Robotics

This paper is a survey that is intended to give the
reader an introduction to some issues and problems in
the field of robotics today. The first section discusses
industrial applications of robotics and the require-
ments they engender. A substantial section is included
on robot programming, including programming lan-
guages, motion programming, and techniques. This is
followed by a section on trajectory planning. Issues in
both robot-level trajectory planning and task-level tra-
jectory planning are discussed. The section on control
is divided into three parts: controller objectives, the
system model, and controller types. Very brief discus-
sions of actuators, sensing, and end effectors are also
included.

he term robot was coined by Karel Capek in his

1923 play R.U.R., depicting class struggle in a
society with automated workers.' Robot is the Czech
word for worker. The word was picked up by science
fiction authors in the 1930s and 1940s;>° Isaac
Asimov first used the term robotics. These authors
were inspirational to scientists and engineers such as
Joseph Engelberger, who participated in the devel-
opment of early industrial robots.®

In the early 1950s, R. Goertz developed teleoperator
manipulators for use in handling radioactive mate-
rials.” George Devol, who worked with Engelberger,
holds the patent on the first industrial robot (1961).%
The first computer-controlled robot was developed
by Ernst at M.L.T., also in 1961.°

There is no universally accepted definition of the
term robot. Typical definitions encompass notions
of mobility, programmability, and the use of sensory
feedback in determining subsequent behavior.
Rather than pursue explicit definitions, we will pro-
ceed to discuss the general nature of the systems
which are typically called robots today.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

by J. U. Korein
J. Ish-Shalom

Industrial robots used for manipulation of goods
typically consist of one or two arms and a controller.
The term controller is used in at least two different
ways in this paper, so we will make the distinction
here. In this context, we mean the computer system
used to control the robot, often called a robot work-
station controller. The term controller is used to
mean the embodiment of the actual robot servo
control system, especially in the section on control.
Robot arms come in a variety of different types, a
few of which are shown in Figure 1. The “hand” of
the robot is called its end effector. The types of joints
(revolute, sliding), their arrangement, and the ge-
ometry of the links that connect them comprise the
kinematic structure of the robot.

The controller may be programmed to operate the
robot in a number of ways, thus distinguishing it
from hard automation. The controller is also respon-
sible for the monitoring of auxiliary sensors that
detect the presence, distance, velocity, shape, weight,
or other properties of objects. Robots may be
equipped with vision systems, depending on the
application for which they are used. Most often,
industrial robots are stationary, and work is trans-
ported to them by conveyers or robot carts, which
are often called autonomous guided vehicles (AGV).

Autonomous guided vehicles are becoming increas-
ingly widely used in industry for materials transport.
Most frequently, these vehicles use a sensor to follow

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

KOREIN AND I5HSHALOM §§

Figure 1 Types of robot arms

CARTESIAN

a wire in the factory floor.'” Some systems employ
an arm mounted on an AGV. !

Motivation

Forces driving the field. The largest single force
driving robotics is the need to increase productivity
and reduce costs in manufacturing. The circum-
stances under which robots can help achieve these
goals depend on a number of factors, and the nature
of a manufacturing task may or may not lend itself
to the current capabilities of robots.

If the product volume is small, manual labor may
be more cost-effective. If the volume is very large
and homogeneous, greater throughput can typically
be obtained by developing hard automation for the
Jjob. Robots are strongest in the middle ground.

Robot programmability provides major advantages
over hard automation. If there are to be many
models or options on a product, programmability
allows the variations to be handled easily. If product
models change frequently, as in the automotive in-
dustry, it is generally far less costly to reprogram a
robot than to rework hard automation. A robot
workstation may be programmed to perform several
tasks in succession rather than just a single step on
a line. This makes it easy to accommodate fluctua-
tions in product volume by adding or removing
workstations. Also, because robots may be repro-

50 KOREIN AND ISH-SHALOM

CYLINDRICAL

grammed to do different tasks, it is often possible to
amortize their cost over several products.

Robots can also perform many applications that are
poorly suited to human abilities. These include ma-
nipulation of small and large objects like electronic
parts and turbine blades, respectively. Another of
these applications is work in unusual environments
like clean rooms, furnaces, high-radiation areas, and
space %2

Japan has led the world in the use of robots in
manufacturing. The two sectors making heaviest use
of robots are the automotive and electronics indus-
tries.!> Growth of industrial robotics in the United
States has been steady in recent years, but has not
been as rapid as popular magazine articles of the
early 1980s led the public to expect.'*!*

Interest in legged locomotion has been stimulated by
applications in traversing rough terrain and in un-
manned exploration of unknown environments. '’

Aside from economic motivations, there are many
unanswered scientific questions about how biological
organisms produce the remarkable sensorimotor be-
havior that we observe. Finally, the notion of simu-
lating biological organisms has a certain instinctive
reproductive appeal and offers the possibility of sat-
isfying our curiosity as to how we have come to be

-as we are.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

ANTHROPOMORPHIC

. SPHERICAL

Applications. In this section, we consider several
representative applications of robots, in order to
understand the requirements that they engender.

Spot welding involves applying a welding tool to
some object, such as a car body, at specified discrete
locations. This requires the robot to move its hand
(end effector) to a sequence of positions with suffi-
cient accuracy to perform the task properly. It is
desirable to move at high speed to reduce cycle time,
while avoiding collisions and excessive wear or dam-
age to the robot.

Pick and place is the name commonly given to the
operation of picking up a part and placing it appro-
priately for subsequent operations. Pick-and-place
operations have some requirements in addition to
those for spot welding. The part must not be
dropped. It must be held securely enough to prevent
it from slipping in the gripper but gently enough to
avoid damage. In addition, care must be taken to
avoid disturbing the part during approach and de-
parture.

Spot-welding and pick-and-place operations are
characterized by their point-to-point nature; what
happens at the beginning and the end of the motion
is critical, but there is some latitude in choosing the
intermediate trajectory.

Spray painting requires covering a surface with
an even coat of paint. This is typically done by pre-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

specifying the trajectory along which the arm will
move. The trajectory specifies both position and
orientation of the nozzle as a function of time.

Seam welding requires that a welding torch contin-
uously follow a seam on a surface. Unlike spray
painting, seam welding typically requires real-time
correction of the path to accommodate small devia-
tions of the actual seam from the expected path.

Spray painting and seam welding are both continu-
ous-path applications; position and orientation as a
function of time are important throughout the mo-
tion.

Electronic testing by robots is being used increas-
ingly. One application is that of testing the continuity
between pins, which involves primarily point-to-
point operations. Another application is the detec-
tion of flaws in printed circuits by probing along
metal traces on circuit boards.

Metrology is now often performed using automated
coordinate measuring machines, which are essen-
tially very slow and accurate robots. They are used
to measure dimensions of mechanical parts, usually
by a sequence of point-to-point motions.

Assembly is an application of increasing importance.
Robotic assembly may be done in different ways.
One typical method is to equip a simple robot with
a special end effector for a particular task, such as
inserting a component. The robot is programmed to
perform a single operation as a single step in an
assembly line. Each robot is fed parts of a single type
from a part feeder, which presents them in the correct
orientation. In this approach, the robot is used in
the same way as hard automation is traditionally
used. Feeder mechanisms, which are often quite
ingenious, are discussed in Reference 18.

An alternative method is to feed all parts directly
into a robot workstation in which the entire assembly
1s to be completed. Part feeders and magazines may
be arranged about the workstation, as may a variety
of tools and fixtures required for the assembly. An-
other option is that the workstation is presented with
a “kit” of preoriented parts containing all compo-
nents required for the assembly. To have individual
robot workstations do independent assembly of com-
plete products is extremely advantageous for flexible
production capacity.

Nevins and Whitney'? analyzed a number of product
assemblies: a refrigerator compressor, an electric jig-

KOREIN AND ISH-SHALOM 57

saw, an induction motor, a toaster oven, a bicycle
brake, and an automobile alternator. They deter-
mined that these assemblies could be performed
using a relatively small set of operations. These
include simple peg-in-hole insertion, push-and-twist
insertion, simultaneous multiple peg-in-hole inser-
tion, screw insertion, force-fit insertion, removal of
locating pins, flipping parts over, providing and re-
moving temporary support, crimping sheet metal,
and welding or soldering.

Performing these operations by precise positioning
requires tight tolerances on part dimensions and part
positions as well as accurate robot positioning. Re-
quirements on these tolerances are substantially re-
duced if the robot end effector can comply with
forces it encounters during the assembly process. For
example, the tolerance required for inserting a peg
into a chamfered hole is significantly less when one
is guided by the forces one encounters, rather than
proceeding stubbornly in some assumed direction.
This is easily demonstrated by attempting to insert
a key into a keyhole using the two different ap-
proaches.

Machining of mechanical parts is a growing appli-
cation of robotics technology. Operations like grind-
ing, deburring, and sanding parts require the ability
to follow surfaces and to maintain the forces required
to perform the specified operation."’

An unusual but fascinating application 1s sheep-
shearing. Recently, Trevelyan, Kovesi, and Ong®
constructed a robot system that would perform
sheep-shearing on live sheep. The robot was suffi-
ciently adaptable to cut the wool without harming
the sheep. Sheep appreciate compliance.

Requirements. A number of stringent requirements
are imposed upon robots in order for them to be
competitive in the world of manufacturing.

» Reliability and durability are very important. An
industrial robot must work every day, often all
day, to pay for itself.

» Robots are not usually as fast as hard automation
or human workers doing the same job. Currently,
the speed of robots is constrained by computa-
tional as well as mechanical factors.

e Accuracy of robots is important for such applica-
tions as precise electronic test and for assembly
tasks.

» The ability to comply with the environment is
important in assembly and machining applica-

58 KOREIN AND ISH-SHALOM

tions. Precisely machined parts are usually expen-
sive. Compliant motion is needed to perform ad-
equately with affordable parts.

» It is highly desirable that robots be sufhciently
configurable to allow new sensors to be incorpo-
rated. Sensory input should be available to provide
continuous servo control and to produce discrete
transitions in system behavior.

o Ease of programming is important, so that robotic
applications may be developed quickly.

o Versatility is needed to avoid the cost of special-
purpose fixturing required for new robot worksta-
tions.

o Cleanliness is of increasing importance in many
electronic applications.

Robot programming

Robot programming is the means by which a robot
is instructed to perform its task. In this section, we
examine some of the tools and techniques that have
been used and proposed for robot programming.?!

Guiding. Guiding is the process of moving a robot
through a sequence of motions to “show it” what it
must do.?>?* One guidance method is to physically
drag around the end effector of the robot, while it
records joint positions at frequent intervals along the
trajectory. The robot then plays back the motion just
as it was recorded. An alternative is a master-slave
or teleoperator configuration. Early systems of this
type were first used to manipulate radioactive ma-
terials remotely.” Teleoperator techniques are now
employed to guide the Space Shuttle manipulator.

Guiding may also be applied using a teach pendant,
which is a box with keys that are used to command
the robot. Several modes of operation are often
available on the teach pendant. In joint mode, a pair
of buttons is used to move each joint back and forth.
In addition to joint mode, one or more cartesian
modes may be provided. In cartesian modes, buttons
are associated with cartesian axes in some three-
dimensional coordinate system. Two examples are
world mode, in which the coordinate system is
aligned with the base or frame of the robot, and
hand mode, in which the coordinate system is always
aligned with the gripper, as shown in Figure 2. In
the figure, the X, Y, and Z axes of the hand coordi-
nate system are labeled X', ¥’, and Z’, respectively.

For point-to-point applications, guiding systems usu-
ally allow the user to specify a few key positions to
be recorded. The system interpolates between adja-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

cent pairs of these positions, providing a path that
does not play back every fumble and overshoot of
the teacher.

Guiding is limited as a robot-programming tech-
nique, because it does not provide conditionality or
iteration. Some systems provide so-called exrended
guiding capabilities that include teaching in a coor-
dinate system that may be moved at run-time and
conditional branching between motion sequences.?!

Programming languages. It is no surprise that the
well-established technology of programming lan-
guages should be adopted for programming robots,
and many robot-programming languages have been
developed. The first was a limited language, called
MHI, designed by Ernst at MIT in 1961.° Two lan-
guages developed at Stanford University, WAVE* and
AL, 2?8 were particularly influential in the field. Con-
ventional languages like C,’ Lisp,”® Pascal,”” and
Basic?® have been extended with subroutine libraries
for robot control. Robot languages in use in industry
today include aML (1BM),' HELP (GE),*2 Karel (GMF),*
LM (Scemi, Inc.),>* McL (McDonnell Douglas),** RAIL
(Automatix),* and vaL-11 (Unimation, Adept),*” and
others. Bonner and Shin* have published a survey
of robot-programming languages.

The nature of robot programs. First and foremost,
robot programs are computer programs.’’ Conse-
quently, a large part of the body of knowledge that
has been acquired about programming in the last
couple of decades is applicable to robots. Robot
programs deal with a richer variety of 1/0 devices
than conventional programs, which distinguishes
them in a variety of ways.

Robot programs must command robots to move;
thus, the way in which motion is specified is impor-
tant. Also, the programs use information obtained
from sensors. One way of using sensory information
is to monitor sensors until a prescribed condition
occurs and then perform or terminate a specified
action in response. Another use of sensory informa-
tion 1s to use feedback from sensors to modify the
robot’s behavior continuously.

When objects are manipulated in the physical world,
many peculiar things can happen. One occurrence
of a part may differ slightly from another in ways
which cause a program to fail. The tolerances on the
dimensions of the object, the position of the object,
and the position of the robot all vary from operation
to operation. This may lead to jamming or wedging

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 2 World and hand coordinate frames

of pegs or screws, dropping or knocking down parts,
and other difficulties. Obtaining bounds on errors
has been addressed in the research literature. The
problem of bounds has been approached numerically
by Taylor®® and symbolically by Brooks.* If an event
such as a collision is not foreseen by the programmer,
it is usually desirable to stop moving things around
and request operator intervention. In order to make
a program robust, the programmer must try to an-
ticipate and test erroneous conditions. Conse-
quently, robust robot programs are rather heavily
weighted with error-handling and recovery appara-
tus. Note that the programmer’s ability to make the
program robust depends on the availability of sensors
to detect problems.

No robot is an island. Industrial robots function in
factory environments, which contain other robots,
automation equipment, and computers. Effective
communication among these elements is critical to
Computer-Integrated Manufacturing (cim). Com-
munication in the factory is often structured hierar-
chically.*! Some of the levels often considered are
device control, workstation control, and area con-
trol. Device control typically includes control of a
single robot or other device. Workstation control
coordinates activities of multiple robots and other
devices within a workstation. Concurrent program
language constructs may be expected to play a major
role at this level. Area control includes coordination
of workstations, recording of manufacturing data,
scheduling, and routing of work.

KOREIN AND IsH-sHALOM 58

Motion commands. Robot-programming languages
must contain specifications of motion for the robot.
Some of the commands used to specify motion are
discussed here. The joint-level move is the most
fundamental motion command. In the simplest case,
the command might be written

move (joint, goal)

The joint is either a sliding or revolute joint that is
1o be brought to some linear or angular position.
Even in this simplest case, much is left unsaid. For
a revolute joint without joint limits, the path has not
been fully specified, because the goal could be
reached in either a clockwise or a counterclockwise
fashion. How fast should the motion be? How ac-
curately must the goal be achieved? Is a little over-
shoot allowable? There are always trade-offs between
these considerations. In the interest of simplicity and
flexibility, it is desirable to have a number of optional
parameters to allow these factors to be controlled,
and it 1s desirable to use specified defaults when they
are not. With large numbers of optional parameters,
keyword parameters are advantageous.

For this simple move and most of the others dis-
cussed in this section, goals are given in absolute
terms. It is worth noting that it is often more con-
venient to specify all of these in terms relative to the
current position.

Joint moves may involve more than one joint, for
example:

move ({ i, j», j3), { goal, goal,, goals));

In this example, we have used AML notation®' to
specify an aggregate (list) of three joints, and another
of three goals. It is convenient to think of such a goal
as a point in joint space.

Specification of a goal for a group of joints means
that they are to be executed in parallel. If the trajec-
tory for each of these-joints is planned indepen-
dently, the motions end at different times. Coordi-
nated motion (with all joints halting simultaneously)
requires that the trajectory planner scale all trajec-
tories so that their elapsed time is the same as for
that of the slowest joint.

In most cases, it is far more convenient to specify
cartesian motions than joint-level motions. As in the
case of guiding, cartesian motion specifications are
made with respect to some cartesian coordinate sys-
tem. The position and orientation of a rigid object
in space may be described with six numbers corre-

60 KOREN AND ISH-SHALOM

sponding to its six degrees of freedom. Suppose, for
example, the object were located at some reference
position, with a reference point at the origin, as
shown in Figure 3. Thus, (A) rotation ¢ produces
(B), then rotation # produces (C), and similarly ro-
tation ¥ produces (D). The object is brought into an
arbitrary orientation by three rotations (¢, 6,)
about axes rigidly affixed to the object; these are
often called Euler angles. An ordered triple (p., p,,
p.) specifies an arbitrary translation. So the position
and orientation of an object with respect to a refer-
ence frame may be specified by giving the values of
Dx Dy D= &, 8, ¥, which bring a reference object to
that position and orientation.

The position and orientation of an object with re-
spect to a reference frame may also be represented
as a 4-by-4 homogeneous transformation matrix.*
The form of the matrix is as follows:

Ry Ox ax PDx
ny oy a, py
h: 0. 4 p-
0 0 0 1

The reference coordinate system (X, Y, Z) and object
coordinate system (X, Y, Z) are shown in Figure 4.
If we ignore the last row, each column is a three-
element vector expressed in terms of the reference
coordinate system. In Figure 4, n, 0, and a are unit
vectors in the directions of the axes X, Y, and Z. p
is a translation vector, giving the location of the
origin of the object coordinate system. The conven-
tions for the names of these vectors are taken from
Paul.** Because the object is often a gripper, o indi-
cates the axis along which the gripper opens, a indi-
cates the approach direction in which the gripper
points, and n indicates their common normal in the
direction o X a.

A similar (transposed) representation is used in com-
puter graphics.** The homogeneous matrix represen-
tation is particularly convenient for manipulation
(although not computationally efficient*). In the
context of robotics, the homogeneous matrix repre-
sentation has come to be called a frame. Subse-
quently, when we speak of the position of an object,
we will mean both its position and orientation, as
described by a frame.

In order to move the end effector of an arm to a
specified position in terms of the world coordinate
system, we may write a command of the following
form:

move-hand(dest),

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 3 Reorienting an object with three successive rotations

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987 KOREIN AND ISH-SHALOM 6

Figure 4 Vectors in homogeneous coordinate matrix

where dest is a variable that contains a specification
of position and orientation as a frame. The specified
goal may not be within the workspace of the robot.
The robot workspace is determined by the geometry
of the robot links, the placement and types of joints,
and their limits of mobility. When orientation is
considered, the dimensionality of the space within
which the robot hand works is six. When the number
of joints is less than six, most of the workspace is
inaccessible, just as a planar linkage cannot access
the space outside the plane. This situation is perfectly
acceptable for wide classes of robots that perform
tasks like pick and place on a horizontal surface or
pancake assembly (stacking). These tasks may never
require that the robot point its gripper in any direc-
tion besides down, for example. Using a frame to
specify a goal is, in a sense, too general for robots of
this nature. However, when a variety of robots with
different kinematic structures must work in concert,
the use of frames provides them with a common
language.

Even when there are six joints, joint limits may make
certain configurations for the end effector unreach-
able. Consider, for example, a cartesian robot whose
“forearm”™ 1is constrained to point downward. (See
the cartesian robot in Figure 1.) It is not possible to
point the end effector upward, because it would have
to occupy the same space.as the forearm.

It is often the case that a particular position for the
end effector may be achieved by several different

62 KOREIN AND ISH-SHALOM

configurations of the robot arm. For example, if the
robot’s elbow can flex either way from the out-
stretched position, most end effector positions may
be achieved in either an elbow-up or elbow-down
configuration. If the robot has more than six joints
(often called redundant), there are generally an infi-
nite number of configurations by which to achieve a
desired end effector position. In many cases, the
programmer is not concerned with the choice of
configuration, and it is satisfactory to use some de-
fault. Note, however, that if the default is chosen to
minimize time, it usually depends on the previous
position. This means that a subroutine performing
that command behaves differently in different con-
texts. The choice may be important if obstacles are
present. Also, the accuracy of the move may depend
on which trajectory is taken. For these reasons, an
optional parameter that depends on the kinematic
structure of the particular robot is usually a necessary
evil.

It is extremely important in robot programming to
be able to specify the position of an object with
respect to one reference frame and then obtain that
position with respect to another reference frame. For
example, when a mechanical part is defined, it is
convenient to describe its features (such as grasp
positions and connectors) in terms of a coordinate
system rigidly affixed to the part. When it comes
time for the robot to pick up the part, the robot must
know the position of the feature with respect to the
world coordinate system. Homogeneous transfor-
mations make this type of conversion very simple.
R. Paul was an early proponent of this technique in
robotics,*>* which is now widely used.

Suppose that HANDLE is the name of a frame that
describes the position of the handle of a mechanical
part with respect to a coordinate system rigidly af-
fixed to that part. Suppose also that WIDGET is the
name of a frame which describes the position of the
part in terms of the world coordinate system. Then
the position of the handle in terms of the world
coordinate system is just a new frame, as follows:

WIDGET - HANDLE,

where the dot (-) is the matrix multiplication oper-
ation. Suppose that a number of widget positions are
given with respect to a tray, whose position is in turn
given with respect to the world coordinate frame.
The handle of the ith widget could be specified by

TRAY - WIDGET; - HANDLE,

where WIDGET is (in this case) an array of frames.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Let us now define a frame variable calied HAND,
which gives the position of the robot hand in the
world coordinate system. Whenever we move the
robot hand to some position GoAL (also in world
coordinates), we are essentially asking it to change
the value of HAND so as to satisfy the following
equation:

HAND = GOAL.

Suppose now that the situation is more complex.
The hand is holding a screwdriver whose position is
defined with respect to the hand, and we want to
position it at some offset over a screwhole on the
widget. Because all definitions are with respect to
local coordinate frames, the equation we wish to
solve is the following:

HAND - SCREWDRIVER = WIDGET - SCREWHOLE -

OFFSET.
We may rewrite this goal

HAND = WIDGET - SCREWHOLE - OFFSET - SCREW-
DRIVER™,

and attain it by issuing the command

move-hand(WIDGET - SCREWHOLE - OFFSET - SCREW-
DRIVER™").

This approach is satisfactory for stationary goals.
Consider, however, the situation where the widget is
on a moving conveyer. We might define a function
wiIDGET(), which returns a frame describing the
position of the widget at the time it is called. In this
case, either the time between the evaluation of
wiIDGET() and the execution of move-hand() must
be very short or ¢lse some extrapolation must be
done to account for the intervening time. In either
case, there is some advantage in having a move
command, to which the function may be passed
directly, instead of its being evaluated beforehand,
as above. The robotics library rcCL for the C lan-
guage, developed by Hayward and Paul at Purdue
University, provides this capability.?’

A concept that has proved useful in the context of
robot programming is that of affixment. Suppose
that the widget is at some position specified by the
variable WIDGET. Now we direct the robot arm to
pick up the widget and move it to a new position.
The position specification WIDGET is now out of
date; that is no longer where the widget is. The idea
of affixment is to allow one to specify durations over
which one frame is rigidly affixed to another. If one
changes, the other will be updated accordingly, with-
out the need for explicit updating by the program-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

mer. Affixment is supported by the languages AL?
and 1LM.** Affixment may be thought of as an equality
constraint specified between two coordinate frames.
One might imagine further reductions in program-
ming effort being introduced by a system that could
maintain a wider variety of constraints between co-
ordinate frames. Methods of maintaining constraints
within the robot control system are discussed by
Geschke,* Mason,*” and Ish-Shalom.*®

Trajectory specification. Earlier, in the section on
guiding, we briefly discussed straight-line motion.
The “straight line” in straight-line motion may apply
to the tip of some tool that the arm is carrying, or it
may apply to the wrist. Tool-tip motion may be used
to follow a path, as in the application of adhesive, or
to ensure the direction of an approach, as in an
insertion operation. The reason that straight-line
motions are not used exclusively is that other trajec-
tories are often faster, both for mechanical and com-
putational reasons.** This is discussed later in this
paper in the section on trajectory planning.

Via-point moves are the usual means by which ob-
stacle avoidance is achieved in practice.*® Via-points
are simply intermediate positions through or near
which the robot is constrained to pass on the way to
its goal. Suppose that we wish the robot arm to pull
away from a handle on object 4 and then approach
one on object B. Assuming that these positions are
known to sufficient precision, we might write the
following order:

move-via(A - HANDLE - OFFSET, B - HANDLE - OFF-
SET, B - HANDLE).

That is, we specify two intermediate frames, as well
as the final destination. The idea is to allow the
system to compute a trajectory whose segments are
fairly close to straight lines, while rounding the in-
termediate corners to avoid stopping.

Compliant motion is motion that conforms with
forces which are encountered. As was mentioned in
the section on assembly applications, compliant mo-
tion is important, because there is always some error
in the specification and realization of a trajectory.
Some examples are insertion, part mating, following
a surface, and turning a crank. There are as yet no
real conventions for specifying compliance in a pro-
gram. One method that has been used in conjunction
with impedance control (discussed later) is the ex-
plicit feedback approach,?®***° in which a stiffness
parameter is specified with a positioning command.

KOREIN AND ISH-SHALOM 63

In the case of a single joint, one might write the
following command:

move-joint-compliant(p, k).

This will cause the joint to move to p as follows,
always exerting a force f:

f=—ke,

where ¢ (error) is the current deviation from the
desired position p. The spring constant k is trans-
formed to a feedback signal to be used by the con-

A robot program is not a
mathematical function; in computer
science terms, its results are just a

big side effect.

troller. There are limits on achievable values of &
arising from the stability limits of the controller and
from the maximum force the actuator can produce.

More complex types of compliance may be achieved
by defining a coordinate system called a compliance
frame. In this system, all forces directed through the
origin (called the center of compliance) generate pure
translations. Similarly, torques about the axes gen-
erate pure rotations.”’ The explicit feedback ap-
proach may be used to specify compliance in an
arbitrary compliance frame by generalizing the equa-
tion above to the following:

f = —Ke,

where K is a six-by-six matrix of values and f and e
are vectors.?!

Another approach, called hybrid control, requires the
user to explicitly specify the compliance coordinate
frame. Position and force goals are then specified
along (and about) the axes of that frame. Typically,
one uses force goals in directions where resistance is
met (as into a surface), and positional goals in direc-
tions where there is none.’!

A different approach is used to describe the behavior
of the system in terms of relationships that are to be

64 KOREN AND I1SHSHALOM

maintained with respect to force, velocity, position,
and other measured and controlled quantities. For
example, f; - v, = 0 indicates that the desired force
1s in a direction orthogonal to a measured veloc-
jty.46:48

Guarded motions are critically important concepts
in robot programming.>> A guarded move is one that
may be terminated on the basis of sensory data
acquired in real time. Some examples of guarded
moves are the following;

* Bring the hand down until it hits the table top.

e Close the gripper until substantial resistance is
detected.

* Move until a photosensor detects that something
is between the fingers of the gripper.

e Turn a screw until a substantial resisting torque is
detected.

For example, AML?' includes guarded moves that
may be terminated when thresholds are reached by
built-in force sensors and by changes in boolean
inputs.

A simple but useful generalization is that of associ-
ating a set of arbitrary termination conditions with
an arbitrary action.?®33-%

Concurrency issues. The issue of concurrent execu-
tion of program statements has received widespread
attention in computer science. The primary moti-
vation has been to make effective use of multiple
processors to speed up computation. In robotics, the
problem is compounded by the need to control
mechanical processes concurrently with one another
and with computational processes. Many of the con-
siderations are very similar, but there are important
differences, too. Physical processes cannot, in gen-
eral, be suspended and resumed as computations
can, because of physical laws (like Newton’s laws)
and the presence of external forces (like gravity).
Concurrency is required for speed, because it is
highly undesirable to serialize a set of mechanical
tasks. However, there are tasks that cannot be done
serially at all, without great imagination. To experi-
ence this, the reader may try the experiment of going
about his normal routine for an hour while keeping
one hand in his pocket. A variety of mechanisms
have been used to describe concurrent activities in
programs.**-** Concurrent programming constructs
have been provided in the programming languages
Concurrent Pascal®® and ADA® and in the robot
programming languages AL, TEACH,®"**> McL,* and
owL.>

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Programming methodology. The testing and debug-
ging of robot programs is characterized by a much
greater degree of trial and error than many other
kinds of programming. A robot program is not a
mathematical function; in computer science terms,
its results are just a big side effect. Rather than
measuring every clearance in a workcell, it is usually
simpler to start with a guess and refine it while
watching the robot go through its paces. Another
1ssue is speed. It is common to debug robot programs
at low speed, and then crank them up as fast as is
possible without producing intolerable losses in ac-
curacy. There are many such guesses in a complex
program, usually embodied as defined constants.
The need for a fast program revision cycle is one
reason why interpreters are widely used for robot
programming. Relative ease of implementation is
another.

Several types of calibrations are required in robotics.
Many robots determine joint position by counting
pulses as the joint travels, in which case the robot
must be calibrated when it is powered up. Each joint
must travel to its limits, usually tripping a switch, to
establish its absolute position.

Now suppose there is some workpiece that is to be
manipulated. One way to establish its position is by
determining the position of a set of reference objects
with a known relationship to the workpiece. The
problem is then reduced to determining the location
of the reference objects to establish an appropriate
transformation. A technique that has been used ef-
fectively is to locate posts by passing an open gripper
over them, breaking a beam of light. By repeating
this several times in different directions, a post may
be located; several posts in a known configuration
establish a coordinate system.5?

A technique that has proved extremely effective in
robotic applications is called programmed recalibra-
tion. Suppose that a robot must repeatedly perform
a sequence of insertions at specified positions. After
some period of time, mechanical drift can build up
sufficiently to cause the robot to miss. Suppose,
however, on each insertion, the robot monitors the
variation of its position from the nominal position,
and adjusts its coordinate frame. This allows the
robot to function indefinitely without accumulating
error. This technique is extremely important for
reliability in typical repetitive applications.

When a vision system is used with the robot, calibra-
tion is necessary to establish a common coordinate
system between the camera and the robot.5*5*

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Higher-level programming. Off-line programming is
a term that is usually applied to a collection of
techniques for robot programming without actually

A Computer-Aided Design (CAD)

system is typically used to model

the robot workstation, parts, and
auxiliary equipment.

using a robot. A Computer-Aided Design (CAD) sys-
tem is typically used to model the robot workstation,
parts, and auxiliary equipment. Then the simulated
robot is programmed and its task executed in the
simulated environment.®® Collisions between objects
may be checked by using a collision-detection algo-
rithm. The utility of off-line programming for de-
bugging robot programs is limited by the inability of
most commercial solid modeling programs to in-
clude error tolerance information in geometrical
models.®”*® If a model does not include uncertainties
in part position, part dimensions, and robot position,
the simulation will succeed in situations where a real
application would fail. Another difficulty with sim-
ulation is that force sensing must be modeled by
collision detection, which is computationally expen-
sive. This makes it inconvenient to model guarded
moves and all but impossible to model force-guided
compliant motions such as surface following.®

A task-level program is a high-level specification of
a task, without explicit mention of the robot or how
the details of its job are to be performed. For an
assembly task, the highest-level description might
simply be a description of the relationships among
the parts in the final assembly. A lower-level task
specification might include a specification of inter-
mediate states of the assembly. A still lower-level
task specification is a sequence of high-level opera-
tions to be performed to achieve the intermediate
states. The problem of going from the highest of
these levels to the lowest has been one of the prob-
lems considered in planning research in the field of
artificial intelligence.”!

KOREIN AND ISH-SHALOM 65

Figure 5 Example AUTOPASS program for support bracket
assembly

All of the specifications just mentioned are called
task-level specifications as distinguished from robot-
level specifications, because they do not describe the
details of how the robot is to perform an operation.
The program does not specify paths that avoid ob-
stacles or specify specific grasp positions. The trans-
lation of such a specification into a robust, working
robot program is the central research problem in
robot programming. No complete, working, task-
level programming system has ever been imple-
mented. Early work in task-level program specifica-
tion was done by Feldman,” Paul,*® Taylor at Stan-
ford,” and Lozano-Perez at MiT.”®> The specification
for a task-level language called AuTOPASS by Lieber-
man and Wesley at 1BM"* served as a focus for much
of the subsequent research in the area. An example
of a task specification in AUTOPASS is shown in Figure
5. Some of the operations required to execute task-
level programs, such as obstacle avoidance, grasp
planning, and fine-motion planning, are discussed in
the section on trajectory planning. An excellent sur-
vey of the area of task-level programming by Lozano-
Perez appears in the book Robot Motion: Planning
and Control.™

Trajectory planning

In the previous section on robot programming, we
discussed the types of commands that are used to
program robots, We now discuss some of the issues
in trajectory planning that must be considered in the
implementation of robot motion commands. This
will be augmented by the discussion of control in
the following section.-

Trajectory planning for robot-level programming.
Consider the implementation of a joint-level move
command. We assume here that we have simple

66 KOREN AND ISHSHALOM

independent position controllers for each axis. At
regular intervals of time, each controller reads a
position value or setpoint p from a memory location
and generates an actuator command to drive the axis
towards p. The length of these time intervals may
vary from 0.1 to 100 ms, depending on the controller
and application requirements.

Simply setting p to the desired final joint position
causes the controller to servo to that position. How-
ever, it is usually desirable to be able to specify the
trajectory of the joint as a function of time. This is
done by setting p to a series of intermediate positions
along the trajectory function to allow for coordinated
motion and continuous path motion. In specifying
a trajectory, the physical limits of the system must
be considered. It is common to model these limits
as constant maximum values for acceleration and
velocity.

The trajectory goes from the initial to the final
position, with initial and final velocities zero, subject
to limits on speed and acceleration. A trajectory used
in many industrial robots is shown in Figure 6. The
motion consists of a constant acceleration phase,
followed by a constant velocity phase, followed by a
constant deceleration phase. If the acceleration, ve-
locity, and deceleration in the three respective phases
are all set to the constant maximum values assumed
in the model, this trajectory is time-optimal under
those modeling assumptions. Intuitively, this strat-
egy is comparable to flooring the accelerator, then
coasting at the speed limit, and finally slamming on
the brakes. Planning this trajectory requires deter-
mining the time for each phase of the motion and
determining the parameters for each trajectory seg-
ment.

In the case of a coordinated motion for multiple
joints, the trajectories for the joints must be planned
together, so that they all take the same length of
time. For trajectories of this type, one computation-
ally convenient method is to keep the three phases
of motion the same for all joints. The time for each
phase is then determined by the slowest joint for that
phase.* This method has the advantage that the
interpolated trajectory follows a straight line in joint
space. An alternative approach is to compute the
total times separately for each joint and scale all
joints to that total time, phasing them separately.
This is optimal in terms of motion time (given the
modeling assumptions) because the total time for
the motion is the same as the total time for the
slowest joint. However, the separate phasing of the

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

joints requires additional computation, and the tra-
jectory no longer follows a straight line in joint space.

Kinematics. When a cartesian position goal is speci-
fied for the end effector of the robot, it must ulti-
mately be converted to a control signal for each joint
actuator. If the joint controllers require joint posi-
tions, it is necessary to produce these from the carte-
sian specification. This problem is called the inverse
kinematics problem in the robotics literature. There
is no general analytic solution to this problem for an
arbitrary robot. This is in sharp contrast to the
Jforward kinematics problem, in which a cartesian
specification is obtained from joint angles. For open
kinematic chains, which include most robots, for-
ward kinematics may always be computed by mul-
tiplying coordinate frame matrices. The form of the
inverse solution depends on the geometry of the
robot joints and links. However, for a wide class of
robots called kinematically simple, efficient analytic
solutions may be obtained.** The criterion for kine-
matic simplicity is that three consecutive joint axes
intersect at a point. In this sense, most industrial
robots are kinematically simple.

Numerical solutions to the inverse kinematics prob-
lem are much more general. These methods typically
use the Jacobian matrix J, which expresses the rate
of change in the cartesian variables with respect to
the joint variables. A single formulation, such as
Newton-Raphson, may be applied to a wide variety
of linkages. Analytic solutions have usually been
favored for real-time computation because of their
greater speed and because they produce all solutions,
rather than converging to a single one.”® Recently,
new numerical techniques have been developed that
exhibit substantially greater speed than conventional
methods and produce multiple solutions.”’

When the robot has the same number of joints as
there are degrees of freedom in its environment, it is
said to be perfectly constrained. There are a small
finite number of solutions to the inverse kinematics
problem, depending on how many revolute joints
are present. Some of the solutions to the mathemat-
ical problem are not usable, because they lie outside
the range of joint limits of the robot. The most
obvious criterion for choosing among those that are
left 1s some measure of closeness to the current
position.

When the robot has redundant degrees of freedom,

there are an infinite number of solutions to the
inverse kinematic problem. Different methods are

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 6 A commonly used trajectory showing acceleration,
velocity, and position as functions of time

INITIAL

required to solve this problem in a way that uses the
redundancy effectively.”®

In a number of systems, the explicit solution of the
inverse kinematics problem has been avoided by
performing the control calculations to obtain desired

KOREIN AND ISH-SHALOM §7

Figure 7 Via-point path

forces completely in cartesian space. The joint
torques may then be obtained by multiplying the
cartesian forces by the transpose of the Jacobian
matrix.”>%

Inverse kinematic velocity and acceleration prob-
lems are not discussed here. For a discussion of these
topics, see the introduction to Reference 69.

Cartesian trajectory planning. Consider the execu-
tion of a move command whose goal is a cartesian
position that is specified as a frame. This goal may
be converted to a joint-level goal by calling an inverse
kinematics routine. Then the trajectory-planning
techniques already discussed for joint-level planning
may be used. This approach generally does not pro-
duce straight-line motion in cartesian space. There
is one important exception. For the wrist point of a
cartesian manipulator, joint space is cartesian space.
Thus, a straight line for the wrist only requires linear
dependence between coordinated joint trajectories.
However, a kinematic conversion is still required for
tool-tip, straight-line motion if the orientation of the
end effector changes.

In order to achieve straight-line motion, trajectory
planning must be done in cartesian space. The most
common approach to achieving straight-line carte-
sian motion was pioneered by Paul in the mid-
1970s.8!

Choose a model that assumes constant maximum
accelerations and velocities in cartesian space. Then
the same trajectory function that we used in joint
space can be used in cartesian space. By interpolating
along this trajectory, we obtain a series of cartesian
frames. Each of these frames may be converted to a
Joint-level setpoint vector by the application of an
inverse kinematics subroutine. That 1s, motion along
a straight line or any other trajectory in cartesian
space may be achieved by repeated application of
the inverse kinematics routine. Of course, if this is

68 KOREN AND 1SH-SHALOM

to be repeated for every setpoint, the kinematics
routine must be extremely fast. Computation may
be saved at the price of greater deviation from the
trajectory by precomputing only some of the carte-
sian setpoints, performing inverse kinematics, and
interpolating the results in joint space. Alternative
approaches to this problem have been analyzed by
Taylor.*

A variety of methods have been used to perform via-
point motion, in which a number of intermediate
frames are specified as well as the goal frame. If the
path between these is piecewise linear, the end effec-
tor will have to stop at each position, because it
cannot instantaneously change the direction of its
velocity vector. One method is to blend together the
line segments of the path by quadratic arcs that
deviate from the via points by a specified distance.?'
(See Figure 7.) An alternative is to use cubic splines.*

Limitations of conventional approach. In the conven-
tional trajectory planning schemes just described, we
have assumed fixed upper bounds on acceleration
and velocity in the planning space. These assump-
tions are often unrealistic.

A more realistic assumption is that the limit on the
amount of force (or torque) a joint may generate is
a given constant. For a single linear joint, we may
write

ma = f;ctuator + J‘;)ther .

That is, the acceleration depends on the mass of the
payload, the force generated by the actuator, and
other forces such as friction and gravity. This means
that if there is a constant limit on actuator force, the
limit on acceleration will vary with mass and other
forces. Even in this simple case, the assumption of a
fixed acceleration limit does not account for varying
payload, gravity, or interactions with objects in the
environment, as in compliant motion. The abilities
to deal well with changing payload and to perform
compliant motion are of critical importance in many
robotics applications.

In fact, it is not even reasonable to assume a fixed
torque limit for many actuators; the torque limit
often depends on motor velocity.

In the case of a complete robot system including
revolute joints, matters are made considerably worse
by the fact that the forces acting on each joint depend
on the positions, velocities, and accelerations of all
the other joints.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

These considerations mean that, even for joint-level
trajectories, any assumptions about fixed accelera-
tion limits must be based on the worst case. This
results in motions that are usually slower than nec-
essary, or else the actuators may be incapable of
following the requested trajectory.

Additional problems are introduced by cartesian tra-
jectory planning. Assuming fixed limits for velocity
and acceleration in cartesian space compounds the
problems that arise when these assumptions are
made for joint space. Consider a vector function x(q)
that gives cartesian positions as a function of joint
positions. The cartesian velocity vector X is related
to the joint velocity vector q by its derivative with
respect to q, the Jacobian matrix J. The values of
the elements of the Jacobian vary over the workspace
of the robot. When one of the values approaches
zZero, it means that a very small change in a cartesian
variable corresponds to a large change in a joint
variable. This means that a very large angular veloc-
ity of a joint is required to achieve some seemingly
reasonable cartesian velocity. In one such situation,
shown in Figure 8A, the arm is initially pointed
straight up. To bring the tip directly downward just
slightly, it is necessary to make relatively large
changes in two joint angles, as shown in Figure 8B.
The relationship between cartesian and joint accel-
erations exhibits similar difficulties. The situation is
similar to that of backing up a long truck; a small
adjustment of the steering wheel may cause a large
displacement of the tail end.

Dynamics. Taking dynamic limits into account in
trajectory planning is an important area of re-
search.®3-*" An important result by Hollerbach and
Flash at MIT is the discovery of a time-scaling
property in manipulator dynamics.®® Suppose that a
trajectory is planned without consideration of dy-
namic limitations of the manipulator. It may be
determined, using the inverse dynamics computa-
tion, whether achieving each setpoint along that
trajectory will require manipulator force limits to be
exceeded.’’ Hollerbach develops a method that al-
lows the speed of the manipulator along its path to
be scaled to bring it within specified torque limits,
without re-executing the inverse dynamics compu-
tation.

Recently, Bobrow, Dubowsky, and Gibson devised
an algorithm for determining the time-optimal tra-
jectory of a manipulator along a prespecified path,
given dynamic constraints.®® The problem is for-

1BM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 8 The singularity problem: (A) arm straight up;
(B) small downward motion requires large angular
motion

Figure 9 Optimal trajectory in state space

ERmnseunuTEEy
L LR
paBLean R
TrNEEERE

FINISH

mulated in state space, with distance along the path
on one axis and velocity along the other. (See Figure
9.) The dynamic constraints are represented as a
forbidden region in state space. It is known (a result
of Pontryagin’s maximum principle) that the time-
optimal trajectory is a sequence of motion segments
consisting of maximum accelerations and maximum
decelerations. Bobrow et al. have also developed a
simple algorithm to compute the switch points be-
tween the acceleration and deceleration segments so
as not to enter the forbidden region. The computa-
tion of this trajectory is too slow to be suitable for
use at move execution time, but may be used for
preplanning trajectories and as a basis of comparison
of suboptimal trajectories.

KOREIN AND IsH.sHALOM 69

Figure 10 Obstacle avoidance and dual problem:
(A) moving a polygonal object through a maze of
obstacles without reorientation; and
(B) moving a point through grown obstacles

These techniques for optimizing time along a known
path have led to several algorithms for finding the
time-optimal trajectory over any possible path. Sahar
and Hollerbach®® and Brown® have both used the
approach of graph search through the elements of a
tesselated space to find the best trajectory. These
algorithms require a great deal of computation, even
for simple examples. Rajan takes a different ap-
proach, representing the search space as a parame-
terized set of paths.®” Rajan chooses cubic splines for
his parameterization, on the assumption that the
optimal path will be smooth. The Bobrow-Du-
bowski-Gibson algorithm is used to find the mini-
mum time trajectory along that path. Initially, a
single spline curve is used, and the path is varied by
changing the free parameters of the spline. This
allows the best path that can be constructed with a
single spline to be found. This path is then subdi-
vided at a knot point, and the best path using two
splines throughout the knotpoint is found. The knot-
point is then perturbed to find one that produces a
locally optimum path. This process may then be
repeated, recursively subdividing the splines.

Trajectory planning for task-level programming.
Task-level programming requires the generation of
robot arm trajectories from geometric models of the
robot, the objects to be manipulated, and their en-
vironment. Some of the important parts of this prob-
lem that have been studied are obstacle avoidance,
grasp planning, and fine-motion planning,.

Obstacle avoidance. Obstacle avoidance is a difficult
problem and one that has received considerable at-

70 KOREN AND ISH-SHALOM

tention.*®>-*° One approach, developed by Lozano-
Perez and Wesley, converts the problem of moving
an object through a clutter of obstacles, as in Figure
10A, to an equivalent problem of moving a single
reference point through an environment of grown
obstacles, as in Figure 10B.°*** This important trans-
formation greatly simpiifies the problem and leads
to a direct solution for distance-optimal paths for
polygons in the plane. These techniques were applied
10 path planning for cartesian manipulators.

Lozano-Perez generalized and made heavy use of the
important notion of configuration space, the space
of all possible configurations of the entity under
consideration. For example, the configuration space
of a robot has one dimension for each of its joints;
the configuration of an object constrained to move
on a surface is three-dimensional (x, y, 6). Insight
into many geometrical problems may be gained by
posing them in configuration space.

Note that a robot configuration is a point in the
configuration space of that robot, which often has
dimensionality six. The high dimensionality of the
configuration space of general robots has limited the
utility of pure configuration space approaches for
robot path planning.'®

Brooks®® has developed a special-purpose solution
for an anthropomorphic manipulator, using four of
its six degrees of freedom. Free space is described in
two ways: as a freeway for the upper arm, and as a
freeway for the forearm. The motions of the two
components are analyzed separately, and then con-
straints are propagated between the two solutions.

Schwartz and Sharir have shown that the general
obstacle-avoidance problem for a robot can be solved
in polynomial time. Their algorithm is of theoretical
interest only, because of the large size of the expo-
nents.’

The obstacle-avoidance approaches that we have
discussed use global knowledge of the geometry of
the environment. A different, local approach to ob-
stacle avoidance is discussed in the next section, on
control.

Grasp planning. A number of constraints must be
satisfied in grasp planning. No unexpected collisions
must occur, there must be no slip while carrying the
object, and the grasp position must be such that the
object can be picked up and put down.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

In 1972, R. Paul used a set of heuristics based on
orientation vectors for the robot gripper. Paul re-
quired that the center of mass of the object lie
between the jaws of the gripper, to prevent rotation,
and that the jaws grip two parallel faces, a face and
an edge, or two edges coplanar with the mass center.
A set of orientation vectors is constructed for each
object to be grasped. Paul uses a command called
move-instance to move an object from position A to
position B. For each orientation vector of the object,
this requires the computation of the intersection of
the ranges of approach angles for both positions A
and B. This avoids penetration of the support plane
and violation of robot joint limits.*’

This and other early work on grasp planning make
the assumption that the gripper may be positioned
so that, at grasp time, simply closing the jaws pro-
duces a stable grasp on the workpiece. In the presence
of uncertainty, it may be knocked over or the grasp
may not be stable. More recent work by Mason*’
views a grasp as a sequence of pushes, and identifies
sequences that may be guaranteed to produce a stable
grasp in the presence of positional uncertainty.

Fine-motion planning. The job of a task-level planner
is to produce a manipulator program. Of particular
importance and difficulty is the generation of com-
mands for fine motions involving contact, where
success of the strategy depends on error bounds, on
position, and on the use of compliance. An approach
taken by both Taylor and Lozano-Perez in the 1970s
was to maintain parameterized strategy skeletons,
and to choose from among them on the basis of the
values of goals and error bounds.>*”

Dufay and Latombe have proposed an approach in
which a ground plan is initially formulated and then
data are gathered about its performance during a
training phase. Using the execution traces from the
training phase, an inductive phase then modifies the
ground plan to cope with problems encountered in
training.'®!

An approach recently taken by Lozano-Perez,
Mason, and Taylor'® is the automatic synthesis of
motion strategies from task geometry by backward
chaining.”® Given the desired final position of an
object to be placed, its preimage is constructed in
configuration space. The preimage is the region of
all starting positions from which the object may be
moved to its destination with a straight-line motion
in configuration space, as shown in Figure 11. By
constructing the preimage for the preimage, etc., a

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 12 Friction cone show:
ing a point under-
going compliant
motion toward a
surface: (a) the
point sticks if its
angle of incidence
lies within the
friction cone; and
(b) otherwise the
point slides

Figure 11 Preimage in which
the shaded area is
the region from
which a point may
move to the bottom
of the slot with a
single straight-line
motion

sequence of moves is generated. Errors in position
and direction may be taken into account by shrink-
ing the preimages. Compliant motions may also be
incorporated by making the basic move operation a
compliant one. When a point that is undergoing
compliant motion encounters a surface, it slides
along the surface if its angle of incidence is outside
the range of values where friction will cause it to
stick. This range is usually called the friction cone of
the surface, which is illustrated in Figure 12.

Robot control

In this section we describe the state of the art of
robot control within the general framework shown
in Figure 13. This framework is helpful, because a
general solution to the robot control problem does
not yet exist, and only several restricted subclasses
of the robot control problem are solved. The general
framework for robot control allows us to classify all
robot controllers, to understand the context in which
current controllers were designed, and to understand
the performance one can expect to achieve from
each design. This framework also indicates directions
for future research and development to achieve
higher-performance robot controllers. The following
aspects of robot control are considered:

¢ Controller objectives
¢ System model
» Control methods

KOREN AND IsH-sHaLOM T §

The most important feature that characterizes a ro-
bot controller is the system model that was consid-
ered in its design. The system model depends on the
robot controller objectives and includes information
on the robot mechanical design, actuators, sensors,
and the “world” the robot is manipulating.

The robot controller objectives are the responsibilities
delegated to the robot controller. The controller
objectives are specified in terms of the system model
considered. Examples of objectives for a robot arm
end effector are “follow a given trajectory in free
space” or “move to a specified position.” A more
complex example is “move to a specified position
while avoiding obstacles.” This might include obsta-
cles which are moving or unexpected. Two examples
of objectives which involve compliant motion are
“insert a peg into a hole” and “command a given
point on a robot to behave as if it were a spring or a
damper.” In this section, we discuss how controller
objectives may be attained, rather than how the
specifications are written or obtained.

Given the system model and the controller objec-
tives, many control methods may be used in the
controller design to achieve the required task with
satisfactory or optimal performance. There are two
basic types of control: open-loop control and closed-
loop control.

In open-loop control the robot actuator commands
are independent of the actual, achieved robot mo-
tion. For example, consider the case of a task in
which a robot arm is to move from point A to point
B, and a force is pushing the arm away from point
B. An open-loop control cannot modify the arm
command to overcome the disturbing force. In con-
trast, when closed-loop control is exercised, a sensory
measurement of the actual motion can be used to
generate an appropriate correction to the actuator
commands, in order to overcome the unpredictable
disturbances and achieve the required task. Closed-
loop control is used to overcome uncertainty in the
controlled system.

In most cases, closed-loop control is divided into a
feedforward part and a feedback part. The feedfor-
ward part is a function of only the commands to the
controller. The feedback part is a function of the
actual measured responses as well. When the feed-
back part does not exist, the feedforward part con-
stitutes an open-loop controller.

72 KOREIN AND ISH-SHALOM

Figure 13 Framework for robot control

ROBOT CONTROL

CONTROL OBJECTIVES

Because the choice of system model depends on the
controller objectives, we begin with a discussion of
these objectives.

Controller objectives. Figure 13 shows the robot
controller objectives being divided into the following
three categories, depending upon the amount of
interaction required between the robot and the ob-
jects in its environment;:

IBM SYSTEMS JOURNAL. VOL 26, NO 1, 1987

ROBOT CONTROL

| |

|

SYSTEM MODEL

CONTROL METHODS

BTATIC.
ALGEBRAIC. -
EQUATIONS ONLY

DYNAMIC AND
ORDINARY
DIFFERENTIAL
EQUATIONS

DYNAMIC
PARTIAL AND
ORDINARY
DIFFERENTIAL
EQUATIONS

FINITE ELEMENT -

4 ROBOT INTERACTIONS
WITH "WORLD"

- g OBSTACLE AVOIDANCE
<% CONTACT
PICK UP OBJECT

Yy INFLUENCE

@ EQUATION TYPE | -

i CLUSTESING |
" VARIABLES -

TIME SCALE 0 OPTIMAL:
ks .. CONTRGL
OPTIMIZATION OPTIMAL
SCALE DECISION
STRATEGY -
INFORMATION “COMPLIANT
STRUCTURE CONTROL™

]

UPEN-LOOP ‘ ULOSED-LOOU

PROPORTIONAL-
Qo INTEGRAL .
ALGEBRAIC DERIVATIVE
JATIONS . VARIABLE
ERUATIONS : STRUCTURE

PARTIA‘L\ X
DIFFERENTIAL -
EQUATIONS =

" ADAPTIVE
' CONTROL

INTO INDEFENDENT "
GROUPS ‘

NOMINAL AND .
PERTURBED

» No interaction, as in following a given trajectory
in free space

« Weak interaction, as in approaching an object or
avoiding obstacles

» Strong interaction, as in compliant motion such
as grasping

The most common controller objective is for the
robot end effector to follow a trajectory that is com-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

pletely defined in advance by a higher-level trajectory
planner that is responsible for handling interactions
with the environment. From the point of view of the
controller, there is no interaction between the robot
and its environment. Currently, even designing a
robot controller that can achieve this objective is
difficult and is still a subject of research. Interestingly,
the control-design problem involved with weak in-
teractions is not necessarily more difficult than that

KOREIN AND ISHSHALOM T3

of following a trajectory with a given tolerance. In
contrast, the problem of designing a robot controller
with an objective of strong interaction is much more
difficult. In this case, the best hope for a satisfactory
solution is to delegate to the robot controller the
responsibility of responding to the local interactions
between the robot and its environment. This is be-
cause the controller provides the most direct path
between sensors and actuators and has the required
detailed information on both the local interaction
model and its current state. It is in an ideal position
to take quick corrective action.*

No interaction motions. The most common case in
current robot systems is that in which no interaction
with the environment is considered. The following
is a list of objectives of this type:

~ Get to a point.

~ Follow an approximate path to a point with suffi-
cient accuracy to avoid collisions.

» Follow a given path accurately, as in laser cutting.

« Follow a trajectory.

~ Improve trajectory accuracy by learning.

» Perform local trajectory interpolation.

The simplest task of a robot is to move its hand from
one point to another. The simplest case is for the
final position of the hand to lie within a specified
tolerance and to achieve this within some settling
time. A more difficult objective is to keep the hand
within a specified tolerance along its entire path.
This objective is required to avoid collisions. Still
more difficult is to follow a specified trajectory,
which requires that the hand be at a specified point
along the path at a specified time. To improve track-
ing performance, learning methods were suggested
by Raibert!®* and Craig.'®

We now consider the improvement of trajectory
accuracy by learning. Virtually all robots at work in
factories today repeat their motion in cycles. This
causes part of the error encountered to repeat itself
from cycle to cycle. Craig'™ designed an adaptation
scheme to modify the required trajectory and cancel
any repeated tracking errors sensed in previous
cycles. Using this method, the repetitive error caused
by the use of an inaccurate or approximate model
for the trajectory planning can be learned by the
robot and compensated. Therefore, the errors that
remain are reduced to those that are not repetitive.
Thus, a more experienced robot can do a better job,
as one expects.

74 KOREN AND ISH-SHALOM

We now consider the problem of local trajectory
interpolation by the controller. The motion planner
computes a representation of the required trajectory.
In most cases, the representation is a set of evenly
spaced in time position sample points: the goals at
each sample of time. Often the sample rate of the
position goals provided by the motion planner is not
sufficient for smooth operation of the controller, and
interpolation is used to estimate intermediate points.
This method of specifying the trajectory to the con-
troller has a number of undesirable features. It re-
quires that the motion planner perform excessive
computation to produce a large number of sample
points. This large number of sample points further
burdens the communication to the controller with a
large amount of data that requires a short transmis-
sion latency. Although the controller is usually re-
quired to be sufficiently intelligent to compute inter-
polation points, it does not receive any direct infor-
mation on the motion trend (e.g., whether the robot
is accelerating or slowing down) which can help the
controller achieve better performance. Several alter-
native methods of specifying the local trajectory
objective are proposed to alleviate these problems:

« (Generate trajectory sample points at a lower rate,
but include with each point both the desired po-
sition and several of its derivatives (usually veloc-
ity and acceleration).

~ Specify a trajectory to the controller by passing
parameters of the functions to be achieved (e.g.,
polynomials or spline functions).

« Specify motion algorithms that depend on mea-
sured data (e.g., guarded move).

Collision avoidance. Several researchers have inves-
tigated dynamic collision avoidance within the robot
controller. By dynamic collision avoidance, we mean
that the robot path is adjusted in real time so as to
avoid collision with obstacles whose position or tra-
jectory is not known in advance. The global problem
of obstacle avoidance, discussed in an earlier section,
is a very difficult one. An approach using only local
information is discussed here.

This method involves constructing a potential field
in which obstacles make a positive contribution and
the goal makes a negative contribution, where both
contributions depend on the distances involved. At
each moment in time, the arm follows the position
gradient to the minimum potential, consequently
approaching the goal while at the same time being
deflected from obstacles.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

This obstacle-avoidance method was implemented
for a two-degree-of-freedom manipulator by
Hogan'® and Andrews.!% Kleinwaks implemented
another dynamic obstacle-avoidance scheme for a
three-degree-of-freedom articulated robot, using Op-
timal Decision Strategy.'”” Khatib” implemented a
more general dynamic obstacle-avoidance control

If the robot is to turn a crank without
pulling on its pivot, its motion should
comply with the geometric
constraints of the crank.

that included not just the robot hand but the entire
arm of a six-degree-of-freedom pPuMA 606 robot. Ob-
stacle avoidance by the entire robot arm was
achieved by including a deflection potential gener-
ated by the distance of each one of the robot links
to the obstacles in its path. In Khatib’s implemen-
tation the position and orientation of the obstacles
were collected by an industrial vision system, thus
allowing the robot to sense moving obstacles and
respond in real time.

One problem with these systems is that a potential
is generated even by objects that cannot cause a
collision. This results in extraneous avoidance mo-
tion. Krogh'® extended the idea of a position-de-
pendent potential field to a generalized potential field
that depends on both positions and velocities of the
robot hand with respect to each obstacle along its
path. Krogh’s extension has not been implemented,
but appears promising for overcoming some of the
artifacts of position-only methods.

A basic characteristic of the potential field approach
is that the robot path is determined by local proper-
ties of the potential field. Therefore, there is no
guarantee that the robot motion is appropriate in
any global sense or that the robot can achieve its
intended goal. Even using only local information,
these methods have been shown to produce globally
acceptable paths in many typical situations. In com-
plex situations a more general solution might be

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

obtained by using a global trajectory planner to
provide the controller with intermediate subgoals,
and then using the local techniques.'®®

Compliant motion. When the robot task involves a
strong interaction between the robot and its environ-
ment, the robot motion is constrained by that inter-
action. Most strong interaction tasks arise when the
robot is required to perform a motion that involves
contact with objects in the robot environment. For
these types of motion, the robot has to comply with
the environment, and, therefore, it is called com-
pliant motion. A common example of compliant
motion in industrial robotics is the ordinary problem
of inserting a peg into a hole.

Another simple example of compliant motion is the
task of a robot turning a crank. This task is used
here to demonstrate several solution strategies for
compliant motion. The natural constraints on a
crank that arise from geometrical constraints (the
pivot) reduce the number of degrees of freedom from
six (in free space) to one (turning around the pivot).
If the robot is to turn a crank without pulling on its
pivot, its motion should comply with the geometric
constraints of the crank and only apply motion to
the one free degree of freedom left in the manipula-
tion problem.

Mason'? introduced a convenient way to specify the
motion of the unconstrained degrees of freedom in
compliant motion by specifying additional artificial
constraints that are carried out by the robot actua-
tors. When combined with the natural constraints
imposed by the task geometry, these constrain the
manipulation problem to have a unique solution
that is the required goal trajectory.*®!%°

Four approaches to compliant motion are consid-
ered in robotics:

¢ Force control

e Impedance control

e Task-level control

e Wobble (dithering or vibration)

We now explain each of these approaches by follow-
ing the solution of the crank-turning problem.

Force control. A common approach to compliant
motion in robotics is to control the force applied by
the robot hand rather than the position of the hand.
Force control permits compliance by allowing the
user to specify the amount of force to be used to

KOREIN AND ISH-SHALOM 1§

resist the forces that naturally arise in manipulation.
This is in contrast to conventional position control,
where the robot exerts an arbitrarily large force to
achieve the specified position. Force control may be
specified in joint coordinates or any set of cartesian
coordinates. Often force is specified for some degrees
of freedom and position for others.

For example, a robot may turn a crank using com-
bined force and position control by applying position
control to the one revolute degree of freedom and
force control to all the others to null forces in all
directions other than the tangential one.!'° This strat-
egy relies on accurate knowledge of the coordinate
system of the crank, because a slight error in the
direction can lead to large forces on the crank pivot.
More information may be found in a recent survey
of robot force control by Whitney.'"!

Impedance control. The requirement for precise
knowledge about the direction of the degree of free-
dom in which motion is permitted may be reduced
by the use of impedance control.'” Using impedance
control, one specifies not only the required position
of the robot hand but also its required local behavior.
This behavior is expressed as the required relation
between the position error and the force to be applied
by the robot to correct it. The required relation may
include time derivatives of the position error as well.
One impedance-control strategy to solve the crank-
turning example!® is to specify a desired crank po-
sition X, that is a quarter of a turn ahead of the
current position. The relationship between the force
f and the position error x — X, is given as the equation
for a spring:

f= —K(X - Xo). (1)

The spring constant matrix K must not be too large.
The specification of Equation (1) can also be ob-
tained by specifying a potential field that is a function
of position x. The force f results from the gradient
of that potential with respect to position. The poten-
tial field specification leads to a nonlinear generali-
zation of Equation (1) and was also used to include
local obstacle-avoidance specifications for con-
trol.XOS,HZ

Equation (1) can be generalized by including a bias
force f,, as shown in Equation (2):

f—f, = —K(x — xo). (2

The system then tries to achieve a steady state in
which it is pushing with force f,.

76 KOREIN AND ISH-SHALOM

By varying the spring constant in Equation (2), we
can vary the required control continuously from
force control when K = 0 to position control when
K approaches infinity. (For simplicity, K is assumed
to be a scalar.) Thus, we see that impedance control
is a generalization of both position and force control.

Task-level control. In some cases one would like to
further generalize the requirements from the robot
controller beyond position, force, and impedance.
Such a generalization, suggested by Ish-Shalom,*® is
a Control System (Cs) language to describe artificial
constraints that uniquely specify the goal trajectory.
The Control System language system structure is
shown in Figure 14. The Cs language description of
the required artificial constraints includes a set of
equations and a set of inequalities that describe the
desired relations among objects the robot is manip-
ulating. The equations and inequalities generally
depend on sensory measurements obtained by the
robot system. Geschke*® implemented a subset of
such a system that included vector equations but
ignored dynamics resulting in slow motion.

Using the ¢S language approach, one can specify the
artificial constraints for the crank-turning problem
by using a cross-product equation,

fXv=0. (3)

Equation (3) specifies that the direction of the force
f the robot needs to apply should be parallel to the
measured velocity v at that point.*

Wobble. In the Wave''> and AL? robot languages
one can specify a wobble (dithering or vibration)
amplitude for a motion. Adding a high-frequency
wobble can help in assembly tasks by breaking stic-
tion (i.e., sticking friction) and by causing parts to
mate by random interactions. Usually the wobble is
at a frequency beyond the response of the closed-
loop robot control, and it is thus best done open-
loop. Therefore, a separate specification has to be
added to the design of the robot controller so that
such a motion can be achieved. In the case of the
crank-turning example, wobble can be used to break
sticking and to determine the initial direction in
which the crank is free to turn.

System model

Several aspects of the system model are considered:

& The extent of the system model
% The type of equations describing the model
» The model decompositions used

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 14 Control system language system structure

Model extent. The following issues may be consid-
ered in the system model:

& Uncertainty

& Model of the robot itself

~ Robot interaction with the world
% Failures

Currently, there is no robot controller that considers
all these items. In some cases, not all of the issues
need be considered, as in the case of a laser-cutting
robot that has no mechanical interactions with the
part it is cutting. We now consider each of these
issues in more detail.

Uncertainty. There are many sources of uncertainty
in a robot system. These include uncertainties about
the values of geometric or dynamic parameters, such
as link dimensions and inertias, respectively. They
also include uncertainties that are induced by inten-
tional approximations, such as the use design of
independent joint servos or the neglect of a “world”
model.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Geometric uncertainty limits the robot accuracy, but
it can still allow quite good repeatability of an open-
loop controlled robot in many cases. Geometric
uncertainty can be largely overcome by a closed-loop
feedback control, where an appropriate sensor meas-
urement is used to observe the required relationship
and modify the robot actuator commands appropri-
ately. Dynamic uncertainty limits the predictability
of the dynamic response of the robot. This, in turn,
limits path-tracking accuracy. The dynamic uncer-
tainty also limits the ability of feedback control to
correct for uncertainty. To simplify the control sys-
tem many approximations are used in the system
model. Often these approximations actually result in
better robot performance because the simpler ap-
proximate control computations allow for a higher
repetition rate of the control calculation. Using feed-
back control, the uncertainty can be reduced to a
limit determined primarily by the accuracy and res-
olution of the available sensors.

Robot model. Usually the system model includes
only a model of the robot itself. This is appropriate

KOREIN AND ISH-SHALOM {7

in the case where the robot has no interaction with
the workpiece and there is no concern for obstacles.

To achieve high reliability of
manufacturing lines, the mean time
to failure for the robot should be of

the order of months.

In general, the following elements bear consideration
in formulating the model:

» Kinematics: Relations between motion of robot
links and cartesian positions

% Dynamics: Relations between applied forces and
torques and robot link positions as a function of
time

% Robot structure (rigid or nonrigid links)

% Actuators

*» Mechanical transmission elements between actua-
tors and robot links

% Sensors

Robot world interaction model. In order to ade-
quately control interactions between the robot and
its environment, a model of these interactions is
needed in the controller. Some of these interactions
include

% Obstacle avoidance

&~ Contact with objects

% Picking up objects, which results in changes of
inertia

% Performing a task that requires the robot to
achieve a given relationship among objects in the
robot world, as in grinding a weld seam to smooth
the surface

Robot failure model. A robot is a mechanical device,
and as such it can have mechanical and electrical
failures. The problem is further compounded in that
a single robot is usually just one part of a manufac-
turing line. In order to achieve high reliability of
manufacturing lines, the mean time to failure for the
robot should be of the order of months. Also, robots

78 KOREIN AND ISH-SHALOM

are expected to work hard, often several shifts. The
life expectancy of a robot should be at least ten years,
which means that it is expected to perform for over
a hundred thousand hours. One can compare this to
the average life of a car, which is only several thou-
sand active hours.

In order to achieve high reliability, low maintenance,
and long life expectancy, a robot failure model is
desirable. Reliable performance might be achieved if
the robot could continue to function with minor (or
maybe even major) failures. A robot can continue to
function under failure conditions if it has sufficient
redundancy built into it and its control is sufficiently
flexible to adapt to the failure met. A failure model
is also helpful in the diagnosis of robot failure, which
may reduce downtime. Currently, robot failure
models are practically nonexistent or extremely ru-
dimentary.

Model types. There are several types of mathemati-
cal models commonly used to describe robot sys-
tems:

e Static model, with only algebraic equations

% Dynamic model, with only ordinary differential
equations (ODEs)

*» Dynamic model, with both ordinary and partial
differential equations (PDEs)

<« Finite-clement model

Static model. By a static model we mean a model
that uses only algebraic equations to describe rela-
tionships among variables. Many robots are designed
with this kind of model in mind. That is, the robot
model involves only kinematic relationships and
ignores any dynamic effects. The relationships are
just the kinematic transformation between the re-
quired position in the task space coordinate system
(usually world cartesian coordinates) and the re-
quired joint angles. Such a model is sensible when
the robot joint actuators are controlled by a position
command and have a very high inherent stiffness.
An actuator has high positional stiffness if the actua-
tor position does not deviate much from the com-
manded position even when a disturbing force is
applied.

Most robots that use step-motors for their actuators
fall under this category, because step-motors are
commanded to move a given number of steps and
they are very stiff. In this situation, the control
system is relatively simple, because an open-loop
controller can be used and no joint position or

BM SYSTEMS JOURNAL, VOL 26, NO 1,1987

velocity sensors are required. Therefore, the cost of
the system is very low; currently such a robot can be
purchased for just several thousands of dollars.
Nevertheless, such a robot can have very good re-
peatability because of the high stiffness of the step-
motor actuators. Unfortunately, in this case, there is
a trade-off between robot speed and the positional
resolution it can achieve. Newer control tech-
niques''*!''® may be used to improve this aspect of
step-motor performance. However, this requires that
a dynamic model of the robot be considered, as we
discuss next.

To model static and dynamic effects
of flexibility, it is necessary to
consider partial differential
equations.

The problem of controlling a system described by
algebraic equations is not a control problem in the
classical sense. The problems involved are those of
evaluating a function and finding its inverse. These
problems are often studied in the field of numerical
analysis.

Dynamic model with ODESs only. In most cases, the
command to an actuator corresponds to the steady-
state force or velocity to be produced by the actuator.
In this case, and in general, a dynamic model is
required when the command to the actuator is not
the same as the actuator output, A dynamic model
is also required when one wants fast motion and at
the same time wants to specify the robot motion as
a function of time, rather than merely final position.

The main requirement for a dynamic model arises
from the use of feedback control. It is almost never
possible to design a stable feedback controller with-
out a dynamic model. The simplest dynamic model
involves only ordinary differential equations (ODEs).
The simplest form of a dynamic model for a robot
is a second-order differential equation that results
from Newton’s second law. The simplest dynamic

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

model is for a single linear axis of a rigid-link carte-
sian robot,

mx = u(t), C)]

where m is the total mass the linear actuator has to
move and X is the acceleration (second derivative of
position) resulting from the controlled input force
u(f) produced by the linear actuator. Each linear axis
of a rigid-link cartesian robot has an independent
equation of the form of Equation (4). Friction and
actuator dynamics are omitted from Equation (4)
for simplicity.

For a serial-link revolute rigid robot, the equivalent
of Equation (4) is much more complex. Following
Bejczy,'" it is as follows:

M(q)q + h(q, §) = u(), &)

where q(¢) is a column vector of generalized coordi-
nates representing joint positions, M{(q) isan n X n
matrix of acceleration-related terms, h(q, q) is a
column vector function representing a combination
of gravitational, centripetal, and Coriolis forces, and
u(?) is a column vector that represents the input
torque at each joint.

Note that for a cartesian robot without a wrist, the
dynamic equations of the type of Equation (4) are
linear and decoupled. That is, the equation for each
axis is independent of those for the other axes. In
contrast, the equations of the type of Equation (5)
for an anthropomorphic robot, like a human being,
are nonlinear and coupled. The control of a system
with linear dynamics is well understood, whereas for
nonlinear equations there is at this time no good
theory for controller design. For this reason, a large
variety of heuristics have been developed for robot
control.

Dynamic model with PDEs. A real robot is not made
of infinitely rigid links. Lack of consideration of the
flexibility of the robot structure (links) results in
static and dynamic model errors. In order to model
static and dynamic effects of flexibility, it is necessary
to use a more complex model involving partial dif-
ferential equations (PDEs). Even calculating the static
position of the robot under its own weight becomes
complex, and finite-element methods may be re-
quired.

One wonders how it is possible that the flexibility of
the robot structure is considered by very few con-
trollers. The reason is that the sensors used for
feedback control of each actuator are always located

KOREIN AND ISH-SHALOM 79

exactly at that actuator position. When the sensors
are collocated with the actuator, stable control is
easy to achieve.!'"® Collocated control implies that
each joint must be controlled as an independent
system. Consequently, coordination of the motion
of the joints is limited to feedforward only. This
method, which is currently in common practice,
results in relatively poor control of coordination
between axes.

A current trend in robotics is toward lighter-weight
robots to reduce mass and improve accelerations.
Often, however, lighter weight is concomitant with
greater flexibility. Another trend is toward the use of
endpoint sensing, in which the sensor is placed so as
to directly measure its relationship to the workpiece
and thus increase the robot precision. Both of these
trends imply the increasing importance of accurately
modeling and controlling flexible structures. Cannon
and other authors have studied this problem re-
Cently.”s‘m

Model decompositions. As seen from the discussion
in the previous sections, the model for a robotic
system is usually very complex. It involves nonlinear
algebraic equations, nonlinear ordinary differential
equations, and even partial differential equations. In
order to simplify the analysis and control design
using these equations, the model is decomposed into
as many independent parts as possible. Furthermore,
an attempt is made to obtain a hierarchical decom-
position. One method is to take advantage of direct
mathematical decompositions of the model equa-
tions. Another is to separate the controller objectives
upon which the model depends. An example is that
of separating the specification of a nominal trajectory
from the specification of local behavior along that
trajectory. Some of the methods used in system
decomposition are the following:

¢ Separation of equations of different types (alge-
braic only, or including ODEs, or including ODEs
and PDEs)

¢ Clustering of variables into independent groups

e Separation of nominal control from perturbation
control

¢ Separation of activities whose time scales are dif-
ferent

e Separation into a simplified global problem and
more detailed local problems

¢ Clustering of related information and processing

In most cases, even after these decompositions, the
subsystems are still too complex, and further ap-

80 KOREN AND ISH-SHALOM

proximations are used. Usually one can afford to use
only a relatively simple model for the control design
process. A more complex model can be used (and
usually is) for design verification and system simu-
lation.

Control methods

Figure 15 shows three standard forms of controller
structures. Part A shows an open-loop controller,
and Parts B and C depict closed-loop controllers.
Part B shows a generic closed-loop controller, and
Part C depicts a commonly used decomposition into
feedforward and feedback parts. In standard control
terminology the desired motions y4(¢) are the inputs
to the controller, u(¢) are the actuator commands to
the robot, y(f) are the motions achieved by the robot,
and z(¢) are other measured variables related to the
robot motion, where ¢ is time. The desired motion
y4(?) can represent desired position or force in either
task space or joint space.

However, this standard controller model does not
encompass some types of input requirements. One
example is the specification of the desired response
to external perturbations (stiffness) required in
impedance control. Therefore, in looking at the con-
trollers in Figure 15 one must remember that there
are other input requirements besides yq(?). Specifi-
cations of this type are required for compliant mo-
tion.

Most of the work in robotics has concentrated on
open-loop control or the feedforward part of the
controller. The feedforward controllers are usually
designed to cancel in one way or another the nonlin-
ear dynamics of the robot [e.g., Equation (5) for an
anthropomorphic robot]. The method used to cancel
the nonlinear dynamics is critical to performance
when implemented on a real system with limits on
computational speed and accuracy. In our discussion
we concentrate on closed-loop control methods and
the design methods for the feedback control part, as
shown in Figure 15C, which are crucial to overcom-
ing the inherent uncertainty in the system.

As discussed earlier, the system can be decomposed
into several parts, which usually implies that the
controller can be decomposed in a similar way. The
most common decomposition is a decentralized con-
troller structure that has independent joint control-
lers. This feedback controller considerably simplifies
both the dependencies between the controller parts
and the required real-time control computations, but
it has many limitations.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Figure 15 Open-loop and closed-loop, feedforward and feedback control: (A) open-loop robot controller; (B) closed-loop
robot controller; (C) closed-loop robot controlier partitioned into feedforward and feedback operators

A
Yd

. DESIRED
' MOTION

Yd

DESIRED
MOTION

There are several mechanical problems that make
robot control difficult. These include static friction
and backlash, which make it hard to achieve force
control or very high translational resolution. For this
reason, a number of direct-drive robots that have
low friction and backlash have recently been con-
structed.!'#-!16:124-126 Stable control for direct-drive
robots is much more demanding, because there is no
friction to decouple the joints and absorb some of
the energy of structural vibration.

Recently a survey of current industrial robot controls
was done by Luh.?’ Discussions and selected papers

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

ACTUATOR
COMMANDS

ACTUATOR
COMMANDS

ACTUATOR
COMMANDS

ACHIEVED
MOTION

ACHIEVED
MOTION

. MEASURED PART Z
- OF 8YSTEM STATE

ACHIEVED
. - K MoTioN

MEASURED PART 2Z
OF SYSTEM STATE

appear in References 75 and 127. Several books that
discuss robot control are available.*>!25-3! In this
section we just point out the basics of several control
methods, their relations, and their relative merits,
including the following:

» Proportional integral derivative (PID) control
Variable structure (sliding mode control)
Adaptive control

Frequency-domain design methods

Optimal control

Optimal decision strategy (ODS)

Compliant control

KOREIN AND ISHSHALOM 81

Proportional integral derivative (PID) control. The
fundamental problem in controlling anthropo-
morphic robots is that the actuators produce motion
1n joint coordinates, whereas the motion is specified
and measured in world coordinates. The rigid body
dynamics of a robot are basically those of a moving
mass. Thus they can be described by a second-order
differential equation, as exemplified by Equation (5).
A simple method for control is to cancel the term
h(q, q), which represents a combination of nonlinear
Conolis, centripetal, and gravity forces. This is done,
first, by dividing the control signal vector, u, into
feedforward and feedback components (u = ug +
ug). Then choose ug to be equal to h(q, q) to obtain
a cancellation, and then multiply both sides by the
inverse of M(q). Note that M(q), the inertia matrix,
is symmetric positive definite and can always be
inverted. This results in a linear second-order ordi-
nary differential equation'*? with the new control
inDUt ﬁfb(t),

q(0) = M~ (Qua(?) = Url?). (6)

To control such a second-order plant, one can use a
PID controller of the following form, in which the
scalar case is shown for simplicity:

un(t) = —koe(t) — k; J(: e(dt — k.e(1), (7

where the joint position error is given by

e(t) = q(t) — qu(?). (8)

Here, g(1) is the joint posttion, g4(?) is the desired
joint position, and é(¢) is the time derivative of the
joint position error. The PID controller has feedback
control signal iy, proportional to a weighted sum of
three forms of joint error. The P (proportional) term
corresponds to position error, the I (integral) term
corresponds to the accumulated position error, and
the D (derivative) term corresponds to velocity error.
The P term 1s required in order to achieve zero error;
the I term is required in order to try to achieve a
zero steady-state error; and the D term is required
to achieve the motion without oscillations.

Note that the feedforward term ug requires an inverse
dynamics computation. Methods of this type are
often called computed torque control.'"’ In a similar
method, the errors e are given in cartesian space and
an appropriate coordinate transformation is used. In
robotics, this is called resolved motion force con-
trol.'¥

The main problem with these methods is the inac-
curacy in the cancellation of h(q, ¢) and in the

82 KOREIN AND ISHSHALOM

knowledge of the inertia matrix M(q). Both the var-
1able structure control and adaptive control methods
offer a remedy for some of these problems while still
using a similar controller structure. Another ap-
proach to solving this control problem is to use a
robot that has independent linear second-order joint
dynamics as in Equation (4). Cartesian robots are

The basic idea in all adaptive control
schemes is that the controller’s job
is to measure the current system
and control it.

one case; a mechanically decoupled revolute direct-
drive arm developed by Asada'** is another. Thus, a
complex control problem was solved by a careful
mechanical design.

Variable structure control. Explicit accounting for
parameter uncertainty can be achieved by using
sliding mode control, sometimes known as suction
control.'* In this method, a set of equations are used
to define a virtual surface in phase space that includes
the goal. The control system first brings the system
to this surface and then causes it to slide along to
the goal. The system is forced to stay close to the
surface by using a control that always points the
trajectory toward the surface. Each time the system
crosses the surface, the control switches the trajectory
back toward the surface. This switching technique
overcomes inaccuracies in the model, allowing a
simplified model to be used. Control on the sliding
surface is based on a simple differential equation.

One difficulty is that switching control can impose
undesirable high-frequency oscillations in the robot.
This problem was resolved'** by adding a boundary
layer around the switching surface to smooth the
control. A simulation comparison by Slotine'?*
shows that, even for relatively small uncertainty in
the robot model, the sliding mode control already
can achieve better performance than the computed
torque method. Furthermore, the large-motion
joints and small-motion joints (wrist) can be con-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

trolled independently, treating their dynamic inter-
action as model uncertainty. This results in a much
simpler robot controller while still achieving good
performance. The main problem with this method
is that actuator torque limitations cannot be directly
incorporated into the design. A suggested solution
was to augment this method with the optimal deci-
sion strategy (oDs), discussed later in this paper.

Adaptive control. Three methods of adaptive control
are discussed here. Each method has a different way
to deal with robot system model uncertainty and
complexity. The basic idea in all adaptive control
schemes is that the system model is not completely
known and therefore the controller’s job is to first
measure the current system and then control it.

The first method uses model reference adaptive con-
trol.'*¢ In this case, the controller tries to identify the
system locally and cancel any undesired terms, so
that the system looks like a set of well-behaved,
independent, linear second-order systems for each
joint. This method is somewhat similar to the com-
puted torque method, but here the robot-coupled
dynamics are measured on the fly rather than pre-
computed from a model. In comparison with the
variable structure method, this adaptive control
method eliminates the model uncertainty by contin-
uously measuring and updating the model. When
using adaptive control good performance can be
expected, even when the robot is carrying a payload
that is unknown in advance.

A second method'? uses a self-tuning-type adaptive
control method. In this method the parameters of a
set of second-order difference equation models—one
for each joint—are estimated in real time. The model
parameters are used for real-time calculation of the
controller gains that are required locally. Another
way to describe this method is that at each local
point the controller has three jobs: (1) measure what
system model it needs to control; (2) calculate the
required control gains; and (3) use the calculated
control gains to control the system.

The third method'® is similar to the second method.
In this method, however, the known robot model
dynamics are first canceled in the feedforward loop
(as in the computed torque method), and only then
is a self-tuning-type adaptive control method applied
to the perturbed system. One can expect this method
to give the best performance among the three meth-
ods mentioned when the perturbations from the
known model are small. The disadvantage of this

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

method compared to the others is that much more
computation is required to obtain the feedforward
term. Currently, the adaptive control methods just

The advantage of optimal control is
that it is a systematic method that
can handle systems with strong
coupling between the system states.

described have only been demonstrated in simula-
tion. A major problem with all adaptive control
methods is that of guaranteeing global stability. Cur-
rently there is just one theorem about positive, real
functions that gives conditions for global stability of
an adaptive control method, and its application leads
to poor performance.

Frequency domain design methods. These methods
deal primarily with linear systems. By using describ-
ing functions, the method is extended to some non-
linear systems as well. Beyond proportional integral
derivative (PID) control, frequency-domain methods
are rarely mentioned in current robot control litera-
ture, because they are usually difficult to apply to
multi-input, multi-output systems like robots. Re-
cently, Cannon used these methods!'® for endpoint
control of a flexible-link robot with a redundant
“micro” actuator. The flexibility implies an infinite-
dimensional model for the system, which makes it
virtually impossible to prove stability for any closed-
loop controller. Nevertheless, in this case a simple
controller was constructed using frequency-domain
techniques, and its stability could be proved because
of the special structure of the infinite-dimensional-
system eigenvalues (pole and zero locations).

Optimal control. In general, optimal control, using
the maximum principle, can be applied to any non-
linear system. However, the resulting control is usu-
ally of the open-loop type and very complex to
calculate. It is used with a simplified model for
motion planning in robotics, but it is not usually
used in the robot controller itself because open-loop
controllers cannot deal effectively with model uncer-
tainty.

KOREN AND ISH-SHALOM 83

The advantage of optimal control is that it is a
systematic method that can handle systems with
strong coupling between the system states. In the
special case when the system dynamics are linear
and the optimization criterion is quadratic in both
the system state and the controls (an LQ optimal
control problem), a simple closed-loop controller can
be obtained using state feedback. In this case, the
control is just the product of the gain matrix with
the system state vector. Using LQ optimal control,
multi-input, multi-output stochastic systems can be
designed with an explicit trade-off between desired
performance and control effort.

The way to take advantage of the special LQ case in
robotics is to use a two-level control synthesis of
nominal and perturbed systems.'?*!3-14 The nomi-
nal solution is done in the open-loop manner. As-
suming that the system trajectory is close to the
nominal one, a linear time-varying model for the
perturbed system is acceptable. One can also use LQ
optimal control to design a closed-loop controller for
the perturbed system. This optimal controller can be
designed to handle the resulting coupling in the
perturbed model, the model uncertainty, and a trade-
off between them and actuator limitations. No other
known method solves these three problems simul-
taneously and results in a controller that is guaran-
teed to be stable under a variety of uncertainties.
However, there are some drawbacks. The resulting
control needs measurements of all the states of the
system, which is usually impractical. An “observer”
may be used to overcome this problem, but only at
the cost of severely sacrificing performance or stabil-
ity in the face of uncertainty. Moreover, the resulting
control usually has strong coupling between joints.
This coupling can cause instability because the sen-
-sors and actuators are usually not collocated, and
the structural flexibility cannot be modeled perfectly.
Finally, the performance criterion is of an integral
type and does not accurately represent real actuators
that saturate when some maximum torque is
reached.

Optimal decision strategy (ODS). In many cases
during the robot motion the saturation limits of
the actuators are reached. Spong, Thorpe, and
Kleinwaks'?”'*! applied optimal decision strategy
(oDs) to the problem of robot trajectory-following to
overcome the joint torque limits with guaranteed
asymptotic stability in the face of bounded model
uncertainty. The method uses a pointwise optimal
control law, which, at each sample instant, mini-
mizes a weighted norm of the error between the

84 KOREN AND ISHSHALOM

vector of actual joint accelerations and a “desired
acceleration vector,” subject to hard limit constraints
on the torque at each joint. The resulting control
can be computed in real time and has guaranteed
tracking properties that are quantifiable, within given
limits on model uncertainty and actuator torque.
The controller has two terms: one to account for the
model uncertainty and the other to account for the
actuator saturation limits. In the real-time control
loop, a calculation of a quadratic programming op-
timization is performed at each sample time. The
resulting control was implemented for a three-link
revolute robot on a Motorola 68000 microproces-
sor.'”” The accounting for model uncertainty is sim-
ilar to that obtained by Slotine,'* but it is based on
different principles.

Compliant control. As mentioned before, compliant
motion requires a control system that will not only
follow a given input, but will also impose a required
relationship between manipulation variables such as
position and force in impedance control. Therefore,
current control design methods are not particularly
suitable for such a design. In some cases, model
reference control may be used where the reference
model is constructed to represent the desired robot
behavior. Ish-Shalom*® has suggested a systematic
method to translate general compliant control objec-
tives in the form of equations and inequalities (cs
language objectives description) into a general opti-
mal control formulation. Furthermore, for some
class of equation objectives with linear dynamics,
the general optimal control problem is reduced to
an LQ optimal control problem that can be practi-
cally solved, and the resulting control can be imple-
mented. Unfortunately this method still has many
unresolved questions and has not yet been imple-
mented. One of the problems is that of dealing with
nonlinear robot equations of the form of Equation
(5). This problem is addressed by Koditschek'*? with
a technique called natural motion control. This tech-
nique uses a PD-type control for which the controller
objectives are encoded in the feedback control. The
control objectives are formulated as a set of equa-
tions that the system should try to satisfy, as in the
¢s language. Thus the natural motion of the closed-
loop system produces the desired robot motion.

Taking an example from the human body, Hogan'#
suggested a method of impedance control using coac-
tivation of an agonist/antagonist pair of actuators.
The idea can be demonstrated by comparing the
response to force exhibited by a tense arm or a
relaxed one. Impedance control can also be achieved

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

by specifying the P gain in a PID control when the I
gain equals 0, which is the most common method
used.!'?

In the case where compliant control is associated
with force control, all the standard control methods

The speed, precision, and utility of
robots depend on the actuators and
the means by which they will
transmit power to their joints.

discussed before can be used by making the con-
trolled variable the output actuator force, rather than
position, velocity, or acceleration. Such methods

have been implemented and discussed by many au-
thOI‘S 20,45,79,105,111-113,133,143-147

Actuators and drives

The speed, precision, and utility of robots depend
on the actuators and the means by which they trans-
mit power to their joints. Some important criteria
for the evaluation of actuators are their dynamic
range, the precision with which they may be con-
trolled, the force or torque that they can generate,
their size, mass, and cleanliness. The most common
type of actuators for robots are electric, hydraulic,
and pneumatic.®

Pneumatic actuators provide a great deal of torque
for the size of the actuator. However, they are hard
to control precisely because of the compressibility of
air. They are often used in simple robots that merely
move back and forth between hard stops, but they
are not widely used in more programmable robots.
A notable exception is the Utah/miT hand, which
uses an agonist/antagonist pair of pneumatic actua-
tors. !4

Most advanced robots are either hydraulically or
electrically driven. A number of factors tend to favor
hydraulic actuators for robots that must carry heavy
payloads. One reason is that the torque-to-mass ratio
is currently better for hydraulic actuators.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Environmental requirements are important. Hy-
draulic actuators tend to dnip hydraulic fluid or at
least produce particles, which makes them unsuitable
for the clean environments that are often required
for electronics manufacturing. On the other hand,
some electric motors may be explosion hazards in
volatile applications such as paint spraying.

Electric motors have become increasingly popular
for powering small-to-medium-sized robots. The de-
sign of new types of motors has become an important
topic in robotics research. Conventional motors spin
fast and generate low torque, thus requiring a trans-
mission for speed reduction. This may be done with
gears or with a widely used device called a harmonic
drive'® that provides speed reductions of the order
of a hundred 1o one in a very small package. How-
ever, transmissions introduce a number of factors,
including static friction, binding, wear, backlash, and
cogging, that make it difficult to model the motion
produced.'*®

A recent trend has been in the direction of direct
drive arms in which no speed reduction is necessary.
At 1BM!!315L152 and elsewhere,'**!% new types of
motors have been invented that produce high torque
at low speed. In conjunction with suitable mechani-
cal robot designs, these motors show promise for
reducing some of the unpredictable aspects of actua-
tor behavior that have made robot control something
Iess than a science.

Sensing

A variety of sensors and sensing techniques are used
in robotics. In this short section we mention a few
important ones.

Binary sensors. The most widely used sensors in
robotics are binary sensors. The breaking of a beam
of light or the depressing of a switch are used to
detect the presence of parts in almost every applica-
tion. It is not unusual to have to monitor hundreds
of such sensors in a robot workstation.

Force sensing. Strain gauges are commonly used to
measure force. Absolute accuracy, dynamic range,
hinearity, and hysteresis are some parameters by
which the utility of these devices may be judged.
Force sensors in the gripper may be used to sense
collisions, the presence of an object, tightness of
grasp, and the weight of objects.

Force feedback for servocontrol purposes may be
obtained in several different ways. In order to register

KOREIN AND isHSHALOM 85

force along three orthogonal axes and moments
about those axes, force-sensing wrists have been de-
vised and are now commercially available.'>!10:!5¢
An alternative is to sense force or torque directly at
the joints. For armature-controlled bC servomotors,
armature current may be used as a feedback signal.?’
Another alternative is endpoint sensing, which is
done at the tip. Endpoint sensing is discussed in the
following section.

Multiple force sensors may be use to detect slip.
Arrays of sensors produce a “force image” that may
be used to detect parts and determine their positions
from their “footprints.”**’

In order to maintain contact with a surface, as in
performing compliant motion, it is desirable to have
continuous force feedback from a surface. This
suggests the advantage of sensors mounted on a
nonplanar, nonrigid surface, like that of a finger-
tip.'*®-1%! In attempting to understand the sensory
requirements of compliant motion, researchers are
being led to re-examine the incredible tactile mech-
anisms of the human skin. 6164

Endpoint sensing. Direct measurement of the rela-
tionship between the manipulator end effector and
the workpiece is called endpoint sensing, as was
mentioned in the previous section. Wrist-mounted
force sensors, sensors on the end effector, and struc-
tured light projected from the end effector are all
endpoint sensing techniques. It is highly desirable to
use endpoint sensing because it provides a direct
measurement of the error to be corrected. However,
as was noted earlier, effective control of endpoint
sensing is complicated by the flexibility of robot
structures.

Proximity sensing. A variety of types of proximity
sensors are in use in robotics. Critical parameters are
the range of distances over which the sensor is useful,
accuracy, linearity, and sensitivity to environmental
conditions, Ultrasonic sensors have been widely used
in mobile robots. These sensors have, in the past,
been somewhat limited by their inability to sense
objects at close range accurately. However, a tech-
nique used by Miller allows an ultrasonic sensor
located in the base of a gripper to accurately sense
objects as close as one inch.'*> Another method was
developed by Ish-Shalom for a mobility instrument
for the blind.'*® Ultrasonic sensors tend to be some-
what sensitive to temperature variations, atmos-
pheric disturbances (humidity, turbulence), and ex-
traneous reflections.

86 KOREN AND ISH-SHALOM

Laser sensors are another means of implementing
proximity sensors. A new interferometer-based tech-
nique by Williams and Wickramisinghe has been
developed to perform micrometer (um) resolution

In the field of robotics, computer
vision is often used for the
identification and location of parts.

measurements over distances of a meter. Ranging
results with an accuracy of 2 um have been demon-
strated at a distance of 20 cm.'®” Proximity sensors
can also be used to acquire range maps by scanning
over a scene,'5'6°

Vision. In the field of robotics, computer vision is
often used for the identification and location of parts.
The problem of binary two-dimensional vision in
environments with controlled lighting is sufficiently
well understood to be widely used in industry. A
number of companies sell products that may be used
to identify parts with learned features with an over-
head camera. This kind of system is useful for pick
and place of parts under the following three condi-
tions: (1) the part types are known in advance; (2)
their orientation may be determined from their pro-
file; and (3) there are no parts touching or occluding
one another, Dealing with more difficult problems,
like picking a part out of a bin, requires three-
dimensional vision. Experimental systems of this
type have been developed, but they are as yet too
slow and unreliable for commercial use. However,
robot vision is promising and continues to be an
active area of research in computer vision.'’%!7?

Another application of vision 1s visual servoing, in
which the image is used to determine and correct
deviation from the desired path. Using special-pur-
pose hardware to compute image moments sixty
times a second, Andersson has succeeded in servoing
a robot to catch a ping-pong ball.'”

Structured lighting is a technique used to greatly
simplify the image by shining stripes of light on an

IBM SYSTEMS JOURNAL, VOL 26, NO 1,1887

object. The image is thresholded, leaving only a
deformed light stripe in the image, with its shape
revealing surface orientation and irregularities.
Structured light has been used effectively to correct
paths in applications such as seam welding,'"*-'"

The strongest industrial economic incentives for
computer vision come from the area of inspection
and measurement, rather than robot control. Two-
dimensional vision is used widely in industry for the
inspection of mechanical and electronic parts. In-
spection systems may also employ robots for posi-
tioning of parts and camera.

End effectors

Special-purpose end effectors. Special-purpose end
effectors are used in most industrial applications.
Conventional grippers consist of two parallel fingers
with pads for friction, but many variations may be
found to handle objects of different shapes, sizes and
materials. (See Engelberger® for an interesting sur-
vey.) Other types of end effectors such as torches,
paint guns, screwdrivers, ladles, drills, routers, elec-
tromagnets, and suction devices may be used for
different applications.

An extremely important and widely used device for
applications requiring compliance is the remote cen-
ter compliance device.'>'"'7® The RcC mechanically
complies with the forces and torques that arise in
insertion operations, providing a substantial increase
in performance for assembly applications.

One approach to achieving high-precision position-
ing with robots is to introduce a small, high-resolu-
tion positioning device at the end effector. This strat-
egy, called coarse-fine or macro-micro positioning,
avoids the requirement for a single device that can
be positioned accurately in a large workspace.!”-'¥!
A planar positioning device of this type, developed
by Hollis, has a motion resolution of 0.5 um.'8?

Quick-change grippers. The use of a single special-
purpose end effector is impractical when an arm is
to be used for a number of different types of opera-
tions, as in an assembly application. This has led to
the use of switchable end effectors. One variety con-
sists of a special “gripper” to which a variety of tools
with a standard interface may be attached. This
interface must include suitable electrical and pneu-
matic connections to operate the tools and carry
sensory information. A rack of end effectors may be
located in the workspace of the robot, and it may be

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

programmed to pick them up and put them down
between the steps of its task.

Frequent tool changing may impact the rate of pro-
duction. An alternative method which has been
adopted by some manufacturers is to outfit the end
effector with a turret which carries multiple tools or
grippers at once (usually two to six). Typically, one
tool at a time is made operational by rotating that
tool to the arm interface within the turret. This saves
the time of picking up and putting down tools, at
the cost of carrying around the bulk and weight of
the turret with multiple tools.

Sensors in hand. The 1BM 7565 robot®® uses an LED
and binary light sensor on opposite fingers of the
gripper to determine whether there is an object be-
tween the fingers. It also has strain gauges in the
finger pads, which are used primarily in guarded
moves, often searching for an object, checking for
the presence of an object, or attaining a specified
grip force.

Force-sensing wrists, discussed earlier, obtain meas-
urements that may be converted to cartesian forces
and torques.

An experimental hand developed at AT&T Bell Lab-
oratories includes a proximity sensor in its base and
arrays of touch sensors on its finger pads.'¢>!%? This
configuration ailows the proximity sensor to sense
the distance to an object to be grasped, and the touch
sensors to detect slip and goodness of grip.

General-purpose hands. The development of articu-
lated robot hands has been fostered by the desire to
achieve higher levels of dexterity. By increasing the
dexterity of a single tool, the need for special-purpose
tools and tool changing will be reduced. However,
the dexterity and versatility of a human hand are not
attained without complexity.

After a study of the capabilities of a variety of
kinematic structures, Salisbury designed the Stan-
ford/spL hand. This hand has three fingers with three
degrees of freedom in each finger.'®* Three genera-
tions of development by Jacobsen and others have
led to the current version of the Utah/miT hand.!*
This hand has four fingers, each with four degrees of
freedom. Each degree of freedom requires two actua-
tors for flexion and extension, so the fingers require
32 actuators, not including the wrist. Special tapes
have been designed for use as “tendons.” These tapes
have great durability and low friction, which allows

KOREIN AND IsHsHaLOM 87

Figure 16 Robot controller interface

them to slide over one another. The actuators pow-
ering the hand are pneumatic. The hand may be
teleoperated in a master-slave configuration by ma-
nipulating a model; it has been designed to be ex-
tremely strong and fast and is roughly the size of the
human hand. Another interesting anthropomorphic
hand is a three-fingered hand developed by Hitachi,
Ltd. The fingers of the hand are moved by the
expansion and contraction of thin wire made of
shape memory alloy, in response to controlled tem-
perature changes.'®

For more information on robot hands, see the recent
book by Mason and Salisbury.'%

Robot workstation controllers

A robot workstation controller is a computer system
used to control a robot or robotic workstation. This
is not to be confused with the term robot controller,
which was used earlier in this paper to describe the
portion of the system that embodies the control
system. In this section, we will use “controller” to
mean robot workstation controller.

Robot controllers must support a wide variety of
interfaces, as suggested by Figure 16. First, a con-
troller must provide a suitable interface for the ac-

88 KOREIN AND ISH.SHALOM

tuators and sensors of one or more robot arms. If
the robot is to be sighted, an interface to vision
hardware must also be provided. Digital inputs are
required to handle the large numbers of simple bi-
nary sensors used in the workplace. Digital outputs
are required to signal feeders, conveyors, and other
devices. A variety of “intelligent devices” that com-
municate through serial or parallel ports are com-
mercially available; standard interfaces allow a con-
troller to make use of these devices. Local-area net-
work support is required for communication with
central computers. This permits centralized record-
keeping, global coordination of activities in the fac-
tory, and communications with solid modeling sys-
tems. The controller must provide interfaces for line
attendants, maintenance personnel, and the devel-
opers of robotic applications. The requirements for
these interfaces may vary from a teach pendant to a
graphics workstation.

In order to provide a good control system for the
robot, substantial computational ability is required.
Controllers often employ a collection of microproc-
essors to support these computational needs.’>'®”
Special-purpose processors have also been proposed
for the types of computations that are required in
robot control. These include signal processors and
systolic arrays to perform the matrix multiplications
often required in control,'*¥!% special processors for
kinematics and dynamics, including fast trigono-
metric operations,'®"'%? and special processors for
vision, 93194

The controller must carry out real-time activities
such as servo control and repeated polling of sensors
to monitor conditions. Both servo control and quick
response to conditions require guaranteed latencies
rather than good overall throughput. This puts de-
mands on the real-time hardware and the operating
system.

One problem with current systems is the difficulty
of integrating new sensors and devices into the con-
troller for use in compliant or guarded moves. This
problem is currently being addressed in the design
of new robot controllers.>**

Concluding remarks

In conclusion, we consider the state of the art in
robotics in light of the requirements stated early in
the paper.

Reliability is a common problem for complex elec-
tromechanical systems. Simplification of mechanical

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

systems and reduction of friction resulting from the
use of direct-drive motors may ultimately improve
mechanical reliability. The amount of research being
done in this area is disproportionately small in com-
parison with its importance.

Robot speed and accuracy are being addressed on
several fronts. Electromechanical improvements in-
clude the use of new light composite structural ma-
terials, higher-performance motors, and direct drive.
These improvements lead to stringent requirements
for the design of robot control systems. With these
advances, control-system performance is increas-
ingly limited by speed of computation. Limitations
on computational speed are being addressed by the
steady improvements in microprocessor technology,
by multiprocessor architectures, and by special-pur-
pose hardware for dynamics, kinematics, and control
computation. Robots are still slower than people for
many tasks, but are already better than people at
tasks requiring high positional accuracy.

The ability to perform compliant motion is being
addressed by the development of new primitives for
describing motion and the design of control systems
capable of executing them directly. This task is being
simplified by the development of direct-drive robots
with simpler dynamics. The implementation of com-
pliant motion control is frequently made difficult by
current robot workcell controller designs, which
make the incorporation of additional sensors diffi-
cult. Robots are just starting to be able to comply
with external forces. Many compliant tasks which
are routine for people still cannot be done by robots.

Robot workcell configurability is being addressed by
the design of new controller software and hardware
that permit sensors and new motion primitives to be
easily integrated into the system. The increased use
of sensing is critical to many new application areas.
Unfortunately, commercially available robot con-
trollers are not highly configurable.

Conventional high-level languages for robot pro-
gramming include data types, commands, and error-
handling facilities, which are convenient for coding
some robotic tasks. However, substantial effort is
required to program a typical robotic application at
this level. Offline programming has simplified the
construction of simple, position-oriented robot pro-
grams. Work in fine-motion planning, obstacle
avoidance, and the analysis of tolerances has con-
tributed to our understanding of task-level program-
ming. However, it is not currently possible to pro-
gram a robot by giving only a task-level specification.

1BM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Cleanliness problems are just beginning to be ad-
dressed. Direct-drive robots, which have less friction
than conventional robots, may be helpful in this
respect.

Th

e field of robotics is in its infancy. Robots have

become economically feasible for a number of ap-
plications. However, the research challenges are as
easy to see as the difference between a current-day
industrial robot and a human being,

Ac

knowledgments

The authors would like to thank a number of people

for

discussions and comments that have contributed

to the substance of this paper. These include Ralph
Hollis, Russ Taylor, Larry Lieberman, Jim Colson,

V.

T. Rajan, and Roger Tsai. We would also like to

thank the community of researchers in the many

fiel

ds that constitute robotics for giving us something

to write about.

Cit

1

2.

3.

ed references and notes

. K. Capek, R.U.R., Doubleday, Page and Co., New York

(1923).

E. Binder, “I, robot,” Amazing Stories 13, 8-18 (January

1939), Ziff Davis Publishing Co., Chicago, IL.

E. Binder, “Adam Link, champion athlete,” Amazing Stories

14, 28-47 (July 1940), Ziff Davis Publishing Co., Chicago,

IL.

. 1. Asimov, I, Robot, Del-Ray Books, Ballantine Books, New
York (1950).

. 1. Asimov, Robots and Empire, Doubleday and Co., Garden
City, NY (1985).

. J. Engelberger, Robotics in Practice, AMACOM, A Division
of American Management Associates, New York (1980).

. R. C. Goertz, “Fundamentals of general purpose remote
manipulators,” Nucleonics 10, 36-42 (November 1952).

. Programmed Article Transfer, US. Patent No. 2,988,237
(1961).

. H. A. Ernst, 4 Computer-Controlled Mechanical Hand, Sc.D.
Thesis, Massachusetts Institute of Technology, Cambridge,
MA (1961).

. D. Downie, “Automatic guided vehicles move into the as-
sembly line,” Modern Materials Handling 1, 78-82 (January
1983).

. J. Nava, “Mobile robots in clean room manufacturing,”
Robotics Age 7, No. 12, 24-26 (December 1985).

. J. L. Nevins and D. E. Whitney, “Assembly research,” Au-
tomatica 16, 595~613 (1980).

. T. Noguchi, “Recent assembly-inspection robots and their
introduction,” Denshi Zairyo (Electronic Parts and Mate-
rials; translated from Japanese by the Ralph McElroy Co.,
Austin, TX), pp. 22-27 (July 1984).

. O. Friedrich, “The robot revolution,” Time Magazine, p. 72
{(December 8, 1980).

. B. Levin and A. Doi, “Here come the robots,” Newsweek, p.
58 (August 9, 1982).

. M. Raibert and . Sutherland, “Machines that walk,” Scien-
tific American 248, 44-53 (January 1983).

KOREIN AND ISHSHALOM §9

20.

21

22,

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.
33

34,

35.

36.

37.

. D. E. Orin, “Supervisory control of a multilegged robot,”
International Journal of Robotics Research 1, No. 1, 79-91
(Spring 1982).

. G. Boothroyd, C. Poli, and L. Murch, Automatic Assembly,
Marcel Dekker, New York (1982).

. D. E. Whitney, “State of the art and research needs in robot

contact sensing,” Workshop on Intelligent Robots: Achieve-

ments and Issues, SRI International, Menlo Park, CA (No-

vember 1984), pp. 137-142.

J. P. Trevelyan, P. D. Kovesi, and M. C. H. Ong, “Motion

control for a sheep shearing robot,” International Sympo-

sium on Robotics Research 1, 175-190 (September 1983).

T. Lozano-Perez, Robot Programming, MIT Al Memo 698a,

Massachusetts Institute of Technology, Cambridge, MA (De-

cember 1982).

D. Grossman, Programming a Computer Controlled Manip-

ulator by Guiding Through the Motions, Research Report

RC-6393, IBM Thomas J. Watson Research Center, P.O.

Box 218, Yorktown Heights, NY 10598 (1977).

P. D. Summers and D. D. Grossman, “Xprobe: An experi-

mental system for programming robots by example,” Inter-

national Journal of Robotics Research 3, No. 1, 25-39

(Spring 1984).

R. P. Paul, “WAVE, A model based language for manipula-

tor control,” The Industrial Robot 4, No. 1, 10-17 (March

1977).

R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman,

AL, A Programming System for Automation, Stanford Al

Memo 177, Stanford University, Stanford, CA 94305 (No-

vember 1974).

S. Mujtaba and R. Goldman, AL User’s Manual, Stanford

Al Memo 323, Stanford University, Stanford, CA 94305

(January 1979).

V. Hayward, Introduction to RCCL: A Robot Control C

Library, Purdue Technical Report TR-EE 83-43, Purdue

University, Lafayette, IN 47907 (October 19§3).

D. Silver, The Little Robot System, MIT Al Memo 273,

Massachusetts Institute of Technology, Cambridge, MA

(January 1973).

J. S. Luh, “An anatomy of robots and their controls,” IEEE

Transactions on Automatic Control AC-28, 133-153 (Feb-

ruary 1983).

A. Gilbert, G. Pelton, R. Wang, and S. Motiwalla, “AR-

BASIC,® an advanced and user-friendly programming sys-

tem for robots,” SME Robots 8, 20.47-20.64 (June 1984).

R. Taylor, P. Summers, and J. Meyer, “AML: A Manufac-

turing Language,” Robotics Research 1, No. 3, 19-41 (Fall

1982).

GE Allegro Documentation, General Electric Corporation,

Schenectady, NY (1982).

M. Ward and K. Stoddard, “Karel: A programming language

for the factory floor,” Robotics Age T, No. 2, 10-14 (Septem-

ber 1985).

J. C. Latombe and E. Mazer, “LM: A high-level language for

controlling assembly robots,” Eleventh International Sym-

posium on Industrial Robotics, Tokyo, Japan (October

1981), pp. 683-690; published by the Japan Industrial Robot

Association, 3-5-8 Shibu Kuen Minato-ku, Tokyo, Japan.

Robotic System for Aerospace Batch Manufacturing, Mc-

Donnell Douglas, Inc., St. Louis, MO (February 1980).

J. Franklin and G. Vandenburg, “Programming Vision and

Robotics Systems with RAIL,” SME Robots 6, 392-406

(March 1982).

B. Shimano, C. Geschke, C. Spalding III, and P. Smith, “A

robot programming system incorporating real-time and su-

pervisory control,” SME Robots 8, 20.103-20.119 (June

1984).

90 KkOREN AND I1SH-SHALOM

38

39.

40.

41.

42.

43,

44,

43.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

. S. Bonner and K. G. Shin, “A comparative study of robot
languages,” IEEE Computer 15, No. 12, 82-96 (December
1982).

R. Taylor, The Synthesis of Manipulator Control Programs
from Task Level Specifications, Ph.D. Thesis, Stanford Uni-
versity, Stanford, CA 94305 (1976); available through Uni-
versity Microfilms, 300 N. Zeeb Road, Ann Arbor, MI
48106.

R. Brooks, “Symbolic error analysis and robot planning,”
Robotics Research 1, No. 4, 29-68 (1983).

J. Albus, A. Barbera, and R. Nagel, “Theory and practice of
hierarchical control,” Proceedings, 23rd IEEE Computer
Society International Conference, Washington, DC (1981);
published by IEEE, 345 East 47th St., New York, NY 10017.
R. Paul, Robot Manipulators, MIT Press, Cambridge, MA
(1981).

J. Foley and A. van Dam, Fundamentals of Interactive
Computer Graphics, Addison-Wesley Publishing Co., Read-
ing, MA (1982).

R. H. Taylor, “Planning and execution of straight line ma-
nipulator trajectories,” IBM Journal of Research and Devel-
opment 23, No. 4, 424-436 (July 1979).

R. Paul, Modelling, Trajectory Calculation and Servoing of
a Computer Controlled Arm, Ph.D. Thesis, Stanford Univer-
sity, Stanford, CA 94305 (1972); available through Univer-
sity Microfilms, 300 N. Zeeb Road, Ann Arbor, Ml 48106.
C. C. Geschke, “A system for programming and controlling
sensor-based robot manipulators,” IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-S, No. 1,
1-7 (January 1983).

M. Mason, Manipulator Grasping and Pushing Operations,
Ph.D. Thesis, Massachusetts Institute of Technology, Cam-
bridge, MA (1982).

J. Ish-Shalom, “The CS language: A new approach to robot
motion design,” International Journal of Robotics Research
4, No. 1, 42-58 (Spring 1985).

J. Nevins and D. Whitney, The Force Vector Assembler
Concept, Charles Stark Draper Laboratory Report No.
E-2754, Cambridge, MA (March 1973).

N. Hogan, “Control of mechanical impedance of prosthetic
joints,” Proceedings of the 1980 Joint Automatic Control
Conference, San Francisco, CA (August 1980); copyright
American Automatic Control Council; distributed by IEEE
Service Center, Piscataway NJ 08854.

M. Mason, “Compliance,” Robot Motion: Planning and Con-
trol, M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Perez,
and M. Mason, Editors, MIT Press, Cambridge, MA (1982).
P. Will and D. Grossman, “An experimental system for
computer controlled mechanical assembly,” IEEE Trans-
actions on Computers C-24, No. 9, 879-888 (1975).

M. D. Donner, “The design of OWL: A language for walk-
ing,” ACM SIGPLAN Notices 18, No. 6, 158-165 (1983).
R. Taylor, J. Korein, G. Maier, and L. Durfee, “Architecture
for a general purpose automation controller,” Third Inter-
national Symposium on Robotics Research, MIT Press, Cam-
bridge, MA (1986).

J. Korein, G. Maier, R. Taylor, and L. Durfee, “A configur-
able environment for motion programming and control,”
Proceedings of the IEEE International Conference on Robot-
ics and Automation, San Francisco, CA (April 1986); may
be obtained through IEEE, 345 East 47th Street, New York,
NY 10017.

E. W. Dijkstra, “Cooperating sequential processes,” Pro-
gramming Languages, F. Genuys, Editor, Academic Press,
Inc., New York (1968), pp. 43-112.

C. A. R. Hoare, “Towards a theory of parallel programming,”

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

74.

75.

76.

77

Operating Systems Techniques, Academic Press, Inc., New
York (1972), pp. 61-71.

P. Brinch Hansen, “The programming language concurrent
Pascal,” IEEE Transactions on Software Engineering SE-1,
No. 2, 199-207 (June 1975).

C. A. R. Hoare, “Communicating sequential processes,”
Communications of the ACM 21, No. 8, 666-677 (August
1978).

Reference Manual for the Ada Programming Language,
J. D. Ichbiah, Editor, U.S. Department of Defense, Advance
Research Projects Agency, Washington, DC (1980).

C. F. Ruoff, “TEACH—A concurrent robot control lan-
guage,” Proceedings IEEE COMPSAC, Chicago, IL (No-
vember 1979), pp. 442-445.

C. F. Ruoff, “An advanced multitasking robot system,” In-
dustrial Robot 7, No. 2, 87-98 (June 1980).

A Manufacturing Language: Concepts and User’s Guide,
IBM 7565 Manufacturing System Software Library, Order
No. 08007, IBM Corporation; available through IBM branch
offices.

R. Y. Tsai, A Versatile Camera Calibration Technique for
High Accuracy 3D Machine Vision Metrology Using Off-the-
Shelf Cameras and Lenses, Research Report RC-11413,
IBM Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598 (September 1985).

L. Foulloy and R. Kelley, “Improving the Precision of a
Robot,” IEEE International Conference on Robotics, At-
lanta, GA (March 1984), pp. 62-67; may be obtained
through IEEE, 345 East 47th Street, New York, NY 10017.
J. Meyer, “An emulation system for programmable sensory
robots,” IBM Journal of Research and Development 25, No.
6, 955-962 (November 1981).

A. Requicha, “Towards a theory of geometric tolerancing,”
International Journal of Robotics Research 2, No. 4, 45-59
{Winter 1983).

V. Srinivasan and R. Jayaraman, “Issues in Conditional
Tolerances for CAD Systems,” IEEE International Confer-
ence on Robotics and Automation, St. Louis, MO (March
1985), pp. 373-375; may be obtained through IEEE, 345
East 47th Street, New York, NY 10017.

J. Korein, “Solid modelling requirements for robotics appli-
cations,” NSF Workshop on Intelligent Robots: Achievements
and Issues, SRI International, Menlo Park, CA (November
1984), pp. 299-314.

N. J. Nilsson, Principles of Artificial Intelligence, Tioga Pub-
lishing Co., Palo Alto, CA (1980).

A Structure for Plans and Behavior, North-Holland-Elsevier,
New York (1977).

J. Feldman, “The Stanford Hand-Eye Project,” First Inter-
national Joint Conference on Artificial Intelligence, London,
England (1971), pp. 350-358.

T. Lozano-Perez, The Design of a Mechanical Assembly
System, MIT Al Memo 397, Massachusetts Institute of
Technology, Cambridge, MA (1976).

L. Lieberman and M. Wesley, “AUTOPASS: An automatic
programming system for computer controlled mechanical
assembly,” IBM Journal of Research and Development 21,
No. 4, 321-333 (1977).

Robot Motion: Planning and Control, M. Brady, J. Holler-
bach, T. Johnson, T. Lozano-Perez, and M. Mason, Editors,
MIT Press, Cambridge, MA (1982).

D. L. Pieper, The Kinematics of Manipulators Under Com-
puter Control, Ph.D. Thesis, Stanford University, Stanford,
CA 94305 (1969); may be obtained through University Mi-
crofilms, 300 N. Zeeb Road, Ann Arbor, MI 48106.

. M. Takano, “A new effective solution for inverse kinematics

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

78.

79.

80.

81.

82.

83.

84.

8s.

86.

87.

88.

89.

90.

91.

92.

93.

94.

problem (synthesis) of a robot with any type of configura-
tion,” Journal of the Faculty of Engineering, University of
Tokyo 38, No. 2, 107-135 (1985).

J. U. Korein, 4 Geometric Investigation of Reach, MIT Press,
Cambridge, MA (1985).

0. Khatib, “Dynamic control of manipulators in operational
space,” Sixth IFToMM Congress on Theory of Machines
and Mechanisms, New Delhi, India (December 1983).

W. A. Wolovich and H. Elliott, “A computational technique
for inverse kinematics,” 23rd IEEE Conference on Decision
and Control, Las Vegas, NV (December 1984), pp. 1359-
1363; may be obtained through IEEE, 345 East 47th Street,
New York, NY 10017.

R. Paul, “Manipulator Cartesian path control,” IEEE Trans-
actions on Systems, Man, and Cybernetics SMC-9, 702-711

(1979).

R. A. Finkel, Constructing and Debugging Manipulator Pro-
grams, Ph.D. Thesis, Stanford University, Stanford, CA
94305 (1976); may be obtained through University Micro-
films, 300 N. Zeeb Road, Ann Arbor, MI 48106.

M. E. Kahn and B. Roth, “The near minimum time control
of open loop articulated chains,” Journal of Dynamic Sys-
tems, Measurement and Control 93, 164-172 (1971).

P. M. Lynch, “Minimum time sequential axis operation of a
cylindrical two axis manipulator,” Proceedings of Joint Au-
tomatic Control Conference, Charlottesville, VA (1981).

J. Hollerbach, “Dynamic scaling of manipulator trajecto-
ries,” Journal of Dynamic Systems, Measurement and Con-
trol 106, 102-106 (1984).

J. Bobrow, S. Dubowsky, and J. Gibson, “Time optimal
control of robotic manipulators along specified paths,” In-
ternational Journal of Robotics Research 4, No. 3, 3-17
(1985).

V. T. Rajan, “Minimum time trajectory planning,” IEEE
International Conference on Robotics and Automation, St.
Louis, MO (March 1985), pp. 759-764; may be obtained
through IEEE, 345 East 47th Street, New York, NY 10017.

E. G. Gilbert and D. W. Johnson, “The application of
distance functions to the optimization of robot motion in
the presence of obstacles,” IEEE Conference on Decision
and Control, Las Vegas, NV (December 1984), pp. 1338-
1344; may be obtained through IEEE, 345 East 47th Street,
New York, NY 10017.

M. L. Brown, Optimal Robot Planning via State Space
Networks, M.S. Thesis, Princeton University, Princeton, NJ
(1984); may be obtained through University Microfilms, 300
N. Zeeb Road, Ann Arbor, MI 48106.

G. Sahar and J. Hollerbach, “Planning of minimum time
trajectories for robot arms,” [EFE International Conference
on Robotics and Automation, St. Louis, MO (March 1985),
pp. 751-758; may be obtained through IEEE, 345 East 47th
Street, New York, NY 10016.

J. M. Hollerbach, “A recursive lagrangian formulation of
manipulator dynamics and a comparative study of dynamic
formulation complexity,” IEEE Transactions on Systems,

Man and Cybernetics SMC-10, No. 11, 730-736 (November
1980).

S. Udupa, “Collision detection and avoidance in computer
controlled manipulators,” Fifth International Joint Confer-
ence on Artificial Intelligence, Cambridge, MA (1977).

T. Lozano-Perez, “An algorithm for planning collision free
paths among polyhedral obstacles,” Communications of the
ACM 22, No. 10, 560-570 (October 1979).

T. Lozano-Perez, “Automatic planning of manipulator trans-
fer movements,” IEEE Transactions on Systems, Man, and
Cybernetics SMC-11, No. 10, 681-698 (October 1981).

KOREIN AND ISH-SHALOM @1

95

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

. J. Schwartz and M. Sharir, On the Piano Mover’s Problem I:
The Case of a Two Dimensional Rigid Polygonal Body
Moving Amidst Polygonal Barriers, CS Report 39, NYU
Courant Institute (October 1981); may be obtained through
New York University, Courant Institute, Washington
Square, New York, NY 10003.

J. Schwartz and M. Sharir, On the Piano Mover’s Problem
II: General Properties for Computing Topological Properties
of Real Algebraic Manifolds, CS Report 41, NYU Courant
Institute (February 1982); may be obtained through New
York University, Courant Institute, Washington Square,
New York, NY 10003.

R. Brooks, A Subdivision Algorithm in Configuration Space
Jor Findpath with Rotation, MIT Al Memo 684, Massachu-
setts Institute of Technology, Cambridge, MA (February
1983).

R. Brooks, “Planning collision free motions for pick and
place operations,” First International Symposium on Robot-
ics Research, M. Brady and R. Paul, Editors, MIT Press,
Cambridge, MA (1984), pp. 5-38.

H. Kuntze and W. Schill, “Methods for collision avoidance
in computer controlled industrial robots,” Twelfth Interna-
tional Symposium on Industrial Robots, Paris, France (June
1982), pp. 519-530; published by IFS Ltd., 35-39 High
Street, Kempston, Bedford, England.

T. Lozano-Perez, “Spatial planning: A configuration space
approach,” IEEE Transactions on Computers C-32, No. 2,
108-120 (1983).

B. Dufay and J. C. Latombe, “An approach to automatic
robot programming based on inductive learning,” First In-
ternational Symposium on Robotics Research, M. Brady and
R. Paul, Editors, MIT Press, Cambridge, MA (1984), pp.
97-115.

T. Lozano-Perez, M. Mason, and R. Taylor, “Automatic
synthesis of fine motion strategies for robots,” First Inter-
national Symposium on Robotics Research, M. Brady and
R. Paul, Editors, MIT Press, Cambridge, MA (1984), pp.
65-96.

M. Raibert, 4 State Space Model for Sensorimotor Control
and Learning, Al Lab Memo AIM-351, Massachusetts Insti-
tute of Technology, Cambridge, MA (January 1976).

J. J. Craig, “Adaptive control of manipulators through re-
peated trials,” Proceedings of the American Control Confer-
ence (June 1984), pp. 1566-1573; American Automatic Con-
trol Council; distributed by IEEE Service Center, Piscataway,
NJ 08854.

N. Hogan, “Programmable impedance control of industrial
manipulators,” MIT Conference on CAD/CAM Technology
in Mechanical Engineering, Cambridge, MA (March 1982).
J. R. Andrews, Impedance Control as a Framework for
Implementing Obstacle Avoidance in a Manipulator, M.Sc.
Thesis, Massachusetts Institute of Technology, Cambridge,
MA (February 1983).

J. M. Kleinwaks, Trajectory Control and Obstacle Avoidance
Jor Robot Manipulators with Bounded Inputs, Ph.D. Thesis,
Cornell University, Ithaca, NY (June 1985); may be obtained
through University Microfilms, 300 N. Zeeb Road, Ann
Arbor, MI 48106.

B. H. Krogh, “A generalized potential field approach to
obstacle avoidance control,” Robotics International, SME
Conference on Robotics Research, Bethlehem, PA, Paper
MS84-484 (August 1984); published by Robotics Interna-
tional of SME, Dearborn, MI.

M. T. Mason, “Compliance and force control for computer
controlled manipulators,” JEEE Transactions on Systems,
Man, and Cybernetics SMC-11, No. 6,418-431 (June 1981).

92 KOREIN AND ISH-SHALOM

110

111,

112

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

. R. Paul and B. Shimano, “Compliance and Control,” Pro-
ceedings of the Joint Automatic Control Conference, San
Francisco, CA (1976), pp. 694-699; may be obtained through
the American Society of Mechanical Engineers, P.O. Box
930, One SME Drive, Dearborn, MI 48121,

D. E. Whitney, “Historical perspective and state of the art in
robot force control,” IEEE Conference on Robotics and
Automation, St. Louis, MO (March 1985), pp. 262-268; may
be obtained through IEEE, 345 East 47th Street, New York,
NY 10017.

O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” JEEE Conference on Robotics and Au-
tomation, St. Louis, MO (March 1985), pp. 500-505; may
be obtained through IEEE, 345 East 47th Street, New York,
NY 10017.

R. Paul, Wave: 4 Model-Based Language for Manipulator
Control, SME Technical Paper MR 76-615 (1976); may be
obtained through the American Society of Mechanical En-
gineers, P.O. Box 930, One SME Drive, Dearborn, M1 48121.
R. Welburn, “Ultra high torque motor system for direct drive
robotics,” Robots 8 Conference, Detroit, MI (June 1984), pp.
19.63-19.71.

J. Ish-Shalom and D. M. Manzer, “Commutation and con-
trol of step motors,” Proceedings of the 14th Annual Sym-
posium on Incremental Motion Control Systems and Devices,
Champaign, IL (June 1985), pp. 283-292.

R. Curran and G. Mayer, “The architecture of the
AdeptOne® direct-drive robot,” Proceedings, American Con-
trol Conference (June 1985), pp. 716-721; distributed by
IEEE Service Center, Piscataway, NJ 08854.

A. C. Bejczy, Robot Arm Dynamics and Control, JPL Tech-
nical Memorandum 33-669 (February 1974); may be ob-
tained through the California Institute of Technology, Pasa-
dena, CA 95109.

R. I\-l Cannon, Jr., and E. Schmitz, “Initial experiments on
the end-point control of a flexible one-link robot,” Interna-
tional Journal of Robotics Research 3, No. 4, 62-75 (Fall
1984).

R. H. Cannon, Jr., T. O. Binford, J. D. Meind], and R.
Brooks, First Annual Report of the Center for Automation
and Manufacturing Science, Stanford University, Stanford,
CA 94305; Contract No. F49620-82-C-0092 (November
1983).

W. J. Book and M. Majett, “Controller design for flexible,
distributed parameter mechanical arms via combined state
space and frequency domain techniques,” Robotics Research
and Advanced Applications, ASME Dynamics, Systems and
Controls Division, Dearborn, MI (November 1982), pp.
101-120.

D. E. Whitney, W. J. Book, and A. Maizza-Neto, “Feedback
control of two beam, two joint system with distributed
flexibility,” ASME Journal of Dynamic Systems, Measure-
ment and Control 97, No. 2, 424-431 (December 1975).

J. J. Mendelson and J. R. Rinderle, “Design of a Compliant
Robotic Manipulator,” Robotics International, SME Confer-
ence on Robotics Research, Bethlehem, PA, Paper MS84-
495 (August 1984); published by Robotics International of
SME, Dearborn, MI1.

D. E. Hardt and A. D. Zalucky, “Active control of robot
structure deflections,” Robotics Research and Advanced Ap-
plications, ASME Dynamics, Systems and Controls Division,
Dearborn, MI (November 1982), pp. 83-100.

H. Asada and K. Youcef-Toumi, “Analysis and design of a
direct-drive arm with a five-bar-link parallel drive mecha-
nism,” Proceedings of the American Control Conference, San
Diego, CA (June 1984), pp. 1224-1230); distributed by IEEE

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

Service Center, Piscataway, NJ 08854.

H. Kwakern, Y. Ono, and M. Nikaido, “Development of
high torque/precision servo system for direct-drive manipu-
lators,” Proceedings of the Third International Symposium
on Robotics Research (September 1985), pp. 166-175; pub-
lished by MIT Press, Cambridge, MA.

H. Kuwahara, Y. Ono, M. Nikaido, and S. T. Matsumoto,
“A Precision Direct-Drive Robot Arm,” Proceedings of the
American Control Conference, San Diego, CA (June 1985),
pp. 722-727; distributed by IEEE Service Center, Piscata-
way, NJ 08854.

C. S. G. Lee, R. C. Gonzalez, and K. S. Fu, Tutorial on
Robotics, IEEE Computer Society Press, ISBN 0-8186-4515-
4 (1983); may be obtained through IEEE, 345 East 47th
Street, New York, NY 10017.

M. Vukobratovic and D. Stokic, Scientific Fundamentals of
Robotics 2, Control of Manipulation Robots: Theory and
Applications, Springer-Verlag, New York (1982).

Y. Koren, Robotics for Engineers, McGraw-Hill Book Co.,
Inc., New York (1985).

H. Asada and J. J. Slotine, Robot Analysis and Control, John
Wiley & Sons, Inc., New York (1986).

1. 1. Craig, Introduction to Robotics: Mechanics and Control,
Addison-Wesley Publishing Co., Reading, MA (1986).

J. Y. S. Luh, M. W. Walker, and R. P. Paul, “Resolved-
acceleration control of mechanical manipulators,” IEEE
Transactions on Automatic Control AC-25, No. 3, 468-474
(June 1980).

C.-H. Wu and R. P. Paul, “Resolved motion force control of
robot manipulator,” IEEE Transactions on Systems, Man
and Cybernetics SMC-12, No. 3, 266-275 (June 1982).
K.-K. D. Young, “Controller design for a manipulator using
theory of variable structure systems,” IEEE Transactions on
Systems, Man and Cybernetics SMC-8, No. 2, 210-218
(February 1978).

1.-1. E. Slotine, “The robust control of robot manipulators,”
International Journal of Robotics Research 4, No. 2, 49-64
(Summer 1985).

S. Dubowsky and D. T. DesForges, “The application of
model-reference adaptive control to robotic manipulators,”
SME Journal of Dynamic Systems, Measurement and Con-
trol 101, 193-200 (September 1979).

A. J. Koivo and T.-H. Guo, “Adaptive linear controller for
robotic manipulators,” IEEE Transactions on Automatic
Control AC-28, No. 2, 162171 (February 1983).

C. S. G. Lee and M. J. Chung, “An adaptive control strategy
for mechanical manipulators,” IEEE Transactions on Au-
tomatic Control AC-29, No. 9, 8§37-840 (1984).

S. Desa and B. Roth, “Synthesis of control systems for
manipulators using multivariable robust servomechanism
theory,” International Journal of Robotics Research 4, No.
3, 18-34 (Fall 1985).

J. Ish-Shalom, “Optimal Motion for Flight Simulator,” Ph.D.
Thesis, Massachusetts Institute of Technology, Cambridge,
MA (December 1982).

M. W. Spong, J. S. Thorpe, and J. M. Kleinwaks, “The
control of robot manipulators with bounded input,” /EEE
Transactions on Automatic Control AC-31, No. 6, 483-490
(June 1986).

D. Koditschek, Natural Motion of Robot Arms, Yale Center
for Systems Science Technical Report 8409 (February 1985);
may be obtained through Yale Untiversity, New Haven, CT.
N. Hogan, “Adaptive control of mechanical impedance by
coactivation of antagonist muscles,” /EEE Transactions on
Automatic Control AC-29, No. 8, 681-690 (August 1984).
N. Hogan, “Mechanical impedance control in assistive de-

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

145,

146.

147.

148.

149.

150.

151.

152.

153.

154,

155.

156.

157.

158.

159.

160.

vices and manipulators,” Joint American Control Conference
(August 1980); distributed by IEEE Service Center, Piscata-
way, NJ 08854,

M. H. Raibert and J. J. Craig, “Hybrid position/force control
of manipulators,” ASME Journal of Dynamic Systems,
Measurement and Control 102, 126-133 (1981).

J.-J. E. Slotine, “Robustness issues in robot control,” IEEE
Conference on Robotics and Automation, St. Louis, MO
(March 1985), pp. 656-661; may be obtained through IEEE,
345 East 47th Street, New York, NY 10017.

H. West and H. Asada, “A method for the design of hybrid
position/force controllers for manipulators constrained by
contact with the environment,” IEEE International Confer-
ence on Robotics and Automation, St. Louis, MO (March
1985), pp. 251-259; may be obtained through IEEE, 345
East 47th Street, New York, NY 10017.

S. Jacobsen, J. Wood, D. Knutti, and K. Biggers, “The Utah/
MIT hand: Work in progress,” First International Sympo-
sium on Robotics Research, M. Brady and R. Paul, Editors,
MIT Press, Cambridge, MA (1984), pp. 601-654,
Harmonic Drive Designers Manual, Harmonic Drive Devel-
opment, Emhart Machinery Group, Wakefield, MA.

R. L. Hollis, Advances in Robotic Manipulation: Building a
Better Mousetrap, Research Report RC-11234 (No. 50547),
IBM Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598 (1985).

J. Pawlettko and H. Chai, “Linear step motors,” Theory and
Application of Step Motors, B. Kuo, Editor, West Publishing
Co., St. Paul, MN (1974), pp. 316-326.

J. Pawlettko and H. Chai, “Linear stepping motor with
uncoupled phases,” Proceedings of the 13th Annual Sympo-
sium on Incremental Motion Control Systems and Devices,
Champaign, IL (1984), pp. 245-250; sponsored by the Incre-
mental Motion Control System Society.

H. Asada and K. Youcef-Toumi, “Development of a direct
drive arm using high torque brushless motors,” First Inter-
national Symposium on Robotics Research, M. Brady and
R. Paul, Editors, MIT Press (1984), pp. 583-600.

G. Horner, R. Lacey, and P. Lawrenson, “High performance
brushless PM motors for robotic and actuator applications,”
Proceedings of the First European Conference on Electrical
Drives, Motors and Controls, Leeds, England (1982).

R. Welburn, “Ultra high torque motor system for direct drive
robots,” Proceedings of Robots 8, Detroit, MI (June 1984),
pp. 19.63-19.71; sponsored and published by Robotics In-
ternational of the Society of Manufacturing Engineers.
Robotic End of Arm Products, Barry Wright Corp., Water-
town, MA (1985).

L. D. Harmon, “Automated touch sensing; A brief perspec-
tive and several new approaches,” IEEE International Con-
ference on Robotics, Atlanta, GA (March 1984), pp. 326-
331; may be obtained through IEEE, 345 East 47th Street,
New York, NY 10017.

R. Bajcsy, “What can we learn from one finger experiments,”
First International Symposium on Robotics Research, M.
Brady and R. Paul, Editors, MIT Press, Cambridge, MA
(1984), pp. 509-528.

K. Lau, J. Bollinger, and N. Duffie, “Automatic contour
measurement for two-dimensional geometry,” SME Manu-
facturing Engineering Transactions, 10th NAMRC, To-
ronto, Canada (May 1982), pp. 432-435; may be obtained
through Society of Manufacturing Engineers, P.O. Box 930,
One SME Drive, Dearborn, M1 48121.

K. Lau, N. Duffie, and J. Bollinger, “Automatic contour
measurement for three-dimensional geometry,” SME Man-
ufacturing Engineering Transactions, 13th NAMRC, Berke-

KOREIN AND ISH-SHALOM 93

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177,

ley, CA (May 1985), pp. 535-540; may be obtained through
Society of Manufacturing Engineers, P.O. Box 930, One
SME Drive, Dearborn, MI 48121.

J. K. Salisbury, Jr., “Interpretation of contact geometries
from force measurement,” IEEE International Conference
on Robotics, Atlanta, GA (March 1984), pp. 240-247; may
be obtained through IEEE, 345 East 47th Street, New York,
NY 10017.

J. M. Hollerbach, “Tactile sensors and interpretation of
contact features,” NSF Workshop on Intelligent Robots:
Achievements and Issues, SRI International, Menlo Park,
CA (November 1984), pp. 143-152.

P. Dario, D. de Rossi, C. Domenici, and R. Francesconi,
“Ferroelectric polymer tactile sensors with anthropomorphic
features,” IEEE International Conference on Roborics, At-
lanta, GA (March 1984), pp. 332-340; may be obtained
through IEEE, 345 East 47th Street, New York, NY 10017.

R. S. Fearing and J. M. Hollerbach, “Basic solid mechanics
for tactile sensing,” International Journal of Robotics Re-
search 4, No. 3, 40-54 (Fall 1985).

G. Miller, R. Boie, and M. Sibilia, “Active damping of
ultrasonic transducers for robotic applications,” IEEFE Inter-
national Conference on Robotics, Atlanta, GA (March 1984),
pp. 379-383; may be obtained through IEEE, 345 East 47th
Street, New York, NY 10017.

J. Ish-Shalom, Light Weight Short Range Ultrasonic Range
and Velocity Detector-—An Aid to the Blind, Technion Junior
Technical College, Haifa, Israel (March 1970).

C. Williams and H. K. Wickramisinghe, “Optical ranging by
wavelength multiplexed interferometry,” Journal of Applied
Physics 60, No. 6, 1900-1903 (September 15, 1986).

Y. Shirai, “Recognition of polyhedrons with a range finder,”
Pattern Recognition 4, 243-250 (1972).

D. Nitzen, A. Brain, and R. Duda, “The measurement and
use of registered reflectance and range data in scene analysis,”
Proceedings of the IEEE 65, No. 2, 206-220 (February
1977).

J. Boissonnat, “A new approach to the problem of acquiring
randomly oriented workpieces out of a bin,” Proceedings of
the 7th International Joint Conference on Artificial Intelli-
gence 2, 796-802 (1981).

J. Dessimoz, J. R. Birk, R. B. Kelley, H. A. S. Martins, and
C. L. 1, “Matched filters for bin picking,” IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-6, No.
6, 686-697 (1984).

R.B. Kelley, H. A. S. Martins, J. R. Birk, and J. D. Dessimoz,
“Three vision algorithms for acquiring workpieces from
bins,” Proceedings of the IEEE 71, No. 7, 803-820 (July
1983).

R. L. Andersson, “Real-time gray-scale video processing
using a moment-generating chip,” IEEE Journal of Robotics
and Automation RA-1, No. 2, 79-85 (1985).

T. Bamba, H. Maruyama, E. Ohno, and Y. Shiga, “A visual
sensor for arc-welding robots,” Proceedings of the 11th ISIR,
Tokyo, Japan (1981), pp. 151-158; published by the Japan
Industrial Robot Association, 3-5-8 Shiku Kuen, Minato-ku,
Tokyo, Japan.

V. Nicolo, “Industrial robots with sensory feedback applica-
tion to continuous arc welding,” Proceedings of the 10th
ISIR, Milano, Italy (1980), pp. 15-21; published by the
Japan Industrial Robot Association, 3-5-8 Shiku Kuen, Min-
ato-ku, Tokyo, Japan.

C. Morgan, “Visual guidance techniques of robot arc-weld-
ing,” Proceedings of the 3rd International Conference on
Robot Vision and Sensory Controls, Cambridge, MA (1983).
S. Drake, Using Compliance in Lieu of Sensory Feedback for

94 «oREN AND ISH-SHALOM

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

Automatic Assembly, Ph.D. Thesis, Massachusetts Institute
of Technology, Cambridge, MA (1977).

P. C. Watson, “A multidimensional system analysis of the
assembly process as performed by a manipulator,” Ist North
America Robot Conference, Chicago, IL (1976).

A. Sharon and D. E. Hardt, “Enhancement of robot accuracy
using endpoint feedback and a macro-micro manipulator
system,” Proceedings of the American Control Conference
(June 1984), pp. 1836-1841.

R. L. Hollis, R. H. Taylor, M. Johnson, A. Levas, and A.
Brennemann, “Robotic circuit board testing using a fine
positioner with fiber-optic sensing,” Proceedings of the Inter-
national Conference on Industrial Robots, Tokyo, Japan
(September 1985), pp. 315-322.

A. Sharon, Enhancement of Robot Accuracy Using a Macro
Micro Manipulator System, M.Sc. Thesis, Massachusetts
Institute of Technology, Cambridge, MA (September 1983).
R. L. Hollis, “A planar XY robotic fine positioning device,”
Proceedings of the IEEE Conference on Robotics and Auto-
mation, St. Louis, MO (1985), pp. 329-336; may be obtained
through IEEE, 345 East 47th Street, New York, NY 10017.
R. A. Boie, “Capacitive impedance readout tactile image
sensor,” IEEE International Conference on Robotics, At-
lanta, GA (March 1984), pp. 370-378; may be obtained
through IEEE, 345 East 47th Street, New York, NY 10017.
J. K. Salisbury and J. K. Craig, “Articulated hands: Force
control and kinematic issues,” International Journal of Ro-
botics 1, No. 1, 4-17 (Spring 1982).

Y. Nakano, M. Fujie, and Y. Hosada, “Hitachi’s robot
hand,” Robotics Age 6, No. 7, 18-20 (July 1984).

M. T. Mason and J. K. Salisbury, Robot Hands and the
Mechanics of Manipulation, MIT Press, Cambridge, MA
(1983).

R. Nigam and C. G. S. Lee, “A multiprocessor based con-
troller for the control of mechanical manipulators,” Proceed-
ings of the IEEE Conference on Robotics and Automation,
St. Louis, MO (1985), pp. 815-821; may be obtained through
IEEE, 345 East 47th Street, New York, NY 10017.

T. Kanade, P. Khosia, and N. Tanaka, “Real-time control
of CMU direct-drive arm I using customized inverse dynam-
ics,” 23rd IEEE Conference on Decision and Control, Las
Vegas, NV (December 1984), pp. 1345-1352; may be ob-
tained through IEEE, 345 East 47th Street, New York, NY
10017.

H. Kaufman and R. Travassos, Parallel Computation for
Developing Nonlinear Control Procedures, Report AFWAL
TR-81-3016, Wright Patterson Air Force Base, Dayton, OH
(1981).

G. Shichman, “Personal Instrument (PI)—A PC-based signal
processing system,” IBM Journal of Research and Develop-
ment 29, No. 2, 158-169 (March 1985).

S. Ahmed and C. S. Besant, “Motion control of industrial
robots with closed loop trajectories,” Proceedings of the
IEEE International Conference on Robotics, St. Louis, MO
(March 1984), pp. 305-309; may be obtained through IEEE,
345 East 47th Street, New York, NY 10017.

D. Orin, H. Chao, K. Olsen, and W. Schrader, “Pipeline/
parallel algorithms for the Jacobian and inverse dynamics
computations,” Proceedings of the IEEE Conference on Ro-
botics and Automation, St. Louis, MO (1985), pp. 785-789;
may be obtained through IEEE, 345 East 47th Street, New
York, NY 10017.

M. J. Kimmel, R, S. Jaffe, J. R. Mandeville, and M. A.
Lavin, “MITE: Morphic Image Transform Engine—An ar-
chitecture for reconfigurable pipelines of neighborhood proc-
essors,” Proceedings of the IEEE Workshop on Computer

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

Architecture for Pattern Analysis and Image Database Man-
agement, Miami Beach, FL (November 1985); may be ob-
tained through IEEE, 345 East 47th Street, New York, NY
10017.

194. T. Gross, H. Kung, M. Lam, and J. Webb, “Warp as a
machine for low-level vision,” Proceedings of the IEEE
Conference on Robotics and Automation, St. Louis, MO
(1985), pp. 790-800; may be obtained through IEEE, 345
East 47th Street, New York, NY 10017.

James U. Korein /BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Dr. Korein is manager of the Robot Systems Group in the
Manufacturing Research Department. He has worked on robot
workcell controller design, computational kinematics, and geo-
metric modeling. Dr. Korein is author of the book 4 Geometric
Investigation of Reach, published by the MIT Press. This book,
based on his Ph.D. thesis, was chosen as a distinguished dissertation
by the ACM and MIT Press. Dr. Korein received his B.S. degree
from Washington University, St. Louis, in 1974, his M.S. degree
from Columbia University, New York, in 1979, and his Ph.D.
degree from the University of Pennsylvania, Philadelphia, in 1984,
all in computer science. Prior to his Ph.D. work, Dr. Korein was
a member of the technical staff at AT&T Bell Laboratories; he
joined the IBM Research Division after completing his Ph.D.

Jahuda Ish-Shalom IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Dr. Ish-Shalom is a Research Staff Member whose current
research is in the areas of sensor-based robot control, active sens-
ing, automatic synthesis of control systems from abstract perform-
ance specifications, symbolic solution of matrix Riccati equations,
and step-motor design and control. In the past, he has been
involved in research on flight simulator motion, eye movement
measurement, VLSI, and mobility aids for the blind. In 1985,
Dr. Ish-Shalom received the IBM Research Division Outstanding
Innovation Award for the invention of a novel method for com-
mutation and control of step-motors. He invented an ultrasonic
mobility aid for the blind that won first prize in the 1971 contest
“Models and Essays in Natural Science and Mathematics” at the
Weitzmann Institute of Science, Rehovot, Israel. Dr. Ish-Shalom
received a Ph.D. in biomedical engineering from the Massachusetts
Institute of Technology in 1982. He received both his B.Sc. and
M.Sc. degrees in electrical engineering from Technion Israel Insti-
tute of Technology in 1974 and 1978, respectively.

Reprint Order No. G321-5287.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

KOREIN AND IsH-SHALOM §5

Database technology

Computers were originally invented and used to ease
and automate the task of computation. As the word
“computer” implies, these early machines were used
for calculations, such as tabulating census data. As a
side effect, the technology needed for storing data was
also invented to provide the computational engine with
input data and allow it to output results. The means of
permanently storing data included punched cards,
tape, and disks. Throughout the 1950s and most of the
1960s, the management of stored data was done as
required; file systems stored data according to user-
defined formats and kept a table of contents. Users
shared data by equally ad hoc means, generally by
taking turns accessing the same device. Over the
years, database technology has evolved through at
least three generations to a diverse and sophisticated
set of data management tools, as discussed in this
paper. This paper has three major sections. Presented
first is an introduction to database technology. Pre-
sented next is a description of the evolution of data-
base technology from early computing to the sophisti-
cated systems of today. The third section presents a
view of both the driving forces that will influence the
database technology of the future and also the result-
ing new directions for the future.

database management system (DBMS) is a system

for managing stored information and providing
protocols and a language interface to define, access,
and change that information.'— Database manage-
ment systems can be distinguished from file systems
by the level of function they provide, as well as the
degree of semantics attributed to the data. A file
system stores data as uninterpreted byte strings called
records, and may or may not provide a directory of
files on a per-user or per-system basis. Also, a file
system may or may not provide access protection to
the data records on a per-file basis. Access to data
stored in a file system is through a specific access
path defined when the file was created. Various file
systems (called access methods) offer access to data

96 seuncer

by P. G. Selinger

sequentially or by index or hash key. In addition, a
file system may provide concurrent access to files
and may protect users from actions of other users by
file or record-level locking.

In contrast, a database management system provides
higher levels of function on data, often by invoking
operations on one or more file systems. A DBMS
contains more structured data (records), retrieves
data based on content (field values within a record),
and—unlike a file system—provides a greater degree
of independence from the physical layout and logical
format of the data and supports the concept of
recovery and integrity based on a scope of work
known as a transaction. In the remainder of this
introduction, these various facilities are defined and
discussed.

Users interact with the DBMs through language sub-
sets. A data definition language (DDL) is used for
defining and changing data objects, whereas a data
manipulation language (DML) is used for reading or
changing the instances of the data object (the data
records). These languages can be used statically in
programs (known as host-language embedding) or
used dynamically via interactive connections to the
DBMS (known as a query interface). DML interactions
are typically referred to as queries, although the word
query may also only refer to reading, not changing
the data. Not all DBMSs offer all of the operations of
each of these languages in both the host-language
and query-interface environments.

© Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

A pBMs usually provides directory facilities at a
higher, more user-oriented level than file systems do,
and separates users from the intricacies of physical
storage (e.g., tracks and extents). The directory of a
DBMS contains a logical description of the objects it

A DBMS provides a grouping of
operations into an atomic unit of
work called a transaction.

stores, including the external name of the object, its
characteristics, the authorization users have on it,
and its relationships with or dependencies on other
objects.

A DBMS stores records as a sequence of fields that
take values of a given data type, such as integer,
character string of fixed length x, or character string
of varying length up to a maximum of y. The DBMS
may enforce data types (e.g., does not accept an
alphabetic character for an integer field), perform
data-type conversions (e.g., integer to floating point),
support default values (e.g., zero for integers) or null
values (a special value meaning “no information,”
that is, not among any of the values possible for the
data type), and even perform operations on the data
such as arithmetic.

In addition, a DBMS provides a grouping of operations
into an atomic unit of work called a transaction. A
user specifies the boundaries of a transaction. A
successful termination of a set of operations that
change the database is known as a COMMIT, and an
unsuccessful termination is an ABORT. The result is
that either all or none of the operations within a
transaction are executed. This is achieved by a re-
covery facility. The recovery facility serves to pre-
serve the integrity of the database whenever anything
goes wrong. These events fall into three general
categories: (1) transaction-specific events, (2) events
causing loss of the pBMS volatile memory, and (3)
events causing loss of the DBMs data on nonvolatile
memory (e.g., disk failures).

A specific transaction may abort due to user actions
(e.g., the user has halted execution of the application)

IBM SYSTEMS JOURNAL, VOL 26, NO 1, 1987

or due to system actions (e.g., the transaction was
chosen to be terminated because it is involved in a
deadlock detected by the DBMS). When a transaction
aborts, its actions are undone by the recovery facility,
leaving the database in the same state that it was in
at the beginning of the transaction.

The recovery facility is also invoked when the entire
system (either the DBMS or the computer) crashes.
When this occurs, the DBMS is restarted (automati-
cally or by an operator). The pBMs then ensures that
all transactions which were not completed at the
time of the crash are undone, whereas all those which
were completed have their effects reapplied to the
data if necessary. For transactions that did work at
multiple DBMSs, there is a third possibility: The trans-
action could have been negotiating its completion
with other sites, but the decision may not have
reached some sites before a crash occurs. This process
of negotiation is called “two-phase commit.” For
these transactions, recovery after a crash is more
complex, possibly involving extra communication
among sites to determine the transaction status. Dur-
ing this negotiation, the recovery facility sequesters
all the data changed by the transaction in order to
keep its options open to either commit or abort later.

Finally, the physical media on which the pBMs data
are stored, such as disks, can be damaged. When this
occurs, the recovery facility can use its historical
records to reconstruct the current database contents
starting from a (possibly empty) prior version of the
database.

These recovery functions can be implemented in a
variety of ways—Ilogs, differential files, time stamps,
etc. The most popular technique is logging, that is,
recording on nonvolatile storage (disks) the changes
made to the database together with the name of the
transaction that made them. Logging techniques
may record changes at the physical or logical level,
may write these changes before or after the data are
changed, may write to two separate media, may
record both “before” and “after” versions of changed
data, and may store the log in a storage hierarchy
(keeping only recent information online). Not all
recovery techniques or DBMSs provide all the recovery
functions just listed.

Because transactions are units of work that can be
undone at any point until commit processing is done,
it is not a good idea to permit transactions to read
or change the same data that a transaction has al-
ready read or changed. Consequently, the DBMS may

seunaer 97

provide transactions with isolation from other trans-
actions. One way to supply this isolation is to enforce
serial use of the DBMS, not permitting transactions to
run concurrently. In general, this leads to unaccept-
able throughput. Thus, DBMSs provide varying levels
of isolation and granularities of isolation through
concurrency control techniques that use time
stamps, locking, or predeclaration of resources. Pre-
declaration of resources means analyzing queries

The first generation of data
management took place during the
1950s and most of the 1960s.

before they are executed and scheduling their exe-
cution, so that they are guaranteed not to conflict. If
locking is done without predeclaring the data to be
used, deadlock can occur when transaction A holds
locks on some data while waiting for data that trans-
action B has locked, and B will not release its lock
until it acquires a lock on some data that A has
Jocked. Such deadlocks can be detected and resolved
by aborting one of the participating transactions.

History of database technology

We now discuss the evolution of data management
systems into database management systems. The
categorizations are for my expository purposes; other
authors may label these events differently. The pur-
pose here is to demonstrate continuously improving
ease of use along with increased function.

First generation: Data management. The first gener-
ation of data management took place during the
1950s and most of the 1960s and consisted of user
applications doing sequential processing of master
files, commonly called old-master/new-master proc-
essing. This processing was modeled after the physi-
cal characteristics of magnetic tapes. The old master
file was processed sequentially, record by record,
against a file of changes (such as a day’s orders) that
were sorted into the same order (such as customer
account number) to produce a new master file con-
taining the changes. When a new application using

98 SELINGER

the same master-file data was needed, another pro-
gram to do that processing was written. These appli-
cations were written and maintained by users or by
their data processing specialists. The data were usu-
ally stored on tape, and applications were run as
batch programs. Typical applications were orders,
inventory management, accounts payable, payroll,
and other batch-oriented processing, representing the
automation of the “back office” of a business estab-
lishment.

Second generation: Database management systems.
As much of the data in the “back office” became
computerized, the need emerged in the late 1960s
and early 1970s for general-purpose data manage-
ment systems. These systems began evolving to da-
tabase management systems by centralizing the data
previously stored on various magnetic tapes, storing
the data under supervision of the enterprise’s data
processing professionals, and providing a uniform
interface to the data. These systems featured disk
storage, rather than the usual tape or punched-card
storage, and on-line, random access to data. Exam-
ples of these systems are access methods such as
1saM* and vsaM.® These access method systems elim-
inated one of the problems of the first generation of
data management systems, that of multiple and in-
consistent copies of the same data.

As this evolution of data management progressed,
systems were designed to provide a significant in-
crease in the availability, security, integrity, and con-
sistency of the data they stored. These systems, which
included early versions of Ims,® can really be called
second-generation database management systems.
The capabilities of these general-purpose database
management systems were far more advanced than
those of the typical user-written first-generation data
processing applications. They provided direct access
to data records by keys and the ability to package
many database actions into a single unit of work
(called a transaction) which, when executed, com-
mitted to the database either all of the changes or
none of them. Many data protection features were
also provided, including protection against lost up-
dates, unauthorized reading or changing, lost data
due to media failure, and inconsistent data due to
machine failures.

A user who needed data wrote an application pro-
gram that would call the database management sys-
tem once for each record required. The call specified
the logical data location (called a segment), the fields
requested, and the access path to the data (either

IBM SYSTEMS JOURNAL, VOL 26, NO 1,1987

