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The construction of a  communication  network archi- 
tecture, specifying  protocols by which  systems  com- 
municate, is a  complex art. Much  has  been  written 
about the optimal  protocols for theoretical  models of 
systems.  This  paper  points  out  that  protocol  design 
must depend  on  the  "nuts  and  bolts" of the systems 
which  implement the protocols.  Numerous  examples 
are  provided to support  this  thesis.  The  paper also 
briefly  discusses  other  issues that influence  protocol 
design and draws  lessons  for  standards  activities. 

I n the past  several  years there have been a signifi- 
cant  number of publications describing various 

aspects of computer network Papers 
have described specific network  architecture^,^.' 
standards activities,' particular  protocol^,^ perform- 
ance of protocols," local-area networks (LANS), wide- 
area networks (WANS), validation of protocols," etc. 
Every angle of this  topic has been studied in great 
detail. 

At the same time there has been considerable move- 
ment to standardize network architectures.8 An en- 
vironment in  which  all systems communicate with 
the same protocols is ideal. It  allows maximum 
connectivity among systems and  maximum inter- 
connectivity among systems of different vendors, 
and removes impediments to network growth that 
network operators would experience if they had to 
spend time resolving disparities in protocols. 

As a  minimum, if one  cannot guarantee common- 
ality of protocols across all systems, it is  useful to 
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have a reference model to which all systems can be 
converted. One aspect of the  Open Systems Inter- 
connection (OSI) reference model is that  it allows 
maximum interoperability among different network 
architectures. This is achieved not by having a  com- 
mon architecture, but by ensuring that gateways can 
be built to the  standard reference architecture. 

While much has been going on in the architecture 
and theory of protocols, few papers have provided 
insight into  the  structure of the systems that  must 
implement these protocols. This oversight is unfor- 
tunate, for there is a close relationship between the 
particular protocols that are desirable in a specific 
environment  and  the particular machine for which 
the protocols are targeted. We attempt  to substanti- 
ate  this claim in this paper. 

This relationship helps to explain why there are so 
many different architectures in use.  Each vendor, 
while devising its protocols, has a different mental 
model of what the  implementing system will look 
like. Thus, each architect is led to design  very  differ- 
ent protocols. Although these are not  the only factors 
that govern the selection of protocols, they are im- 
portant ones. 
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A result of these observations is an understanding of 
why it is difficult to expect a single standard to be 
“best” for all environments. We do not disagree with 
efforts to try; certainly there are  many disparities that 
arise, for historical and arbitrary reasons. But many 
disparities can be explained by understanding the 
different mental models used by different architects. 
Once the reasons for disparities are understood, they 
can suggest  ways to resolve those differences. 

Another viewpoint is that  communication systems 
should be designed to allow usage  of the “best” 
protocols. This is a reasonable perspective to take. 
Unfortunately, it is rarely clear which protocol is 
best. Moreover, communication  function must often 
be provided to existing machines. Finally, there are 
always  design  trade-offs among protocol design,  sys- 
tem design, and cost. At best, we can expect protocols 
and  communication systems to be built together, 
with the  constraints of one influencing the design  of 
the  other. 

The purpose of this paper is to illustrate the close 
coupling between protocol design and  communica- 
tion system design. In particular, we discuss two 
areas in which the particular choices made for pro- 
tocols should depend on the system, and vice  versa. 
These areas are network control protocols and flow 
control protocols. Many more examples are avail- 
able, but these serve as useful illustrations of the 
theme. With detailed examples, we substantiate the 
aforementioned close relationship. 

Before developing this theme in detail, we first define 
the key terms used. In the following two sections we 
describe the interrelationships between systems and 
protocols, which is the principal point of the paper. 
In succeeding sections, we attempt  to draw conclu- 
sions from this for standards activities and protocol 
design. Next we illustrate how the problem will 
become increasingly complex as the diversity of  high- 
level protocols increases. Finally, the last section 
before the  summary describes other issues that  are 
important in protocol design. 

Definitions. The two  key subjects we discuss herein 
are protocols and  communication systems: 

Protocols consist of  all the rules that govern com- 
munications between computing systems, includ- 
ing rules at  any of the seven  layers of architectures 
such as Systems Network Architecture ( S N A ) ~  or 
OSI.’ See Figure 1. 

9 A communication  system is any system that im- 
plements protocols, including systems running 
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Figure 1 Seven OS1 layers 
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end-user function such as mainframes, minicom- 
puters, or workstations, or dedicated communi- 
cation controllers such as IBM 3725s, or x.25 packet 
switch nodes (data circuit-terminating equipment, 
or DCE). 

Network control:  Protocols and controllers 

In this section we describe network control examples 
that illustrate the relationship between communica- 
tion systems and protocols. First we define network 
control by explaining that network protocols are 
conveniently divided into three classes: 

1. Data transmission protocols involve the actual 
transmission of  useful  user data from one node 
to another. Protocols involved in this phase of 
network operation include steady-state interme- 
diate node routing, flow control, session end-to- 
end acknowledgment, etc. 

2 .  Network control protocols involve negotiation 
among nodes prior to useful  user data transmis- 
sion to allow data  to be ultimately transmitted. 
Examples of these protocols include physical link 
activation, accumulation of network status to be 
used  in route  determination.  and directories. 



Figure 2 Topology  approach 
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3. Network management protocols involve the ob- 
servation of a  running network, including session 
tracking, performance monitoring, and error log- 
ging. 

The lack or possession  of certain key features by a 
communication system may determine  the selection 
of network control protocols. These features include 
the  amount of main memory, the availability of 
secondary storage, the internal performance of the 
machine, the internal architecture of the machine, 
the machine instruction set, and whether the com- 
munication system runs user applications. These 
factors, taken in tandem with the perceived environ- 
ment, are critical in determining “correct” protocols. 

Routing example. An example is the routing control 
exercised to gather network status information 
needed to select optimal routes. Three  common 
techniques are 

PATHTREEATB 

Predefined routes 
Distributed shortest-path algorithms 
Topology algorithms 

In predefined routes,” routes are established  when 
the network is configured, and users are assigned to 
routes by pre-established conventions. These proce- 
dures are appropriate when communication systems 
lack  real or virtual storage required by the  other 
techniques or  are limited in processing  power. They 
are also more appropriate where the machine archi- 
tecture makes it difficult to physically add new con- 
nections on dial lines (for example, the machine 
architecture might limit the  number of  devices that 
could be connected, or  the bus speed  of the machine 
could cause memory/processor overruns by adding 
additional lines/capacity). 

Environmental factors could also  lead to  a decision 
to opt for predefinition. I f  network traffic patterns 
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are highly structured and time-invariant, the best 
performance is  achieved by simultaneous planning 
of the topology and routes to be  used.  Also, in a 
single-LAN environment,  the route from one node to 
another is determined. Hence, the desirability of 
expending network overhead to dynamically adjust 
routes is minimized. 

Distributed shortest-path algorithms13 and topology 
algorithmsi4 are quite similar. Both  collect  network 
status information on  a dynamic basis and use it to 
determine best paths. The methods are slightly dif- 
ferent-the  topology approach collects the entire 
topology at each node (Figure 2) and from this does 
a single-source shortest-path calculation, whereas the 
distributed shortest-path approach ensures that each 
node accumulates the shortest paths of its neighbors 
(Figure 3) to each destination so that it may deter- 
mine its own shortest paths. Generally, one can use 

either as a desirable alternative to predefinition, yet 
the particular communication system may cause 
selection of one or the  other. These techniques are 
generally desirable if the machines are “hot-plugga- 
ble,” allowing frequent changes in topology. Also,  if 
adequate storage exists, these techniques allow  ease- 
of-use improvements, better availability and per- 
formance (such as factoring traffic congestion dy- 
namically into  the route calculation), and easier 
reconfiguration than predefined techniques. Since a 
topology data base can be reasonably complicated, 
these approaches place additional requirements on 
the machine architecture and capacity. Clearly, a 
machine architecture such as the Zilog 280 proces- 
sor, with a  maximum  data segment of 64K bytes of 
memory, will place a significant constraint on the 
effective  processing  of the topology data base. In 
addition, a larger  topology requires greater process- 
ing power in the controller to perform the needed 

Figure 3 Shortest-path  approach 
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calculations effectively. Thus,  the processing power 
and memory trade-offs chosen will affect the  ap- 
proaches taken. 

To elaborate, the topology approach requires more 
storage than  the distributed shortest-path approach. 
The reasons are that  the  actual topology data base 

Even  the  machine  instruction  set  can 
play  a  role  in  selecting  a  protocol. 

can be  large and  the  maintenance of the  paths can 
be calculated from the topology. Thus,  a storage- 
constrained system might prefer the distributed 
shortest-path approach. Even if adequate storage 
exists for the larger topology data base, it may be 
preferable to use the extra storage for buffering transit 
messages, rather  than for the  added topology infor- 
mation.  Thus,  a  curious trade-off exists  between a 
potentially better routing procedure and storage 
available for flow control.  For  situations with unlim- 
ited storage, the topology approach provides better 
control over potential paths and has better reliability 
characteristics.14 

Similarly, even the machine instruction set can play 
a role in selecting a protocol. In a large network in 
which the  number of machine instructions calculat- 
ing paths grows to be a significant processing load, 
one might choose the topology approach.  This choice 
would permit the use of very  efficient data  structures 
to reduce the amount of time  spent calculating paths. 
But this optimization is  usable only if the machine 
instruction set  allows convenient manipulation of 
such data structures. If a  communication system has 
a primitive instruction set optimized to the store- 
and-forward transmission of  messages, it will be 
unable to utilize such an optimization,  and  the to- 
pology approach loses an important advantage. 

Function placement examples. A second network 
control example of how communication systems 
affect protocol design is the placement of network 
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control. Network control decisions (such as link 
activation, network directory, route selection) can be 
fully distributed, centralized, hierarchical, or hybrids 
of various forms of simpler architectures. 

Network control decisions are made  on  the basis  of 
information in various data bases. Thus, the amount 
of storage as well as  the quality of data base manage- 
ment  determines which  system can play  which roles 
in controlling the network. The topological position 
of these systems and  the question of whether all 
systems can participate in network control decisions 
determine whether to centralize or distribute  control. 
For example, S N A ~  places topological restrictions on 
less capable PU-TZ nodes. 

Another  determining issue  for network protocol 
placement is whether the end-user sessions are ac- 
tually running in the  same physical machine as  the 
communication system. For reasons of authorization 
and organizational control, it may be important  that 
directory and descriptive information (such as own- 
ership, security requirements, degree of concurrency) 
about  the network resources exists in  the same node 
in which the resources are located. In  a network 
where each communication system  is a node with 
resources, it is reasonable for each node to imple- 
ment  a distributed network search p ro to~o l '~  to lo- 
cate resources in a peer manner. In contrast, if only 
a portion of the nodes support users and applications 
and  the  others only provide intermediate node- 
switching function, it would be inconvenient for the 
pure switching nodes to participate in such search 
algorithms. This situation leads to different protocol 
implications for such a networking architecture. 

Update frequency example. A related issue  is the 
degree  of currency of network directories. This issue 
is determined by the types of communication appli- 
cations running in the systems and  the storage/cycles 
available. Suppose a service or endpoint application 
moves from one  node in the network to  another 
(e.g., dynamic placement based upon usage). One 
could broadcast the change if movement were infre- 
quent; alternatively, one could employ techniques 
from the distributed data world, namely, put  a place- 
holder in the node where the application originally 
resided that  points to where it moved (see Figure 4). 
In  this case, when another node requested the appli- 
cation, it would go to the original node and  then 
discover the new location and consequently update 
its directory data base in the process. Thus,  the 
updating of the directory data base either can happen 
in real time if movement of applications/services is 
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Figure 4 Placeholder  approach to network  directories 
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infrequent or  can be deferred until service  is actually 
requested. This choice is  related both to the fre- 
quency of application movement and  the ability to 
keep up (from  a cycles viewpoint) with potentially 
frequent directory updates. 

In summary, network control algorithms organize a 
great deal of information about the network. How- 
ever, the information accumulated, the location of 
this information, and its interpretation are handled 
differently on  the basis  of machine architecture. This 
in turn must have implications for the protocols 
implemented. 

Flow control  protocols 

An excellent example of the relationship between 
communication system  design and network architec- 
ture  and protocols is the area of flow control proto- 
cols.  Flow control protocols regulate the flow of 
traffic  in networks to meet the following  objectives: 

1. Deadlock freedom 
2. Good response time/throughput trade-off 

3. Minimal unfairness 
4. Efficient  buffer utilization 
5. Low overhead 

Occasionally  these  goals are in  conflict! 

Deadlock avoidance example. The first example deals 
with whether flow control should have deadlock 
avoidance as its primary objective. Certain schemes 
prevent store-and-forward deadlock,16 at the cost of 
increased overhead, whereas others utilize controls 
that statistically reduce the probability of deadlock 
without prevention.” 

When a  communication system has limited storage, 
the probability of deadlock is  high  (see  Figure 5). 
Deadlock occurs in systems that are also supporting 
user applications; the system does not allocate suffi- 
cient storage to communications. A deadlock-free 
protocol is a proper design  decision in such environ- 
ments. 

As the  amount of storage available to  communica- 
tions increases, the statistical probability of deadlock 
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Figure 5 Deadlock  with  limited  buffers  (six in example) 
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Figure 6 Storage  versus  deadlock  prevention diminishes. In that case, a deadlock-prevention 
mechanism may be undesirable. For example, the 
session-by-session buffer reservation technique18 re- 
stricts sessions from entry  into  the network. Alter- 
natively, the buffer-class deadlock-prevention tech- 
nique16 causes unfairness by requiring certain mes- 
sages to be blocked due  to congestion at  other nodes. 
An attractive  alternative is a less restrictive scheme 
such as SNA virtual route flow control,” which has 
probabilistic deadlock avoidance. 

As storage increases further,  a deadlock-free scheme 
such as reserving buffers on a per-session basis is 
appropriate. Here, one is no longer concerned with 
restricting the  number of sessions entered  into  the 
network; an adequate  quantity  can  enter.  Thus,  a 
deadlock-free scheme is not restrictive, but  it serves 
important purposes. It prevents a session from grab- 
bing so much network capacity that  the network 
becomes congested and deadlocked due  to  an “out- 
of-control’’ session. 
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Figure 6 illustrates the paradoxical relationship be- 
tween the  amount of storage and  the importance of 
deadlock-free protocols. They begin as being very 
important,  but this importance decreases until they 
reach relative insignificance, at which point they 
once again grow in  importance. 

Satellite effect on flow control. Another flow control 
example relates to satellite support. The existence or 
absence of satellite support, which is a  machine 
architecture issue, affects  flow control procedures in 
many ways, A key item is whether flow on a  route 
is managed on a  route basis or a  “hop” basis.’’ 

Generally, when flow is regulated on a  route basis 
using “window” algorithms, the  source  node has an 
allocation of permits or “window” of  messages that 
can be sent before receiving an acknowledgment. 

The window size should be  large enough to allow 
good throughput  (no excessive waits for acknowledg- 
ments)  but low enough to prevent congestion in 
intermediate nodes. When flow is managed on a  hop 
basis, the  same protocol applies, but separate win- 
dows and acknowledgments operate over each link 
in the  route. 

A good protocol for networks in which controllers 
lack satellite support is to choose route-level man- 
agement because of lower overhead (fewer acknowl- 
edgments-see Figure 7). Unfortunately, if satellite 
links exist in  the network, large windows are required 
to “fill the pipe” because of satellite propagation 
delay (Figure 8). In this case, use of route-level 
windows causes considerable network congestion. 
However, if hop-level windows are used, the large 
windows can be isolated to  the satellite link, thus 
avoiding excessive network congestion (Figure 9). 

Figure 7 Route level; window equals 8 

I 4 MORE WINDOW PERMITS I 
Figure 8 Route level with satellite; window equals 25 



Figure 9 Hop level; window equals 20 

Satellite transmission  example. A lower-level  ex- 
ample is in the link retransmission protocol. Two 
typical protocols are go-back-N and selective  reject. 
In go-back-N protocols, when the receiver detects a 
transmission error, it instructs  the  transmitter to 
retransmit the packet in error  as well as  any subse- 
quent packets. In selective reject, the receiver  re- 
quests retransmission only of the packet in error. It 
turns  out that  communication system design (in 
particular, the maximum-speed satellite link it sup- 
ports) affects the relative desirability of  using these 
protocols. 

The key advantage of go-back-N is that it requires 
buffering only at  the transmitter-the receiver im- 
mediately transmits successful packets. The proto- 
cols are also simpler to implement  and  are preferred 
in most environments. Selective reject has superior 
link utilization properties at large  window  sizes and 
high error rates. 

For a  communication system capable of supporting 
low-speed satellite connectivity, go-back-N schemes 
are most appropriate, since relatively low window 
sizes are required to obtain high utilization. How- 
ever, the selective-reject protocols are appropriate for 
systems that allow higher-speed link support. 

The  amount of storage is also an issue.  Selective 
reject requires storage at the  transmitter (in case 
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retransmission is necessary) and  at the receiver (for 
cases in which an  error occurs and correct packets 
must wait  for a retransmission). Selective  reject can- 
not be  used if insufficient storage exists. 

The  internal  communication system structure is also 
an issue. If the storage for satellite buffering  is shared 
among all links connected to a node, there may be 
(statistically) adequate storage for selective reject. 
However, if the link protocol is on specialized satel- 
lite adapter cards (to off-load this cycle-consuming 
function),  the availability of storage is more con- 
strained. 

Designing a communication  system  for 
maximum  protocol  flexibility 

In previous sections we have argued that  the best 
protocol for a particular function depends on  the 
machine architecture of the  communication system 
implementing  the  function.  In this section we discuss 
whether the examples cited previously are relics of 
misguided  system designs or reveal inherent difficul- 
ties. It might be argued that by observing technology 
trends one may define the “best” protocols for all 
future systems. Our contention is that  the need to 
service different environments,  the need to examine 
competing objectives, requirements to reduce cost, 
and uncertainty about technology trends will con- 
tinue to favor different protocols for the  same func- 
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tion in different future  implementations. As before, 
this viewpoint is supported by examples. 

The first example illustrates differences  in the ideal 
design in directory structure  due to differences  in 
types of computing  and  communication systems. 
One  environment  that exists today and will exist in 
the foreseeable future is that of the mainframe. In 
that  environment, large hosts, which controi most of 
the network resources and have cycles, storage, and 
data base support, are logical repositories for network 
directories. Other  communication systems such as 
dedicated communication controllers2' provide a 
front-end for the host, off-loading specialized func- 
tions of line termination  and message formatting. 
Thus, directories will be centralized or managed 
hierarchically by mainframes on the periphery of the 
network. 

The personal computer  environment is another  one 
that exists today and will exist  in the future. Here, 
large numbers of workstations need a  communica- 
tion server (e.g., a  minicomputer)  to provide network 
management.  A logical directory protocol is a dis- 
tributed protocol between peer (mesh-connected) 
servers. Alternatively, if the network were also struc- 
tured on departmental lines, it would suggest a hy- 
brid, an example of a set  of protocols that have to 
factor in both distributed and hierarchical searches, 
depending on the location of the systems in the 
network. A given communication system might have 
to support  both sets of protocols depending on the 
direction of the request. 

The next example illustrates how uncertainty  about 
technology trends can perpetuate protocol disparities 
for flow control/link  control. Many protocols require 
buffering per link/route  as  a function of line speed. 
Assuming an infinite amount of storage, one can 
devise the ideal protocol. Moreover, since storage 
has gotten relatively inexpensive, one may imagine 
that such an ideal protocol should always  be  used 
for the future. Unfortunately, high-bandwidth com- 
munication is also becoming inexpensive. This de- 
velopment, coupled with the fact that any system 
design must be  used for some  number of  years, may 
cause one to re-evaluate the  assumption of infinite 
memory. It may be too inconvenient to regularly 
increase the memory on line adaptors each time 
higher-speed lines are needed. Thus, the proper en- 
gineering solution may  differ from the ideal solution. 

Next we point out that  communications must be a 
part of a wide variety of different types of commu- 
nicating systems. Clearly, the design points of main- 
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frames, minicomputers, workstations, terminals, su- 
percomputers, terminal controllers, private branch 
exchanges (PBXS), dedicated packet switches, etc. are 
different. This will force different system designs and 
different degrees of desirability for different proto- 
cols. 

Finally, the  requirements to reduce costs and  make 
cost trade-offs will always encourage designers to 
optimize machines differently. In  any design there is 

Different  systems,  optimized 
differently,  will  require  different 

protocols. 

some cost component  that  dominates.  The  compo- 
nent may be memory, data base support, machine 
cycles, ability to distribute  function to other proces- 
sors, software development cost, etc. Whichever fac- 
tor  dominates will  suggest a design optimized by 
reducing the need  for that factor and will  suggest 
protocols designed around  that optimization. Differ- 
ent systems, optimized differently, will require dif- 
ferent protocols. 

Implications for standards 

There are three wrong conclusions that  one could 
derive from the above discussion: 

1. There is no value in  standards-they cannot hide 
inherent differences. 

2 .  There is no hope for standardization-there can- 
not be agreement among those with different 
design points. 

3. Successful standards are bad-they force nonop- 
timal solutions. 

All of these  potential conclusions  are  invalid. 

One must understand  the purpose of standards be- 
fore rushing to conclusions about  them.  There are 
three important reasons for standards: 

1. They achieve uniformity where there is no excuse 
for diversity. 
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2. They encourage interoperability. 
3. They provide a reference model. 

To elaborate, Point 1 above recognizes that  in  certain 
situations diversity will prevail. It is important  to 
acknowledge this and  to allow that diversity. For, by 
pigeonholing different factors together, one will ex- 
perience bad performance, difficulties in achieving 
agreement, and occasionally an inability to accom- 
modate  the  standard. However, there  are  many  more 
instances in which diversity is not  inherent,  or  in 
which differences are  the fields in  a header, the value 
of a  parameter,  a detail of a protocol, or even totally 
different protocols to solve essentially the  same prob- 
lem. These cases must be recognized. And there is 
great value, hope, and good performance in stan- 
dardizing here. For ifstandards are not achieved, the 
greatest  cost in future  systems will be in software 
development to convert from one to another among 
protocols. 

Point 2 recognizes that  there will  be different network 
architectures. Standardization  cannot have as  its goal 
the  creation of a single universal network architec- 
ture. It would lead to  the conclusions  mentioned 
above. However, there is a  requirement for all sys- 
tems  to  communicate with one  another. Such com- 
munication  can be achieved by having a common 
interface to which all sets of protocols can  map. 

Point 3 merely indicates that different designers 
should use the  same vocabulary. Common termi- 
nology is a prerequisite to achieving further agree- 
ment. 

We  believe that all of these points  are implicitly 
understood by most designers of protocols and stan- 
dards. We make these points explicit: 

1. To focus designers' attention  on these issues 
2. To encourage the  most realistic view of standards 
3. To clarify these issues to  the  uninitiated by pro- 

viding perspective 

Our proof that designers are aware of these issues is 
that they are already taking  actions which are  con- 
sistent with this view, as discussed in the next section. 

What to do about diversity 

Base and towers. The ideal situation is to recognize 
the  total set of functions needed in  the  most complex 
case and  a  minimum set of functions needed for 
simpler cases. The  minimum functions, called base 
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functions, are required of all systems. Various towers 
representing additional  functions  are defined. Each 
node  implements whichever high-level towers it de- 

Often,  commonality is appropriate at 
the  internetwork  level. 

sires, as well as lower-level towers (and  the base) 
needed to support  the higher-level towers (see Figure 
10). When nodes communicate, they negotiate their 
capabilities to achieve the greatest common subset 
of their towers. As a  minimum,  function is always 
available at  the base  level. 

This  feature is a key aspect of APPC (an SNA session 
protocol2') and  the Advise directory system,22 as well 
as certain functions  on OSI level 4.23  It would be more 
widespread if it were not often difficult to achieve. 

Different  modes. When  there is no commonality 
among different protocols for similar  function,  it is 
important  to categorize the key differences. Catego- 
rization allows one  to gain a clear understanding of 
where differences should exist and allows ease of 
standardization within each category. The best ex- 
ample of this is the work of the IEEE 802 Committee 
to  standardize different local-area network protocols. 

Different  networks. Often,  commonality is appropri- 
ate at  the internetwork level. This  commonality is 
trivially illustrated by the fact that different networks 
have different architectures. But what is perhaps 
more interesting is that even within one  vendor (IBM) 
there are different routing  architectures  (both subsets 
of SNA) for different systems. The SNA backbone 
provides routes  in  a mesh configuration, whereas the 
SNA terminal subnetwork allows hierarchical connec- 
tivity to a  backbone  node. At the  border between 
networks, the SNA boundary function provides the 
required conversion. 

Similarly, much of the OSI literature explicitly rec- 
ognizes the key role of OSI in conversions between 
networks supplied by different vendors. 
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Figure 10 Base  and  towers 

OTHER TOWERS 

Impact of high-level protocols 

This paper has focused on low-level protocols. How- 
ever, communication systems also participate in 
high-level protocols to provide transaction switching, 
transparent accesses to services, and facilities for 
interprocess communication between coupled proc- 
essors. This section outlines higher-level protocol 
issues. 

Consider the  fundamental  requirement for trunsuc- 
tion switching. Transaction switching places a new 
requirement  on  the  communication system to deter- 
mine where to route  a message on  the basis  of the 
semantics of the message, i.e., to determine  the 
proper target for the message by using information 
provided in the message. This  requirement implies 
that there is a need for a mapping services layer that 
will scan the message for a transaction code and, by 
means of the code, determine  the proper target lo- 
cation. An  effective transaction management system 
also implies requirements on  the operating system, 
data base management, etc. 

In the world of voice, there is a similar requirement, 
namely, to determine  the proper target communi- 
cation systems on the basis  of a dialed-in telephone 
number.  The problem is further  compounded if one 
considers the problem of dialing “800” numbers. 
The problem is “Where is the 800 number?” Given 
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multiple telephone operating companies (and Local- 
Access Telephone Areas, or LATAS) and multiple 
common  camers,  the question is really: “Is the 800 
number within the LATA that I am dialing from? Is it 
in one of the  many  common camers that the LATA 
is connected to? Or is it in a LATA of another oper- 
ating company connected, to  a  common  camer?” 
These are nontrivial questions. 

High-level protocols are needed in both cases to 
determine  the proper routing destination.  The prob- 
lems in the voice  world are further  compounded 
because  of the high probability that  the  communi- 
cation systems employed by one operating company 
will be different from those used by the common 
carriers and those used  by the local exchanges. 

Clearly, standardization is critical in the voice  world 
in order to solve the above problem. In the  data 
world, although it is true  that interconnection be- 
tween communication systems of different vendors 
is both possible and, in some cases, desirable, such 
systems are generally local to  a given vendor. Fur- 
thermore, no two transaction subsystems are identi- 
cal or interchangeable; each has its own form of 
transaction definition and mapping services. This is 
not to say that there should not be a  common set  of 
mapping services which could be employed by the 
communication system such that, given the arrival 
of a message, and  a stored template,  the  communi- 
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cation system could  not  determine  the  appropriate 
destination. As with many  applications developed 

There are two  alternative  solutions 
to  this  question of transparency. 

over the years, transaction  management subsystems 
have evolved in  a  somewhat ad hoc manner. 

Next we consider the need of the  applications to gain 
access to  the services of the network. We encounter 
a different set  of  issues: 

Should the  application  programmer be aware of 
the  location of the service (such as a file server or 
print server)? There  are two alternative  solutions 
to this question of tran~parency:*’,*~,*~ By trans- 
parency, the  application  programmer assumes that 
all  services are local, with remote being handled 
transparently by the  conjunction of the  operating 
system and  the  communication subsystem; or, by 
transparency, we assume  a new naming  conven- 
tion that fully qualifies each object and service by 
its name  and location (this form of transparency 
optimizes for the service being remote). The for- 
mer implies a significant requirement on  the com- 
munication system to perform high-level distrib- 
uted directory searches. 

Just  as we have discussed the “800” problem in 
the voice world, we have a similar problem  in 
dealing with object transparency. If an application 
asks for access to a file named  SYSJOUR,  the ques- 
tion,  in  a general network, of “Where is the file?” 
is a nontrivial one. Clearly, the system could first 
search to see if the file were local to  the requesting 
node/LAN; if not, it could resolve to  a very complex 
distributed search (assuming  a  nonhierarchical 
view). In today’s systems, a clear separation exists 
between communication  management  and object 
management (such as  a file system). In addressing 
transparent access to objects, the  directory  man- 
agement function of the  communication system 
would have to be augmented to include  informa- 
tion about  the  location of objects. 
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Moreover, consider that  the  names of objects in 
the network may not be unique.  This is analogous 
to the  synonym problem associated with 800 num- 
bers in  the voice world. Suppose one had an 800 
number by the  name of ROO-MOMADUK. What 
would happen if two different telephone  operating 
companies allowed their  customers to freely  assign 
synonyms (just as two different states might assign 
the license plate HAPPY to two different drivers)? If 
800-MOMADUK were assigned to a  trucking  com- 
pany in  one LATA and assigned by a different 
operating  company to a  restaurant  in  another 
LATA, which of the two businesses would a casual 
caller be  connected to if the call originated in  a 
LATA owned by a  third  telephone  company? So- 
lutions  not only require greater emphasis  on  stan- 
dards  but also impact  the directory services of the 
communication system (if allowed). The analogy 
here refers to objects having the  same  name  but 
existing in different nodes. For example, suppose 
there are two or more different file servers in the 
network; what is the probability that  there will 
exist files with the  same  names but located on 
different nodes (and  containing very different 
data)? The question is “Which file  will a casual 
application get when attempting access and being 
located at  an arbitrary  node  in  the network?” 
Furthermore, resolution of the issue of “right of 
access” becomes extremely complex. 

Given  a heterogeneous environment, there exists 
the issue of mapping between different file systems 
and object managers in  the network (e.g., between 
ASCII and EBCDIC encoding schemes; linear byte 
space versus logical record formats; field defini- 
tions between different data base management 
systems; etc.). 

Performance and bandwidth of the media and 
communication systems: If one were to use the 
network for transparent access to service, it would 
never be  used if the  performance were significantly 
bad. A rule of thumb is that  the  performance of 
access to services/data in the network should be 
reasonably close to access to services/data in  the 
requesting node; e.g., access to  a file on a  remote 
file server should  take  approximately  the  same 
time it takes to access the file on a local disk. If 
performance is significantly slower, then  the user 
will not use the  transparent access and will, alter- 
natively, use application-to-application commu- 
nication protocols, making conscious decisions on 
the  appropriate  function split between nodes. 
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Finally we consider the question of interprocess com- 
munication (IPC). Here the real question is “Why 
does an application programmer  want access to the 
network?” While it is true  that  the application pro- 
grammer does, in some instances, want the capability 
of interprocess communication (IPC), it is not  a gen- 
eral requirement. Typical applications want the abil- 
ity to access the services  offered  by the network 
without the  added complexity of IPC. Most high-level 
languages, in fact, do not offer primitives for com- 
munication. A typical application programmer 
learns the basics  of the language and struggles 
through the mechanisms for reading and writing data 
to files and talking to  the terminal. 

Interprocess communication is nontrivial. The ap- 
plication programmer has to worry about 

Concurrency (who starts first, who initiates the 
conversation, how do two applications synchro- 
nize, etc.). 
How do two applications synchronize termina- 
tion? This is a very hard problem. Solutions such 
as use  of the Byzantine Agreement are nontrivial 
and  impact  the operating system, transaction 
management subsystem, and  communication sub- 
systems. The  solutions can be classified but are 
certainly not standardized and are dependent 
upon the characteristics of the conversation (re- 
coverable versus nonrecoverable, the locking pro- 
tocols employed, whether or not there is shared 
memory, etc.). 

Most application programmers code sequentially; to 
have to worry about  asynchronous events and  con- 
current programs is not only difficult but extremely 
challenging to prove correctness. 

Additional  factors  in  controller/protocol  design 

Although protocols depend on the  communication 
systems that  implement  them,  both are also affected 
by other factors: 

1. Link transmission speeds. Many items, including 
flow control strategy, depend  on link speed  be- 
cause the amount of outstanding  information 
“filling the pipe” depends on the size  of the pipe. 
Also, the  amount of complexity one places in a 
protocol depends on line speed. If speeds are slow, 
one  can afford to provide node-by-node process- 
ing for segmentation, retransmission, and  error 
recovery, and not affect the order of magnitude 
of performance. At higher data rates, protocol 
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complexity can cause nodal processing to inter- 
fere significantly with high-speed data  transport. 
In addition, very  high bandwidth will place ad- 
ditional requirements on the  communication 
controller bus and its connectivity to the media. 

2. Probability of transmission error (e.g., transmis- 
sion over telephone wires at 300 baud has signif- 
icantly greater probability of error  than transmis- 
sion over optical fibers). If one assumes a very 
high probability of error, the protocols have to be 
concerned with handling such situations on a 
frequent basis. If one assumes that errors are 
relatively improbable, communication protocols 
will be optimized for  lack  of error (with an error 
handled as  an exception case and performance at 
times of errors irrelevant). 

3. Openness. If the protocol provides an application 
program interface to be  used  by general applica- 
tions written by application programmers, the 
communications software must guard against 
either accidental or malicious misuse of the inter- 
faces. Thus, the complexity of the  communica- 
tion interfaces can vary  significantly  based upon 
whether the interfaces are exposed to general 
applications or remain as purely internal inter- 
faces. In  addition,  the machine architecture has 
to guarantee the integrity of the operating system 
and  the  communication subsystem against the 
accidental/overt action of the general applica- 
tions. 

4. Communication locality of  reference. Are com- 
municating entities likely to have topological 
proximity? In a very  large corporate network 
involving LANS, gateways, and multiple main- 
frame “glass houses” over wide geographic dis- 
tances, there will most certainly be locality of 
reference in that  the majority of traffic in a LAN 
should be between processors within the LAN, and 
in decreasing order to the glass houses/depart- 
mental servers and  then outward. Alternatively, 
in a university with a LAN, with much of the 
activity oriented toward request of services from 
one  or more universities with multiple com- 
puters, we  will  see a very different picture of 
locality. The choices for distributed directories 
and  the algorithms for finding services/users can 
vary according to the locality or lack  of  locality. 

5 .  Leased or switched facilities. Clearly, if leased 
lines are employed, the protocols for establishing 
optimal  (or near-optimal) paths are controllable. 
In contrast, if the lines are not controlled by the 
communication systems, path allocation will not 
be optimal. This is not to say that  the problem 
does not exist or goes  away; rather,  the problem 
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is not addressed by the  communication system, 
but by the  common  camer. 

6. Voice or data or both. In the past, the problems 
of the voice  world  have  always been viewed as 
different from those of the  data  communications 
world. A relative truth, here,  is that they are not 
qualitatively different; they  merely occupy differ- 
ent places on the same spectrum. There are dif- 
ferent recovery aspects and performance aspects 
in the sending or receiving  of  voice or data. 

Summary 

The design  of protocols to govern communications 
between computing systems continues to evolve. 
Different network architectures continue  to perform 
analogous functions differently, and within architec- 
tures (such as SNA and OSI) there are different allow- 
able modes. These differences cause difficulty in 
accommodating heterogeneity in operating net- 
works. 

The first step in dealing with this problem is to 
appreciate its root causes. This paper argues that  a 
key, inherent root cause is differences in systems that 
implement these protocols. Several examples are 
given to illustrate why this is true today and will 
remain true in the future. 

Our hope is that  an appreciation of these facts will 
help to increase momentum toward standardization 
and  to increase awareness of potential pitfalls. The 
best standards will  be  achieved  when we understand 
the benefits and  the limitations of standard architec- 
tures. 
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