and controllers

In this section we describe network control examples
that illustrate the relationship between communica-
tion systems and protocols. First we define network
control by explaining that network protocols are
conveniently divided into three classes:

1.

Data transmission protocols involve the actual
transmission of useful user data from one node
to another. Protocols involved in this phase of
network operation include steady-state interme-
diate node routing, flow control, session end-to-
end acknowledgment, etc.

. Network control protocols involve negotiation

among nodes prior to useful user data transmis-
sion to allow data to be ultimately transmitted.
Examples of these protocols include physical link
activation, accumulation of network status to be
used in route determination, and directories.
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Figure 2 Topology approach
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3. Network management protocols involve the ob-
servation of a running network, including session
tracking, performance monitoring, and error log-
ging.

The lack or possession of certain key features by a
communication system may determine the selection
of network control protocols. These features include
the amount of main memory, the availability of
secondary storage, the internal performance of the
machine, the internal architecture of the machine,
the machine instruction set, and whether the com-
munication system runs user applications. These
factors, taken in tandem with the perceived environ-
ment, are critical in determining “correct” protocols.

Routing example. An example is the routing control
exercised to gather network status information
needed to select optimal routes. Three common
techniques are
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¢ Predefined routes
* Distributed shortest-path algorithms
¢ Topology algorithms

In predefined routes,'* routes are established when
the network is configured, and users are assigned to
routes by pre-established conventions. These proce-
dures are appropriate when communication systems
lack real or virtual storage required by the other
techniques or are limited in processing power. They
are also more appropriate where the machine archi-
tecture makes it difficult to physically add new con-
nections on dial lines (for example, the machine
architecture might limit the number of devices that
could be connected, or the bus speed of the machine
could cause memory/processor overruns by adding
additional lines/capacity).

Environmental factors could also lead to a decision
to opt for predefinition. If network traffic patterns
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are highly structured and time-invariant, the best
performance is achieved by simultaneous planning
of the topology and routes to be used. Also, in a
single-LAN environment, the route from one node to
another is determined. Hence, the desirability of
expending network overhead to dynamically adjust
routes is minimized.

Distributed shortest-path algorithms'® and topology
algorithms'* are quite similar. Both collect network
status information on a dynamic basis and use it to
determine best paths. The methods are slightly dif-
ferent—the topology approach collects the entire
topology at each node (Figure 2) and from this does
a single-source shortest-path calculation, whereas the
distributed shortest-path approach ensures that each
node accumulates the shortest paths of its neighbors
(Figure 3) to each destination so that it may deter-
mine its own shortest paths. Generally, one can use

either as a desirable alternative to predefinition, yet
the particular communication system may cause
selection of one or the other. These techniques are
generally desirable if the machines are “hot-plugga-
ble,” allowing frequent changes in topology. Also, if
adequate storage exists, these techniques allow ease-
of-use improvements, better availability and per-
formance (such as factoring traffic congestion dy-
namically into the route calculation), and easier
reconfiguration than predefined techniques. Since a
topology data base can be reasonably complicated,
these approaches place additional requirements on
the machine architecture and capacity. Clearly, a
machine architecture such as the Zilog Z80 proces-
sor, with a maximum data segment of 64K bytes of
memory, will place a significant constraint on the
effective processing of the topology data base. In
addition, a larger topology requires greater process-
ing power in the controller to perform the needed

Figure 3 Shortest-path approach

TABLE AT A

TABLE AT B

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

GOLDSTEN AND JarFe 125




calculations effectively. Thus, the processing power
and memory trade-offs chosen will affect the ap-
proaches taken.

To elaborate, the topology approach requires more

storage than the distributed shortest-path approach.
The reasons are that the actual topology data base

Even the machine instruction set can
play a role in selecting a protocol.

can be large and the maintenance of the paths can
be calculated from the topology. Thus, a storage-
constrained system might prefer the distributed
shortest-path approach. Even if adequate storage
exists for the larger topology data base, it may be
preferable to use the extra storage for buffering transit
messages, rather than for the added topology infor-
mation. Thus, a curious trade-off exists between a
potentially better routing procedure and storage
available for flow control. For situations with unlim-
ited storage, the topology approach provides better
control over potential paths and has better reliability
characteristics."

Similarly, even the machine instruction set can play
a role in selecting a protocol. In a large network in
which the number of machine instructions calculat-
ing paths grows to be a significant processing load,
one might choose the topology approach. This choice
would permit the use of very efficient data structures
to reduce the amount of time spent calculating paths,
But this optimization is usable only if the machine
instruction set allows convenient manipulation of
such data structures. If a communication system has
a primitive instruction set optimized to the store-
and-forward transmission of messages, it will be
unable to utilize such an optimization, and the to-
pology approach loses an important advantage.

Function placement examples. A second network
control example of how communication systems
affect protocol design is the placement of network
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control. Network control decisions (such as link
activation, network directory, route selection) can be
fully distributed, centralized, hierarchical, or hybrids
of various forms of simpler architectures.

Network control decisions are made on the basis of
information in various data bases. Thus, the amount
of storage as well as the quality of data base manage-
ment determines which system can play which roles
in controlling the network. The topological position
of these systems and the question of whether all
systems can participate in network control decisions
determine whether to centralize or distribute control.
For example, SNA® places topological restrictions on
less capable PU-T2 nodes.

Another determining issue for network protocol
placement is whether the end-user sessions are ac-
tually running in the same physical machine as the
communication system. For reasons of authorization
and organizational control, it may be important that
directory and descriptive information (such as own-
ership, security requirements, degree of concurrency)
about the network resources exists in the same node
in which the resources are located. In a network
where each communication system is a node with
resources, it is reasonable for each node to imple-
ment a distributed network search protocol to lo-
cate resources in a peer manner. In contrast, if only
a portion of the nodes support users and applications
and the others only provide intermediate node-
switching function, it would be inconvenient for the
pure switching nodes to participate in such search
algorithms. This situation leads to different protocol
implications for such a networking architecture.

Update frequency example. A related issue is the
degree of currency of network directories. This issue
1s determined by the types of communication appli-
cations running in the systems and the storage/cycles
available. Suppose a service or endpoint application
moves from one node in the network to another
(e.g., dynamic placement based upon usage). One
could broadcast the change if movement were infre-
quent; alternatively, one could employ techniques
from the distributed data world, namely, put a place-
holder in the node where the application originally
resided that points to where it moved (see Figure 4).
In this case, when another node requested the appli-
cation, it would go to the original node and then
discover the new location and consequently update
its directory data base in the process. Thus, the
updating of the directory data base either can happen
in real time if movement of applications/services 1s
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Figure 4 Placeholder approach to network directories
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infrequent or can be deferred until service is actually
requested. This choice is related both to the fre-
quency of application movement and the ability to
keep up (from a cycles viewpoint) with potentially
frequent directory updates.

In summary, network control algorithms organize a
great deal of information about the network. How-
ever, the information accumulated, the location of
this information, and its interpretation are handled
differently on the basis of machine architecture. This
in turn must have implications for the protocols
implemented.

Flow control protocols

An excellent example of the relationship between
communication system design and network architec-
ture and protocols is the area of flow control proto-
cols. Flow control protocols regulate the flow of
traffic in networks to meet the following objectives:

1. Deadlock freedom
2. Good response time/throughput trade-off
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3. Minimal unfairness
4. Efficient buffer utilization
5. Low overhead

Occasionally these goals are in conflict!

Deadlock avoidance example. The first example deals
with whether flow control should have deadlock
avoidance as its primary objective. Certain schemes
prevent store-and-forward deadlock,'® at the cost of
increased overhead, whereas others utilize controls
that statistically reduce the probability of deadlock
without prevention.'’

When a communication system has limited storage,
the probability of deadlock is high (see Figure 5).
Deadlock occurs in systems that are also supporting
user applications; the system does not allocate suffi-
cient storage to communications. A deadlock-free
protocol is a proper design decision in such environ-
ments.

As the amount of storage available to communica-
tions increases, the statistical probability of deadlock
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Figure 5 Deadlock with limited buffers (six in example)
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Figure 6 Storage versus deadlock prevention diminishes. In that case, a deadlock-prevention
mechanism may be undesirable. For example, the
session-by-session buffer reservation technique'® re-
stricts sessions from entry into the network. Alter-
natively, the buffer-class deadlock-prevention tech-
nique'® causes unfairness by requiring certain mes-
sages to be blocked due to congestion at other nodes.
An attractive alternative is a less restrictive scheme
such as SNA virtual route flow control,'” which has
probabilistic deadlock avoidance.

As storage increases further, a deadlock-free scheme
such as reserving buffers on a per-session basis is
appropriate. Here, one is no longer concerned with
restricting the number of sessions entered into the
network; an adequate quantity can enter. Thus, a
deadlock-free scheme is not restrictive, but it serves
important purposes. It prevents a session from grab-
bing so much network capacity that the network
becomes congested and deadlocked due to an “out-
of-control” session.
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Figure 6 illustrates the paradoxical relationship be-
tween the amount of storage and the importance of
deadlock-free protocols. They begin as being very
important, but this importance decreases until they
reach relative insignificance, at which point they
once again grow in importance.

Satellite effect on flow control. Another flow control
example relates to satellite support. The existence or
absence of satellite support, which is a machine
architecture issue, affects flow control procedures in
many ways. A key item is whether flow on a route
is managed on a route basis or a “hop” basis."

Generally, when flow is regulated on a route basis
using “window” algorithms, the source node has an
allocation of permits or “window” of messages that
can be sent before receiving an acknowledgment.

The window size should be large enough to allow
good throughput (no excessive waits for acknowledg-
ments) but low enough to prevent congestion in
intermediate nodes. When flow is managed on a hop
basis, the same protocol applies, but separate win-
dows and acknowledgments operate over each link
in the route.

A good protocol for networks in which controllers
lack satellite support is to choose route-level man-
agement because of lower overhead (fewer acknowl-
edgments—see Figure 7). Unfortunately, if satellite
links exist in the network, large windows are required
to “fill the pipe” because of satellite propagation
delay (Figure 8). In this case, use of route-level
windows causes considerable network congestion.
However, if hop-level windows are used, the large
windows can be isolated to the satellite link, thus
avoiding excessive network congestion (Figure 9).

Figure 7 Route level; window equals 8

4 MORE WINDOW PERMITS

Figure 8 Route level with satellite; window equals 25

CONSUME ALL PERMITS
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Figure 9 Hop level; window equals 20
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Satellite transmission example. A lower-level ex-
ample is in the link retransmission protocol. Two
typical protocols are go-back-N and selective reject.
In go-back-N protocols, when the receiver detects a
transmission error, it instructs the transmitter to
retransmit the packet in error as well as any subse-
quent packets. In selective reject, the receiver re-
quests retransmission only of the packet in error. It
turns out that communication system design (in
particular, the maximum-speed satellite link it sup-
ports) affects the relative desirability of using these
protocols.

The key advantage of go-back-N is that it requires
buffering only at the transmitter—the receiver im-
mediately transmits successful packets. The proto-
cols are also simpler to implement and are preferred
in most environments. Selective reject has superior
link utilization properties at large window sizes and
high error rates.

For a communication system capable of supporting
low-speed satellite connectivity, go-back-N schemes
are most appropriate, since relatively low window
sizes are required to obtain high utilization. How-
ever, the selective-reject protocols are appropriate for
systems that allow higher-speed link support.

The amount of storage is also an issue. Selective
reject requires storage at the transmitter (in case
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retransmission is necessary) and at the receiver (for
cases in which an error occurs and correct packets
must wait for a retransmission). Selective reject can-
not be used if insufficient storage exists.

The internal communication system structure is also
an issue. If the storage for satellite buffering is shared
among all links connected to a node, there may be
(statistically) adequate storage for selective reject.
However, if the link protocol is on specialized satel-
lite adapter cards (to off-load this cycle-consuming
function), the availability of storage is more con-
strained.

Designing a communication system for
maximum protocol flexibility

In previous sections we have argued that the best
protocol for a particular function depends on the
machine architecture of the communication system
implementing the function. In this section we discuss
whether the examples cited previously are relics of
misguided system designs or reveal inherent difficul-
ties. It might be argued that by observing technology
trends one may define the “best” protocols for all
future systems. Our contention is that the need to
service different environments, the need to examine
competing objectives, requirements to reduce cost,
and uncertainty about technology trends will con-
tinue to favor different protocols for the same func-
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tion in different future implementations. As before,
this viewpoint is supported by examples.

The first example illustrates differences in the ideal
design in directory structure due to differences in
types of computing and communication systems.
One environment that exists today and will exist in
the foreseeable future is that of the mainframe. In
that environment, large hosts, which controi most of
the network resources and have cycles, storage, and
data base support, are logical repositories for network
directories. Other communication systems such as
dedicated communication controlers® provide a
front-end for the host, off-loading specialized func-
tions of line termination and message formatting.
Thus, directories will be centralized or managed
hierarchically by mainframes on the periphery of the
network.

The personal computer environment is another one
that exists today and will exist in the future. Here,
large numbers of workstations need a communica-
tion server (e.g., a minicomputer) to provide network
management. A logical directory protocol is a dis-
tributed protocol between peer (mesh-connected)
servers. Alternatively, if the network were also struc-
tured on departmental lines, it would suggest a hy-
brid, an example of a set of protocols that have to
factor in both distributed and hierarchical searches,
depending on the location of the systems in the
network. A given communication system might have
to support both sets of protocols depending on the
direction of the request.

The next example illustrates how uncertainty about
technology trends can perpetuate protocol disparities
for flow control/link control. Many protocols require
buffering per link/route as a function of line speed.
Assuming an infinite amount of storage, one can
devise the ideal protocol. Moreover, since storage
has gotten relatively inexpensive, one may imagine
that such an ideal protocol should always be used
for the future. Unfortunately, high-bandwidth com-
munication is also becoming inexpensive. This de-
velopment, coupled with the fact that any system
design must be used for some number of years, may
cause one to re-evaluate the assumption of infinite
memory. It may be too inconvenient to regularly
increase the memory on line adaptors each time
higher-speed lines are needed. Thus, the proper en-
gineering solution may differ from the ideal solution.

Next we point out that communications must be a
part of a wide variety of different types of commu-
nicating systems. Clearly, the design points of main-
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frames, minicomputers, workstations, terminals, su-
percomputers, terminal controllers, private branch
exchanges (PBXs), dedicated packet switches, etc. are
different. This will force different system designs and
different degrees of desirability for different proto-
cols.

Finally, the requirements to reduce costs and make

cost trade-offs will always encourage designers to
optimize machines differently. In any design there is

Different systems, optimized
differently, will require different
protocols.

some cost component that dominates. The compo-
nent may be memory, data base support, machine
cycles, ability to distribute function to other proces-
sors, software development cost, etc. Whichever fac-
tor dominates will suggest a design optimized by
reducing the need for that factor and will suggest
protocols designed around that optimization. Differ-
ent systems, optimized differently, will require dif-
ferent protocols.

Implications for standards

There are three wrong conclusions that one could
derive from the above discussion:

1. There is no value in standards—they cannot hide

inherent differences.

There is no hope for standardization—there can-

not be agreement among those with different

design points.

. Successful standards are bad—they force nonop-
timal solutions.

N

(%)

All of these potential conclusions are invalid.

One must understand the purpose of standards be-
fore rushing to conclusions about them. There are
three important reasons for standards:

1. They achieve uniformity where there is no excuse
for diversity.
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2. They encourage interoperability.
3. They provide a reference model.

To elaborate, Point 1 above recognizes that in certain
situations diversity will prevail. It is important to
acknowledge this and to allow that diversity. For, by
pigeonholing different factors together, one will ex-
perience bad performance, difficulties in achieving
agreement, and occasionally an inability to accom-
modate the standard. However, there are many more
instances in which diversity is not inherent, or in
which differences are the fields in a header, the value
of a parameter, a detail of a protocol, or even totally
different protocols to solve essentially the same prob-
lem. These cases must be recognized. And there is
great value, hope, and good performance in stan-
dardizing here. For if standards are not achieved, the
greatest cost in future systems will be in sofiware
development to convert from one to another among
protocols.

Point 2 recognizes that there will be different nerwork
architectures. Standardization cannot have as its goal
the creation of a single universal network architec-
ture. It would lead to the conclusions mentioned
above. However, there is a requirement for all sys-
tems to communicate with one another. Such com-
munication can be achieved by having a common
interface to which all sets of protocols can map.

Point 3 merely indicates that different designers
should use the same vocabulary. Common termi-
nology is a prerequisite to achieving further agree-
ment.

We believe that all of these points are implicitly
understood by most designers of protocols and stan-
dards. We make these points explicit:

1. To focus designers’ attention on these issues

2. To encourage the most realistic view of standards

3. To clanfy these issues to the uninitiated by pro-
viding perspective

Our proof that designers are aware of these issues is
that they are already taking actions which are con-
sistent with this view, as discussed in the next section.

What to do about diversity

Base and towers. The ideal situation is to recognize
the total set of functions needed in the most complex
case and a minimum set of functions needed for
simpler cases. The minimum functions, called base
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Sfunctions, are required of all systems. Various fowers
representing additional functions are defined. Each
node implements whichever high-level towers it de-

Often, commonality is appropriate at
the internetwork level.

sires, as well as lower-level towers (and the base)
needed to support the higher-level towers (see Figure
10). When nodes communicate, they negotiate their
capabilities to achieve the greatest common subset
of their towers. As a minimum, function is always
available at the base level.

This feature is a key aspect of APPC (an SNA session
protocol’!) and the Advise directory system,? as well
as certain functions on ost level 4.%* It would be more
widespread if it were not often difficult to achieve.

Different modes. When there is no commonality
among different protocols for similar function, it is
important to categorize the key differences. Catego-
rization allows one to gain a clear understanding of
where differences should exist and allows ease of
standardization within each category. The best ex-
ample of this is the work of the 1EEE 802 Committee
to standardize different local-area network protocols.

Different networks. Often, commonality is appropri-
ate at the internetwork level. This commonality is
trivially illustrated by the fact that different networks
have different architectures. But what is perhaps
more interesting is that even within one vendor (IBM)
there are different routing architectures (both subsets
of sNa) for different systems. The sva backbone
provides routes in a mesh configuration, whereas the
SN4 terminal subnetwork allows hierarchical connec-
tivity to a backbone node. At the border between
networks, the snva boundary function provides the
required conversion.

Similarly, much of the osr literature explicitly rec-

ognizes the key role of osI in conversions between
networks supplied by different vendors.
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Figure 10 Base and towers
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Impact of high-level protocols

This paper has focused on low-level protocols. How-
ever, communication systems also participate in
high-level protocols to provide transaction switching,
transparent accesses to services, and facilities for
interprocess communication between coupled proc-
essors. This section outlines higher-level protocol
1ssues.

Consider the fundamental requirement for transac-
tion switching. Transaction switching places a new
requirement on the communication system to deter-
mine where to route a message on the basis of the
semantics of the message, i.e., to determine the
proper target for the message by using information
provided in the message. This requirement implies
that there is a need for a mapping services layer that
will scan the message for a transaction code and, by
means of the code, determine the proper target lo-
cation. An effective transaction management system
also implies requirements on the operating system,
data base management, etc.

In the world of voice, there is a similar requirement,
namely, to determine the proper target communi-
cation systems on the basis of a dialed-in telephone
number. The problem is further compounded if one
considers the problem of dialing “800” numbers.
The problem is “Where is the 800 number?” Given
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multiple telephone operating companies (and Local-
Access Telephone Areas, or LATAs) and multiple
common carriers, the question is really: “Is the 800
number within the LATA that I am dialing from? Is it
in one of the many common carriers that the LATA
is connected to? Or is it in a LATA of another oper-
ating company connected to a common carrier?”
These are nontrivial questions.

High-level protocols are needed in both cases to
determine the proper routing destination. The prob-
lems in the voice world are further compounded
because of the high probability that the communi-
cation systems employed by one operating company
will be different from those used by the common
carriers and those used by the local exchanges.

Clearly, standardization is critical in the voice world
in order to solve the above problem. In the data
world, although it is true that interconnection be-
tween communication systems of different vendors
is both possible and, in some cases, desirable, such
systems are generally local to a given vendor. Fur-
thermore, no two transaction subsystems are identi-
cal or interchangeable; each has its own form of
transaction definition and mapping services. This is
not to say that there should not be a common set of
mapping services which could be employed by the
communication system such that, given the arrival
of a message, and a stored template, the communi-
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cation system could not determine the appropriate
destination. As with many applications developed

There are two alternative solutions
to this question of transparency.

over the years, transaction management subsystems
have evolved in a somewhat ad hoc manner.

Next we consider the need of the applications to gain
access to the services of the network. We encounter
a different set of issues:

e Should the application programmer be aware of
the location of the service (such as a file server or
print server)? There are two alternative solutions
to this question of transparency:*'*** By trans-
parency, the application programmer assumes that
all services are local, with remote being handled
transparently by the conjunction of the operating
system and the communication subsystem; or, by
transparency, we assume a new naming conven-
tion that fully qualifies each object and service by
its name and location (this form of transparency
optimizes for the service being remote). The for-
mer implies a significant requirement on the com-
munication system to perform high-level distrib-
uted directory searches.

Just as we have discussed the “800” problem in
the voice world, we have a similar problem in
dealing with object transparency. If an application
asks for access to a file named SYSJOUR, the ques-
tion, in a general network, of “Where is the file?”
1s a nontrivial one. Clearly, the system could first
search to see if the file were local to the requesting
node/LAN; if not, it could resolve to a very complex
distributed search (assuming a nonhierarchical
view). In today’s systems, a clear separation exists
between communication management and object
management (such as a file system). In addressing
transparent access to objects, the directory man-
agement function of the communication system

would have to be augmented to include informa-
tion about the location of objects.
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Moreover, consider that the names of objects in
the network may not be unique. This is analogous
to the synonym problem associated with 800 num-
bers in the voice world. Suppose one had an 800
number by the name of 80-MOMADUK. What
would happen if two different telephone operating
companies allowed their customers to freely assign
synonyms (just as two different states might assign
the license plate HAPPY to two different drivers)? If
800-MOMADUK were assigned to a trucking com-
pany in one LATA and assigned by a different
operating company to a restaurant in another
LATA, which of the two businesses would a casual
caller be connected to if the call originated in a
LATA owned by a third telephone company? So-
lutions not only require greater emphasis on stan-
dards but also impact the directory services of the
communication system (if allowed). The analogy
here refers to objects having the same name but
existing in different nodes. For example, suppose
there are two or more different file servers in the
network; what is the probability that there will
exist files with the same names but located on
different nodes (and containing very different
data)? The question is “Which file will a casual
application get when attempting access and being
located at an arbitrary node in the network?”
Furthermore, resolution of the issue of “right of
access” becomes extremely complex.

Given a heterogeneous environment, there exists
the 1ssue of mapping between different file systems
and object managers in the network (e.g., between
ascn and EBCDIC encoding schemes; linear byte
space versus logical record formats; field defini-
tions between different data base management
systems; etc.).

Performance and bandwidth of the media and
communication systems: If one were to use the
network for transparent access to service, it would
never be used if the performance were significantly
bad. A rule of thumb is that the performance of
access to services/data in the network should be
reasonably close to access to services/data in the
requesting node; e.g., access to a file on a remote
file server should take approximately the same
time it takes to access the file on a local disk. If
performance is significantly slower, then the user
will not use the transparent access and will, alter-
natively, use application-to-application commu-
nication protocols, making conscious decisions on
the appropriate function split between nodes.
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Finally we consider the question of interprocess com-
munication (1rc). Here the real question is “Why
does an application programmer want access to the
network?” While it is true that the application pro-
grammer does, in some instances, want the capability
of interprocess communication (Ipc), it is not a gen-
eral requirement. Typical applications want the abil-
ity to access the services offered by the network
without the added complexity of ipc. Most high-level
languages, in fact, do not offer primitives for com-
munication. A typical application programmer
learns the basics of the language and struggles
through the mechanisms for reading and writing data
to files and talking to the terminal.

Interprocess communication is nontrivial. The ap-
plication programmer has to worry about

e Concurrency (who starts first, who initiates the

conversation, how do two applications synchro-
nize, etc.).
How do two applications synchronize termina-
tion? This is a very hard problem. Solutions such
as use of the Byzantine Agreement are nontrivial
and impact the operating system, transaction
management subsystem, and communication sub-
systems. The solutions can be classified but are
certainly not standardized and are dependent
upon the characteristics of the conversation (re-
coverable versus nonrecoverable, the locking pro-
tocols employed, whether or not there is shared
memory, etc.).

Most application programmers code sequentially; to
have to worry about asynchronous events and con-
current programs is not only difficult but extremely
challenging to prove correctness.

Additional factors in controller/protocol design

Although protocols depend on the communication
systems that implement them, both are also affected
by other factors:

1. Link transmission speeds. Many items, including
flow control strategy, depend on link speed be-
cause the amount of outstanding information
“filling the pipe” depends on the size of the pipe.
Also, the amount of complexity one places in a
protocol depends on line speed. If speeds are slow,
one can afford to provide node-by-node process-
ing for segmentation, retransmission, and error
recovery, and not affect the order of magnitude
of performance. At higher data rates, protocol
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complexity can cause nodal processing to inter-
fere significantly with high-speed data transport.
In addition, very high bandwidth will place ad-
ditional requirements on the communication
controller bus and its connectivity to the media.

. Probability of transmission error (e.g., transmis-

sion over telephone wires at 300 baud has signif-
icantly greater probability of error than transmis-
sion over optical fibers). If one assumes a very
high probability of error, the protocols have to be
concerned with handling such situations on a
frequent basis. If one assumes that errors are
relatively improbable, communication protocols
will be optimized for lack of error (with an error
handled as an exception case and performance at
times of errors irrelevant).

. Openness. If the protocol provides an application

program interface to be used by general applica-
tions written by application programmers, the
communications software must guard against
either accidental or malicious misuse of the inter-
faces. Thus, the complexity of the communica-
tion interfaces can vary significantly based upon
whether the interfaces are exposed to general
applications or remain as purely internal inter-
faces. In addition, the machine architecture has
to guarantee the integrity of the operating system
and the communication subsystem against the
accidental/overt action of the general applica-
tions.

. Communication locality of reference. Are com-

municating entities likely to have topological
proximity? In a very large corporate network
involving LANs, gateways, and multiple main-
frame “glass houses” over wide geographic dis-
tances, there will most certainly be locality of
reference in that the majority of traffic in a LAN
should be between processors within the LAN, and
in decreasing order to the glass houses/depart-
mental servers and then outward. Alternatively,
in a university with a AN, with much of the
activity oriented toward request of services from
one or more universities with multiple com-
puters, we will see a very different picture of
localitv. The choices for distributed directories
and the algorithms for finding services/users can
vary according to the locality or lack of locality.

. Leased or switched facilities. Clearly, if leased

lines are employed, the protocols for establishing
optimal (or near-optimal) paths are controllable.
In contrast, if the lines are not controlled by the
communication systems, path allocation will not
be optimal. This is not to say that the problem
does not exist or goes away; rather, the problem
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1s not addressed by the communication system,
but by the common carrier.

6. Voice or data or both. In the past, the problems
of the voice world have always been viewed as
different from those of the data communications
world. A relative truth, here, is that they are not
qualitatively different; they merely occupy differ-
ent places on the same spectrum. There are dif-
ferent recovery aspects and performance aspects
in the sending or receiving of voice or data.

Summary

The design of protocols to govern communications
between computing systems continues to evolve.
Different network architectures continue to perform
analogous functions differently, and within architec-
tures (such as SNA and osI) there are different allow-
able modes. These differences cause difficulty in
accommodating heterogeneity in operating net-
works.

The first step in dealing with this problem is to
appreciate its root causes. This paper argues that a
key, inherent root cause is differences in systems that
implement these protocols. Several examples are
given to illustrate why this is true today and will
remain true in the future.

Our hope is that an appreciation of these facts will
help to increase momentum toward standardization
and to increase awareness of potential pitfalls. The
best standards will be achieved when we understand
the benefits and the limitations of standard architec-
tures.
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