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This  paper is a survey that is  intended to give  the 
reader  an  introduction to some  issues  and  problems  in 
the field  of robotics  today.  The  first  section  discusses 
industrial  applications of robotics  and the require- 
ments  they  engender. A substantial  section  is  included 
on  robot  programming,  including  programming  lan- 
guages,  motion  programming,  and  techniques.  This  is 
followed by a  section on trajectory  planning.  Issues  in 
both  robot-level  trajectory  planning  and  task-level tra- 
jectory  planning are discussed.  The  section on control 
is  divided  into three parts:  controller  objectives, the 
system  model,  and  controller  types.  Very  brief  discus- 
sions  of actuators,  sensing,  and  end  effectors  are  also 
included. 

T he term robot was coined by Karel Capek in his 
1923 play R.U.R., depicting class  struggle in a 

society with automated workers.’ Robot is the Czech 
word for worker. The word was picked up by science 
fiction authors in the 1930s and 1940~;*-~ Isaac 
Asimov first used the term robotics. These authors 
were inspirational to scientists and engineers such as 
Joseph Engelberger, who participated in the devel- 
opment of early industrial robots.6 

In the early 1950s, R. Goertz developed teleoperator 
manipulators for use in handling radioactive mate- 
rials.’ George Devol, who worked with Engelberger, 
holds the  patent  on  the first industrial robot (196 I).’ 
The first computer-controlled robot was developed 
by Ernst at M.I.T., also in 1961.9 

There is no universally accepted definition of the 
term robot. Typical definitions encompass notions 
of mobility, programmability, and  the use  of sensory 
feedback in determining subsequent behavior. 
Rather than pursue explicit definitions, we  will pro- 
ceed to discuss the general nature  of  the systems 
which are typically called robots today. 
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Industrial robots used for manipulation of goods 
typically consist of one  or two arms  and  a controller. 
The  term controller is  used  in at least two different 
ways in this paper, so we  will make the distinction 
here. In this context, we mean the  computer system 
used to control the robot, often called a robot work- 
station controller. The  term controller is  used to 
mean the  embodiment of the actual robot servo 
control system, especially in the section on  control. 
Robot  arms  come in a variety of different types, a 
few of  which are shown in Figure 1. The  “hand” of 
the robot is called its end efector. The types ofjoints 
(revolute, sliding), their arrangement,  and  the ge- 
ometry of the links that  connect  them comprise the 
kinematic structure of the robot. 

The controller may be programmed to operate the 
robot in a  number of  ways, thus distinguishing it 
from hard automation.  The controller is  also respon- 
sible for the  monitoring of auxiliary sensors that 
detect the presence, distance, velocity, shape, weight, 
or  other properties of objects. Robots may be 
equipped with  vision systems, depending on  the 
application for which they are used. Most often, 
industrial robots are stationary, and work is trans- 
ported to  them by conveyers or robot carts, which 
are often called autonomous guided vehicles (AGV). 

Autonomous guided vehicles are becoming increas- 
ingly  widely  used in industry for materials transport. 
Most frequently, these vehicles  use a sensor to follow 

Copyright 1987 by International Business MachinesCorporation. 
Copying in printed form for private use is permitted  without 
payment  of royalty provided that (1) each  reproduction is done 
without  alteration  and (2) the Journal reference and IBM copyright 
notice are  included  on  the first page. The title and  abstract,  but  no 
other  portions,  of  this  paper  may be copied or distributed royalty 
free without  further permission by computer-based  and  other 
information-service systems. Permission to republish any  other 
portion  of this paper  must be obtained from the Editor. 

KOREIN  AND  ISH-SHALOM 55 



56 



NTHROPOMORPHIC 

Applications. In this section, we consider several 
representative applications of robots, in order to 
understand the requirements that they engender. 

Spot welding involves applying a welding tool to 
some object, such as a car body, at specified discrete 
locations. This requires the robot to move its hand 
(end effector) to  a sequence of positions with  suffi- 
cient accuracy to perform the task properly. It is 
desirable to move at high  speed to reduce cycle time, 
while avoiding collisions and excessive  wear or  dam- 
age to the robot. 

Pick and place is the  name commonly given to  the 
operation of picking up a part and placing it appro- 
priately for subsequent operations. Pick-and-place 
operations have some requirements in addition to 
those for spot welding. The part must not be 
dropped. It must be  held  securely enough to prevent 
it from slipping in the gripper but gently enough to 
avoid damage. In addition, care must be taken to 
avoid disturbing the part during approach and de- 
parture. 

Spot-welding and pick-and-place operations are 
characterized by their point-to-point nature; what 
happens at the beginning and  the end of the motion 
is critical, but there is some latitude in choosing the 
intermediate trajectory. 

Spray  painting requires covering a surface  with 
an even coat of paint. This is typically done by pre- 
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specifying the trajectory along which the arm will 
move. The trajectory specifies both position and 
orientation of the nozzle as a function of time. 

Seam welding requires that  a welding torch contin- 
uously  follow a seam on a surface. Unlike spray 
painting, seam welding  typically requires real-time 
correction of the path to accommodate small devia- 
tions of the actual seam from the expected path. 

Spray painting and seam welding are both continu- 
ous-path applications; position and orientation as a 
function of time are important throughout the mo- 
tion. 

Electronic testing by robots is  being  used increas- 
ingly. One application is that of testing the continuity 
between pins, which involves primarily point-to- 
point operations. Another application is the detec- 
tion of flaws in printed circuits by probing along 
metal traces on circuit boards. 

Metrology is  now often performed using automated 
coordinate measuring machines, which are essen- 
tially  very slow and accurate robots. They are used 
to measure dimensions of mechanical parts, usually 
by a sequence of point-to-point motions. 

Assembly is an application of increasing importance. 
Robotic assembly  may  be done in different ways. 
One typical method is to equip a simple robot with 
a special end effector for a particular task, such as 
inserting a  component.  The robot is programmed to 
perform a single operation as a single step in an 
assembly line. Each robot is fed parts of a single type 
from a part feeder,  which presents them in the correct 
orientation. In this approach, the robot is  used in 
the same way as hard automation is traditionally 
used. Feeder mechanisms, which are often quite 
ingenious, are discussed in Reference 18. 

An alternative method is to feed all parts directly 
into  a robot workstation in which the entire assembly 
is to be completed. Part feeders and magazines may 
be arranged about  the workstation, as may a variety 
of tools and fixtures required for the assembly.  An- 
other option is that  the workstation is presented with 
a  “kit” of preoriented parts containing all compo- 
nents required for the assembly. To have individual 
robot workstations do independent assembly of com- 
plete products is extremely advantageous for  flexible 
production capacity. 

Nevins and Whitney” analyzed a  number of product 
assemblies: a refrigerator compressor, an electric jig- 
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saw, an induction motor, a toaster oven, a bicycle 
brake, and  an  automobile alternator. They deter- 
mined that these assemblies could be performed 
using a relatively small set of operations. These 
include simple peg-in-hole insertion, push-and-twist 
insertion, simultaneous multiple peg-in-hole inser- 
tion, screw insertion, force-fit insertion, removal of 
locating pins, flipping parts over, providing and re- 
moving temporary support, crimping sheet metal, 
and welding or soldering. 

Performing these operations by precise positioning 
requires tight tolerances on part dimensions and part 
positions as well as accurate robot positioning. Re- 
quirements on these tolerances are substantially re- 
duced if the robot end effector  can comply with 
forces  it encounters during the assembly  process. For 
example, the tolerance required for inserting a peg 
into  a chamfered hole  is  significantly  less  when one 
is guided by the forces one encounters, rather than 
proceeding stubbornly in some assumed direction. 
This is  easily demonstrated by attempting  to insert 
a key into  a keyhole  using the two different ap- 
proaches. 

Machining of mechanical parts is a growing appli- 
cation of robotics technology. Operations like grind- 
ing, debuning,  and sanding parts require the ability 

to perform the specified operation.” 

An unusual but fascinating application is sheep- 
shearing. Recently, Trevelyan, Kovesi, and Ong2’ 
constructed a robot system that would perform 
sheep-shearing on live sheep. The robot was suffi- 
ciently adaptable to cut the wool without harming 
the sheep. Sheep appreciate compliance. 

Requirements. A number of stringent requirements 
are imposed upon robots in order for them to be 
competitive in the world of manufacturing. 

Reliability and durability are very important. An 
industrial robot must work  every day, often all 
day, to pay for itself. 
Robots are  not usually as fast as hard automation 
or  human workers doing the same job. Currently, 
the speed of robots is constrained by computa- 
tional as well as mechanical factors. 
Accuracy of robots is important for such applica- 
tions as precise electronic test and for assembly 
tasks. 
The ability to comply with the environment is 
important in assembly and machining applica- 

I to follow  surfaces and to maintain the forces required 
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tions. Precisely machined parts are usually expen- 
sive. Compliant motion is  needed to perform ad- 
equately with affordable parts. . It is highly desirable that robots be  sufficiently 
conjigurable to allow new sensors to be incorpo- 
rated. Sensory input should be available to provide 
continuous servo control and  to produce discrete 
transitions in system behavior. 
Ease  ofprogramming is important, so that robotic 
applications may  be developed quickly. 
Versatility is needed to avoid the cost of special- 
purpose fixturing required for new robot worksta- 
tions. 
Cleanliness is of increasing importance in many 
electronic applications. 

Robot programming 

Robot programming is the means by which a robot 
is instructed to perform its task. In this section, we 
examine some of the tools and techniques that have 
been  used and proposed for robot programming.” 

Guiding. Guiding is the process  of moving a robot 
through a sequence of motions  to “show it” what it 
must d0.22,23 One guidance method is to physically 
drag around  the  end effector of the robot, while it 
records joint positions at frequent intervals along the 
trajectory. The robot then plays  back the motion just 
as it was recorded. An alternative is a master-slave 
or teleoperator configuration. Early  systems  of this 
type were first  used to manipulate radioactive ma- 
terials remotely.’ Teleoperator techniques are now 
employed to guide the Space Shuttle manipulator. 

Guiding may also be applied using a teach pendant, 
which is a box  with  keys that are used to  command 
the robot. Several modes of operation are often 
available on  the teach pendant. In joint  mode, a pair 
of buttons is  used to move each joint back and forth. 
In addition to  joint mode, one  or more Cartesian 
modes may be provided. In  Cartesian modes, buttons 
are associated  with  Cartesian  axes in some three- 
dimensional coordinate system. Two examples are 
world mode, in which the coordinate system  is 
aligned with the base or frame of the robot, and 
hand mode, in which the coordinate system  is  always 
aligned  with the gripper, as shown in Figure 2. In 
the figure, the X ,  Y, and Z axes of the  hand coordi- 
nate system are labeled X‘,  Y’, and Z’, respectively. 

For point-to-point applications, guiding systems usu- 
ally  allow the user to specify a few  key positions to 
be recorded. The system interpolates between adja- 
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cent pairs of these positions, providing a path that 
does not play  back  every fumble and overshoot of 
the teacher. 

Guiding is limited as a robot-programming tech- 
nique, because it does not provide conditionality or 
iteration. Some systems provide so-called extended 
guiding capabilities that include teaching in a coor- 
dinate system that may be moved at  run-time  and 
conditional branching between motion sequences.” 

Programming languages. It is no surprise that  the 
well-established  technology of programming lan- 
guages should be adopted for programming robots, 
and many robot-programming languages  have  been 
developed. The first  was a limited language,  called 
MHI, designed by Ernst at MIT in 196 1.9 Two lan- 
guages developed at Stanford University,  WAVE^^ and 
A L , ~ ~ . ~ ~  were particularly influential in the field. Con- 
ventional languages  like C,27 Lisp,”  Pascal,29 and 
Basic3’ have been extended with subroutine libraries 
for robot control. Robot languages in use in industry 

LM (Scemi, I ~ c . ) , ~ ~  MCL (McDonnell Dougla~),~’ RAIL 
(A~tomat ix ) ,~~  and VAL-11 (Unimation, Adept),37 and 
others. Bonner and Shin38 have published a survey 
of robot-programming languages. 

The nature of robot  programs. First and foremost, 
robot programs are computer  program^.^' Conse- 
quently, a large part of the body  of  knowledge that 
has  been acquired about programming in the last 
couple of decades is applicable to robots. Robot 
programs deal with a richer variety  of 110 devices 
than conventional programs, which distinguishes 
them in a variety of  ways. 

Robot programs must command robots to move; 
thus, the way in which motion is  specified  is impor- 
tant. Also, the programs use information obtained 
from sensors. One way of using  sensory information 
is to  monitor sensors until a prescribed condition 
occurs and  then perform or terminate  a specified 
action in response. Another use  of  sensory informa- 
tion is to use  feedback from sensors to modify the 
robot’s behavior continuously. 

When objects are manipulated in the physical world, 
many peculiar things can happen. One occurrence 
of a part may differ  slightly from another in ways 
which cause a program to fail. The tolerances on  the 
dimensions of the object, the position of the object, 
and the position of the robot all  vary from operation 
to operation. This may  lead to jamming or wedging 

today include AML  (IBM),31 HELP (GE),32 Karel (GMF),33 

IBM SYSTEMS JOURNAL,  VOL 26, NO 1,1987 

X 

of  pegs or screws, dropping or knocking down parts, 
and  other difficulties. Obtaining bounds on errors 
has been addressed in the research literature. The 
problem of bounds has been approached numerically 
by Taylor39 and symbolically by Brooks.40 If an event 
such as  a collision  is not foreseen by the programmer, 
it  is  usually desirable to  stop moving things around 
and request operator intervention. In order to make 
a program robust, the programmer must try to an- 
ticipate and test erroneous conditions. Conse- 
quently, robust robot programs are rather heavily 
weighted  with error-handling and recovery appara- 
tus. Note that  the programmer’s ability to make the 
program robust depends on the availability of sensors 
to detect problems. 

No robot is an island. Industrial robots function in 
factory environments, which contain other robots, 
automation  equipment,  and computers. Effective 
communication  among these elements is critical to 
Computer-Integrated Manufacturing (CIM). Com- 
munication in the factory  is often structured hierar- 
~hically.~’ Some of the levels often considered are 
device control, workstation control, and area con- 
trol. Device control typically includes control of a 
single robot or other device. Workstation control 
coordinates activities of multiple robots and other 
devices within a workstation. Concurrent program 
language constructs may be expected to play a major 
role at this level. Area control includes coordination 
of workstations, recording of manufacturing data, 
scheduling, and routing of work. 
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Motion  commands. Robot-programming languages 
must contain specifications of motion for the robot. 
Some of the  commands used to specify motion  are 
discussed here. The joint-level move is the most 
fundamental  motion  command. In the simplest case, 
the  command might be written 

move (joint, goal) 

The  joint is either a sliding or revolute joint  that is 
to be brought to some linear or angular position. 
Even  in this simplest case, much is  left unsaid. For 
a revolute joint without joint limits, the path has not 
been  fully  specified,  because the goal could be 
reached  in either a clockwise or  a counterclockwise 
fashion. How  fast should the motion be?  How  ac- 
curately must the goal be achieved? Is a little over- 
shoot allowable? There are always  trade-offs  between 
these considerations. In the interest of simplicity and 
flexibility, it is desirable to have a  number of optional 
parameters to allow these factors to be controlled, 
and it is desirable to use specified defaults when  they 
are  not. With large numbers of optional parameters, 
keyword parameters are advantageous. 

For this simple move and most of the others dis- 
cussed  in this section, goals are given in absolute 
terms. It is worth noting that it  is often more con- 
venient to specify  all of these in terms relative to  the 
current position. 

Joint moves may involve more than one joint, for 
example: 

move ((;I, j 2 , j 3 > ,  (goah, goaL, goa&)); 
In this example, we have  used AML notation3' to 
specify an aggregate (list) of three joints,  and  another 
of three goals. It is convenient to  think of such a goal 
as a point in joint space. 

Specification  of a goal for a group of joints means 
that they are to be  executed in parallel. If the trajec- 
tory for each of these joints is planned indepen- 
dently, the  motions end at different times. Coordi- 
nated motion (with all joints halting simultaneously) 
requires that the trajectory planner scale  all trajec- 
tories so that their elapsed time is the same as for 
that of the slowest joint. 

In most cases,  it  is  far more convenient to specify 
Cartesian motions than joint-level motions. As in the 
case  of guiding, Cartesian motion specifications are 
made with  respect to some Cartesian coordinate sys- 
tem. The position and orientation of a rigid  object 
in space may be described with six numbers corre- 
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sponding to its six degrees  of freedom. Suppose, for 
example, the object were located at some reference 
position, with a reference point at the origin, as 
shown in Figure 3. Thus, (A) rotation 4 produces 
(B), then rotation 0 produces (C),  and similarly ro- 
tation $ produces (D). The object is brought into  an 
arbitrary orientation by three rotations (4,8, $) 
about axes  rigidly affixed to  the object; these are 
often called Euler angles. An ordered triple ( px, py, 
p z )  specifies an arbitrary translation. So the position 
and orientation of an object with  respect to  a refer- 
ence frame may  be  specified by giving the values of 
px, pY, pz,  4, 0, $, which bring a reference object to 
that position and  orientation. 

The position and orientation of an object with  re- 
spect to  a reference frame may also be represented 
as a 4-by-4 homogeneous transformation matrix.42 
The form of the matrix is  as  follows: 

nx ox ax Px 

nY 0.v aY P Y  

0 0 0 1  

The reference coordinate system ( X ,  Y ,   Z )  and object 
coordinate system (X ,  Y,  Z )  are shown in Figure 4. 
If we ignore the last  row, each column is a three- 
element vector  expressed in terms of the reference 
coordinate system. In Figure 4, n, 0, and a are unit 
vectors in the directions of the axes X ,  Y, and Z. p 
is a translation vector, giving the location of the 
origin of the object coordinate system. The conven- 
tions for the names of these vectors are taken from 
PauL4*  Because the object is often a gripper, o indi- 
cates the axis along which the gripper opens, a indi- 
cates the approach direction in which the gripper 
points, and n indicates their common normal in the 
direction o X a. 

A similar (transposed) representation is  used in com- 
puter The homogeneous matrix represen- 
tation is particularly convenient for manipulation 
(although not computationally eff i~ient~~) .  In the 
context of robotics, the homogeneous matrix repre- 
sentation has come to be  called a frame. Subse- 
quently, when we speak of the position of an object, 
we  will mean both its position and orientation, as 
described by a frame. 

In order to move the end effector of an  arm to a 
specified position in terms of the world coordinate 
system, we may  write a  command of the following 
form: 

move-hand(dest); 

nz oz a, p z  
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Figure 4 Vectors  in  homogeneous  coordinate  matrix 

where dest is a variable that  contains  a specification 
of position and orientation as a frame. The specified 
goal may not be within the workspace of the robot. 
The robot workspace is determined by the geometry 
of the robot links, the placement and types of joints, 
and their limits of mobility. When orientation is 
considered, the dimensionality of the space within 
which the robot hand works is  six. When the  number 
of joints is  less than six, most of the workspace  is 
inaccessible, just as a planar linkage cannot access 
the space outside the plane. This situation is  perfectly 
acceptable for wide  classes of robots that perform 
tasks like  pick and place on a horizontal surface or 
pancake assembly (stacking). These tasks may never 
require that  the robot point its gripper in any direc- 
tion besides down, for example. Using a frame to 
specify a goal is, in a sense, too general for robots of 
this nature. However,  when a variety of robots with 
different kinematic structures must work in concert, 
the use of frames provides them with a  common 
language. 

Even  when there are six joints,  joint limits may make 
certain configurations for the  end effector unreach- 
able. Consider, for example, a Cartesian robot whose 
“forearm” is constrained to point downward. (See 
the Cartesian robot in Figure 1 .) It is not possible to 
point the  end effector upward, because it would  have 
to occupy the same space as the forearm. 

It is often the case that  a particular position for the 
end effector  may be achieved by several different 

62 KOREIN AND ISH-SHALOM 

configurations of the robot arm. For example, if the 
robot’s  elbow  can flex either way from the  out- 
stretched position, most end effector positions may 
be  achieved in either an elbow-up or elbow-down 
configuration. If the robot has more than six joints 
(often called redundant), there are generally an infi- 
nite number of configurations by which to achieve a 
desired end effector position. In many cases, the 
programmer is not concerned with the choice of 
configuration, and it is satisfactory to use some de- 
fault. Note, however, that if the default is chosen to 
minimize time, it  usually depends on  the previous 
position. This means that  a subroutine performing 
that  command behaves  differently in different con- 
texts. The choice may  be important if obstacles are 
present. Also, the accuracy of the move may depend 
on which trajectory is taken. For these reasons, an 
optional parameter that depends on  the kinematic 
structure of the particular robot is  usually a necessary 
evil. 

It is extremely important in robot programming to 
be able to specify the position of an object  with 
respect to  one reference frame and  then obtain that 
position with  respect to another reference frame. For 
example, when a mechanical part is defined, it is 
convenient to describe its features (such as grasp 
positions and connectors) in terms of a coordinate 
system  rigidly  affixed to  the part. When it comes 
time for the robot to pick up the part, the robot must 
know the position of the feature with  respect to  the 
world coordinate system. Homogeneous transfor- 
mations make this type  of conversion very simple. 
R. Paul was an early proponent of this technique in 
 robotic^,^^,^^ which  is  now  widely  used. 

Suppose that HANDLE is the name of a frame that 
describes the position of the handle of a mechanical 
part with  respect to  a coordinate system  rigidly  af- 
fixed to  that part. Suppose also that WIDGET is the 
name of a frame which  describes the position of the 
part in terms of the world coordinate system. Then 
the position of the handle in terms of the world 
coordinate system  is just  a new frame, as follows: 

WIDGET . HANDLE, 

where the  dot (.) is the matrix multiplication oper- 
ation. Suppose that  a  number of  widget positions are 
given  with  respect to  a tray, whose position is in turn 
given  with  respect to  the world coordinate frame. 
The handle of the ith widget could be  specified  by 

TRAY . WIDGET, . HANDLE, 

where WIDGET is (in this case) an array of frames. 
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Let us now  define a frame variable called HAND, 
which  gives the position of the robot hand in the 
world coordinate system. Whenever we move the 
robot hand  to some position GOAL (also in world 
coordinates), we are essentially asking it to change 
the value of HAND so as to satisfy the following 
equation: 

H A N D  = GOAL.  

Suppose now that  the situation is more complex. 
The hand is holding a screwdriver  whose position is 
defined  with  respect to  the  hand,  and we want to 
position it at some offset  over a screwhole on the 
widget.  Because  all definitions are with  respect to 
local coordinate frames, the equation we  wish to 
solve  is the following: 

H A N D  . SCREWDRIVER = WIDGET . SCREWHOLE . 
OFFSET. 

We may  rewrite this goal 

DRIVER”, 

and attain it by issuing the  command 

move-hand( WIDGET,  SCREWHOLE. OFFSET, SCREW- 
DRIVER“). 

This approach is satisfactory for stationary goals. 
Consider, however, the situation where the widget is 
on  a moving conveyer. We might define a function 
WIDGET( ), which returns a frame describing the 
position of the widget at  the time it  is  called.  In this 
case, either the time between the evaluation of 
WIDGET( ) and  the execution of move-hand( ) must 
be  very short or else some extrapolation must be 
done to account for the intervening time. In either 
case, there is some advantage in having a move 
command,  to which the function may be passed 
directly, instead of its being evaluated beforehand, 
as above. The robotics library RCCL for the C lan- 
guage, developed by Hayward and Paul at Purdue 
University, provides this ~apability.~’ 

A concept that has proved useful in the context of 
robot programming is that of afixment. Suppose 
that the widget  is at some position specified by the 
variable WIDGET. Now we direct the robot arm  to 
pick up the widget and move it to  a new position. 
The position specification WIDGET is  now out of 
date; that is no longer  where the widget  is. The idea 
of  affixment  is to allow one  to specify durations over 
which one frame is  rigidly  affixed to another. If one 
changes, the  other will be updated accordingly, with- 
out  the need for explicit updating by the program- 

H A N D  = WIDGET ‘ SCREWHOLE . OFFSET . SCREW- 
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mer. Affixment is supported by the languages A L ~ ~  
and L M . ~ ~  Affixment  may  be thought of as  an equality 
constraint specified  between two coordinate frames. 
One might imagine further reductions in program- 
ming effort  being introduced by a system that could 
maintain a wider  variety  of constraints between co- 
ordinate frames. Methods of maintaining constraints 
within the robot control system are discussed by 
G e ~ c h k e , ~ ~  Mason,47 and I~h-Shalom.~~ 

Trajectory specijication. Earlier, in the section on 
guiding, we briefly  discussed straight-line motion. 
The “straight line” in straight-line motion may apply 
to  the  tip of some tool that  the  arm is carrying, or it 
may apply to  the wrist. Tool-tip motion may be  used 
to follow a path, as in the application of adhesive, or 
to ensure the direction of an approach, as in an 
insertion operation. The reason that straight-line 
motions are  not used  exclusively  is that other trajec- 
tories are often faster, both for mechanical and  com- 
putational reasons.44 This is  discussed later in this 
paper in the section on trajectory planning. 

Via-point moves are the usual means by which ob- 
stacle avoidance is achieved in practi~e.4~ Via-points 
are simply intermediate positions through or near 
which the robot is constrained to pass on the way to 
its goal. Suppose that we  wish the robot arm  to pull 
away from a handle on object A and then approach 
one on object B. Assuming that these positions are 
known to sufficient precision, we might write the 
following order: 

move-via(A . HANDLE . OFFSET, B , HANDLE . OFF- 
SET, B . HANDLE). 

That is, we specify  two intermediate frames, as well 
as the final destination. The idea is to allow the 
system to  compute  a trajectory whose segments are 
fairly  close to straight lines,  while rounding the  in- 
termediate corners to avoid stopping. 

Compliant motion is motion that conforms with 
forces  which are encountered. As  was mentioned in 
the section on assembly applications, compliant mo- 
tion is important, because there is  always some error 
in the specification and realization of a trajectory. 
Some examples are insertion, part mating, following 
a surface, and  turning  a crank. There are as  yet no 
real conventions for specifying compliance in a pro- 
gram. One method that has been  used in conjunction 
with impedance control (discussed later) is the ex- 
plicit feedback a p p r o a ~ h , ~ ~ . ~ ~ , ~ ~  in which a stiffness 
parameter is  specified  with a positioning command. 
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In the case  of a single joint,  one might  write the 
following command: 

move-joint-compliant(p, k). 

This will cause the  joint  to move to p as follows, 
always exerting a forcej  

f = -ke, 

where e (error) is the  current deviation from the 
desired position p. The spring constant k is trans- 
formed to  a feedback  signal to be  used  by the con- 

A robot  program  is  not  a 
mathematical function;  in  computer 
science  terms, its results are just  a 

big  side  effect. 

troller. There are limits on achievable values of k 
arising from the stability limits of the controller and 
from the  maximum force the  actuator  can produce. 

More complex types of compliance may  be  achieved 
by defining a coordinate system  called a compliance 
frame. In this system, all forces directed through the 
origin (called the center ofcompliance) generate pure 
translations. Similarly, torques about  the axes  gen- 
erate pure  rotation^.^' The explicit  feedback ap- 
proach may  be  used to specify compliance in an 
arbitrary compliance frame by generalizing the equa- 
tion above to  the following: 

f = -KC, 

where K is a six-by-six matrix of values and f and e 
are vectors.21 

Another approach, called hybrid control, requires the 
user to explicitly  specify the compliance coordinate 
frame. Position and force  goals are then specified 
along (and  about)  the axes of that frame. Typically, 
one uses  force  goals  in directions where resistance is 
met (as into  a surface), and positional goals in direc- 
tions where there is none.51 

A different approach is  used to describe the behavior 
of the system in terms of relationships that  are  to be 
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example, fd . v, = 0 indicates that  the desired  force 
is in a direction orthogonal to  a measured veloc- 
ity.46,48 

Guarded motions are critically important concepts 
in robot pr~gramrning.~’ A guarded move is one  that 
may be terminated on  the basis of sensory data 
acquired in real time. Some examples of guarded 
moves are the following: 

Bring the  hand down until it hits the table top. 
Close the gripper until substantial resistance is 

Move until a photosensor detects that something 

Turn  a screw until a substantial resisting torque is 

detected. 

is  between the fingers  of the gripper. 

detected. 

For example, AML” includes guarded moves that 
may  be terminated when thresholds are reached by 
built-in force sensors and by changes in boolean 
inputs. 

A simple but useful generalization is that of associ- 
ating a set  of arbitrary termination conditions with 
an arbitrary a ~ t i o n . ~ ~ , ~ ~ - ~ ~  

Concurrency issues. The issue of concurrent execu- 
tion of program statements has received  widespread 
attention  in  computer science. The primary moti- 
vation has been to make effective  use  of multiple 
processors to speed up  computation. In robotics, the 
problem is compounded by the need to control 
mechanical processes concurrently with one  another 
and with computational processes. Many of the con- 
siderations are very similar, but there are important 
differences, too. Physical  processes cannot, in gen- 
eral,  be suspended and resumed as computations 
can, because of physical  laws (like Newton’s  laws) 
and  the presence of external forces (like gravity). 
Concurrency is required for speed,  because it is 
highly undesirable to serialize a set of mechanical 
tasks. However, there are tasks that  cannot be done 
serially at all, without great imagination. To experi- 
ence this, the reader may try the experiment of  going 
about his normal routine for an  hour while  keeping 
one hand in his pocket. A variety  of mechanisms 
have  been  used to describe concurrent activities in 
~ r o g r a m s . ~ ~ - ~ ~  Concurrent programming constructs 
have been provided in  the programming languages 
Concurrent Pascal5* and  ADA^' and in the robot 
programming languages AL,26  TEACH,^',^^ M C L , ~ ~  and 
OWL? 
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Programming methodology. The testing and debug- 
ging of robot programs is characterized by a  much 
greater degree of trial and  error  than many other 
kinds of programming. A robot program is not a 
mathematical function; in computer science terms, 
its results are just  a big side effect. Rather  than 
measuring every clearance in a workcell, it is usually 
simpler to start with a guess and refine it while 
watching the robot go through its paces. Another 
issue is speed. It is common  to debug robot programs 
at low speed, and  then  crank  them up as fast as is 
possible without producing intolerable losses in ac- 
curacy. There are many such guesses in a complex 
program, usually embodied as defined constants. 
The need for a fast program revision  cycle  is one 
reason why interpreters are widely  used for robot 
programming. Relative ease of implementation is 
another. 

Several types of calibrations are required in robotics. 
Many robots determine  joint position by counting 
pulses as  the joint travels, in  which  case the robot 
must be calibrated when it is powered up. Each joint 
must travel to its limits, usually tripping a switch, to 
establish its absolute position. 

Now suppose there is some workpiece that is to be 
manipulated. One way to establish its position is by 
determining  the position of a set  of reference objects 
with a known relationship to the workpiece. The 
problem is then reduced to determining  the location 
of the reference objects to establish an appropriate 
transformation. A technique  that has been used  ef- 
fectively  is to locate posts by passing an open gripper 
over them, breaking a beam of light. By repeating 
this several times in different directions, a post may 
be located; several posts in a known configuration 
establish a  coordinate 

A technique that has proved extremely effective in 
robotic applications is called programmed  recalibra- 
tion. Suppose that  a robot must repeatedly perform 
a sequence of insertions at specified positions. After 
some period of time, mechanical drift can build up 
sufficiently to cause the robot to miss. Suppose, 
however, on each insertion, the robot monitors  the 
variation of its position from the  nominal position, 
and adjusts its coordinate frame. This allows the 
robot to function indefinitely without accumulating 
error. This technique is extremely important for 
reliability in typical repetitive applications. 

When a vision  system is used  with the robot, calibra- 
tion is necessary to  establkh  a  common  coordinate 
system between the  camera  and  the r ~ b o t . ~ ~ . ~ ~  
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Higher-level programming. Of-line programming is 
a term that is usually applied to a collection of 
techniques for robot programming without actually 

A  Computer-Aided  Design  (CAD) 
system  is  typically  used  to  model 
the  robot  workstation,  parts,  and 

auxiliary  equipment. 

using a robot. A Computer-Aided Design (CAD) sys- 
tem is typically used to model the robot workstation, 
parts, and auxiliary equipment.  Then  the simulated 
robot is programmed and its task executed in the 
simulated environment.66 Collisions between objects 
may be checked by  using a collision-detection  algo- 
rithm. The utility of off-line programming for de- 
bugging robot programs is limited by the inability of 
most commercial solid modeling programs to in- 
clude error tolerance information in geometrical 

If a model does not include uncertainties 
in part position, part dimensions, and robot position, 
the simulation will succeed in  situations where a real 
application would fail. Another difficulty with sim- 
ulation is that force sensing must be modeled by 
collision detection, which is computationally expen- 
sive. This makes it inconvenient to model guarded 
moves and all but impossible to model force-guided 
compliant  motions such as surface f~ l lowing .~~  

A task-level  program is a high-level specification of 
a task, without explicit mention of the robot or how 
the details of its job are to be performed. For an 
assembly task, the highest-level description might 
simply be a description of the relationships among 
the parts in the final assembly. A lower-level task 
specification might include a specification of inter- 
mediate states of the assembly. A still lower-level 
task specification is a sequence of high-level opera- 
tions to be performed to achieve the  intermediate 
states. The problem of going from the highest of 
these levels to the lowest has been one of the prob- 
lems considered in planning research in the field  of 
artificial intelligen~e.~~.” 
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Figure 5 Example AUTOPASS program  for  support  bracket 
assembly 

All  of the specifications just mentioned are called 
task-level specifications as distinguished from robot- 
level specifications,  because  they do not describe the 
details of  how the robot is to perform an operation. 
The program does not specify paths that avoid ob- 
stacles or specify  specific grasp positions. The trans- 
lation of such a specification into  a robust, working 
robot program is the central research problem in 
robot programming. No complete, working, task- 
level programming system has ever  been imple- 
mented. Early  work  in  task-level program specifica- 
tion was done by Feldrnaq7* Paul,4s Taylor at Stan- 
ford,39 and Lozano-Perez at MIT.’~ The specification 
for a task-level  language  called AUTOPASS by Lieber- 
man and Wesley at I B M ~ ~  served as a focus for much 
of the subsequent research  in the area. An example 
of a task specification in AUTOPASS is  shown in Figure 
5. Some of the operations required to execute task- 
level programs, such as obstacle avoidance, grasp 
planning, and fine-motion planning, are discussed in 
the section on trajectory planning. An excellent sur- 
vey  of the area of task-level programming by Lozano- 
Perez appears in the book Robot Motion: Planning 
and Control.75 

Trajectory planning 

In the previous section on robot programming, we 
discussed the types of commands  that  are used to 
program robots. We  now discuss some of the issues 
in trajectory planning that must be considered in the 
implementation of robot motion  commands. This 
will be augmented by the discussion of control in 
the following section- 

Trajectory  planning  for robot-level programming. 
Consider the  implementation of a joint-level move 
command. We assume here that we have simple 
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independent position controllers for each axis. At 
regular intervals of time, each controller reads a 
position value or setpoint p from a memory location 
and generates an  actuator  command  to drive the axis 
towards p.  The length  of  these time intervals may 
vary from 0.1 to 100 ms, depending on the controller 
and application requirements. 

Simply setting p to  the desired  final joint position 
causes the controller to servo to  that position. How- 
ever, it is  usually desirable to be able to specify the 
trajectory of the  joint as a function of time. This is 
done by setting p to a series of intermediate positions 
along the trajectory function to allow for coordinated 
motion and  continuous path motion. In specifying 
a trajectory, the physical limits of the system must 
be considered. It is common to model these limits 
as constant maximum values for acceleration and 
velocity. 

The trajectory goes from the initial to  the final 
position, with initial and final  velocities zero, subject 
to limits on speed and acceleration. A trajectory used 
in many industrial robots is  shown in Figure 6. The 
motion consists of a constant acceleration phase, 
followed  by a constant velocity  phase,  followed by a 
constant deceleration phase. If the acceleration, ve- 
locity, and deceleration in  the three respective  phases 
are all  set to  the constant maximum values assumed 
in the model, this trajectory is time-optimal under 
those modeling assumptions. Intuitively, this strat- 
egy is comparable to flooring the accelerator, then 
coasting at  the speed limit, and finally slamming on 
the brakes. Planning this trajectory requires deter- 
mining the time for  each  phase of the motion and 
determining the parameters for each trajectory seg- 
ment. 

In the case of a coordinated motion for multiple 
joints, the trajectories for the joints must be planned 
together, so that they  all take the same length of 
time. For trajectories of this type, one  computation- 
ally convenient method is to keep the three phases 
of motion the same for all joints. The  time for each 
phase  is then determined by the slowest joint for that 
phase.44 This method has the advantage that  the 
interpolated trajectory follows a straight line in joint 
space. An alternative approach is to  compute  the 
total times separately for each joint  and scale all 
joints  to  that total time, phasing them separately. 
This is optimal in terms of motion time (given the 
modeling assumptions) because the total time for 
the motion is the same as the total time for the 
slowest joint. However, the separate phasing  of the 
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joints requires additional  computation,  and  the  tra- 
jectory no longer follows a straight line in joint space. 

Kinematics. When a Cartesian position goal  is  speci- 
fied for the  end effector  of the robot, it  must ulti- 
mately be converted to a  control signal for each joint 
actuator. If the  joint controllers require joint posi- 
tions, it is  necessary to produce these from the carte- 
sian specification. This problem is called the inverse 
kinematics problem in the robotics literature. There 
is no general analytic solution to  this problem for an 
arbitrary robot. This is in sharp  contrast to the 
forward kinematics  problem, in which a Cartesian 
specification is obtained from joint angles. For open 
kinematic chains, which include most robots, for- 
ward kinematics may always be computed by mul- 
tiplying coordinate frame matrices. The form of the 
inverse solution depends on the geometry of the 
robot joints  and links. However, for a wide  class  of 
robots called kinematically simple, efficient analytic 
solutions may be The criterion for kine- 
matic simplicity is that three consecutive joint axes 
intersect at a  point. In this sense, most industrial 
robots  are kinematically simple. 

Numerical solutions to the inverse kinematics prob- 
lem are much  more general. These methods typically 
use the  Jacobian matrix J, which  expresses the rate 
of change in the Cartesian variables with  respect to 
the  joint variables. A single formulation, such as 
Newton-Raphson, may be applied to a wide variety 
of linkages. Analytic solutions have usually been 
favored for real-time computation because of their 
greater speed and because they produce all solutions, 
rather than converging to a single Recently, 
new numerical techniques have been developed that 
exhibit substantially greater speed than conventional 
methods  and produce multiple  solution^.'^ 

When the robot has the same number of joints  as 
there are degrees of freedom in its environment,  it is 
said to be perfectly constrained. There are a small 
finite number of solutions to the inverse kinematics 
problem, depending on how many revolute joints 
are present. Some of the solutions to the  mathemat- 
ical problem are not usable, because they lie outside 
the range  of joint limits of the robot. The most 
obvious criterion for choosing among those that are 
left is some measure of closeness to the  current 
position. 

When the robot has redundant degrees  of freedom, 
there are an infinite number of solutions to the 
inverse kinematic problem. Different methods are 
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Figure 6 A commonly  used trajectory showing  acceleration, 
velocity,  and  position as functions of time 
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required to solve this problem in a way that uses the 
redundancy effe~tively.’~ 

In a  number of systems, the explicit solution of the 
inverse kinematics problem has been avoided by 
performing the  control calculations to obtain desired 
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Figure 7 Via-point path 

forces completely in  Cartesian space. The  joint 
torques may then be obtained by multiplying the 
Cartesian forces by the transpose of the  Jacobian 

Inverse kinematic velocity and acceleration prob- 
lems are not discussed here. For  a discussion of these 
topics, see the introduction to Reference 69. 

Cartesian trajectory planning. Consider the execu- 
tion of a move command whose  goal  is a Cartesian 
position that is  specified as  a frame. This goal may 
be converted to a joint-level goal  by calling an inverse 
kinematics routine.  Then  the trajectory-planning 
techniques already discussed for joint-level planning 
may  be  used. This  approach generally does not pro- 
duce straight-line motion in Cartesian space. There 
is one  important exception. For  the wrist point of a 
Cartesian manipulator, joint space is Cartesian space. 
Thus, a straight line for the wrist only requires linear 
dependence between coordinated  joint trajectories. 
However, a  kinematic conversion is still required for 
tool-tip, straight-line motion if the  orientation of the 
end effector changes. 

In order to achieve straight-line motion, trajectory 
planning must be done in Cartesian space. The most 
common approach to achieving straight-line carte- 
sian motion was pioneered by Paul in the mid- 
1 9 7 0 ~ . ~ '  

Choose a model that assumes constant  maximum 
accelerations and velocities in Cartesian space. Then 
the same trajectory function that we used in joint 
space can be  used in Cartesian space. By interpolating 
along this trajectory, we obtain  a series of  Cartesian 
frames. Each of these frames may be converted to  a 
joint-level setpoint vector by the application of an 
inverse kinematics subroutine.  That is, motion along 
a straight line or any  other trajectory in Cartesian 
space may be achieved by repeated application of 
the inverse kinematics routine. Of course, if this is 
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to be repeated for every setpoint, the kinematics 
routine  must be extremely fast. Computation may 
be  saved at  the price of greater deviation from the 
trajectory by precomputing only some of the carte- 
sian setpoints, performing inverse kinematics, and 
interpolating the results in joint space. Alternative 
approaches to this problem have been analyzed by 
Tay10r.j~ 

A variety of methods have been  used to perform via- 
point motion, in which a  number of intermediate 
frames are specified as well as the goal frame. If the 
path between these is  piecewise linear, the  end effec- 
tor will have to stop at each position, because it 
cannot instantaneously change the direction of its 
velocity vector. One  method is to blend together the 
line segments of the path by quadratic arcs that 
deviate from the via points by a specified  distance." 
(See Figure 7.) An alternative is to use cubic splines.82 

Limitations  ofconventional approach. In the conven- 
tional trajectory planning schemes just described, we 
have assumed fixed upper  bounds on acceleration 
and velocity in the planning space. These assump- 
tions are often unrealistic. 

A more realistic assumption is that  the limit on the 
amount of force (or  torque)  a  joint may generate is 
a given constant.  For  a single linear joint, we may 
write 

ma = factuator + fother  . 
That is, the acceleration depends on the mass of the 
payload, the force generated by the  actuator,  and 
other forces such as friction and gravity. This means 
that if there is a  constant  limit on actuator force, the 
limit on acceleration will vary  with mass and  other 
forces.  Even in this simple case, the  assumption of a 
fixed acceleration limit does not account for varying 
payload, gravity, or interactions with objects in the 
environment,  as in compliant  motion.  The abilities 
to deal well with changing payload and  to perform 
compliant  motion  are of critical importance in many 
robotics applications. 

In fact, it is not even reasonable to assume a fixed 
torque  limit for many actuators; the  torque limit 
often depends on motor velocity. 

In the case  of a complete robot system including 
revolute joints,  matters  are made considerably worse 
by the fact that  the forces acting on each joint  depend 
on the positions, velocities, and accelerations of  all 
the other  joints. 
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These considerations mean that, even for joint-level 
trajectories, any assumptions about fixed  accelera- 
tion limits must be based on the worst  case. This 
results in motions  that  are usually  slower than nec- 
essary, or else the  actuators may  be incapable of 
following the requested trajectory. 

Additional problems are introduced by  Cartesian tra- 
jectory planning. Assuming  fixed limits for velocity 
and acceleration in  Cartesian  space compounds  the 
problems that arise  when these assumptions are 
made for joint space. Consider a vector function x(q) 
that gives  Cartesian positions as a function of joint 
positions. The Cartesian  velocity vector x is  related 
to the joint velocity  vector q by its derivative with 
respect to q, the Jacobian matrix J. The values of 
the elements of the Jacobian vary over the workspace 
of the robot. When one of the values approaches 
zero, it means  that  a very small change in a Cartesian 
variable corresponds to  a large change in a  joint 
variable. This means that  a very  large angular veloc- 
ity of a  joint is required to achieve some seemingly 
reasonable Cartesian  velocity. In one such situation, 
shown in Figure  8A, the  arm is initially pointed 
straight up. To bring the  tip directly downward just 
slightly,  it  is  necessary to make relatively  large 
changes in two joint angles, as shown in Figure  8B. 
The relationship between  Cartesian and  joint accel- 
erations exhibits similar difficulties. The situation is 
similar to that of backing up a long truck; a small 
adjustment of the steering wheel may cause a large 
displacement of the tail end. 

Dynamics. Taking dynamic limits into account in 
trajectory planning is an important area of  re- 
~ e a r c h . ~ ~ - ~ ’  An important result by Hollerbach and 
Flash at MIT is the discovery of a time-scaling 
property in manipulator dynamics.85 Suppose that  a 
trajectory is planned without consideration of dy- 
namic limitations of the manipulator. It may  be 
determined, using the inverse dynamics computa- 
tion, whether achieving each setpoint along that 
trajectory will require manipulator force limits to be 
exceeded.” Hollerbach develops a method that al- 
lows the speed  of the  manipulator along its path to 
be  scaled to bring it within specified torque limits, 
without re-executing the inverse dynamics compu- 
tation. 

Recently, Bobrow, Dubowsky, and Gibson devised 
an algorithm for determining the time-optimal tra- 
jectory of a  manipulator along a prespecified path, 
given dynamic constraints.86 The problem is for- 
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Figure 8 The  singularity  problem: (A) arm  straight  up; 
(B) small  downward  motion  requires  large  angular 
motion 

Figure 9 Optimal  trajectory  in  state  space 

mulated in state space, with distance along the path 
on one axis and velocity along the  other. (See  Figure 
9.) The dynamic constraints are represented as a 
forbidden region in state space. It is known (a result 
of Pontryagin’s maximum principle) that  the time- 
optimal trajectory is a sequence of motion segments 
consisting of maximum accelerations and maximum 
decelerations. Bobrow et al. have also developed a 
simple algorithm to  compute  the switch points be- 
tween the acceleration and deceleration segments so 
as not to enter  the forbidden region. The  computa- 
tion of this trajectory is too slow to be suitable for 
use at move execution time, but may be  used for 
preplanning trajectories and as a basis  of comparison 
of suboptimal trajectories. 
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Figure 10 Obstacle  avoidance and dual  problem: 
(A) moving  a  polygonal  object  through  a  maze of 
obstacles  without  reorientation; and 
(B) moving  a  point  through  grown  obstacles 

These techniques for optimizing time along a known 
path have  led to several algorithms for finding the 
time-optimal trajectory over any possible path. Sahar 
and Hollerbachgo and Browns9  have both used the 
approach of graph search through the elements of a 
tesselated space to find the best trajectory. These 
algorithms require a great deal of computation, even 
for simple examples. Rajan takes a different ap- 
proach, representing the search  space as a parame- 
terized set  of  paths." Rajan chooses cubic splines for 
his parameterization, on  the assumption that  the 
optimal path will  be smooth.  The Bobrow-Du- 
bowski-Gibson algorithm is used to find the mini- 
mum time trajectory along that path. Initially, a 
single spline curve is  used, and  the path is vaned by 
changing the free parameters of the spline. This 
allows the best path that can be constructed with a 
single spline to be found. This path is then subdi- 
vided at a knot point, and the best path using two 
splines throughout the  knotpoint is found.  The knot- 
point is then perturbed to find one  that produces a 
locally optimum  path. This process may then be 
repeated, recursively subdividing the splines. 

Trajectory  planning for task-level programming. 
Task-level programming requires the generation of 
robot arm trajectories from geometric models of the 
robot, the objects to be manipulated, and their en- 
vironment. Some of the  important parts of this prob- 
lem that have been studied are obstacle avoidance, 
grasp planning, and fine-motion planning. 

Obstacle avoidance. Obstacle avoidance is a difficult 
problem and  one  that has received considerable at- 

t e n t i ~ n . " - ~ ~ - ~ ~  One approach, developed by Lozano- 
Perez and Wesley, converts the problem of moving 
an object through a clutter of obstacles, as in  Figure 
10A, to  an equivalent problem of moving a single 
reference point through an  environment of grown 
obstacles, as in Figure 10B.93,94 This important trans- 
formation greatly  simplifies the problem and leads 
to a direct solution for distance-optimal paths for 
polygons in  the plane. These techniques were applied 
to path planning for Cartesian manipulators. 

Lozano-Perez generalized and made heavy use of the 
important  notion of conjiguration space, the space 
of all  possible configurations of the entity under 
consideration. For example, the configuration space 
of a robot has one dimension for each of its joints; 
the configuration of an object constrained to move 
on a surface is three-dimensional (x, y,  e). Insight 
into many geometrical problems may be  gained by 
posing them  in configuration space. 

Note that a robot configuration is a point in the 
configuration space of that robot, which often has 
dimensionality six. The high dimensionality of the 
configuration space of general robots has limited the 
utility of pure configuration space approaches for 
robot path planning.lW 

Brooks9' has developed a special-purpose solution 
for an  anthropomorphic manipulator, using four of 
its six degrees of freedom. Free space is described in 
two ways: as a freeway for the upper arm,  and as a 
freeway for the forearm. The motions of the two 
components are analyzed separately, and  then con- 
straints are propagated between the two solutions. 

Schwartz and Sharir have  shown that  the general 
obstacle-avoidance problem for a robot can be  solved 
in polynomial time. Their algorithm is  of theoretical 
interest only, because of the large  size  of the expo- 
n e n t ~ . ~ ~  

The obstacle-avoidance approaches that we have 
discussed  use  global  knowledge  of the geometry of 
the  environment. A different, local approach to ob- 
stacle avoidance is discussed in the next section, on 
control. 

Grasp planning. A number of constraints must be 
satisfied in grasp planning. No unexpected collisions 
must occur, there must be no slip  while carrying the 
object, and  the grasp position must be such that  the 
object can be  picked up  and  put down. 
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In 1972, R. Paul used a set of heuristics based on 
orientation vectors for the robot gripper. Paul re- 
quired that  the center of mass of the object lie 
between the jaws of the gripper, to prevent rotation, 
and  that  the jaws grip two parallel  faces, a face and 
an edge, or two edges coplanar with the mass center. 
A set of orientation vectors  is constructed for each 
object to be grasped. Paul uses a command called 
move-instance to move an object from position A to 
position B. For each orientation vector of the object, 
this requires the  computation of the intersection of 
the ranges of approach angles for both positions A 
and B. This avoids penetration of the  support plane 
and violation of robot joint  limits4' 

This and  other early  work on grasp planning make 
the assumption that  the gripper may be positioned 
so that,  at grasp time, simply closing the jaws pro- 
duces a stable grasp on  the workpiece. In the presence 
of uncertainty, it  may be knocked over or  the grasp 
may not be stable. More recent work by Mason47 
views a grasp as a sequence of pushes, and identifies 
sequences that may be guaranteed to produce a stable 
grasp in the presence of positional uncertainty. 

Fine-motion planning. The  job of a task-level planner 
is to produce a  manipulator program. Of particular 
importance  and difficulty  is the generation of com- 
mands for fine motions involving contact, where 
success of the strategy depends on  error bounds, on 
position, and  on the use  of compliance. An approach 
taken by both Taylor and Lozano-Perez in the 1970s 
was to maintain parameterized strategy skeletons, 
and  to choose from among  them  on  the basis  of the 
values of goals and error b o ~ n d s . ~ ~ , ' ~  

Dufay and Latombe have proposed an approach in 
which a ground plan  is initially formulated and  then 
data are gathered about its performance during a 
training phase. Using the execution traces from the 
training phase, an inductive phase then modifies the 
ground plan to cope with problems encountered in 
training."' 

An approach recently taken by Lozano-Perez, 
Mason, and Taylor"'  is the  automatic synthesis of 
motion strategies from task geometry by backward 
~haining.~' Given the desired final position of an 
object to be  placed, its preimage is constructed in 
configuration space. The preimage is the region of 
all starting positions from which the object may  be 
moved to its destination with a straight-line motion 
in configuration space, as shown in Figure 1 1. By 
constructing the preimage for the preimage, etc., a 
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Figure 11 Preimage  in  which 
the shaded  area is 
the region  from 
which  a  point  may 
move to the bottom 
of the slot  with  a 
single  straight-line 
motion 

Figure 12 Friction  cone  show, 

going compliant 
ing a point  under- 

motion  toward a 
surface: (a) the 
point sticks if its 
angle of incidence 
lies within  the 
friction cone; and 
(b)  otherwise the 
point  slides 

sequence of moves  is generated. Errors in position 
and direction may  be taken into account by shrink- 
ing the preimages. Compliant motions may also be 
incorporated by making the basic move operation a 
compliant one. When a point that is undergoing 
compliant motion encounters a surface, it slides 
along the surface if its angle of incidence is outside 
the range of values  where friction will cause it to 
stick. This range  is  usually  called thefriction cone of 
the surface, which  is illustrated in Figure 12. 

Robot control 

In this section we describe the state of the  art of 
robot control within the general framework shown 
in Figure 13. This framework is helpful, because a 
general solution to  the robot control problem does 
not yet exist, and only several restricted subclasses 
of the robot control problem are solved. The general 
framework for robot control allows us to classify all 
robot controllers, to understand the context in which 
current controllers were  designed, and  to understand 
the performance one can expect to achieve from 
each  design. This framework also indicates directions 
for future research and development to achieve 
higher-performance robot controllers. The following 
aspects of robot control are considered: 

Controller objectives 
System model 
Control methods 
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The most important feature that characterizes a ro- 
bot controller is the system model that was consid- 
ered in its design. The system model depends on  the 
robot controller objectives and includes information 
on  the robot mechanical design, actuators, sensors, 
and  the “world” the robot is manipulating. 

The robot controller  objectives are the responsibilities 
delegated to  the robot controller. The controller 
objectives are specified in terms of the system model 
considered. Examples of objectives for a robot arm 
end effector are “follow a given trajectory in free 
space” or “move to a specified position.” A more 
complex example is “move  to  a specified position 
while avoiding obstacles.” This might include obsta- 
cles  which are moving or unexpected. Two examples 
of objectives which involve compliant  motion  are 
“insert a peg into  a hole” and  “command  a given 
point on  a robot to behave as if it were a spring or  a 
damper.” In this section, we discuss  how controller 
objectives may be attained, rather than how the 
specifications are written or obtained. 

Given the system model and  the controller objec- 
tives, many control methods may be used in  the 
controller design to achieve the required task  with 
satisfactory or optimal performance. There are two 
basic  types  of control: open-loop control and closed- 
loop control. 

In open-loop control the robot actuator  commands 
are independent of the actual, achieved robot mo- 
tion. For example, consider the case  of a task in 
which a robot arm is to move from point A to point 
B, and  a force is pushing the  arm away from point 
B. An open-loop control cannot modify the arm 
command  to overcome the disturbing force. In con- 
trast, when closed-loop  control is  exercised, a sensory 
measurement of the actual motion can be  used to 
generate an appropriate correction to  the  actuator 
commands, in order to overcome the unpredictable 
disturbances and achieve the required task. Closed- 
loop control is  used to overcome uncertainty in the 
controlled system. 

In  most  cases, closed-loop control is divided into  a 
feedforward part and  a feedback part. The feedfor- 
ward part is a function of only the  commands to the 
controller. The feedback part is a function of the 
actual measured responses as well. When the feed- 
back part does not exist, the feedfonvard part con- 
stitutes an open-loop controller. 
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and its environment. Currently, even  designing a 
robot controller that can achieve this objective  is 
difficult and is still a subject of research. Interestingly, 
the control-design Droblem involved  with weak in- 



of  following a trajectory with a given tolerance. In 
contrast, the problem of designing a robot controller 
with an objective of strong interaction is much more 
difficult. In this case, the best hope for a satisfactory 
solution is to delegate to  the robot controller the 
responsibility of responding to  the local interactions 
between the robot and its environment. This is  be- 
cause the controller provides the most direct path 
between sensors and  actuators  and has the required 
detailed information on both the local interaction 
model and  its  current state. It is in an ideal position 
to take quick corrective 

No interaction motions. The most common case in 
current robot systems is that in which no interaction 
with the  environment is considered. The following 
is a list of objectives of this type: 

Get  to a point. 
Follow an approximate path to a point with  suffi- 

Follow a given path accurately, as in laser cutting. 
Follow a trajectory. 
Improve trajectory accuracy by learning. 
Perform local trajectory interpolation. 

The simplest task of a robot is to move its hand from 
one point to  another.  The simplest case  is for the 
final position of the  hand  to lie within a specified 
tolerance and to achieve this within some settling 
time. A more difficult objective is to keep the  hand 
within a specified tolerance along its entire path. 
This objective is required to avoid collisions.  Still 
more difficult  is to follow a specified trajectory, 
which requires that  the  hand be at a specified point 
along the path at a specified time.  To improve track- 
ing performance, learning methods were  suggested 
by Raibert"' and Craig.'04 

We now consider the improvement of trajectory 
accuracy by learning. Virtually all robots at work in 
factories today repeat their  motion in cycles. This 
causes part of the error encountered to repeat itself 
from cycle to cycle. CraigLo4 designed an  adaptation 
scheme to modify the required trajectory and cancel 
any repeated tracking errors sensed in previous 
cycles.  Using this method, the repetitive error caused 
by the use of an inaccurate or approximate model 
for the trajectory planning can be learned by the 
robot and compensated. Therefore, the errors that 
remain are reduced to those that are not repetitive. 
Thus, a more experienced robot can do a better job, 
as one expects. 

cient accuracy to avoid collisions. 
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We now consider the problem of  local trajectory 
interpolation by the controller. The  motion planner 
computes a representation of the required trajectory. 
In  most  cases, the representation is a set of  evenly 
spaced in time position sample points: the goals at 
each sample of time. Often the sample rate of the 
position goals provided by the  motion planner is not 
sufficient for smooth operation of the controller, and 
interpolation is  used to estimate intermediate points. 
This method of specifying the trajectory to  the  con- 
troller has a number of undesirable features. It re- 
quires that  the motion planner perform excessive 
computation  to produce a large number of sample 
points. This large number of sample points further 
burdens the  communication  to  the controller with a 
large amount of data  that requires a short transmis- 
sion latency. Although the controller is  usually  re- 
quired to be sufficiently intelligent to  compute inter- 
polation points, it does not receive any direct infor- 
mation on the  motion  trend (e.g., whether the robot 
is accelerating or slowing down) which can help the 
controller achieve better performance. Several alter- 
native methods of specifying the local trajectory 
objective are proposed to alleviate these problems: 

Generate trajectory sample points at a lower rate, 
but include with each point both  the desired po- 
sition and several of its derivatives (usually veloc- 
ity and acceleration). 
Specify a trajectory to  the controller by passing 
parameters of the functions to be  achieved  (e.g., 
polynomials or spline functions). 
Specify motion algorithms that depend on mea- 
sured data (e.g., guarded move). 

Collision avoidance. Several researchers have  inves- 
tigated dynamic collision avoidance within the robot 
controller. By dynamic collision avoidance, we mean 
that  the robot path is adjusted in real time so as to 
avoid collision with obstacles whose position or tra- 
jectory is not known in advance. The global problem 
of obstacle avoidance, discussed in an earlier section, 
is a very difficult one. An approach using only local 
information is discussed here. 

This method involves constructing a potential field 
in which obstacles make a positive contribution and 
the goal makes a negative contribution, where both 
contributions depend on  the distances involved. At 
each moment in time, the  arm follows the position 
gradient to  the  minimum potential, consequently 
approaching the goal  while at the same time being 
deflected from obstacles. 
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This obstacle-avoidance method was implemented 
for a two-degree-of-freedom manipulator by 
Hoganlo' and Andrews.lo6 Kleinwaks implemented 
another  dynamic obstacle-avoidance scheme for a 
three-degree-of-freedom articulated robot, using Op- 
timal Decision Strategy."' Khatib79 implemented a 
more general dynamic obstacle-avoidance control 

If  the  robot  is  to  turn  a  crank  without 
pulling  on its  pivot,  its  motion  should 

comply  with  the  geometric 
constraints of the  crank. 

that included not just  the robot hand  but  the entire 
arm of a six-degree-of-freedom PUMA 600 robot. Ob- 
stacle avoidance by the entire robot arm was 
achieved by including a deflection potential gener- 
ated by the distance of each one of the robot links 
to  the obstacles in its  path. In Khatib's implemen- 
tation  the position and orientation of the obstacles 
were  collected by an industrial vision system, thus 
allowing the robot to sense moving obstacles and 
respond in real time. 

One problem with these systems is that a potential 
is generated even by objects that  cannot cause a 
collision. This results in extraneous avoidance mo- 
tion. Kroghlo8 extended the idea of a position-de- 
pendent potential field to a generalized potential field 
that depends on both positions and velocities of the 
robot hand with respect to each obstacle along its 
path. Krogh's extension has not been implemented, 
but appears promising for overcoming some of the 
artifacts of position-only methods. 

A basic characteristic of the potential field approach 
is that  the robot path is determined by local proper- 
ties of the potential field. Therefore, there is no 
guarantee that  the robot motion is appropriate in 
any global  sense or that  the robot can achieve its 
intended goal.  Even  using only local information, 
these methods have  been shown to produce globally 
acceptable paths in many typical situations. In com- 
plex situations a more general solution might be 
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obtained by using a global trajectory planner  to 
provide the controller with intermediate subgoals, 
and  then using the local techniques.lo8 

Compliant  motion. When the robot task involves a 
strong interaction between the robot and its environ- 
ment, the robot motion is constrained by that inter- 
action. Most strong interaction tasks arise when the 
robot is required to perform a motion  that involves 
contact with objects in the robot environment. For 
these types of motion,  the robot has to comply with 
the  environment,  and, therefore, it is  called com- 
pliant  motion. A common example of compliant 
motion in industrial robotics is the ordinary problem 
of inserting a peg into a hole. 

Another simple example of compliant motion is the 
task of a robot turning a crank. This task is  used 
here to demonstrate several solution strategies for 
compliant motion. The natural constraints on a 
crank that arise from geometrical constraints (the 
pivot) reduce the  number of  degrees of freedom from 
six (in free space) to one (turning around  the pivot). 
If the robot is to  turn a crank without pulling on its 
pivot, its motion should comply with the geometric 
constraints of the crank and only apply motion to 
the one free  degree of freedom left in the manipula- 
tion problem. 

MasonIW introduced a convenient way to specify the 
motion of the unconstrained degrees  of freedom in 
compliant motion by specifying additional artijicial 
constraints that  are camed  out by the robot actua- 
tors. When combined with the natural constraints 
imposed by the task geometry, these constrain the 
manipulation problem to have a unique solution 
that is the required goal t r a j e ~ t o r y . ~ ~ , ' ~ ~  

Four approaches to compliant motion are consid- 
ered in robotics: 

Force control 
Impedance control 
Task-level control 
Wobble (dithering or vibration) 

We  now explain each of these approaches by follow- 
ing the solution of the crank-turning problem. 

Force control. A common approach to compliant 
motion in robotics is to control the force applied by 
the robot hand rather than  the position of the  hand. 
Force control permits compliance by allowing the 
user to specify the  amount of force to be  used to 
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resist the forces that naturally arise in  manipulation. 
This is in contrast to conventional position control, 
where the robot exerts an arbitrarily large  force to 
achieve the specified position. Force control may be 
specified in joint coordinates or any set of  Cartesian 
coordinates. Often force  is  specified for some degrees 
of freedom and position for others. 

For example, a robot may turn  a crank using com- 
bined force and position control by applying position 
control to  the one revolute degree of freedom and 
force control to all the others to null forces in all 
directions other  than  the tangential one.'" This strat- 
egy relies on accurate knowledge  of the coordinate 
system  of the  crank, because a slight error in the 
direction can lead to large  forces on  the crank pivot. 
More information may  be found in  a recent survey 
of robot force control by Whitney.'" 

Impedance control. The requirement for precise 
knowledge about  the direction of the degree  of  free- 
dom in which motion is permitted may be reduced 
by the use  of impedance contr01.l~~ Using impedance 
control, one specifies not only the required position 
of the robot hand  but also its required local behavior. 
This behavior is  expressed as the required relation 
between the position error and  the force to be applied 
by the robot to correct it. The required relation may 
include time derivatives of the position error as well. 
One impedance-control strategy to solve the crank- 
turning example'06  is to specify a desired crank po- 
sition x0 that is a  quarter of a  turn ahead of the 
current position. The relationship between the force 
f and  the position error x - x0 is given as the equation 
for a spring: 

f = -K(x - xO). (1)  

The spring constant matrix K must not be too large. 
The specification of Equation (1)  can also be ob- 
tained by specifying a potential field that is a function 
of position x. The force f results from the gradient 
of that potential with  respect to position. The poten- 
tial field specification leads to  a nonlinear generali- 
zation of Equation (1)  and was also used to include 
local obstacle-avoidance specifications for con- 
tr01.105.1 I2 

Equation (1) can be  generalized by including a bias 
force fa, as shown in Equation (2): 

f - fo = -K(x - ~g). (2) 

The system then tries to achieve a steady state in 
which it is pushing with  force fa. 
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By varying the spring constant in Equation ( 2 ) ,  we 
can vary the required control continuously from 
force control when K = 0 to position control when 
K approaches infinity. (For simplicity, K is assumed 
to be a scalar.) Thus, we see that impedance control 
is a generalization of both position and force control. 

Task-level control. In some cases one would  like to 
further generalize the requirements from the robot 
controller beyond position, force, and impedance. 
Such a generalization, suggested  by I~h-Shalom,~~ is 
a Control System (CS) language to describe artificial 
constraints that uniquely specify the goal trajectory. 
The Control System  language  system structure is 
shown in Figure 14. The cs language description of 
the required artijicial constraints includes a set  of 
equations and  a set of inequalities that describe the 
desired relations among objects the robot is manip- 
ulating. The equations and inequalities generally 
depend on sensory measurements obtained by the 
robot system. Geschke4'j implemented a subset  of 
such a system that included vector equations but 
ignored dynamics resulting in slow motion. 

Using the cs language approach, one can specify the 
artijicial constraints for the crank-turning problem 
by using a cross-product equation, 

f x v = O .  (3) 

Equation (3) specifies that  the direction of the force 
f the robot needs to apply should be  parallel to  the 
measured velocity v at  that point.48 

Wobble. In the Wave''' and A L ' ~  robot languages 
one can specify a wobble (dithering or vibration) 
amplitude for a  motion. Adding a high-frequency 
wobble can help in assembly tasks by breaking stic- 
tion (i.e., sticking friction) and by causing parts to 
mate by random interactions. Usually the wobble  is 
at a frequency beyond the response of the closed- 
loop robot control, and it  is thus best done open- 
loop. Therefore, a separate specification  has to be 
added to  the design of the robot controller so that 
such a motion can be achieved. In the case of the 
crank-turning example, wobble can be used to break 
sticking and  to determine the initial direction in 
which the crank is free to  turn. 

System model 

Several aspects of the system  model are considered: 

The extent of the system model 
The type of equations describing the model 
The model decompositions used 
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Figure 14 Control system language system structure 

Model extent. The following  issues may be consid- 
ered  in the system  model: 

Uncertainty 
Model of the robot itself 
Robot interaction with the world 
Failures 

Currently, there is no robot controller that considers 
all  these items. In some cases, not all of the issues 
need  be considered, as in the case  of a laser-cutting 
robot that has no mechanical interactions with the 
part it  is cutting. We now consider each of these 
issues  in more detail. 

Uncertainty. There are many sources of uncertainty 
in a robot system. These include uncertainties about 
the values  of geometric or dynamic parameters, such 
as link dimensions and inertias, respectively. They 
also include uncertainties that are induced by inten- 
tional approximations, such as the use  design of 
independent joint servos or the neglect  of a “world” 
model. 

Geometric uncertainty limits the robot accuracy, but 
it can still  allow quite good repeatability of an open- 
loop controlled robot in many cases. Geometric 
uncertainty can be  largely overcome by a closed-loop 
feedback control, where an appropriate sensor meas- 
urement is  used to observe the required relationship 
and modify the robot actuator  commands appropri- 
ately. Dynamic uncertainty limits the predictability 
of the dynamic response of the robot. This, in  turn, 
limits path-tracking accuracy. The dynamic uncer- 
tainty also limits the ability of feedback control to 
correct for uncertainty. To simplify the control sys- 
tem many approximations are used in the system 
model. Often these approximations actually result in 
better robot performance because the simpler ap- 
proximate control computations allow  for a higher 
repetition rate of the control calculation. Using feed- 
back control, the uncertainty can be reduced to  a 
limit determined primarily by the accuracy and res- 
olution of the available sensors. 

Robot  model. Usually the system model includes 
only a model of the robot itself. This is appropriate 
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in  the case  where the robot has no interaction with 
the workpiece and there is no concern for obstacles. 

To achieve  high  reliability of 
manufacturing  lines,  the  mean  time 
to  failure  for  the  robot  should be of 

the  order of months. 

In general, the following elements bear consideration 
in formulating the model: 

Kinematics: Relations between motion of robot 
links and Cartesian positions 
Dynamics: Relations between applied forces and 
torques and robot link positions as a function of 
time 
Robot structure (rigid or nonrigid links) 
Actuators 
Mechanical transmission elements between actua- 

Sensors 

Robot world interaction  model. In order to ade- 
quately control interactions between the robot and 
its environment,  a model of these interactions is 
needed in the controller. Some of these interactions 
include 

Obstacle avoidance 
Contact with objects 
Picking up objects, which results in changes of 
inertia 
Performing a task that requires the robot to 
achieve a given relationship among objects in the 
robot world, as in grinding a weld seam to  smooth 
the surface 

tors  and robot links 

Robot failure model. A robot is a mechanical device, 
and as such it can have mechanical and electrical 
failures. The problem is further  compounded in that 
a single robot is usually just  one part of a manufac- 
turing line. In order to achieve high  reliability  of 
manufacturing lines, the mean time  to failure for the 
robot should be of the order of months. Also, robots 
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are expected to work hard, often several  shifts. The 
life expectancy of a robot should be at least ten years, 
which means that it is  expected to perform for over 
a  hundred thousand hours. One  can compare this to 
the average  life  of a car, which  is only several thou- 
sand active hours. 

In order to achieve high  reliability,  low maintenance, 
and long life expectancy, a robot failure model is 
desirable. Reliable performance might be achieved if 
the robot could continue  to function with minor  (or 
maybe even major) failures. A robot can  continue  to 
function under failure conditions if it has sufficient 
redundancy built into it and its control is  sufficiently 
flexible to  adapt  to  the failure met. A failure model 
is also helpful in  the diagnosis of robot failure, which 
may reduce downtime. Currently, robot failure 
models are practically nonexistent or extremely ru- 
dimentary. 

Model types. There are several  types of mathemati- 
cal models commonly used to describe robot sys- 
tems: 

Static model, with only algebraic equations 
Dynamic model, with only ordinary differential 

Dynamic model, with both ordinary and partial 

Finite-element model 

Static  model. By a static model we mean a model 
that uses only algebraic equations to describe  rela- 
tionships among variables. Many robots are designed 
with this kind of model in mind.  That is, the robot 
model involves only kinematic relationships and 
ignores any dynamic effects. The relationships are 
just  the kinematic transformation between the re- 
quired position in  the task  space coordinate system 
(usually world  Cartesian coordinates) and  the re- 
quired joint angles. Such a model is sensible when 
the robot joint  actuators are controlled by a position 
command  and have a very  high inherent stiffness. 
An actuator has high positional stiffness if the actua- 
tor position does not deviate much from the com- 
manded position even  when a disturbing force  is 
applied. 

Most robots that use step-motors for their actuators 
fall under this category,  because step-motors are 
commanded  to move a given number of steps and 
they are very stiff. In this situation, the control 
system  is  relatively simple, because an open-loop 
controller can be used and  no  joint position or 

equations (ODES) 

differential equations (PDES) 
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velocity sensors are required. Therefore, the cost  of 
the system  is  very  low; currently such a robot can be 
purchased for just several thousands of dollars. 
Nevertheless, such a robot can have  very  good  re- 
peatability because of the high  stiffness of the step- 
motor actuators. Unfortunately, in this case, there is 
a trade-off  between robot speed and  the positional 
resolution it can achieve.  Newer control tech- 

step-motor performance. However, this requires that 
a dynamic model of the robot be considered, as we 
discuss next. 

niques’ 14-1 I6 may be  used to improve this aspect of 

To model  static  and  dynamic  effects 
of flexibility, it is necessary to 

consider  pariial  differential 
equations. 

The problem of controlling a system described by 
algebraic equations is not a control problem in the 
classical  sense. The problems involved are those of 
evaluating a function and finding its inverse. These 
problems are often studied in the field  of numerical 
analysis. 

Dynamic model with ODES only. In most cases, the 
command  to  an  actuator corresponds to  the steady- 
state force or velocity to be produced by the actuator. 
In this case, and in general, a dynamic model is 
required when the  command  to  the  actuator is not 
the same as the  actuator  output. A dynamic model 
is also required when one wants fast motion and  at 
the same time wants to specify the robot motion as 
a function of time, rather than merely  final position. 

The main requirement for a dynamic model arises 
from the use  of  feedback control. It is almost never 
possible to design a stable feedback controller with- 
out a dynamic model. The simplest dynamic model 
involves only ordinary differential equations (ODES). 
The simplest form of a dynamic model for a robot 
is a second-order differential equation  that results 
from Newton’s second law. The simplest dynamic 
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model  is for a single linear axis of a rigid-link carte- 
sian robot, 

mx = u(t), (4) 

where m is the total mass the linear actuator has to 
move and x is the acceleration (second derivative of 
position) resulting from the controlled input force 
u(t) produced by the linear actuator. Each linear axis 
of a rigid-link  Cartesian robot has an independent 
equation of the form of Equation (4). Friction and 
actuator dynamics are  omitted from Equation (4) 
for simplicity. 

For a serial-link revolute rigid robot, the equivalent 
of Equation (4) is much more complex. Following 
Bejczy,’” it is as follows: 

Wdii + h(q, 4) = u(t), ( 5 )  
where q(t) is a column vector of generalized coordi- 
nates representing joint positions, M(q) is an n X n 
matrix of acceleration-related terms, h(q, q) is a 
column vector function representing a combination 
of gravitational, centripetal, and Coriolis forces, and 
u(t) is a column vector that represents the  input 
torque  at each joint. 

Note that for a Cartesian robot without a wrist, the 
dynamic equations of the type of Equation (4) are 
linear and decoupled. That is, the  equation for each 
axis  is independent of those for the  other axes.  In 
contrast, the equations of the type of Equation (5) 
for an  anthropomorphic robot, like a human being, 
are nonlinear and coupled. The control of a system 
with linear dynamics is well understood, whereas for 
nonlinear equations there is at this time  no good 
theory for controller design. For this reason, a large 
variety  of heuristics have  been developed for robot 
control. 

Dynamic model with PDEs. A real robot is not made 
of infinitely rigid links. Lack of consideration of the 
flexibility of the robot structure (links) results in 
static and  dynamic model errors. In order  to model 
static and dynamic effects  of  flexibility, it is necessary 
to use a more complex model involving partial dif- 
ferential equations (PDES). Even calculating the static 
position of the robot under its own weight  becomes 
complex, and finite-element methods may be  re- 
quired. 

One wonders how it is  possible that  the flexibility of 
the robot structure is considered by  very  few con- 
trollers. The reason  is that  the sensors used for 
feedback control of each actuator  are always located 
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easy to achieve."' Collocated control implies that 
each joint must be controlled as an independent 
system. Consequently, coordination of the motion 
of the  joints is limited to feedforward only. This 
method, which  is currently in  common practice, 
results in relatively poor control of coordination 
between  axes. 

A current  trend in robotics is toward lighter-weight 
robots to reduce mass and  improve accelerations. 
Often, however, lighter weight  is concomitant with 
greater flexibility. Another trend is toward the use  of 
endpoint sensing, in which the sensor is  placed so as 
to directly measure its relationship to  the workpiece 
and  thus increase the robot precision. Both of these 
trends imply the increasing importance of accurately 
modeling and controlling flexible structures. Cannon 
and  other  authors have studied this problem re- 
cently."8-'23 

Model decompositions. As seen from the discussion 
in  the previous sections, the model for a robotic 
system is usually  very complex. It involves nonlinear 
algebraic equations, nonlinear ordinary differential 
equations, and even partial differential equations. In 
order to simplify the analysis and control design 
using these equations, the model is decomposed into 
as many independent  parts as possible. Furthermore, 
an  attempt is made to obtain a hierarchical decom- 
position. One method is to take advantage of direct 
mathematical decompositions of the model equa- 
tions. Another is to separate the controller objectives 
upon which the model depends. An example is that 
of separating the specification of a nominal trajectory 
from the specification of  local behavior along that 
trajectory. Some of the methods used in system 
decomposition are the following: 

Separation of equations of different types (alge- 
braic only, or including ODES, or including ODES 
and PDES) 
Clustering of variables into independent groups 
Separation of nominal control from perturbation 

Separation of activities whose time scales are dif- 

Separation into a simplified  global problem and 

Clustering of  related information and processing 

In most cases,  even after these decompositions, the 
subsystems are still too complex, and further ap- 

control 

ferent 

more detailed local problems 
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process. A more complex model can be used (and 
usually is) for design verification and system simu- 
lation. 

Control methods 

Figure 15 shows three standard forms of controller 
structures. Part A shows an open-loop controller, 
and Parts B and C depict closed-loop controllers. 
Part B shows a generic closed-loop controller, and 
Part C depicts a commonly used decomposition into 
feedforward and feedback parts. In standard control 
terminology the desired motions yd(t) are  the  inputs 
to the controller, u(t) are  the  actuator  commands  to 
the robot, y ( l )  are  the motions achieved by the robot, 
and z(t) are other measured variables related to  the 
robot motion, where t is time. The desired motion 
Yd(t) can represent desired position or force in either 
task space or  joint space. 

However, this  standard controller model does not 
encompass some types of input requirements. One 
example is the specification of the desired response 
to external perturbations (stiffness) required in 
impedance control. Therefore, in looking at the con- 
trollers in Figure 15 one must remember that there 
are other  input requirements besides Yd(t). specifi- 
cations of this type are required for compliant mo- 
tion. 

Most  of the work in robotics has concentrated on 
open-loop control  or  the feedforward part of the 
controller. The feedforward controllers are usually 
designed to cancel in one way or  another  the nonlin- 
ear dynamics of the robot [e.g., Equation (5) for an 
anthropomorphic robot]. The method used to cancel 
the nonlinear dynamics is critical to performance 
when implemented on a real  system  with limits on 
computational speed and accuracy. In our discussion 
we concentrate on closed-loop control methods and 
the design methods for the feedback control part, as 
shown in Figure 15C,  which are crucial to overcom- 
ing the  inherent uncertainty in  the system. 

As discussed earlier, the system can be decomposed 
into several parts, which  usually implies that  the 
controller can be decomposed in a similar way. The 
most common decomposition is a decentralized con- 
troller structure  that has independent joint control- 
lers. This feedback controller considerably simplifies 
both the dependencies between the controller parts 
and  the required real-time control computations, but 
it  has many limitations. 
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Figure 15 Open-loop  and  closed-loop, feedforward and  feedback  control: (A) open-loop  robot  controller; (B) closed-loop 
robot  controller; (C) closed-loop  robot  controller  partitioned  into  feedforward  and  feedback  operators 

There are several mechanical problems that make 
robot control difficult. These include static friction 
and backlash,  which make it hard to achieve force 
control or very  high translational resolution. For this 
reason, a  number of direct-drive robots that have 
low friction and backlash  have recently been con- 

robots is much more demanding, because there is no 
friction to decouple the  joints  and absorb some of 
the energy  of structural vibration. 

StrUCted~~14-l16,124-126 Stable control for direct-drive 

Recently a survey of current industrial robot controls 
was done by L U ~ . ’ ~  Discussions and selected papers 

appear in References 75 and 127. Several books that 
discuss robot control are a~a i l ab le .~~ .” ’ -~~~  In this 
section we just  point  out  the basics  of  several control 
methods, their relations, and their relative merits, 
including the following: 

Proportional integral derivative (PID) control 
Variable structure (sliding mode control) 
Adaptive control 
Frequency-domain design methods 
Optimal control 
Optimal decision strategy (ODS) 
Compliant control 
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Proportional integral derivative (PID) control. The 
fundamental problem in controlling anthropo- 
morphic robots is that  the  actuators produce motion 
in joint coordinates, whereas the  motion is  specified 
and measured in world coordinates. The rigid  body 
dynamics of a robot are basically those of a moving 
mass. Thus they can be described by a second-order 
differential equation, as exemplified by Equation (5). 
A simple method for control is to cancel the term 
h(q, q), which represents a  combination of nonlinear 
Coriolis, centripetal, and gravity  forces. This is done, 
first, by dividing the control signal vector, u, into 
feedforward and feedback components (u = uff + 
uw). Then choose uff to be equal to h(q, q) to obtain 
a cancellation, and then multiply both sides by the 
inverse of M(q). Note that M(q), the inertia matrix, 
is symmetric positive definite and  can always  be 
inverted. This results in a linear second-order ordi- 
nary differential with the new control 
input h,(t), 

q(t) = "l(q)ufb(t) = Ut@). ( 6 )  
To control such a second-order plant, one can use a 
PID controller of the following form, in which the 
scalar case  is shown for simplicity: 

&(t) = -k,e(t) - k,  e(t)dt - k,e(t), 

where the  joint position error is  given by 
1' (7) 

4 0  = d l )  - qd(f). (8) 
Here, q(t) is the  joint position, qd(t) is the desired 
joint position, and e ( t )  is the time derivative of the 
joint position error.  The PID controller has feedback 
control signal k, proportional to  a weighted sum of 
three forms of joint error. The P (proportional) term 
corresponds to position error, the I (integral) term 
corresponds to  the accumulated position error, and 
the D (derivative) term corresponds to velocity error. 
The P term is required in order to achieve zero error; 
the I term is required in order to try to achieve a 
zero steady-state error; and  the D term is required 
to achieve the motion without oscillations. 

Note that  the feedforward term uff requires an inverse 
dynamics computation. Methods of this type are 
often called computed torque control."' In a similar 
method, the errors e are given in Cartesian space and 
an appropriate coordinate transformation is  used. In 
robotics, this is called resolved motion force con- 
trol. 1 3 3  

The main problem with these methods is the inac- 
curacy in the cancellation of h(q, q) and in the 
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knowledge of the inertia matrix M(q). Both the var- 
iable structure control and adaptive control methods 
offer a remedy for some of these problems while  still 
using a similar controller structure. Another ap- 
proach to solving this control problem is to use a 
robot that has independent linear second-order joint 
dynamics as in Equation (4). Cartesian robots are 

The basic idea in all adaptive control 
schemes  is  that  the  controller's  job 
is  to measure  the  current  system 

and  control  it. 

one case; a mechanically decoupled revolute direct- 
drive arm developed by AsadalZ4 is another. Thus, a 
complex control problem was solved by a careful 
mechanical design. 

Variable structure control.  Explicit accounting for 
parameter uncertainty can be achieved by using 
sliding mode control, sometimes known as suction 
contr01.l~~ In this method, a set  of equations  are used 
to define a virtual surface in phase space that includes 
the goal. The control system  first brings the system 
to this surface and  then causes it to slide along to 
the goal. The system is forced to stay close to  the 
surface by using a control that always points the 
trajectory toward the surface. Each time  the system 
crosses the surface, the control switches the trajectory 
back toward the surface. This switching technique 
overcomes inaccuracies in  the model, allowing a 
simplified model to be used. Control on the sliding 
surface  is  based on a simple differential equation. 

One difficulty  is that switching control can impose 
undesirable high-frequency oscillations in the robot. 
This problem was  by adding a boundary 
layer around  the switching surface to smooth the 
control. A simulation comparison by S l ~ t i n e l ~ ~  
shows that, even for relatively small uncertainty in 
the robot model, the sliding mode control already 
can achieve better performance than  the computed 
torque method. Furthermore,  the large-motion 
joints  and small-motion joints (wrist) can be con- 
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trolled independently, treating their dynamic inter- 
action as model uncertainty. This results in a much 
simpler robot controller while  still achieving good 
performance. The main problem with this method 
is that  actuator  torque limitations cannot be directly 
incorporated into the design. A suggested solution 
was to augment this method with the optimal deci- 
sion strategy (ODS), discussed later in this paper. 

Adaptive control. Three methods of adaptive control 
are discussed here. Each method has a different way 
to deal with robot system model uncertainty and 
complexity. The basic idea in all adaptive control 
schemes is that  the system model is not completely 
known and therefore the controller’s job is to first 
measure the  current system and  then control it. 

The first method uses model reference adaptive con- 
trol.136 In this case, the controller tries to identify the 
system  locally and cancel any undesired terms, so 
that the system looks like a set  of  well-behaved, 
independent, linear second-order systems for each 
joint. This method is somewhat similar to the com- 
puted torque method, but here the robot-coupled 
dynamics are measured on  the fly rather than pre- 
computed from a model. In comparison with the 
variable structure method, this adaptive control 
method eliminates the model uncertainty by contin- 
uously measuring and updating the model. When 
using adaptive control good performance can be 
expected, even  when the robot is carrying a payload 
that is unknown in advance. 

A second methodI3’ uses a self-tuning-type adaptive 
control method. In this method the parameters of a 
set  of second-order difference equation models-one 
for each joint-are estimated in real time. The model 
parameters are used for real-time calculation of the 
controller gains that are required locally. Another 
way to describe this method is that  at each local 
point the controller has three jobs: (1)  measure what 
system model it needs to control; (2) calculate the 
required control gains; and (3) use the calculated 
control gains to control the system. 

The third method13’  is similar to  the second method. 
In this method, however, the known robot model 
dynamics are first  canceled in the feedforward loop 
(as in the computed torque method), and only then 
is a self-tuning-type adaptive control method applied 
to  the perturbed system. One can expect this method 
to give the best performance among  the three meth- 
ods mentioned when the perturbations from the 
known model are small. The disadvantage of this 
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method compared to  the others is that much more 
computation is required to obtain the feedforward 
term. Currently, the adaptive control methods just 

The  advantage of optimal  control  is 
that it  is  a  systematic  method  that 
can  handle  systems  with  strong 

coupling between  the  system  states. 

described have only been demonstrated in simula- 
tion. A major problem with  all adaptive control 
methods is that of guaranteeing global stability. Cur- 
rently there is just  one theorem about positive,  real 
functions that gives conditions for global stability of 
an adaptive control method, and its application leads 
to poor performance. 

Frequency  domain design methods. These methods 
deal primarily with linear systems. By using describ- 
ing functions, the method is extended to some non- 
linear systems as well.  Beyond proportional integral 
derivative (PID) control, frequency-domain methods 
are rarely mentioned in current robot control litera- 
ture, because  they are usually  difficult to apply to 
multi-input, multi-output systems like robots. Re- 
cently, Cannon used these for endpoint 
control of a flexible-link robot with a  redundant 
“micro” actuator. The flexibility implies an infinite- 
dimensional model for the system,  which makes it 
virtually impossible to prove stability for any closed- 
loop controller. Nevertheless, in this case a simple 
controller was constructed using frequency-domain 
techniques, and its stability could be proved because 
of the special structure of the infinite-dimensional- 
system  eigenvalues (pole and zero locations). 

Optimal control. In general, optimal control, using 
the  maximum principle, can be applied to any non- 
linear system.  However, the resulting control is usu- 
ally  of the open-loop type and very complex to 
calculate. It is  used  with a simplified model for 
motion planning in robotics, but it is not usually 
used in the robot controller itself  because open-loop 
controllers cannot deal effectively  with model uncer- 
tainty. 
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The advantage of optimal control is that it  is a 
systematic method that can handle systems with 
strong coupling between the system states. In the 
special  case  when the system dynamics are linear 
and  the optimization criterion is quadratic  in both 
the system state and  the controls (an LQ optimal 
control problem), a simple closed-loop controller can 
be obtained using state feedback. In this case, the 
control is just  the product of the gain matrix with 
the system state vector. Using LQ optimal control, 
multi-input,  multi-output stochastic systems can be 
designed  with an explicit  trade-off  between  desired 
performance and control effort. 

The way to take advantage of the special LQ case in 
robotics is to use a two-level control synthesis of 
nominal and perturbed systems.128’139,140 The nomi- 
nal solution is done in the open-loop manner. As- 
suming that  the system trajectory is close to  the 
nominal  one,  a linear time-varying model for the 
perturbed system  is acceptable. One  can also use LQ 
optimal control to design a closed-loop controller for 
the perturbed system. This optimal controller can be 
designed to handle the resulting coupling in  the 
perturbed model, the model uncertainty, and  a trade- 
off between them  and  actuator limitations. No other 
known method solves these three problems simul- 
taneously and results in  a controller that is guaran- 
teed to be stable under  a variety  of uncertainties. 
However, there are some drawbacks. The resulting 
control needs measurements of  all the states of the 
system, which  is  usually impractical. An “observer” 
may be used to overcome this problem, but only at 
the cost  of  severely  sacrificing performance or stabil- 
ity in  the face of uncertainty. Moreover, the resulting 
control usually has strong coupling between joints. 
This coupling can cause instability because the sen- 
sors and  actuators  are usually not collocated, and 
the structural flexibility cannot be modeled perfectly. 
Finally, the performance criterion is of an integral 
type and does not accurately represent real actuators 
that saturate when some  maximum  torque is 
reached. 

Optimal  decision  strategy (ODs). In many cases 
during the robot motion  the saturation limits of 
the  actuators  are reached. Spong, Thorpe, and 
K l e i n w a k ~ ~ ~ ~ ~ ’ ~ ’  applied optimal decision strategy 
(ODS) to  the problem of robot trajectory-following to 
overcome the  joint  torque limits with guaranteed 
asymptotic stability in the face  of bounded model 
uncertainty. The method uses a pointwise optimal 
control law,  which, at each sample instant, mini- 
mizes a weighted norm of the error between the 
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vector of actual joint accelerations and  a “desired 
acceleration vector,” subject to hard limit constraints 
on  the  torque  at each joint.  The resulting control 
can be computed in real time and has guaranteed 
tracking properties that  are quantifiable, within given 
limits on model uncertainty and  actuator torque. 
The controller has two terms: one to account for the 
model uncertainty and  the  other  to account for the 
actuator saturation limits. In the real-time control 
loop, a calculation of a  quadratic programming op- 
timization is performed at each sample time. The 
resulting control was implemented for a three-link 
revolute robot on  a Motorola 68000 microproces- 
sor.’O7 The accounting for model uncertainty is sim- 
ilar to that obtained by S l ~ t i n e , ’ ~ ~  but it  is  based on 
different principles. 

Compliant  control. As mentioned before, compliant 
motion requires a control system that will not only 
follow a given input,  but will also impose a required 
relationship between manipulation variables such as 
position and force in impedance control. Therefore, 
current control design methods are not particularly 
suitable for such a design.  In some cases, model 
reference control may be  used  where the reference 
model is constructed to represent the desired robot 
behavior. I~h-Shalom~~ has suggested a systematic 
method to translate general compliant control objec- 
tives in the form of equations and inequalities (cs 
language  objectives description) into  a general opti- 
mal control formulation. Furthermore, for some 
class of equation objectives  with linear dynamics, 
the general optimal control problem is reduced to 
an LQ optimal control problem that can be practi- 
cally  solved, and  the resulting control can be imple- 
mented. Unfortunately this method still has many 
unresolved questions and has not yet been imple- 
mented. One of the problems is that of dealing with 
nonlinear robot equations of the form of Equation 
(5). This problem is addressed by Koditschek14*  with 
a technique called natural motion control. This tech- 
nique uses a m-type control for  which the controller 
objectives are encoded in the feedback control. The 
control objectives are formulated as a set  of equa- 
tions that  the system  should try to satisfy,  as in the 
cs language. Thus  the  natural  motion of the closed- 
loop system produces the desired robot motion. 

Taking an example from the  human body, Hogan143 
suggested a method of impedance control using coac- 
tivation of an agonist/antagonist pair of actuators. 
The idea can be demonstrated by comparing the 
response to force exhibited by a tense arm or a 
relaxed one. Impedance control can also be  achieved 
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by specifying the P gain in a PID control when the I 
gain equals 0, which  is the most common method 
used. ' I 2  

In the case  where compliant control is  associated 
with force control, all the  standard control methods 

The  speed,  precision,  and utility of 
robots  depend  on  the  actuators  and 

the  means by  which  they will 
transmit  power  to  their  joints. 

discussed  before can be  used by making the con- 
trolled variable the  output  actuator force, rather than 
position, velocity, or acceleration. Such methods 
have  been implemented and discussed by many au- 
thorS.20,45,79.105.1~~-~~3,~33,~43-~47 

Actuators  and  drives 

The speed, precision, and utility of robots depend 
on the  actuators  and  the means by which they trans- 
mit power to their joints. Some important criteria 
for the evaluation of actuators are their dynamic 
range, the precision  with  which they may be con- 
trolled, the force or torque  that they can generate, 
their size,  mass, and cleanliness. The most common 
type of actuators for robots are electric, hydraulic, 
and pneumatic.6 

Pneumatic actuators provide a great deal of torque 
for the size of the actuator. However,  they are hard 
to control precisely  because  of the compressibility of 
air. They are often used in simple robots that merely 
move back and forth between hard stops, but they 
are not widely  used in more programmable robots. 
A notable exception is the Utah/MIT hand, which 
uses an agonist/antagonist pair of pneumatic actua- 
t o r ~ . ~ ~ *  

Most advanced robots are either hydraulically or 
electrically driven. A number of factors tend to favor 
hydraulic actuators for robots that must carry heavy 
payloads. One reason  is that  the torque-to-mass ratio 
is currently better for hydraulic actuators. 
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Environmental requirements are important. Hy- 
draulic actuators tend to  drip hydraulic fluid or  at 
least produce particles,  which makes them unsuitable 
for the clean environments  that are often required 
for electronics manufacturing. On  the  other  hand, 
some electric motors may be explosion hazards in 
volatile applications such as paint spraying. 

Electric motors have become increasingly popular 
for  powering small-to-medium-sized robots. The de- 
sign  of  new  types  of motors has become an  important 
topic in robotics research. Conventional motors spin 
fast and generate low torque, thus requiring a trans- 
mission for speed reduction. This may be done with 
gears or with a widely  used  device  called a harmonic 
drive149 that provides speed reductions of the order 
of a hundred to one in a very small package.  How- 
ever, transmissions introduce a number of factors, 
including static friction, binding, wear, backlash, and 
cogging, that make it difficult to model the motion 

A recent trend has been in the direction of direct 
drive arms in which no speed reduction is  necessary. 

motors have  been invented that produce high torque 
at low  speed.  In conjunction with suitable mechani- 
cal robot designs, these motors show promise for 
reducing some of the unpredictable aspects of actua- 
tor behavior that have made robot control something 
less than a science. 

Sensing 

A variety of sensors and sensing techniques are used 
in robotics. In this short section we mention a few 
important ones. 

Binary sensors. The most widely  used sensors in 
robotics are binary sensors. The breaking of a beam 
of light or the depressing of a switch are used to 
detect the presence of parts in almost every applica- 
tion. It is not unusual to have to  monitor hundreds 
of such sensors in a robot workstation. 

Force sensing. Strain gauges are commonly used to 
measure force. Absolute accuracy, dynamic range, 
linearity, and hysteresis are some parameters by 
which the utility of these devices may be judged. 
Force sensors in the gripper may be used to sense 
collisions, the presence of an object, tightness of 
grasp, and  the weight  of objects. 

Force  feedback for servocontrol purposes may be 
obtained in several different ways. In order to register 
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force along three orthogonal axes and moments 
about those axes,  force-sensing  wrists  have  been de- 
vised and  are now commercially available.12.110,’56 
An alternative is to sense force or torque directly at 
the joints. For armature-controlled DC servomotors, 
armature  current may be used as a feedback signal.29 
Another alternative is endpoint  sensing, which  is 
done  at  the tip. Endpoint sensing  is  discussed in the 
following section. 

Multiple force sensors may be  use to detect slip. 
Arrays of sensors produce a “force image” that may 
be  used to detect parts and determine their positions 
from their  footprint^."'^^ 

In order to  maintain  contact with a surface, as in 
performing compliant  motion,  it is desirable to have 
continuous force feedback from a surface. This 
suggests the advantage of sensors mounted  on a 
nonplanar, nonrigid surface, like that of a finger- 
tip.158-161 In attempting  to understand the sensory 
requirements of compliant motion, researchers are 
being  led to re-examine the incredible tactile mech- 
anisms of the  human 

Endpoint sensing. Direct measurement of the rela- 
tionship between the  manipulator  end effector and 
the workpiece is  called endpoint  sensing, as was 
mentioned in the previous section. Wrist-mounted 
force sensors, sensors on  the  end effector, and struc- 
tured light projected from the end effector are all 
endpoint sensing techniques. It is  highly desirable to 
use endpoint sensing because it provides a direct 
measurement of the error to be corrected. However, 
as was noted earlier, effective control of endpoint 
sensing  is complicated by the flexibility of robot 
structures. 

F’roximity sensing. A variety of types of proximity 
sensors are in  use in robotics. Critical parameters are 
the range of distances over which the sensor is useful, 
accuracy, linearity, and sensitivity to environmental 
conditions. Ultrasonic sensors have  been  widely  used 
in mobile robots. These sensors have, in the past, 
been somewhat limited by their inability to sense 
objects at close  range accurately. However, a tech- 
nique used by Miller  allows an ultrasonic sensor 
located in the base  of a gripper to accurately sense 
objects as close as one Another method was 
developed by Ish-Shalom for a mobility instrument 
for the blind.166 Ultrasonic sensors tend to be some- 
what  sensitive to  temperature variations, atmos- 
pheric disturbances (humidity, turbulence), and ex- 
traneous reflections. 
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Laser sensors are another  means of implementing 
proximity sensors. A new interferometer-based tech- 
nique by Williams and Wickramisinghe has  been 
developed to perform micrometer (pm) resolution 

In the  field of  robotics,  computer 
vision is often  used  for  the 

identification  and  location of parts. 

measurements over distances of a meter. Ranging 
results with an accuracy of 2 pm have been demon- 
strated at a distance of 20 ~ r n . ’ ~ ~  Proximity sensors 
can also be used to acquire range maps by scanning 
over a scene.’68*169 

Vision. In the field of robotics, computer vision  is 
often used for the identification and location of parts. 
The problem of binary two-dimensional vision in 
environments with controlled lighting  is  sufficiently 
well understood to be  widely  used in industry. A 
number of companies sell products that may be  used 
to identify parts with learned features with an over- 
head camera. This  kind of system  is  useful for pick 
and place of parts under  the following three condi- 
tions: (1)  the part types are known in advance; (2) 
their orientation may be determined from their pro- 
file; and (3) there are  no parts touching or occluding 
one another. Dealing with more difficult problems, 
like  picking a part out of a bin, requires three- 
dimensional vision. Experimental systems of this 
type have been developed, but they are as yet too 
slow and unreliable for commercial use.  However, 
robot vision  is promising and continues to be an 
active area of  research in  computer vi~ion.’~O-~’~ 

Another application of  vision  is  visual servoing, in 
which the image is  used to  determine  and correct 
deviation from the desired path. Using special-pur- 
pose hardware to compute image moments sixty 
times a second, Anderson has succeeded in servoing 
a robot to catch a ping-pong ball.’73 

Structured  lighting is a technique used to greatly 
simplify the image by shining stripes of  light on  an 
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object. The image is thresholded, leaving only a 
deformed light stripe in the image,  with its shape 
revealing surface orientation and irregularities. 
Structured light has been used  effectively to correct 
paths in applications such as seam  eld ding.''^-'^^ 

The strongest industrial economic incentives for 
computer vision come from the area of inspection 
and measurement, rather than robot control. Two- 
dimensional vision is  used  widely in industry for the 
inspection of mechanical and electronic parts. In- 
spection systems may also employ robots for posi- 
tioning of parts and camera. 

End effectors 

Special-purpose end effectors. Special-purpose end 
effectors are used in most industrial applications. 
Conventional grippers consist of two parallel fingers 
with pads for friction, but many variations may be 
found to handle objects of different shapes, sizes and 
materials. (See Engelbergef for an interesting sur- 
vey.) Other types  of end effectors such as torches, 
paint guns, screwdrivers,  ladles, drills, routers, elec- 
tromagnets, and suction devices  may be used for 
different applications. 

An extremely important  and widely  used  device for 
applications requiring compliance is the remote cen- 
ter  compliance device.‘2,‘77,178  The RCC mechanically 
complies with the forces and torques that arise in 
insertion operations, providing a substantial increase 
in performance for assembly applications. 

One approach to achieving high-precision position- 
ing with robots is to introduce a small, high-resolu- 
tion positioning device at  the end effector. This strat- 
egy, called coarsejine or macro-micro positioning, 
avoids the requirement for a single  device that can 
be positioned accurately in a large workspa~e . ’~~-’~’  
A planar positioning device of this type, developed 
by Hollis, has a motion resolution of 0.5 pm.Ig2 

Quick-change grippers. The use  of a single  special- 
purpose end effector  is impractical when an  arm is 
to be  used for a number of different types of opera- 
tions, as in an assembly application. This has led to 
the use  of switchable end effectors. One variety con- 
sists  of a special “gripper” to which a variety of tools 
with a standard interface may be attached. This 
interface must include suitable electrical and pneu- 
matic connections to operate the tools and carry 
sensory information. A rack of end effectors may be 
located in the workspace  of the robot, and it may be 
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programmed to pick them up and  put them down 
between the steps of its task. 

Frequent tool changing may impact the rate of pro- 
duction. An alternative method which has been 
adopted by some manufacturers is to outfit the  end 
effector  with a turret which carries multiple tools or 
grippers at once (usually two to six). Typically, one 
tool at a time is made operational by rotating that 
tool to the  arm interface within the turret. This saves 
the time of  picking up  and putting down tools, at 
the cost  of carrying around  the bulk and weight  of 
the turret with multiple tools. 

Sensors in  hand. The IBM 7565 robot63 uses an LED 
and binary light sensor on opposite fingers of the 
gripper to determine whether there is an object be- 
tween the fingers. It also has strain gauges in  the 
finger pads, which are used primarily in guarded 
moves, often searching for an object, checking for 
the presence of an object, or attaining a specified 
grip  force. 

Force-sensing  wrists,  discussed earlier, obtain meas- 
urements that may be converted to Cartesian  forces 
and torques. 

An experimental hand developed at AT&T Bell Lab- 
oratories includes a proximity sensor in its base and 
arrays of touch sensors on its finger  pad^.'^^.'^^ This 
configuration allows the proximity sensor to sense 
the distance to  an object to be grasped, and  the touch 
sensors to detect slip and goodness  of  grip. 

General-purpose hands. The development of articu- 
lated robot hands has been  fostered by the desire to 
achieve  higher  levels  of dexterity. By increasing the 
dexterity of a single tool, the need for special-purpose 
tools and tool changing will  be reduced. However, 
the dexterity and versatility of a human  hand  are  not 
attained without complexity. 

After a study of the capabilities of a variety of 
lunematic structures, Salisbury  designed the Stan- 
ford/JPL hand. This hand has three fingers  with three 
degrees of freedom in each finger.184 Three genera- 
tions of development by Jacobsen and others have 
led to  the current version  of the Utah/MIT hand.14* 
This hand has four fingers,  each  with four degrees  of 
freedom. Each  degree  of freedom requires two actua- 
tors for flexion and extension, so the fingers require 
32 actuators, not including the wrist.  Special tapes 
have  been  designed for use as “tendons.” These tapes 
have great durability and low friction, which  allows 



Figure 16 Robot  controller interface 

them  to slide over one  another. The actuators pow- 
ering the  hand  are  pneumatic.  The  hand may be 
teleoperated in a master-slave configuration by ma- 
nipulating a model; it has been designed to be  ex- 
tremely strong and fast and is  roughly the size  of the 
human  hand. Another interesting anthropomorphic 
hand is a three-fingered hand developed by Hitachi, 
Ltd. The fingers  of the  hand are moved by the 
expansion and contraction of thin wire made of 
shape memory alloy, in response to controlled tem- 
perature changes.’85 

For more information on robot hands, see the recent 
book by Mason and Salisbury.Ig6 

Robot  workstation  controllers 

A robot workstation controller is a computer system 
used to control a robot or robotic workstation. This 
is not to be confused with the term robot  controller, 
which  was  used earlier in  this paper to describe the 
portion of the system that embodies the control 
system.  In this section, we  will use “controller” to 
mean robot workstation controller. 

Robot controllers must support a wide  variety  of 
interfaces, as suggested by Figure 16. First, a con- 
troller must provide a suitable interface for the ac- 
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tuators  and sensors of one or more robot arms. If 
the robot is to be  sighted, an interface to vision 
hardware must also be provided. Digital inputs  are 
required to handle the large numbers of simple bi- 
nary sensors used in the workplace.  Digital outputs 
are required to signal  feeders, conveyors, and  other 
devices. A variety  of “intelligent devices” that com- 
municate through serial or parallel ports are com- 
mercially available; standard interfaces allow a con- 
troller to make use  of these devices. Local-area net- 
work support is required for communication with 
central computers. This permits centralized record- 
keeping,  global coordination of activities in the fac- 
tory, and  communications with  solid modeling sys- 
tems. The controller must provide interfaces for line 
attendants, maintenance personnel, and  the devel- 
opers of robotic applications. The requirements for 
these interfaces may  vary from a teach pendant  to a 
graphics workstation. 

In order to provide a good control system for the 
robot, substantial computational ability is required. 
Controllers often employ a collection of microproc- 
essors to support these computational  need^.^^.'^' 
Special-purpose processors  have also been proposed 
for the types of computations  that  are required in 
robot control. These include signal  processors and 
systolic arrays to perform the matrix multiplications 
often required in ~ o n t r o l , ~ ~ * ” ~ ~  special  processors for 
kinematics and dynamics, including fast trigono- 
metric  operation^,'^^,'^^ and special  processors for 
vision.193,194 

The controller must carry out real-time activities 
such as servo control and repeated polling of sensors 
to  monitor conditions. Both servo control and quick 
response to conditions require guaranteed latencies 
rather than good  overall throughput. This puts de- 
mands on  the real-time hardware and  the operating 
system. 

One problem with current systems  is the difficulty 
of integrating new sensors and devices into  the con- 
troller for use in compliant or guarded moves. This 
problem is currently being addressed in  the design 
of  new robot c o n t r o l l e r ~ . ~ ~ * ~ ~  

Concluding  remarks 

In conclusion, we consider the state of the  art in 
robotics in light of the requirements stated early in 
the paper. 

Reliability is a common problem for complex elec- 
tromechanical systems. Simplification of mechanical 
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systems and reduction of friction resulting from the 
use of direct-drive motors may ultimately improve 
mechanical reliability. The  amount of research  being 
done in this area is disproportionately small in com- 
parison with its importance. 

Robot speed and accuracy are being addressed on 
several fronts. Electromechanical improvements in- 
clude the use  of new light composite structural ma- 
terials, higher-performance motors, and direct drive. 
These improvements lead to stringent requirements 
for the design of robot control systems. With these 
advances, control-system performance is increas- 
ingly limited by speed of computation. Limitations 
on computational speed are being addressed by the 
steady improvements in microprocessor technology, 
by multiprocessor architectures, and by special-pur- 
pose hardware for dynamics, kinematics, and control 
computation. Robots are still  slower than people for 
many tasks, but are already better than people at 
tasks requiring high positional accuracy. 

The ability to perform compliant motion is  being 
addressed by the development of  new primitives for 
describing motion  and  the design of control systems 
capable of executing them directly. This task is  being 
simplified by the development of direct-drive robots 
with simpler dynamics. The implementation of com- 
pliant motion control is frequently made difficult by 
current robot workcell controller designs,  which 
make  the incorporation of additional sensors diffi- 
cult. Robots  are  just starting to be able to comply 
with external forces. Many compliant tasks which 
are routine for people  still cannot be done by robots. 

Robot workcell conjigurability is being addressed by 
the design  of new controller software and hardware 
that permit sensors and new motion primitives to be 
easily integrated into  the system. The increased use 
of  sensing  is critical to many new application areas. 
Unfortunately, commercially available robot con- 
trollers are  not highly  configurable. 

Conventional high-level  languages for robot pro- 
gramming include data types, commands,  and error- 
handling facilities,  which are convenient for coding 
some robotic tasks. However, substantial effort  is 
required to program a typical robotic application at 
this level.  Offline programming has simplified the 
construction of simple, position-oriented robot pro- 
grams. Work in fine-motion planning, obstacle 
avoidance, and  the analysis of tolerances has con- 
tributed to our understanding of  task-level program- 
ming, However, it is not currently possible to pro- 
gram a robot by  giving only a task-level specification. 
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Cleanliness problems are  just beginning to be ad- 
dressed. Direct-drive robots, which  have  less friction 
than conventional robots, may be helpful in this 
respect. 

The field of robotics is in its infancy. Robots have 
become economically feasible for a number of ap- 
plications. However, the research  challenges are as 
easy to see as the difference  between a current-day 
industrial robot and a human being. 
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Database technology 

by P. G. Selinger 

Computers were originally invented  and  used to ease 
and automate the task of computation. As the  word 
“computer” implies, these early  machines were used 
for calculations, such as tabulating census data. As a 
side effect, the technology needed  for storing data was 
also invented to provide the computational engine with 
input data and allow it to output results. The  means  of 
permanently storing data included punched cards, 
tape, and disks. Throughout the 1950s and most of the 
196Os, the management  of stored data was done as 
required; file systems stored data according to user- 
defined formats and kept a table of contents. Users 
shared data by equally ad hoc means,  generally  by 
taking turns accessing the same  device.  Over the 
years, database technology has  evolved through at 
least three generations to a diverse and sophisticated 
set  of data management tools, as discussed in  this 
paper.  This  paper  has three major sections. Presented 
first is an introduction to database technology. Pre- 
sented  next  is a description of the evolution of data- 
base technology from early computing to the sophisti- 
cated systems  of today. The third section presents a 
view  of both  the driving forces that will influence the 
database technology of the future and also the result- 
ing new directions for the future. 

A database management system (DBMS) is a system 
for managing stored information and providing 

protocols and a language interface to define, access, 
and change that inf~rmation.”~ Database manage- 
ment systems can be distinguished from file systems 
by the level  of function they provide, as well as  the 
degree of semantics attributed to  the  data. A file 
system stores data as uninterpreted byte strings called 
records, and may or may not provide a directory of 
files on a per-user or per-system  basis.  Also, a file 
system  may or may not provide access protection to 
the  data records on a per-file  basis.  Access to  data 
stored in a file system  is through a specific  access 
path defined when the file  was created. Various file 
systems (called access methods) offer access to  data 

sequentially or by index or hash  key.  In addition, a 
file system may provide concurrent access to files 
and may protect users from actions of other users by 
file or record-level  locking. 

In contrast, a database management system provides 
higher  levels  of functioa  on  data, often by invoking 
operations on one or more file systems. A DBMS 
contains more structured data (records), retrieves 
data based on content (field values within a record), 
and-unlike a file system-provides a greater degree 
of independence from the physical layout and logical 
format of the  data  and supports the concept of 
recovery and integrity based on a scope of  work 
known as a transaction. In the remainder of this 
introduction, these various facilities are defined and 
discussed. 

Users interact with the DBMS through language sub- 
sets. A data definition language (DDL) is  used for 
defining and changing data objects, whereas a data 
manipulation language (DML) is  used for reading or 
changing the instances of the  data object (the  data 
records). These languages can be  used statically in 
programs (known as host-language embedding) or 
used dynamically via interactive connections to  the 
DBMS (known as a query interface). DML interactions 
are typically  referred to  as queries, although the word 
query may also only refer to reading, not changing 
the data. Not all DBMSS offer  all  of the operations of 
each of these languages in both the host-language 
and query-interface environments. 
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A DBMS usually provides directory facilities at a 
higher, more user-oriented level than file systems do, 
and separates users from the intricacies of physical 
storage (e.g., tracks and extents). The directory of a 
DBMS contains  a logical description of the objects it 

A DBMS provides  a  grouping of 
operations  into  an  atomic  unit of 

work called  a transaction. 

stores, including the external name of the object, its 
characteristics, the  authorization users have on it, 
and its relationships with or dependencies on  other 
objects. 

A DBMS stores records as  a sequence of  fields that 
take values of a given data type, such as integer, 
character string of fixed length x, or character string 
of varying length up to a  maximum of y. The DBMS 
may enforce data types (e.g., does not accept an 
alphabetic character for an integer field), perform 
data-type conversions (e.g., integer to floating point), 
support default values  (e.g., zero for integers) or null 
values (a special value meaning “no information,” 
that is, not among any of the values possible for the 
data type), and even perform operations on the  data 
such as  arithmetic. 

In  addition,  a DBMS provides a grouping of operations 
into  an  atomic  unit of work  called a transaction. A 
user specifies the boundaries of a  transaction. A 
successful termination of a set  of operations  that 
change the database is known as  a COMMIT, and  an 
unsuccessful termination is an ABORT. The result is 
that either all or none of the Operations within a 
transaction are executed. This is achieved by a re- 
covery facility. The recovery  facility  serves to pre- 
serve the integrity of the  database whenever anything 
goes  wrong. These events fall into three general 
categories: (1 )  transaction-specific events, (2) events 
causing loss of the DBMS volatile memory,  and (3) 
events causing loss of the DBMS data  on nonvolatile 
memory (e.g., disk failures). 

A specific transaction may abort  due to user actions 
(e.g., the user has halted execution ofthe application) 
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or  due  to system actions (e.g., the transaction was 
chosen to be terminated because it is involved in a 
deadlock detected by the DBMS). When a transaction 
aborts, its actions are undone by the recovery  facility, 
leaving the database in the same state that it was in 
at the beginning of the transaction. 

The recovery  facility is also invoked when the  entire 
system (either the DBMS or the computer) crashes. 
When this occurs, the DBMS is restarted (automati- 
cally or by an operator).  The DBMS then ensures that 
all transactions which were not completed at the 
time of the crash are undone, whereas all those which 
were completed have their effects reapplied to the 
data if necessary. For transactions that  did work at 
multiple DBMSS, there is a  third possibility: The trans- 
action could have been negotiating its completion 
with other sites, but  the decision may not have 
reached some sites before a crash occurs. This process 
of negotiation is called “two-phase commit.” For 
these transactions, recovery after a crash is more 
complex, possibly involving extra communication 
among sites to determine  the transaction status. Dur- 
ing this negotiation, the recovery  facility sequesters 
all the  data changed by the transaction in order to 
keep its options open to either commit or abort later. 

Finally, the physical media on which the DBMS data 
are stored, such as disks, can be damaged. When this 
occurs, the recovery facility can use its historical 
records to reconstruct the  current database contents 
starting from a (possibly empty) prior version of the 
database. 

These recovery functions can be implemented in a 
variety  of ways-logs, differential files, time stamps, 
etc. The most popular  technique is fogging, that is, 
recording on nonvolatile storage (disks) the changes 
made to the database together with the  name of the 
transaction that  made  them. Logging techniques 
may record changes at  the physical or logical  level, 
may write these changes before or after the  data  are 
changed, may write to two separate media, may 
record both “before” and “after” versions of changed 
data,  and may store the log  in a storage hierarchy 
(keeping only recent information online). Not all 
recovery techniques  or DBMSS provide all the recovery 
functions just listed. 

Because transactions are units of work that can be 
undone  at  any point until  commit processing  is done, 
it is not a good idea to permit transactions to read 
or change the same data  that  a transaction has al- 
ready read or changed. Consequently, the DBMS may 



provide transactions with isolation from other trans- 
actions. One way to supply this isolation is to enforce 
serial  use  of the DBMS, not permitting transactions to 
run concurrently. In general, this leads to unaccept- 
able throughput. Thus, DBMSS provide varying  levels 
of isolation and granularities of isolation through 
concurrency control techniques that use time 
stamps, locking, or predeclaration of resources. Pre- 
declaration of resources means analyzing queries 

The first generation of data 
management took place during  the 

1950s  and most of the 1960s. 

before  they are executed and scheduling their exe- 
cution, so that they are guaranteed not  to conflict. If 
locking  is done without predeclaring the  data  to be 
used, deadlock can occur when transaction A holds 
locks on some data while waiting for data  that trans- 
action B has locked, and B will not release its lock 
until it acquires a lock on some data  that A has 
locked. Such deadlocks can be detected and resolved 
by aborting one of the participating transactions. 

History of database technology 

We  now discuss the evolution of data management 
systems into database management systems. The 
categorizations are for my expository purposes; other 
authors may  label these events differently. The pur- 
pose  here  is to demonstrate continuously improving 
ease of  use along with increased function. 

First  generation:  Data  management. The first gener- 
ation of data management took place during the 
1950s and most of the 1960s and consisted of  user 
applications doing sequential processing  of master 
$files, commonly called old-master/new-master proc- 
essing. This processing was modeled after the physi- 
cal characteristics of magnetic tapes. The old master 
file  was processed sequentially, record by record, 
against a file of changes (such as a day’s orders) that 
were sorted into  the same order (such as customer 
account number)  to produce a new master file con- 
taining the changes. When a new application using 
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the same master-file data was needed, another pro- 
gram to  do that processing was written. These appli- 
cations were written and maintained by users or by 
their data processing  specialists. The  data were usu- 
ally stored on tape, and applications were run as 
batch programs. Typical applications were orders, 
inventory management, accounts payable,  payroll, 
and  other batch-oriented processing, representing the 
automation of the “back office”  of a business estab- 
lishment. 

Second  generation:  Database  management systems. 
As much of the  data in the “back office” became 
computerized, the need  emerged in the late 1960s 
and early 1970s for general-purpose data manage- 
ment systems.  These  systems  began  evolving to da- 
tabase management systems by centralizing the  data 
previously stored on various magnetic tapes, storing 
the data  under supervision of the enterprise’s data 
processing  professionals, and providing a uniform 
interface to the data. These systems featured disk 
storage, rather than  the usual tape or punched-card 
storage, and on-line, random access to data. Exam- 
ples  of these systems are access methods such as 
IS AM^ and VSAM.’ These access method systems elim- 
inated one of the problems of the first generation of 
data management systems, that of multiple and in- 
consistent copies of the same data. 

As this evolution of data management progressed, 
systems  were  designed to provide a significant in- 
crease in the availability, security, integrity, and  con- 
sistency of the  data they stored. These systems,  which 
included early  versions of IMS,~  can really  be  called 
second-generation database management systems. 
The capabilities of these general-purpose database 
management systems were far more advanced than 
those of the typical user-written first-generation data 
processing applications. They provided direct access 
to  data records by keys and  the ability to package 
many database actions into  a single unit of work 
(called a transaction) which,  when executed, com- 
mitted to  the database either all of the changes or 
none of them. Many data protection features were 
also provided, including protection against lost up- 
dates, unauthorized reading or changing, lost data 
due  to media failure, and inconsistent data  due  to 
machine failures. 

A user  who  needed data wrote an application pro- 
gram that would  call the database management sys- 
tem once for each record required. The call  specified 
the logical data location (called a segment), thefields 
requested, and  the access path to  the  data (either 
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