
Tools for building
advanced user interfaces

by J. L. Bennett

System developers are noticing that their design deci-
sions strongly affect computer usability. The design of
the user intedace has an important bearing on the
knowledge users must have to accomplish work
through the user-computer interface. Recognition of
this fact is leading to the development of User Inter-
face Management Systems (UIMSs). A UlMS is a design
concept for separating the details of user interaction
from the details of advanced applications. This paper
shows how UlMS research and research into the repre
sentation of user process knowledge (Le., user how-to-
do-it skills) can help developers understand issues in-
volving ease of learning and ease of use. This parallel
progress in UlMS development and in user modeling
makes it easier to build high-quality advanced user in-
terfaces.

A s a result of today's widespread use of the per-
sonal computer, developers are being asked to

design user interfaces for advanced applications in-
tended for users without data processing experience.
These users are not prepared to learn the computer-
oriented details typically required of experienced
users, and often expect to walk up and use the
promised power as easily as they might drive a rented
car. But the operating systems supporting these ap-
plications were developed for users accustomed to
carrying out complicated tasks. Meeting the needs of
users who demand power without complication has
made industry increasingly sensitive to the design of
the user interface.

Developers are looking toward User Interface Man-
agement Systems (UIMSS) as a way to meet this de-
mand. A UIMS is a set of services that supports the
presentation of data on a workstation and accepts
user actions taken in response to the displayed data.
By serving as a bridge between a variety of applica-
tions and a variety of workstations, a UIMS serves as

a tool for simultaneously reducing the cost of devel-
opment, providing the technical flexibility needed in
advanced applications, and meeting the usability
requirements of users.

The design decisions made in a particular application
affect the presentation to the user, the process of use,
and therefore the knowledge needed by the user
during interaction. Whereas each application has its
own specific objects and actions, different applica-
tions have many objects and actions in common,
such as text creation and editing of tables of values
to be shown and modified. Users expect the processes
to be supported across applications in a standard
way, and developers want to be able to construct the
needed support only once in a UIMS and then use
that UIMS to supply interactive services to many
different applications.

In this paper we explore examples of both research
and applied work now in progress that are beginning
to influence the design of user interfaces for ad-
vanced computer applications. The first section de-
fines what we mean by the term user interjace-its
location, its properties, and a basis for evaluating it.

We then show how the concept of a UIMS is being
developed in order to reduce the cost of constructing
user interfaces and to improve their quality. Much
of the internal logic of a UIMS (the necessary relation-
ships among its internal parts) can be worked out

"Copyright 1986 by International Business MachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

354 BENNETT IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 19%

independently of any specific interaction style. De-
signers, however, recognize a need for guidance on
how to shape a specific user interface when it is built
with the tools provided by a UIMS. For this they need
input on how users will judge user interface quality.

We then review models being developed to represent
user process knowledge, Cognitive scientists (not the
computer scientists developing UIMS concepts) are
exploring formal methods for representing the
thought and action processes required of the user by
a particular interface design. Thus, if the relative
effects of alternative design decisions are understood
early in the development process, developers can
make modifications that improve ease of learning
and ease of use for the eventual users.

Cited references illustrate work in progress but are
not intended to be comprehensive in coverage. While
several IBM projects are mentioned, the reader will
find many projects outside IBM. Additional user in-
terface issues are outlined in conference proceed-
ings.’**

Defining the user interface
Placing and evaluating the interface. The user inter-
face may be thought of as a surface through which
data are passed back and forth between computer
and Physical aspects of the user interface (Fig-
ure 1) include the display devices, audio devices that
may be used, and input devices such as tablet, joy-
stick, mouse, microphone, or keyboard.

Data displayed on the workstation provide a context
for interaction, giving cues for user action (we as-

sume that the user knows how to interpret what is
displayed). The user formulates a response and takes
an action, and data then pass back to the computer
through the interface. In this concept, all aspects of
the system that are known to the user are defined at
the interface. The quality of the interface, from the
user perspective, depends on what the user sees (or
senses), what the user must know in order to under-
stand what is sensed, and what actions the user can
(or must) take to obtain needed results.

From the user perspective, the implementation on
the computer side can be considered as a whole. The
user evaluation of what is observed at the interface
gives us a focus for setting explicit requirements on
the static and dynamic properties that are experi-
enced from the user’s side of the interface. In a
similar way, the designer can consider the user as a
“module” with prescribed processing capabilities
that are also evaluated at the interface. This gives us
a focus for understanding the interaction require-
ments placed by the computer system on the user
who carries out tasks.

It is important to separate these interaction require-
ments from a particular implementation that build-
ers supply to meet them. That is, ease-of-learning
and ease-of-use requirements persist even if they are
hard to meet. It is our purpose to design the interface
to fit the user rather than to “design” the user
(through training) to fit the interface. However, any
implementation requires trade-offs and compro-
mises that inevitably lead to some user training as
an accommodation to the equipment. By distin-
guishing the requirements derived from the needs of

Figure 1 The two sides of the user interface

LANGUAGE /7 GENERATE

INTERPRET THE

I
I
I
I
I
I
I
I

I
I
I
i APPLICATION
I PROCESSING
I
I
I
I
I
I

I
I
I

I
L - - ” “ - -

I

1

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986 BENNETT 355

Flgure 2 A speclflc example of screen content showlng the dlalog framework and content for an E2 Editor appllcatlon and a
WriterAid application

the end user from the implementation created by
developers to meet the stated needs, we hope to
recognize that the quality of any mechanism used to
build the computer system, such as a UIMS, will be
judged by how well it meets the requirements. This
recognition encourages us to explore a variety of
design approaches.

Languages used at the interface. We may analyze
the data displayed by the computer at the interface
as sentences in a presentation language. Just as with
any other language, the computer as generator of the
sentences must follow language rules: the user as
interpreter of the language must know how to parse

the sentences. Similarly, we may consider that the
user responds to the computer through the interface
by composing sentences from an action language. In
this case, the user as generator must follow the rules
so that the computer can parse the input sentences.

Figure 2 shows a representation of a specific user
interface as it might appear on a display (Figure 1).
The display provides access to the independent EZ
Editor and WriterAid applications operating on the
same data. The layout of the screen and the data
displayed on the screen illustrate the presentation
language. User action is carried out through the
workstation devices. Actions may be invoked under

IBM SYSTEMS JOURNAL, VOC 25. NOS 314,1986

shown at the bottom of the-screen. Application
actions are shown in each application window. Thus
the user interprets the context formed by the pre-
sentation language and reacts through actions al-
lowed in the action language.

Goals evaluated at the user interface. We now con-
sider typical goals of the people who build the inter-
face and those of the end users who interact through
the interface.

Goals of UIMS bztildm. The concept of a User
Interface Management System4 has been a recent
focus for builders. The following are typical goals for
improving the quality of the user interface, adapted
from References 4 and 5:

Place the user interface processing that is common
across applications in a separate module so that
many applications can use the same code.
Use the common module to present a more con-
sistent interface both within and across applica-
tions.
Use the presence of a common module to encour-
age specialists to separate the design of presenta-
tion and action languages seen by the user from
the design of specific application content.

Goals of end users. In considering the interface as
a surface, we can outline dimensions that users
evaluate in an “acceptance test” of the results of a de-
sign. Sample dimensions adapted from Shackel by
Bennett3 are as follows:

Learnability. A specified level of user performance
is obtained by a required percentage of a sample
of intended users, within some specified time from
beginning of user training.

9 Throughput. The tasks required of users can be
accomplished by a required percentage of a sample
of intended users, with required speed and with
fewer than a specified number of errors.
Flexibility. For a range of environments, users can
adapt the system to a new style of interaction as
they change in skill or as the environment changes.
Attitude. Once they have used the system, people
want to continue to use it, and they find ways to
expand their personal productivity through system
use.

The importance of’ measures qf success. Both the
builder and the evaluator representing the user must

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4. 1986

Ultimate success at the user
interface can be evaluated only after
the system is built and put into use.

can be evaluated only after the system is built and
put into use. Because of the expense of building a
system and the difficulty of making design changes
at later stages of development, developers are looking
for cost-effective ways to make the changes needed
at the user interface, without affecting the relative
stability of applications. Developers are also recep-
tive to the potential success of early-warning meth-
ods such as modeling user process knowledge to
identify before system completion those design de-
cisions that may lead to user inefficiency. We explore
what is being done to meet these goals in the next
two sections.

Building the user interface

The UIMS as a model for organizing computer re-
sources. The concept of a UIMS is relatively new. As
mentioned earlier, a UIMS is a set of services for
presenting data on a workstation and interpreting
user actions at the workstation. By serving as a bridge
between a variety of applications and a variety of
workstations, the UIMS serves as a tool for simulta-
neously reducing the cost of development, providing
the technical flexibility needed in advanced applica-
tions, and meeting the usability requirements of lay
users.

Implementers of these systems have synthesized
ideas for them from a variety of sources. Many of
the concepts, initially developed as fragments in
graphics applications, are being brought together as
a conceptual whole. Thus the UIMS serves as a focal
point for understanding design options that are im-
portant to the developer (by making it easier to
construct the interface) and indirectly important to
the end user (by improving the quality of the user
interface).

BENNETT 357

A UIMS is both a set of tools for building a user
interface and a run-time processing system for sup-
porting the interaction between an end user and the
applications running in the computer. In principle,
all user interactions with the computer go through
the UIMS. The motivation for building a UIMS comes
from the observation that much of the support for
user interaction appears to be common across a wide
variety of applications. When interaction code is
lumped with application function, the work must be
repeated for each application. In addition, end users
are confused by the fact that designers of applications
have varying ideas about what constitute good inter-
action methods. If these details of interaction (many
of them device-specific) can be handled indepen-
dently of the various applications in a way judged
consistent by users, several potential benefits may be
realized.

Olsen et aL4 list these benefits as follows:

A UIMS can provide a practical means to support
design of an interface suitable for use across ap-
plications.
User interface specifications (presentation language
and action language), defined separately from the
application specifications (i.e., physical input data
required from the user), can be represented, vali-
dated, and evaluated more easily.
User interface designs can be prototyped and im-
plemented more rapidly using the tools provided
as part of the UIMS.
Construction and maintenance of interactive ap-
plications can be separated from construction and
maintenance of user interfaces.
Functions that support the user interface can be
distributed among systems and processors in a
way that increases responsiveness to user actions
but does not require changes in user interaction
methods.
Members of the design and development team can
apply specialized skills throughout the evolution
of the software that shapes the user interface.

The tools provide these benefits by reducing the cost
of development, offering technical flexibility, and
assisting designers to meet the usability requirements
of users. In addition to aiding the work of senior
developers, perhaps an even greater benefit can come
from improving the results obtained by relatively
junior personnel. The concept of a UIMS serves as a
focal point for the construction of such tools.

an overview and Figure 2 gives a more detailed
illustration of the specific content that could be
produced by a UIMS.)

Presentation language. The first category (lighter
area of Figure 2) relates to the presentation context,
the dialog framework within which application in-
formation is shown to the user. This category is
analogous to a desktop work area, with data giving
support for writing a variety ofdocuments. Examples
of context structures are display windows and menu
formats. The dialog framework separates views of
objects, determines whether window overlapping is
allowed, and supplies window border markings.

The second category (darker areas of Figure 2) is
determined by the specific content of an application.
To continue the desktop metaphor, one document
on the desk is distinct from another. Examples of
application content are lines of text for a document
shown in a window or items in a menu of choices
relating to a specific application.

Action language. The UIMS supports parallel cate-
gories in the action language available to the user.
The first category relates to actions on the dialog
framework. Examples are the moving of a display
window on the surface of the terminal or selecting a
menu item. Rules are included for how the window
and content can be moved with respect to the edge
of the screen, whether one window can be moved to
overlap another, and how to link an input device to
the move action.

The second category relates to actions on the appli-
cation-specific content. An example in this category
is selecting a point in an image contained within the
document. Rules determine what can be done with
the image, the sequence of steps needed, and how
the application shapes are linked to input devices.

A UIMS architecture. One way to understand the
concept of a UIMS is suggested by Green’ in his review
of a workshop held by UIMS developers. Green dis-
cusses a model that divides the UIMS into several
parts to emphasize a division of responsibility. We
can understand the division represented in Figure 3
by tracing the flow of data from the application to
the user. This produces, for example, the kind of
data displayed on the screen in Figure 2. In the same
way, we trace the flow of data from the user back to
the application.

Structural relationships within a UIMS. A UIMS can The path from the application to the user. The op-
present information in two categories. (Figure 1 gives tions for presentation available to an application are

1 358 BENNETT IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4. 1986


~~~~~~~~~~~~~~ ~ ~ ~ 

Flpure 3 Structural  relationships  among  the  abstract  components of a  User  Interface  Management  System 

USER 
INTERFACE 

defined at  the application program interface. The 
application translation component  transforms  an ap- 
plication request for display into  a  data  structure 
designed for the UIMS.  The dialog management com- 
ponent  maps  the application content onto the  data 
structure representing the context to be displayed to 
the user (for example, places the representation of 
the  document in a window). The presentationlaction 
component is responsible for the physical appear- 
ance of displayed data in accord with the presenta- 
tion language, as defined at the user interface. Re- 
quests for display from an application are matched 
to the particular capability of the  terminal. For ex- 
ample, window borders on the screen may be in 
color (if the device allows it). If the  document dis- 
played in a window contains an image, and if the 
terminal  cannot show images, the presentation/ac- 
tion  component  at least preserves spatial fidelity to 
show the relative position in  which the picture would 
appear, within the resolution of the device. If cursor 
shape is a  part of the presentation language, this 
component is responsible for implementing  the de- 
sign decisions for this  terminal  that  are embodied in 
the UIMS. 

The U I M S  data base acts as  a repository for data  that 
must be known to the UIMS components.  This in- 
cludes terminal device characteristics, application 
structure, the state of the dialog interaction,  and  a 
means for preserving context when the user switches 
among applications. 

The path from user action to the application. We 
now complete the  data path by outlining  the loop 
from the user  back to the application. All interac- 
tions with  physical devices are isolated in the pre- 
sentation/action  component, making it easier to  add 
new devices without changing the application. 
Screen layout changes can accommodate user  pref- 
erences, such as left-handedness. The modularity can 
encourage the development and  the use  of a  standard 
library of interaction techniques, such as  the protocol 
for changing a displayed value. The  component in- 
terprets the  actions by the user on  the physical 
devices available at  the interface. Examples of these 
actions are pushing a  cursor movement key, moving 
a mouse, or moving a stylus on  a tablet. The  com- 
ponent  forms messages to be interpreted by the 
dialog management component. 

BM SYSTEMS JOVANAL. VOL 25, NOS 3/4, 1 9 8 6  



The  data path through the dialog management  com- 
ponent may take two branches. If the user action 
can be interpreted as  a dialog control request, it may 
be processed through the first branch without appli- 
cation intervention. For example, a request to move 
a window on  the screen (which by design does not 
change the  content displayed within it) can be han- 
dled at  the level of the dialog management  compo- 
nent. Or another user action may  signal the begin- 
ning of a sequence of actions to change the value of 

" 

Many  questions  remain  in  moving 
the work  from a  research  laboratory 

to  routine  use. 

a variable. The dialog management  component can 
interact with the user, thereby generating feedback 
signals (such as change the shape of the cursor or 
highlight content) for the presentation/action com- 
ponent to display. 

The second branch is taken when the UIMS does not 
have the  information needed to respond to  an action. 
For example, such  a  branch might occur in the 
selection of an application object that requires ap- 
plication processing to place the cursor. This request 
must be transmitted back to  the application. In this 
case the application translation component  must 
translate from the UIMS data  structure  into  the  ap- 
plication data  structure.  This  structure represents 
distinctions  that  are known to  the application giving 
the request for display that started the loop. 

Observations. It  is interesting to note where devel- 
opment of the  concepts represented in the UIMS 
originated in the evolution of user interface support 
tools. In the past, application designers put together 
whatever support was needed to access the applica- 
tion from a particular workstation. Then,  as  the field 
evolved, developers recognized common  functions 
for each application and for each workstation. This 
work  led to the synthesis of ideas represented in the 
UIMS. 

ISPF. Several existing dialog managers and applica- 
tion development tools have some of the character- 
istics of a  UIMS.  For example, the Interactive System 

Productivity Facility (ISPF)' is a dialog manager that 
has  been  in use for several  years to provide control 
and services to allow processing of dialogs in VM, 
MVS, and VSE environments.  The display screens of 
IBM 3270-type terminals  supported by centralized 
host  services can be split to provide an interface to 
two independent applications, though only one can 
be active at a  time. Panel skeletons and interface 
definitions for this class of terminal are stored in 
libraries separate from the applications, allowing 
programmers to  tailor the display formats for  differ- 
ent system environments.  The panel definitions can 
be used to select application data for display to allow 
user modification of specified variables and  to  do 
verification checks of  user input syntax. ISPF'S current 
flexibility and potential for evolution are limited by 
required compatibility with prior VM and MVS prac- 
tices. 

GDDM. The Graphical Data Display Manager 
(GDDM)~ is designed to handle the  communication 
between application programs and terminals. In ad- 
dition to the base tools that define an application 
programmer interface, features include an Image 
Symbol editor for working with raster images, a 
Vector Symbol editor for manipulating objects com- 
posed from vectors, and  an Interactive Map Defini- 
tion editor for implementing dialog frameworks to 
be shown through the dialog manager. These features 
were  designed  relatively independently over time in 
accord with the  data  structures  then available. Given 
the framework for setting usability  goals  when func- 
tions are viewed from the perspective of the user 
interface surface, and given an evolution in the tools 
provided within GDDM (perhaps shaped by UIMS 
concepts), later releases  in the  product may be able 
to consolidate the different pattern ofthe user actions 
now needed to edit these objects. 

TopView. TopView" has provided some initial win- 
dowing functions  as  a first  effort to integrate the wide 
variety of applications found on  the IBM Personal 
Computer. To  do this required the setting up of an 
application programmer interface. However, many 
existing applications did not follow the required 
interface rules because TopView had not been de- 
fined at the  time many of the early applications were 
written. Thus,  some applications could not use the 
full features of TopView. Once the interface had 
been established, other applications could evolve to 
use it. In a similar way, the UIMS model for presen- 
tation/action independence from the applications 
may stimulate extensions of TopView and its suc- 
cessors. 

IBM SYSTEMS JOURNAL. VOL 25, NOS 3/4. 1986 



The RT Personal Computer. The IBM RT PC" uses 
UIMS concepts to create a bridge between an operat- 
ing system designed for a  programmer  and applica- 
tions offered to occasional users as well as experts. A 
dialog manager is  used to define, present, and  control 
the user sequence of actions in order to shield the 
application from details of display frame design and 
user interaction.  The dialog framework content, 
stored separately from the  application, is preproc- 
essed to make it efficient for use in run-time opera- 
tion.  Support utilities aid the developer in laying out 
dialog framework data  on  the screen. Other utilities 
store and access the  terminal description used  by the 
dialog manager. It will be interesting to see how these 
elements, similar to those in the UIMS concept, evolve 
in later releases as the initial ideas are tested in 
practice. 

Other commercial and military applications. Signif- 
icant progress in  the use of UIMS concepts has been 
made in computer-aided design and military com- 
mand  and control.  About  ten large applications have 
been implemented at Boeing Computer Services us- 
ing The Interactive Graphics Engineering Resource 
(TIGER)'* system for decoupling physical interaction 
handling from logical function performance. Func- 
tional Language Articulated Interactive Resource 
  FLAIR),'^ using voice recognition to support  the de- 
signer, has been in  operation at TRW since 198 l .  It is in 
active use as a dialog design language for exploring 
space-age applications using advanced graphics. 

Issues. Although the  concepts used in developing a 
UIMS are influencing exploratory work, many ques- 
tions remain in moving the work from a research 
laboratory to routine use in development projects. 
The following are examples of some of these ques- 
tions: 

Does the  memory space required for a UIMS on 
workstation processors make  implementation fea- 
sible on today's equipment? In a system environ- 
ment where many  applications are served by one 
UIMS, we should eventually see a system advantage 
if all the applications can make use  of the UIMS 
facilities. 
Is the  time required for a UIMS workstation proc- 
essor to handle user actions compatible with in- 
teractive response required at  the user interface? 
This is a  function of the available processing power 
and  the way in which function is distributed be- 
tween the UIMS and  the application. Current prod- 
ucts such  as  the PC RT" are serving as  a testing 
ground for exploring this  question. 

Can  the workable division of function between 
UIMS and applications that is possible in principle 
be established in a wide  range  of practical situa- 
tions? Realizing the full  benefit  of the UIMS re- 
quires an agreed-upon definition of the application 
programmer interface. Any such standardization 
requires engineering trade-offs. The division of 
function may require an evolution in application 
design as well as in UIMS design. 
Do the  current tool-kit approaches to providing 
UIMS function give the designer valid defaults and 
establish enough discipline to meet the usability 
criteria as evaluated by the user at  the user inter- 
face? 
Do  the tools provided by the UIMS enable devel- 
opers to construct applications faster than would 
otherwise be  possible? 
Does a UIMS, once constructed, prove to be por- 
table to other  environments? 

Although developers need tools to construct user 
interfaces with advanced features, the presence of a 
tool, though it may have been designed with internal 

The  issue  is  knowing  what  needs  to 
be measured  to  diagnose  user 

problems, 

elegance and creativity, does not itself automatically 
lead to user interfaces that meet user requirements. 
To identify operational characteristics of the UIMS 
that result in user satisfaction, we can build perform- 
ance-monitoring tools into  the UIMS run-time  sup- 
port. The issue,  however, is knowing what needs to 
be measured in order to diagnose user problems. 

Reference 4 suggests the integration of a spelling 
checker with a word processor as an example of a 
required technical capability for accessing functions 
from several applications. Such a capability can aid 
the user, but  the  timing of its invocation is critical. 
If,  in the  kind of work situation shown in Figure 2, 
a person is writing using EZ Editor and is barely able 
to type fast enough to capture  transient  thoughts in 
text, then  the  automatic invocation of the WriterAid 

IBM SYSTEMS  JOURNAL, VOC 25, NOS 3/4.19@6 BENNETT 361 



spelling checker might interrupt  the flow of thought 
and therefore the user’s  progress  in the task. A task 
analysis might suggest that  the system should support 
text entry at typing speed, followed by a user-con- 
trolled pass through the text to correct spelling. The 
need for integration and rapid performance would 
still exist, but  the invocation would be timed  to avoid 
interference with the creative process  of the user. 

As  we review recent literature on  the developing 
concept of the U I M S ~ ~ ~ ~ ~ ~ ~ ~ ” ~  and  the tools associated 
with it, we identify a need to provide a more “con- 
sistent,” “uniform,” “supportive” interface for the 
user.  However,  designers, both in the academic com- 
munity  and in industry, tacitly acknowledge that 
they do not have operational definitions for these 
terms. 

Coutaz5 calls for advice from psychologists, human 
factors specialists, and graphic artists who have  ac- 
quired a better understanding of human behavior 
than have computer scientists when making specific 
design decisions affecting the user interface. Dialog 
design requires the cooperative efforts  of technicians 
from a variety of  discipline^.^ By cooperating in  this 
way, developers increase the chances of building in 
effective guidance mechanisms to help the user adapt 
to  the design. Identified in Reference 5 is a need to 
present designers with a standard view of the poten- 
tial users,  so that designers can provide access to 
applications through the workstation in a consistent 
way. 

Representing  user  process  knowledge 

As suggested earlier in this paper (see  Figure l), the 
user interface is evaluated by users according to what 
they  see, what they have to know in order  to interpret 
what they  see, and what actions they can (or must) 
take to get  useful results. An important  current 
theme is consistency in presentation and  action. We 
mentioned earlier that  the developer using UIMS tools 
must make specific  design decisions about  the pre- 
sentation and  action language that affect the user 
interface. We are now  ready to discuss how  work in 
modeling the interactive processes needed by a user 
is intended to help the developer in making these 
decisions. The goal is to give some indication early 
in the design process as to how  design decisions affect 
the ease  of learning and  the ease  of use  of an inter- 
face. Some insight may be gained even before an 
experimental prototype is built. 

Much of the detailed UIMS work is  in the area of 
tools for supporting user input. Also, much of the 

362 BENNETT 

work on representing user  knowledge is focused on 
studying user input to the  computer.  Output to  the 
user tends  to be application-dependent and of great 

___ 

Addressing  the  issues of 
consistency  and  learning  is  related 

to  the  psychology of the user. 

variety. However, user input to the  computer is 
much more constrained and limited by that which 
the computer can be programmed to deal with. 

The designer of any interface assumes that  the user 
knows from previous experience (or can be trained 
to know) the specific sequence of actions needed to 
accomplish a particular task required by the design. 
For example, the designers of an editor for office 
documents assume that  the intended users will  be 
able to acquire the knowledge needed to edit the 
documents found in their work. To estimate the 
possible gaps between  what  users already know and 
what they have to learn, it  is  helpful for designers to 
understand the knowledge already used  by  prospec- 
tive customers as they carry out their current work. 
Designers can then arrange the design so that as 
much as possible  of the  current knowledge is trans- 
ferred to  the new work environment. Addressing the 
issues  of consistency and learning is  related to  the 
psychology  of the user-the see-know-do questions 
previously mentioned. 

Current practice in product development groups is 
to establish usability plans as a basis for representing 
performance objectives and for  specifying the way in 
which the interface will  be tested. Excellent examples 
are given in a special  issue  of the IBM Systems Jour- 
na1.18 Botterill’’  reviews practices followed in the 
design of the System/38 user interfaces. 

Phenomenological studies are carried out by human 
factors personnel to observe  people as they  work. An 
understanding of the need for change and sometimes 
of what the change should be can often come from 
these studies. A limitation of standard human factors 

IBM SYSTEMS XWRNAL. V M  25, NOS 3/4, 1986 



evaluations of interfaces is that  the analysts need to 
observe the actual process  of  use  in order to see 
whether the established objectives are met, to com- 
pare alternative designs with respect to performance 
goals, and  to find sources of user errors. Such analysis 
requires a working model or prototype. Some  human 
factors specialists have studied products currently 
available in the field, and such existing systems can 
serve as helpful prototypes for understanding pro- 
posed product features. However, given the  current 

The  formal  modeling  of  user  process 
knowledge  focuses on  early-warning 

analytical tools. 

short  development cycle (driven by competition  and 
affected by new software techniques associated with 
new applications), analysis of the  actual  product 
under  development often comes so late in the devel- 
opment process that significant changes to  that par- 
ticular interface are not economically feasible. 

The formal modeling of user  process  knowledge 
focuses on early-warning analytical tools. One for- 
mal approach seeks to develop a representation, a 
method for constructing the representation, and  a 
means for executing the representation to test its 
validity. This work is based on  the  assumption  that 
the results can be made useful to developers for 
predicting, at least  in some cases,  how changes in 
interface design are likely to affect  user learning and 
throughput. 

Ultimately the  approach is intended to be suitable 
for incorporation  into  the development cycle. This 
means  that  the user psychology must be introduced 
in a way that matches development practices and 
expectations. In the following section, we  review a 
sample of this work and  examine its potential to 
support predictive and diagnostic analysis of  design 
decisions made when developers use a UIMS. 

Criteria  for  analytic tools. Reisner2O has reviewed 
analytic tools that may eventually provide an impor- 
tant  supplement to behavioral tests currently per- 

IBM SYSTEMS JOURNAL, VOL 25 NOS 3/4, 1986 

formed by human factors professionals. Analytic 
methods are intended to provide a filter,  suggesting 
what can safely  be ignored, and  to serve as  a spotlight, 
illuminating which aspects of the interaction are 
important in the prediction of user performance. 
The experimenter builds a representation of the user 
interaction, performs systematic operations  on  the 
representation, and  then studies the result to predict 
what would happen if actual user behavior were 
observed. 

To be of practical use, such a method must itself  be 
validated. The knowledge structure for a particular 
situation  must be represented using the concepts 
defined within the theory. The representation of the 
structure  must be analyzed to develop predictions 
for average user learning time  and average produc- 
tivity, and  to identify likely  user errors. People must 
be enlisted to use,  in experimental situations, the 
processes that have been modeled, in order to obtain 
actual values for comparison with the predicted Val- 
ues (such as learning time for a task, time to complete 
a task once learned, or kinds of user errors observed). 

In addition, Reisner points  out  that  the modeling 
method must itself be easy to use  if it is to be 
incorporated within the  current system development 
process. That is, the knowledge and skills needed to 
build a model for a particular system under devel- 
opment must be available within the development 
process.  Also, the method must be timely and eco- 
nomically feasible within typical development proc- 
ess constraints. 

One  approach  to  modeling  the  process  of use. One 
approach to gaining a better understanding of user 
interfaces is to model the knowledge a user must 
have when that user cames  out tasks through an 
interface. Card,  Moran,  and Newell'' have developed 
a formal goal, operator,  method, selection-rule 
(GOMS) model. This is an analytic approach  intended 
to aid designers and  to allow detailed descriptions of 
the  mental  and physical operations  a user must 
execute to achieve task results. 

Figure 4 (adapted from Reference 2 1 ) shows exam- 
ples of goals, operators, methods, and selection rules 
for part of an editing process.  In the GOMS model, a 
hierarchy of  goals is  used to specify the sequence of 
subtasks needed to complete a complex task. Shown 
on  the right  of Figure 4 is the Keystroke Model, a 
simplified  version of the GOMS model. The times 
required for each observable physical motion (0) 
and  the  times needed for mental  operations (M) can 



Figure 4 An example  of the GOMS Model  and a simplified  Keystroke  Model for an  editina  task 

A GOAL HIERARCHY  SHOWING 
RELATIONSHIPS  AMONG  GOALS,  OPERATORS, 
METHODS,  AND  SELECTION  RULES 

GOAL:  EDIT  FROM PAPER 

GOAL: EDIT UNIT TASK 
GOAL ACQUIRE  UNITTASK 

GOAL: GET FROM PAPER 
OPERATOR:  LOOK AT  PAPER 
OPERATOR:  SEARCH FOR 

GOAL:  EXECUTE  UNIT TASK 
GOAL LOCATE  CHANGE IN COMPUTER 

SELECT  METHOD 1 OR METHOD 2 
METHOD 1: USE  STRING  SEARCH 

GOAL:  GET  FROM PAPER 
(REPEAT  AS  NEEDED) 

GOAL:  TYPE IN "IARG' 
GOAL:  PUSH  ENTER 
GOAL VERIFY  MATCH 

METHOD 2: USE NEW  LINE 
(REPEAT  AS  NEEDED) 

GOAL:  PUSH  "NEW LINE" KEY 
OPERATOR:  VERIFY  MATCH 

GOAL:  MAKE  CHANGE 

GOAL:  TYPE  THE  STRING 

GOAL:  VERIFY 
GOAL:  LOOK AT  DISPLAY 
GOAL:  LOOK AT MANUSCRIPT 
GOAL:  COMPARE 

GOAL ACQUIRE  UNIT TASK 

SIMPLIFIED 
KEYSTROKE 
MODEL 

be summed  to give a Keystroke Model estimate for 
the total time needed to complete a task. 

The  terms used  in the GOMS model can be understood 
as follows: 

Unit task is a way of expressing how people orga- 
nize their behavior into 10- to 15-second, rela- 
tively independent tasks. This organization corre- 
sponds to  human limitations such as short-term 
memory and also corresponds to the logical struc- 
ture of a task. 
Goal is a symbolic structure representing a user's 
intention to perform a task, a  mental  operation  as 
part of a task, or  a task-required physical action. 
In Figure 4, Edit-Unit-Task represents a high-level 
goal, Locate-Change-in-Computer represents a 

middle-level goal with two possible methods, and 
Push ENTER represents a goal resulting in a physi- 
cal action. 
Operator is an elementary perceptual, cognitive, 
or physical act the execution of  which changes the 
user's mental state or affects the task environment. 
User behavior is recordable as  a sequence of these 
operations that are assumed to be serial in execu- 
tion in the GOMS model. In Figure 4, Look-at- 
Paper represents an operator high  in the task 
decomposition that is  relatively independent of 
interface devices; Type-In "/arg" represents an 
operator  at  the low  level that may change, depend- 
ing on the device used at the interface. 
Method is a sequence of operations. In the GOMS 
model a method is shown as  a conditional se- 

364 BENNETT IBM SYSTEMS JOURNAL, VOL 25. NOS 3/4,1986 



quence of goals and  operators along with condi- 
tional tests on  the  content of user memory  and  on 
the  state  of  the task environment. In Figure 4, the 
New Line method is one way for the user to move 
the  cursor on  the screen to the position in the 
computer representation of the text where a 
change must be made. 
Selection rule is a conditional test that models a 
user choice of  the  method to apply from among 
available methods. In Figure 4, Locate-Change-in- 
Computer represents the place where a selection 
rule would be invoked to choose a method,  but 
the required condition testing is not shown. 

The Keystroke Model shows the  lumping of higher- 
level, not directly observable mental  operations  into 

Design  of  a  goal structure 
representation  is at the  frontier of 

current  research. 

one or more Ms.  Physical actions are observable and 
are represented as Os. 

This example gives an overview of the  concepts  that 
appear in the theory and a view  of the relationship 
between the GOMS representation and  the Keystroke 
Model. 

Building a GOMS model requires a special task-anal- 
ysis  skill.  Design of a goal structure representation- 
particularly one tuned to the investigation of user- 
computer interaction-is at the frontier of current 
research. The complexity of the representation and 
the detail of the predictions that can be made through 
analysis of  that representation can vary widely. For 
example, a high-level analysis might focus on device- 
independent  decomposition, whereas at a very de- 
tailed level, times  due to the particular physical 
details of a particular device are more important. 

The scope of current research is limited to perform- 
ance of routine cognitive skills. This research does 
not address the full  range  of human behavior observ- 
able at  an interface. For example, error analysis is 

IBM SYSTEMS XXRNAL. VOC 25, NOS 3/4, 1986 

not included, though modelers can sometimes pre- 
dict through an analysis of  goal structures where user 
errors will be observed. 

The potential value from use  of the GOMS model is 
that formal, theory-based modeling of routine tasks 
carried out by a hypothetical well-trained user leads 
to  an improved basis for interaction design. That is, 
we assume  that a stable set of  routine  methods (such 
as those found in text editing) forms a foundation 
upon which  users build their interactions with more 
advanced applications. 

Studies built on the GOMS model. Kieras and 
Polson2* are developing a cognitive-complexity the- 
ory that allows training  time  and  throughput esti- 
mates to be made, based on analysis of the COMS 
structures. Their  additional step is to  map COMS 
constructs into executable representations of user 
how-to-do-it knowledge. Such representations are 
well known to persons in the fields  of artificial intel- 
ligence, natural-language analysis, and expert sys- 
tems  as a way to model human  information process- 
ing. 

In Figure 1 we saw an overview  of the two sides of 
the user interface. In Figure 3 we expanded the right 
side of the user interface to show  how a UIMS could 
provide functions needed to support  the presentation 
language and the user action language.  In Figure 5 
we illustrate the  parts of the simulation model used 
by Kieras and Polson. 

The knowledge required to operate the system is 
represented in production rules. In parallel with that 
representation, the system or device under study is 
represented in executable form. A user-device sim- 
ulation interprets an external Task List. The simu- 
lator drives the simulated device to construct  the 
task environment  (for example, a page  of text to be 
edited), passes control to  an interpreter that processes 
the production-rule representation of the goal hier- 
archy, and generates a simulated user action.  The 
simulator  continues through the cycles until  the Task 
List  is completed. The statistics collected by the 
simulator  are interpreted by the experimenters with 
respect to  the theory to estimate ease of learning and 
throughput. 

Polson and Kierasz3 discuss the relationship between 
the  content,  amount,  and  structure of user knowl- 
edge (as represented in production rules) and predic- 
tions of time  to learn. As we now understand things, 
the  time needed to learn a task is a function of the 

BENNETT 365 



Flgure 5 The relatlonships among the parts of a simulator 

SIMULATING 

PROWCTION 

HOWTO”WTT 
RULE  MODEL OF 
KNOWLEDGE 

COMPLEXW 
RESULTS 

number of new production rules in the task repre- 
sentation.  The  time required to carry out  the task 
(productivity) is estimated by the unit time for hu- 
man execution of each production rule summed over 
all production rules needed to  emit the correct sim- 
ulated stream of user actions. 

Clearly, the model of hypothesized user  knowledge 
must be independently validated through experi- 
mental observation of people carrying out the tasks 
represented in the model. The level of detail included 
in the model (such as  time  to push a key), the 
assumptions  about  the  internal hierarchical structure 
of the rules, and  the programming style  of the person 
who creates the  production rules can all  affect sim- 
ulator execution time. 

In recent studies by Polson and Kieras on transfer 
of training, predictions are based on  an assumption 
that  no extra time is required for a  simulated user to 
learn the  parts of the  production-rule  structure in a 
new task when those parts  are  the  same  as those in 
a previously learned task. For example, if the MOVE 
and COPY commands for a text editor  are designed 
so that  the user knowledge required to learn them is 
represented by many  common  production-rule se- 
quences, the theory predicts that user training  on 
MOVE transfers to the COPY operation  and  the second 
command is learned faster than  the first, indepen- 
dently of which one is learned first. This  has been 

366  BENNE^ 

tested by Polson and Kieras using people in  numer- 
ous laboratory  experiment^.^^ For this kind of exper- 
iment,  the model results prove quite accurate. 

Using these concepts, we can find  in the Kieras and 
Polson formal approach a theoretical basis for talking 
about  the simplicity, the consistency, and the transfer 
of  user  knowledge to new processes. A base of data 
obtained from experiments with actual users is now 
being built to validate and calibrate the model data. 
The user  processes so far are relatively simple, but 
the researchers are encouraged by their current suc- 
cesses. 

Limitations. A number of researchers are comparing 
results seen in their work with the kind of results 
predicted by the GOMS model, particularly at the 
keystroke level. Gould  and AlfaroZ4 report a  com- 
parison between their findings and  the predictions of 
the Keystroke Model. The  authors observed that 60 
to 80 percent more time is required than  the  time 
predicted for comparable time categories by the 
Keystroke Model. This is true even for the skilled 
users assumed by the model. 

Clearly, we must be cautious  about  the precision of 
estimates generated with the Keystroke Model. How- 
ever, even these approximate models can be useful 
as an aid  during initial system design. 

IBM  SYSTEMS JOURNAL, VOL 25, NOS 3/4,1% 



Issues. With this brief overview, we are ready to look 
at some ofthe questions raised by the modeling work 
so far: 

Do present models capture enough of the variety 
of user behavior to be helpful? The rudimentary 
state of the existing theory limits  study to routine 
cognitive processing. The problem-solving behav- 
ior known to be important  at  the user interface is 
not addressed. The working assumption is that 
human problem-solving behavior is built on a base 
of routine cognitive processing. If designers can 
support  the  routine work (by analogy, the dialog 
framework in  the UIMS), the user can  more easily 
do creative problem solving (by analogy, the ap- 
plications). 
Is the particular kind of task analysis required by 
the modeling work itself well enough understood 
that it can be taught reliably to people working in 
the  development process? Modeling work requires 
a task analysis before the goal structure can be 
created. The skill appears to be taught currently 
through examples provided by mentor to graduate 
student  at university cognitive science depart- 
ments. Progress  in learning how to  do task analysis 
appropriate for the method is valuable in  itself, as 
the skills are needed for observational work  in 
human factors experiments, quite aside from 
knowledge-representation models. 
Are the  time  and resources that it takes to model 
a proposed user interface design and  to model the 
user processes that  the design implies feasible 
within the  product  development cycle  in industry? 
The U I M S  approach is intended  to  make it easier 
to  do top-down modeling of the devices and early 
prototyping of the user interface. That is compat- 
ible with the approach of Kieras and Polson. The 
art of creating the goal structure  and writing the 
production rules is more problematic. It may be 
that  current work will lead to standard  subroutines 
or templates representing current designs that  an- 
alysts may apply to new designs. 

Answers to these questions  are being explored in 
laboratories. The  opportunity for analysis based on 
principles and  the need  for insight give us confidence 
that  the  current work  will  have practical impact. 

Putting  theory  into  practice 

This review has examined areas of concern to user 
interface builders working within a product-devel- 
opment cycle. The concept of a UIMS shows great 
promise as a tool for simultaneously reducing the 

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4. 1966 

cost of development, providing the technical flexi- 
bility needed in advanced applications, and meeting 
the usability requirements of users. The analytic 
tools for modeling user  process  knowledge can fit 
well within an engineering approach to design and 
development. 

Gould  and Lewis2’ advocate early and  continual 
focus on users, observation of usage on simulated, 
prototyped, and actual systems, and iterative modi- 
fication as needed. They contrast this  approach with 
principled design approaches, relying on design 
guidelines intended to get it right the first time.  Their 
advice fits well with the UIMS development concepts 
advocated by the  authors we have cited. The addition 
of models for user  process  knowledge  is intended to 
give early-warning indicators of  design approaches 
that may cause problems for users. These design 
implementation  and evaluation aids may help crea- 
tive designers focus their innovative skills on prob- 
lems that need to be solved to support users  even 
before the prototypes advocated by Gould  and Lewis 
are ready. 

We expect the research  cycle  of building systems, 
studying them to understand what has been built, 
and applying the knowledge to  implement new  sys- 
tems to continue to augment our ability to build 
user interfaces that  are truly advanced. 

Acknowledgments 

I found valuable the several hours  that  Jim  Rhyne 
spent in discussing the experience he gained from 
his work  with User Interface Management Systems. 
Phyllis Reisner has shared her insight over a period 
of time in discussions of analytic methods applied to 
interface design. The keen interest of Peter Polson 
in  seeing analytic methods based on cognitive science 
theory put into development practice has been an 
inspiration for a  number of the observations. John 
Richards contributed perceptive comments from 
both the viewpoint of  system developer and cognitive 
psychologist. However? I am responsible for the 
interpretations made in the article. 

Cited  references 

I .  Human Fucrors in Computing S.wtems-CHI 86 Proceedings, 
April 1986. ACM Special interest Group on Computer  and 
Human Interaction, New York. 

2. Human-Computer Intrruction-INTERACT84 Proceedings, 
B. Shackel, Editor, Elsevier North-Holland,  Inc.,  New York 
(1985). 

 BENNE^ 367 



3. J. L. Bennett, “Managing to meet  usability requirements,” 
Visual Display Terminals: Usability Issues  and Health Con- 
cerns, J. L. Bennett, D.  Case, J. Sandelin, and M. Smith, 
Editors, Prentice-Hall, Inc., Englewood  Cliffs,  NJ (1984). 

4. D. R. Olsen, Jr., W. Buxton, R. Ehrich, D.  Kasik, J. Rhyne, 
and J .  Sibert, “A context for user interface management,” 
IEEE Computer Graphics and Applications 4, No. 12,  33-42 
(December 1984). 

5 .  J. Coutaz, “Abstractions for  user interface design,” IEEE 
Computer 18, No. 9, 21-34 (September 1985). 

6. M. Good, T. Spine, J. Whiteside, and P. George, “Empirical 
impact analysis as a tool  for  usability engineering,” Human 
Factors in Computing Systems“cHI’86 Proceedings, April 
1986, ACM Special Interest Group on Computer and Human 
Interaction, New York,  pp. 241-246. 

7. M. Green, “The University  of  Alberta  user interface manage- 
ment system” (Proceedings of ACM SIGGRAPH15),  Com- 
puter Graphics 19, No. 3, 205-2 13 (July 1985). 

8. Interactive System Productivity Facility (SPFJ and ISPFjPro- 
gram Development Facility (PDF), General  Information, 
GC34-2078, IBM Corporation; available through IBM branch 
offices. 

9. Graphical Data Display Manager, General  Information, 
GC33-0100, IBM Corporation; available through IBM branch 
offices. 

10. TopView: Programmer’s ToolKit, IBM Personal Computer 
software,  Program  No. 1502483, Boca Raton, FL;  available 
through IBM branch offices. 

1 1. IBM RT Personal Computer Technology,  Product  Design  and 
Development, SA23-1057, IBM Corporation (1986); available 
through IBM branch offices. 

12. D. Kasik, “A user interface management system,” Computer 
Graphics 16, No. 3,99-I06 (July 1982). 

13. P.  Wong and E. Reid,  “FLAIR-User interface dialog  design 
tool,” Computer Graphics 16, No. 3, 87-98 (July 1982). 

14. J. D.  Foley and A. van Dam, Fundamentals of Interactive 
Computer Graphics, Addison-Wesley Publishing Co., Read- 
ing, MA ( 1  982). 

15. W. Buxton, M. Lamb, D. Sherman, and K. Smith, “Towards 
a comprehensive user interface management system,” Com- 
puter Graphics 17, No. 3,  35-42 (July 1983). 

16. P.  Hayes,  P.  Szekely, and R. Lerner, “Design alternatives for 
user interface management systems  based on experience  with 
COUSIN,” Human Factors in Computing Systems“cHI’85 
Proceedings, April 1985, ACM Special Interest Group on 
Computer and Human Interaction, New York, pp. 169-175. 

17. J. Foley, V. Wallace, and P. Chan, “The human factors  of 
computer graphics interaction techniques,” IEEE Computer 
Graphics  and Applications 4, No. 1 1, 13-48 (November 1984). 

18. IBM Systems Journal 20, No. 2 (198 1). 
19. J .  H. Botterill, “The design rationale of the System/38 user 

interface,” IBM Systems Journal 21, No. 4, 384-423 (1982). 
20. P. Reisner, “Analytic tools for human factors  of  software,” 

Proceedings:  Enduser Systems and  Their Human Factors, 
A.  Blaser and M. Zoeppritz, Editors, Lecture Notes in Com- 
puter Science, No.  150,  Springer-Verlag, New  York (1983), 

2 I .  S .  Card, T. Moran, and A. Newell, The  Psychology of Human- 
Computer Interanion, Lawrence Erlbaum Associates,  Hills- 
dale, NJ (1983). 

22. D.  Kieras and P. Polson, “An approach to the formal  analysis 
of user complexity,” International  Journal of Man-Machine 
Studies 22, No. 4, 3-50 (1985). 

23. P. Polson and D.  Kieras, “A quantitative model  of the learning 
and performance of  text editing knowledge,” Human Factors 
in Computing Systems“cHI’85 Proceedings, April 1985, 

pp. 94-121. 

368 BENNETT 

ACM Special Interest Group on Computer and Human Inter- 
action, New York,  pp. 207-212. 

24. J. Could  and L. Alfaro, “Revisingdocuments with  text editors, 
handwriting-recognition  systems, and speech-recognition sys- 
tems,” Human  Factors 26, No. 4, 391-406 (August 1984). 

25. J.  Could  and C. Lewis, “Designing  for  usability: Key principles 
and what  designers think,” Communications of the ACM 28, 
No. 3,  300-31 I (March 1985). 

John L. Bennett IBM  Research Division, Almaden Research Cen- 
ter, 650 Harry Road, San Jose, Calgornia 95120. Mr.  Bennett  is 
a member of the Computer Science Department of the Almaden 
Research Center. Since joining IBM  in 1961, he  has  developed  his 
long-standing interest in  all  aspects  of  user interface design. His 
work on information retrieval  projects and decision support sys- 
tems was reported in the book Building  Decision  Support Systems, 
Addison-Wesley (1983), which  he edited. During recent  years  he 
has  worked on user interface design for ofice systems, and he has 
served as consultant for IBM product divisions on integration of 
measurable,  testable  usability  objectives into  the development 
cycle  for interactive software products. He  is an editor of the book 
Visual Display Terminals: Usability Issues  and  Health  Concerns, 
Prentice-Hall (1984). and wrote the chapter “Managing to Meet 
Usability Requirements.” At the Interact34 Conference (London), 
he organized four theme sessions on “Behavioral  Issues  in the 
System Development Cycle”  as a way  of highlighting  what it is 
like to do human factors  work  in  software development projects. 
Mr. Bennett received a B.S. in engineering  science  from Stanford 
in 1959 and  an MS. in  electrical  engineering  from the Massachu- 
setts Institute of  Technology  in 1961. While at IBM Research  he 
has been manager of Geographic Data Systems and of Interactive 
Problem-Solving  Systems. He is currently an associate editor of 
the Management  Information System Quarterly and is on  the 
editorial board for the journal Behaviour  and  Information  Tech- 
nology. 

Reprint Order No. (3321-5280. 

IBM SYSTEMS JOURNAL, VOL 25. NOS 3/4.19& 


