sequential or by specified key). The data segments
themselves were linked together in networks or hier-
archies, depending upon the anticipated usage pat-
terns. For example, a customer account record might
contain the customer name, the billing address, the
credit rating, and a pointer to the set of orders made
by that customer. The orders record might contain
the order number, the salesman’s name, the total,
the desired delivery date, and a pointer to the set of
items ordered. This is an example of data stored as
a hierarchy. If the database management system
supported the network model” of data storage, the

In the mid-1970s, modern database
management systems emerged.

salesman record might contain the salesman’s name,
the commission earned, and a pointer to the orders
he took, thereby providing two ways of accessing
orders records: from the salesman who took them or
from the customer who gave them.

Access to data in these second-generation database
management systems required two layers (at least)
of software: (1) a user-written application program
with database calls and application-specific process-
ing logic, and (2) the database management system
with general-purpose database management facilities
to define, manipulate, and protect the data. The
application programs still ran in batch mode and
performed processing needed by the “back office” of
the enterprise. Some of the processing logic written
in first-generation data management applications
(e.g., 170, buffering, concurrency management, recov-
ery from crashes, transaction management, etc.) was
taken out of the application and done inside second-
generation database management systems. However,
applications still had to specify the access path to the
data. For example, the application might access the
order records by scanning the relevant salesman or
customer account records in the example above.

In summary, second-generation data management

systems evolved to database management systems
by advancing in function and generality over first-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

generation systems. They featured both sequential
data access and access to data stored on disk by key.
Application programs issuing database requests,
however, still ran in batch mode and specified data-
base requests by navigating among database records.
Application programmers using second-generation
database management systems gained in productiv-
ity by using well-defined, consistent data and also by
using the database management facilities to do op-
erations they would have had to code themselves in
first-generation data management applications.

Third generation: Database management systems. In
the mid-1970s, modern, third-generation database
management systems emerged. These systems ex-
tended all the features supported by the second gen-
eration and also offered interactive access. This in-
teractive capability evolved concurrently with time-
sharing operating systems and data communication
subsystems. Instead of running in batch mode, an
application program can be run interactively and
provide immediate answers to a user at a terminal.
Several users can run different applications concur-
rently on the same data, and the database manager
must serialize these data manipulations appropri-
ately. Interactive applications consist of one or more
screen interactions interspersed with one or more
database calls to check credit limits, account bal-
ances, etc., and require the database management
system to provide fast responses. This makes it pos-
sible to automate the “front office” of an enterprise
through applications that do on-line reservations,
check cashing, and point-of-sale purchases, and then
record the transaction in a database.

As one might expect of a maturing technology, third-
generation database management systems have also
become more specialized for various markets. A user
can choose a database management system that
makes the right trade-offs (for that user) with respect
to function, performance, productivity, and machine
resources. Among the I1BM database management
products, one might choose to use Transaction Proc-
essing Facility (TPF),® which offers high performance
with less flexibility in data storage, or IMs® or cics®
to access DL/I data (interactive and batch processing,
good performance, and navigational access to data),
or pB2' or sQL/Ds'! (interactive and batch processing,
reasonable performance, and nonprocedural access
to data). These systems represent three different se-
lections along a continuum of performance versus
function. They are also suited to different types of
database usage, from repetitive transactions requir-
ing high throughput on sets of records whose format

seLNGer 99




changes very infrequently, to ad hoc queries and data
whose format can easily be changed.

1BM’s relational database management systems (DB2
and sqQL/ps) reflect the new trend in database tech-
nology of providing easy access to data for people
who are not data processing professionals as well as
those who are. Relational databases provide a very
simple, tabular view of data. Unlike the earlier hier-
archical and network organizations, relational data-
bases derive relationships from the data values rather
than having explicit pointers between records.!? In a
relational view of the customer accounts-and-orders
example previously given, the order records would
contain the account number of the customer who
gave them instead of having a pointer in the cus-
tomer account record pointing to the corresponding
orders. Questions like “What is the credit rating of
customers in New York who ordered toasters?” are
answered by joining together information from the
customer account records and the order records by
matching the customer account numbers. This sim-
ple relational representation of data makes it possible
to access data in a nonprocedural way, giving only
the names of the files and the search conditions to
be checked. 1BMs relational database language is
called soL.!* The sQL version of the query just given
is the following:

SELECT credit rating, customer name

FROM customer account, orders

WHERE customer account.account number =
orders.account number
AND customer account.city = ‘New York’
AND orders.item = ‘toaster’

This type of nonprocedural database language elim-
inates the need to specify the access path to the data.
The database management system itself chooses the
access path by estimating the cost of obtaining the
query answer using each possible access path and
choosing the cheapest. In our example, the DBMS
could find toaster orders, get the associated customer
account number, use it to find the relevant customer
account record, check whether the city was New
York, and return the credit rating field. Or the DBMS
could sequentially scan all customer account records,
check whether the city was New York, and if so, find
the matching orders and check whether the item was
a toaster. Depending on the number of customers in
New York or the number of toaster orders, one of
these methods might be significantly faster than the
other. State-of-the-art database management systems
keep statistics that help them make a good estimate
of the cost of each possible access path. More infor-

100 seuncer

mation on access path selection can be found in
Reference 14.

The high-level, nonprocedural access to data offered

by relational database management systems relieves
one of the major problems facing data processing

Relational technology has evolved
from a research topic to a
commercial reality.

today: the shortage of data processing professionals
and the increasing backlog of applications users
would like to implement. It improves the productiv-
ity of data processing professionals by simplifying
the database calls in the application programs they
write. In addition, it makes it possible for non-pp
professionals to specify their queries to an interactive
query program and receive their answers on a screen
or printer, thereby avoiding the development of an
application program altogether. The end result is
improved productivity and reduced workload for the
data processing professional, and increased accessi-
bility to data for end users, including those who are
not data processing professionals.

State-of-the-art database technology. The third-gen-
eration database management systems that are ori-
ented toward high performance are now mature
systems, with years of usage and improvements be-
hind them. Their customers have a major investment
in applications that use them and in the education
of programmers on how to exploit their best features.
We can expect usage of these systems to continue to
be significant in the future, and we can expect that
the systems themselves will continue to evolve and
be enhanced.

Relational database technology has been an area for
research and development for more than a decade.
During this time, the emphasis of research and de-
velopment work on relational databases has changed
from a focus on system internals such as indexing,
query optimization, and concurrency to a concentra-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987




tion on the functional capability of databases. For
example, 1BM Research has been experimenting with
relational database system designs for about fifteen
years. These experiments have included the con-
struction of a complete relational data management
system, System R,'>'® a relational database system
that is highly available, a relational database man-
agement system for storing office and engineering
data, a distributed relational database system, and
others. A number of other research teams in univer-
sities and corporations are also addressing database
technology. In summary, relational technology has
evolved from a pure research topic to a commercial
reality, but its commercial exploitation is still in its
infancy, and it remains an active area of research.

Future directions for database technology

What can one expect in the future for database
technology? In my view, the evolution of database
technology will be influenced by the following three
factors:

e Performance-inspired improvements to the basic
technology

¢ New developments in hardware

¢ Customer requirements for additional function

Performance improvements. One can expect contin-
uing improvements in performance as database tech-
nology matures. Performance is always an area
where improvements are desired, particularly for
frequently executed portions of code. Database man-
agement system algorithms and code to retrieve a
record, lock a record, compare two fields or a field
and a value, log an update, search an index, etc., are
always candidates for further optimization. In addi-
tion, we continue to invent algorithms that offer
better performance (often with additional function
besides) than that of the algorithms used by current
database management systems. Areas of active re-
search and development of new, improved algo-
rithms include buffer management, recovery, con-
currency control, access path management, and
query optimization and compilation.

Performance improvements might be achieved with
only local changes, or they might require a dramat-
ically different internal database management system
architecture. For example, we can improve the per-
formance of relational queries by improving the
query optimizer’s cost model of a query’s buffer
utilization. This would be a local change to the query
optimizer. Other performance improvements could

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

be attained for all data models by coordinating da-
tabase algorithms with similar functions in the un-
derlying operating system. Two examples of these
more extensive architectural improvements are (1)
the provision of “hints” from the access path man-
ager to the 1/0 subsystem to prefetch the next data-
base pages that will be read, and (2) the coordination
of the paging done by the database buffer manager

Simple database management
systems for personal computers will
grow in function to rival those of
mainframes.

and the operating system virtual memory manager
to avoid paging policy conflicts and extra paging 1/0s.

With these and other improvements, one can expect
steady and continuing progress in performance be-
cause of improved algorithms and techniques. De-
pending on the maturity of the technology, these
performance improvements are more likely to be
less than a factor of two, rather than an order of
magnitude. I expect larger gains in performance in
the less mature relational technology, but improve-
ments are also attainable for other models.

The desire for even better performance in relational
database management systems will result in contin-
uing improvement to the basic subcomponents of
relational database architectures. 1BM has already
introduced the concept of compiling queries'® rather
than interpreting them, as is done by most relational
and navigational systems. The extra processing done
to compile a query is amortized over all the times it
executes. Furthermore, the compiled code is so effi-
cient that it is worthwhile to compile even ad hoc
queries. For the future, we can obtain even better
performance by further enhancing the query opti-
mization in relational database management sys-
tems. There is still room for more detailed modeling
of costs and for enhancing the repertoire of access
paths, and the database research and development
community is very active in this area.

sencer 101




As functional and performance enhancements are
made to existing database management systems,
their internal architecture will be modernized and
restructured. This will enable them to continue to
grow and be enhanced. This will also remove the
constraints imposed by previous hardware limita-
tions, such as address space size, limits on the num-
ber of terminals that can be connected, and device
dependencies on screens or disks. It will position
these systems to exploit new 1/0 devices, multi-
processors, large address spaces, and so forth. This
exploitation of new developments in hardware is not
being limited to developments prompted by a desire
for better performance, as we now discover.

New developments in hardware. Many new functions
of database management systems will be motivated
by a desire to tolerate or exploit new hardware
technologies. Some simple examples are those of
restructuring database system architectures to exploit
multiple processors, extended addressing, and larger-
capacity disks. As described in the preceding section,
one can exploit hardware to provide performance
improvements. For example, a database manage-
ment system can process transactions faster by using
nonvolatile memory such as random-access memory
(RaM) with battery backup to save changes, or by
loading parts of the database into very large main
memories.

A more complex example of exploiting new devel-
opments in hardware is the invention of database
management systems for personal computers. Today
these systems are rather simple, compared to the rich
function of mainframe database management sys-
tems. As microprocessors become faster, as memory
becomes cheaper, and as small disks grow in capac-
ity, these simple database management systems will
grow in function to rival those of mainframes. As
local-area networks of workstations become more
popular, a requirement for multiple-user database
management systems on server workstations will
emerge. In addition, mainframe, server, and personal
computer databases will need to share data or at
least permit data to be extracted from one to the
other. Users of personal computers will need access
to shared corporate data stored on mainframe or
server database management systems, and will want
to archive and protect some of their local data on
the mainframe. These extraction functions are pro-
vided today by a variety of vendors. Most of these
systems offer the ability to construct queries, ship
them from workstation to host, and receive and store
the answer either in a file or in a local DBMS. Some

102 seuncer

vendors offer the capability of triggering a host DBMS
update from a program running on the personal
computer.

Virtually no one provides a single-system image of
all the data managed by a DBMS running on a per-

New hardware devices and chips
can be exploited by database
management systems.

sonal computer plus all the data managed by a host
or server DBMS. Such a system would permit updating
both databases in a single transaction and combining
in a single query data from both systems, as in a
relational join. The issues involved in providing such
a single-system image among workstations, servers,
and hosts involve challenges in security, naming,
query optimization, recovery, and all aspects of con-
trol. For example, does it make sense to have a
workstation lock items at the host or control when
the host part of a transaction commits? What pro-
tects data extracted from a securely managed host
DBMS onto a personal computer? Can a user on one
workstation access data stored on another? Can a
user at a host pBMS extract data from a DBMS on a
personal computer? What happens if the personal
computer is turned off either before or during such
an access? Some of these issues are philosophical,
and others require technical invention to resolve.
These issues are now being addressed in both re-
search and development settings.

New hardware devices and chips can be exploited by
database management systems. These include write-
once optical disk for low-cost archival storage, read-
write optical disk for low-cost storage where perform-
ance is not critical, image data storage and retrieval
on videodisk or video cassettes, and the utilization
of data compression chips.

The invention of microprocessors has made it eco-
nomically feasible to have computer architectures
with intelligent outboard devices such as intelligent
disk controllers, database search engines, and special-

1BM SYSTEMS JOURNAL, VOL 26, NO 1, 1987




purpose, dedicated machines, e.g., for message proc-
essing. These intelligent devices will be able to do
processing that previously was done by a host data-
base management system. As a result, database ar-
chitectures will become more modular, with well-
defined internal interfaces to accommodate these
intelligent devices. Much more performance mod-
eling must be done and experimental prototypes
created before we can determine the right functional
division between outboard devices and host. One of
the key problems is to invent a solution that will not

Database technology will be most
strongly influenced by customer
demand.

prove obsolete as outboard microprocessors, mem-
ory devices, and communications become even
faster and cheaper.

Database machines are one example of the use of
intelligent outboard microprocessors. Many different
database machine architectures have been proposed.
One promising idea is to ride the cost and perform-
ance curves of general-purpose microprocessors and
their associated disks, memory, and so forth by
linking together multiple microprocessors. Such an
architecture could take advantage of the higher vol-
ume and, therefore, the lower cost of the microproc-
essor database machine components. At the same
time, a database machine could perform multiple
operations in parallel. This parallelism could be ex-
ploited by running many small database transactions
concurrently or by splitting a single long, complex
transaction into many parallel pieces of work. Re-
search in database machine architectures is under
way at many research institutions and universities."’

Another use for hardware in the database area is
special architectures or devices to trade resources for
speed. One example is a machine architecture with
massive amounts of memory (hundreds or thou-
sands of megabytes) for use as an in-memory data-
base. If such memory had battery backup as well as

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

backup for the backup, one could do away with
resource recovery in the database architecture. Even
without battery backup, an in-memory database
could provide extremely fast database service, be-
cause no disk 170 would need to be done for many
database requests. The implications of such an ar-
chitecture are currently under study.

The direction that database technology takes in ex-
ploiting developments in hardware is very dependent
on the demand for those features from current or
new customers, the outlook for which we now dis-
cuss.

Customer requirements. Unquestionably, database
technology for the future will be most strongly influ-
enced by customer demand. Among the functions
that I perceive as needed by customers are storage of
nontraditional data, such as engineering or office
data, distributed access to data, productivity and
usability aids for database management systems,
fault tolerance or resilience, continuous operation,
and portability. Each of these can place conflicting
design requirements on database technology.

Storing nontraditional data. Today, more than one
third of all office workers use some form of terminal
or workstation to perform their jobs. As more and
more office and engineering tasks are computerized,
the demand for storing office and engineering data
will increase. These data, if automated at all, are
usually stored in files, not in database management
systems. As workstation and terminal users store
more and more of their engineering and office data
in a computer, it is likely that they will find it
inconvenient to store those data in a file system
while their accounting, inventory, and other data
processing data are stored in a database management
system. These dual storage mechanisms make it
difficult to relate the two kinds of data, for example
when referring to information in a parts inventory
in the database management system while doing an
engineering drawing using that part. Users may also
wish to query their engineering and office data in the
same way as they query their data processing infor-
mation, rather than learning two separate interfaces.
For all these reasons, I expect that database manage-
ment systems must permit the definition, storage,
and manipulation of office and engineering nontra-
ditional data together with traditional data process-
ing data.

This use of nontraditional data significantly affects
the architecture and algorithms of database manage-

seLncer 103




ment systems. On systems today, data processing
records are usually fairly short—tens to hundreds of
bytes—whereas engineering drawings might be 25K
to 500K bytes, and office documents such as tech-

End users will be able to create and
manage their own databases.

nical reports range in size from very small to very
large. Databases today log the old and new values,
when a field in a record is updated, but it would be
very unwieldy and expensive to store a document as
a single very long field and keep an old and a new
copy every time a comma is inserted. Storing these
nontraditional data requires new recovery and buff-
ering techniques.

Storing engineering and office data as single long
fields also does not provide users with the ability to
query portions of the document or drawing. Further,
users would like to apply new operations to these
data, depending upon the type of data. Some exam-
ples are the following: context searching on docu-
ments, querying the author field of a document,
doing matrix multiplication on engineering data,
selecting and updating a segment of a drawing, or
querying whether one part of a drawing is “near” or
“contains” another. Rather than adding new opera-
tions and data types for each new kind of data,
current research in database technology'? is directed
toward building an extensible database management
system in which users can define new data types and
operations and specify new policies for locking, re-
covering, buffering, and accessing the data.

Distributed access to data. As data processing man-
agers add new equipment to their computer com-
plexes and as users buy and instali equipment to
manage information, the typical organization of me-
dium or large size will have more than one comput-
ing complex with multiple machines per complex,
plus a variety of departmental machines and/or in-
dividual workstations. Depending on price, different
decisions might be made by users or DP managers in

104 SEUNGER

any size organization as to whether to buy one large
machine or several smaller machines. In each case,
an organizational entity might have several machines
storing data in database management systems. These
data are already distributed. The problem is how
users at other sites, other mainframes, or other work-
stations can both access their local data stored on
their local database system and, if suitably author-
ized, access data stored remotely on similar or differ-
ent database management systems.

Transparent access to distributed data has been the
subject of years of research.'®-?? For mainframe-to-
mainframe distributed systems with similar (rela-
tional) database management systems, algorithms
for distributed query compilation, distributed data
definition, distributed deadlock detection, and dis-
tributed transaction management have been in-
vented and used in experimental research proto-
types. Research is still under way on how workstation
database management systems participate in a dis-
tributed database management system and how het-
erogeneous database management systems can co-
operate to share data.

Productivity and usability aids. In the future, I expect
that many areas of basic database management tech-
nology will be enhanced in terms of the functions
they provide. Productivity is a key driver for these
enhancements. It is easy to predict that interactive
query facilities will continue to grow in function and
user-friendliness. I expect also, however, that inter-
active data definition facilities will become easier to
learn and use, so that end users will be able to create
and manage their own databases.

As more and more persons who do not have data
processing skills use database management systems,
these systems must become more easy to learn and
use for both regular and occasional users. The sQL
language is one example of technology to improve
both productivity and ease of use. Some vendors
offer products that attach very high-level, fourth-
generation programming languages to databases for
easier application development. More tools are
needed, including database design tools, perform-
ance tuning aids, on-line tutorial facilities, and help-
ful on-line coaching in the user’s native language
when errors are encountered. Also needed are inte-
grated toolkits that package these tools together with
report generators, interactive query programs, on-
line data dictionaries, special purpose turnkey appli-
cations, and other applications, such as spreadsheets
that can be customized by casual users.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987




Fault tolerance and continuous operation. The recov-
ery facilities of today’s mainframe database manage-
ment systems are very sophisticated. When a ma-
chine or a subsystem crashes, the database is auto-
matically recovered to the last consistent state, that
is, a state with no transactions in progress. These
facilities also allow the user or system to request that
the changes made by an in-progress transaction be
undone. Furthermore, the database log of changes
can be reapplied to an old copy of the database to
obtain a current version of the database in order to
recover from disk media failures.

But what happens if a machine or subsystem fails,
and the customer wants to keep on using the data-
base? The solution is to add software and hardware
redundancy both inside and outside the database
management subsystem to enhance the availability
of the data. In this way, subsystem or processor
crashes can be detected and applications rerouted to
another database system with the same data (or
an up-to-date copy of it). Research and develop-
ment work is under way to improve the technology
for both detecting failures and recovering from fail-
ures with minimal delay and duplication of re-
sources.?*%

This research is aimed at increasing availability in
spite of failures. Another issue being addressed is
that of planned database shutdowns to archive or
reorganize data, to do maintenance on disk drives,
etc. One can copy the data on the disk to be main-
tained or the data to be reorganized, but how can
the data simultaneously be copied while normal
processing continues? One solution is to prevent
normal processing during the copy operation or dur-
ing the copying needed for archiving the data. This
1s not acceptable to customers who have automated
their front offices and want to continue making sales
or reservations 24 hours a day, seven days a week.
Clever algorithms are required to permit “fuzzy cop-
ies” in which some changes made by a transaction
are included and others are not applied to the copy
until later. “Catching-up” the off-line disk drive after
maintenance also requires similar technology.

Portability. Many customers have several machines
from different vendors with different instruction sets
running different operating systems. They would like
to have the same database management interface in
all these environments. Vendors of database man-
agement system products would like to implement
their systems once and have them run in many
different environments. This is not possible in the

BM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

strictest sense, but 1t is achieved in practice by a
careful database architecture that isolates machine
and operating system dependencies to a few code
modules that must be rewritten for each new envi-
ronment. This 1s achievable, and has been accom-
plished in newer database management systems.
Older systems must be restructured in this way to
achieve more portability.

Concluding remarks

We have described the evolution of database tech-
nology from the early, tape-oriented, user-written
data management systems of the 1950s to the di-
verse, sophisticated third-generation database man-
agement systems of today. Today’s systems offer a
choice of database management architectures, func-
tions, performance, and productivity characteristics.
In the future, we can expect function and perform-
ance enhancements driven by customer require-
ments and new hardware opportunities. Many crea-
tive inventions have brought database technology to
the place where it is today. Although significant
progress has already been made, even more can be
expected in the future.

Cited references

1. C.J. Date, An Introduction to Database Systems, 3rd Edition
(Volumes 1 and 2), Addison-Wesley Publishing Co., Reading,
MA (1983).

2. W. C. McGee, “Data base technology,” IBM Journal of Re-
search and Development 25, No. 5, 505-519 (1981).

3. J. P. Fry and E. H. Sibley, “Evolution of data-base manage-
ment systems,” ACM Computing Surveys 8, No. 1, 7-42
(1976).

4. OS/VS2 MVS Data Management Services Guide, GC26-3875,
IBM Corporation (1980); available through IBM branch of-
fices.

5. OS/VS Virtual Storage Access Method (VSAM) Programmer’s
Guide, GC26-3838, IBM Corporation; available through IBM
branch offices.

6. IMS/VS General Information Manual, GH20-1260, IBM Cor-
poration (1984); available through IBM branch offices.

7. CODASYL Data Base Task Group, April 1971 Report, Asso-
ciation for Computing Machinery, New York, 1971.

8. Airline Control Program/Transaction Processing Facility: An
Introduction, SC20-1909, IBM Corporation (1981); available
through IBM branch offices.

9. Customer Information Control System/Virtual Storage Gen-
eral Information, GC33-0155, IBM Corporation; available
through IBM branch offices.

10. Database 2 General Information, GC26-4073, IBM Corpora-
tion (1986); available through IBM branch offices.

11. SQL/DS General Information Manual, GH24-5012 (for VSE),
GH24-5064 (for VM/SP), IBM Corporation (1986); available
through IBM branch offices.

12. E. F.Codd, “A database sublanguage founded on the relational
calculus,” Proceedings of the ACM SIGFIDET Workshop on

seuncer 105




Data Description, Access, and Control, Association for Com-
puting Machinery, New York, 1971.

13. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P.
Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W.
Wade, “SEQUEL 2: A unified approach to data definition,
manipulation, and control,” IBM Journal of Research and
Development 20, No. 6, 560-575 (1976).

14. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price, “Access path selection in a relational
database management system,” Proceedings of the ACM SIG-
MOD International Conference, Association for Computing
Machinery, New York, 1979, pp. 23-34.

15. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. Griffiths, W. F. King, R. A. Lorie,
P. R. McJones, J. W. Mehl, G. R. Putzolu, 1. L. Traiger,
B. W. Wade, and V. Watson, “System R: Relational approach
to database management,” ACM Transactions on Database
Systems 1, 97-137 (1976).

16. M. W. Blasgen, M. M. Astrahan, D. D. Chamberlin, J. N.
Gray, W. F. King, B. G. Lindsay, R. A. Lorie, J. W. Mehl,
T. G. Price, G. R. Putzolu, M. Schkolnick, P. G. Selinger,
D. R. Slutz, H. R. Strong, I. L. Traiger, B. W. Wade, and
R. A. Yost, “System R: An architectural overview,” IBM
Systems Journal 20, No. 1, 41-62 (1981).

17. Advanced Database Machine Architecture, David K. Hsiao,
Editor, Prentice-Hall, Inc., Englewood Cliffs, NJ (1983).

18. R. Lorie and J. J. Daudenarde, On Extending the Realm of
Application of Relational Systems, Research Report RJ-4973,
IBM San Jose Research Laboratory, San Jose, CA (December
1985).

19. M. Stonebraker, “Concurrency control and consistency of
multiple copies of data in distributed INGRES,” IEEE Trans-
actions on Software Engineering 5, No. 3, 188-194 (May
1979).

20. B. Lindsay, L. Haas, C. Mohan, P. Wilms, and R. Yost,
“Computation and communication in R*: A distributed
database manager,” ACM Transactions on Computer Systems
2, No. 1, 24-38 (February 1984).

21. J. B. Rothnie, P. A. Bernstein, S. Fox, N. Goodman, M.
Hammer, T. Landers, C. Reeve, D. Shipman, and E. Wong,
“Introduction to a system for distributed databases (SDD-1),”
ACM Transactions on Database Systems 5, No. 1, 1-17
(March 1980).

22. C. Mohan, Tutorial: Recent Advances in Distributed Data
Base Management, IEEE Computer Society Press, Silver
Spring, MD, 1984.

23. J. Bartlett, “A non-stop kernel,” 8th Symposium on Operating
System Principles, December 1981, pp. 22-29.

24. A. Borr, “Transaction monitoring in Encompass: Reliable
distributed transaction processing,” Proceedings of the 7th
International Conference on Very Large Databases, 1EEE,
September 1982.

25. J. N. Gray, “Why do computers stop and what can be done
about it,” Proceedings, 5th Symposium on Reliability in Dis-
tributed Sofiware and Database Systems, January 1986, pp.
3-12.

Patricia Griffiths Selinger IBM Research Division, Almaden Re-
search Center, 650 Harry Road, San Jose, California 95120-6099.
Dr. Selinger has worked at the IBM San Jose Research Laboratory
since 1975. She was elected to Phi Beta Kappa in 1970, and
received her Ph.D. degree in applied mathematics in 1975, her
M.A. in 1972, and her B.A. in 1971, all from Harvard University.

106 SELINGER

Dr. Selinger joined IBM Research as a member of the System R
research project on relational databases, where she worked on
authorization and query optimization. She received an IBM Out-
standing Contribution Award for her work on query optimization.
From 1978 to 1982, she was the manager of R*, a research project
that explored the extending of relational database technology into
a distributed database management system. She received an IBM
Outstanding Innovation Award for her work on distributed com-
pilation. In 1983, Dr. Selinger became the manager of the Office
Systems Laboratory, which does research in the field of advanced
technology for the office. She was named to her current position
of manager of the Database Technology Institute in 1986.
Dr. Selinger has participated on the program committees of the
SIGMOD, PODC, and Distributed Database and Computer Net-
works Conferences, and has served as a member of the CSNET
Executive Committee and as vice-chairperson of SIGMOD.

Reprint Order No. G321-5288.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987




