Tools for building
advanced user interfaces

System developers are noticing that their design deci-
sions strongly affect computer usability. The design of
the user interface has an important bearing on the
knowledge users must have to accomplish work
through the user-computer interface. Recognition of
this fact is leading to the development of User Inter-
face Management Systems (UIMSs). A UIMS is a design
concept for separating the details of user interaction
from the details of advanced applications. This paper
shows how UIMS research and research into the repre-
sentation of user process knowledge (i.e., user how-to-
do-it skills) can help developers understand issues in-
volving ease of learning and ease of use. This parallel
progress in UIMS development and in user modeling
makes it easier to build high-quality advanced user in-
terfaces.

As a result of today’s widespread use of the per-
sonal computer, developers are being asked to
design user interfaces for advanced applications in-
tended for users without data processing experience.
These users are not prepared to learn the computer-
oriented details typically required of experienced
users, and often expect to walk up and use the
promised power as easily as they might drive a rented
car. But the operating systems supporting these ap-
plications were developed for users accustomed to
carrying out complicated tasks. Meeting the needs of
users who demand power without complication has
made industry increasingly sensitive to the design of
the user interface.

Developers are looking toward User Interface Man-
agement Systems (UIMSs) as a way to meet this de-
mand. A UIMS is a set of services that supports the
presentation of data on a workstation and accepts
user actions taken in response to the displayed data.
By serving as a bridge between a variety of applica-
tions and a variety of workstations, a UIMS serves as

354 eennerr

by J. L. Bennett

a tool for simultaneously reducing the cost of devel-
opment, providing the technical flexibility needed in
advanced applications, and meeting the usability
requirements of users.

The design decisions made in a particular application
affect the presentation to the user, the process of use,
and therefore the knowledge needed by the user
during interaction. Whereas each application has its
own specific objects and actions, different applica-
tions have many objects and actions in common,
such as text creation and editing of tables of values
to be shown and modified. Users expect the processes
to be supported across applications in a standard
way, and developers want to be able to construct the
needed support only once in a UIMS and then use
that uIMS to supply interactive services to many
different applications.

In this paper we explore examples of both research
and applied work now in progress that are beginning
to influence the design of user interfaces for ad-
vanced computer applications. The first section de-
fines what we mean by the term user interface—its
location, its properties, and a basis for evaluating it.

We then show how the concept of a UIMS is being
developed in order to reduce the cost of constructing
user interfaces and to improve their quality. Much
of the internal logic of a UIMS (the necessary relation-
ships among its internal parts) can be worked out

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction ts done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

independently of any specific interaction style. De-
signers, however, recognize a need for guidance on
how to shape a specific user interface when it is built
with the tools provided by a uiMs. For this they need
input on how users will judge user interface quality.

We then review models being developed to represent
user process knowledge. Cognitive scientists (not the
computer scientists developing UIMS concepts) are
exploring formal methods for representing the
thought and action processes required of the user by
a particular interface design. Thus, if the relative
effects of alternative design decisions are understood
early in the development process, developers can
make modifications that improve ease of learning
and ease of use for the eventual users.

Cited references illustrate work in progress but are
not intended to be comprehensive in coverage. While
several IBM projects are mentioned, the reader will
find many projects outside 1BM. Additional user in-
terfacg issues are outlined in conference proceed-
ings.!"

Defining the user interface

Placing and evaluating the interface. The user inter-
face may be thought of as a surface through which
data are passed back and forth between computer
and user.’ Physical aspects of the user interface (Fig-
ure 1) include the display devices, audio devices that
may be used, and input devices such as tablet, joy-
stick, mouse, microphone, or keyboard.

Data displayed on the workstation provide a context
for interaction, giving cues for user action (we as-

sume that the user knows how to interpret what is
displayed). The user formulates a response and takes
an action, and data then pass back to the computer
through the interface. In this concept, all aspects of
the system that are known to the user are defined at
the interface. The quality of the interface, from the
user perspective, depends on what the user sees (or
senses), what the user must know in order to under-
stand what is sensed, and what actions the user can
{(or must) take to obtain needed results.

From the user perspective, the implementation on
the computer side can be considered as a whole. The
user evaluation of what is observed at the interface
gives us a focus for setting explicit requirements on
the static and dynamic properties that are experi-
enced from the user’s side of the interface. In a
similar way, the designer can consider the user as a
“module” with prescribed processing capabilities
that are also evaluated at the interface. This gives us
a focus for understanding the interaction require-
ments placed by the computer system on the user
who carries out tasks.

It is important to separate these interaction require-
ments from a particular implementation that build-
ers supply to meet them. That is, ease-of-learning
and ease-of-use requirements persist even if they are
hard to meet. It is our purpose to design the interface
to fit the user rather than to “design” the user
(through training) to fit the interface. However, any
implementation requires trade-offs and compro-
mises that inevitably lead to some user training as
an accommodation to the equipment. By distin-
guishing the requirements derived from the needs of

Figure 1 The two sides of the user interface

| .
|

PRESENTATION
LANGUAGE

INTERPRET
THE DISPLAY

PROCESS
THE CONTENT

PLAN AND |

TAKE ACTION .
ACTION
LANGUAGE

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

7 GENERATE THE
DISPLAY

APPLICATION
PROCESSING

INTERPRET THE
USER INPUT

BeNNETT 355

Figure 2 A specific example of screen content showing the dialog framework and content for an EZ Editor application and a
WriterAid appfication

System developers are notcing that their
design decisions strongly affect computer
usability. The design of the user interface
has an important bearing on the knowledge
users must have to accomplish work through
the user/computer interface. Recognition of
this fact is leading to the development of

User Interface Management Systems (UIMSs). A

i 5)

i Wi

System Developers are notcing that their

design decisions st
usability. The des
has an important be
users must have to

the user/computer i
thig fact 1s leadin

onputer
interface
owledge
through
gnition of
pment of

notching
noticing
nothing
noting

User Interface Management Systems (UIMSs). A

the end user from the implementation created by
developers to meet the stated needs, we hope to
recognize that the quality of any mechanism used to
build the computer system, such as a UiMs, will be
judged by how well it meets the requirements. This
recognition encourages us to explore a variety of
design approaches.

Languages used at the interface. We may analyze
the data displayed by the computer at the interface
as sentences in a presentation language. Just as with
any other language, the computer as generator of the
sentences must follow language rules; the user as
interpreter of the language must know how to parse

356 seneTT

st e

the sentences. Similarly, we may consider that the
user responds to the computer through the interface
by composing sentences from an action language. In
this case, the user as generator must follow the rules
so that the computer can parse the input sentences.

Figure 2 shows a representation of a specific user
interface as it might appear on a display (Figure 1).
The display provides access to the independent Ez
Editor and WriterAid applications operating on the
same data. The layout of the screen and the data
displayed on the screen illustrate the presentation
language. User action is carried out through the
workstation devices. Actions may be invoked under

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

user control, under computer prompting, or through
automatic computer processing. System actions are
shown at the bottom of the screen. Application
actions are shown in each application window. Thus
the user interprets the context formed by the pre-
sentation language and reacts through actions al-
lowed in the action language.

Goals evaluated at the user interface. We now con-
sider typical goals of the people who build the inter-
face and those of the end users who interact through
the interface.

Goals of UIMS builders. The concept of a User
Interface Management System* has been a recent
focus for builders. The following are typical goals for
improving the quality of the user interface, adapted
from References 4 and 5:

* Place the user interface processing that is common
across applications in a separate module so that
many applications can use the same code.

¢ Use the common module to present a more con-
sistent interface both within and across applica-
tions.

e Use the presence of a common module to encour-
age specialists to separate the design of presenta-
tion and action languages seen by the user from
the design of specific application content.

Goals of end users. In considering the interface as
a surface, we can outline dimensions that users
evaluate in an “acceptance test” of the results of a de-
sign. Sample dimensions adapted from Shackel by
Bennett® are as follows:

e Learnability. A specified level of user performance
is obtained by a required percentage of a sample
of intended users, within some specified time from
beginning of user training.

¢ Throughput. The tasks required of users can be
accomplished by a required percentage of a sample
of intended users, with required speed and with
fewer than a specified number of errors.

¢ Flexibility. For a range of environments, users can
adapt the system to a new style of interaction as
they change in skill or as the environment changes.

 Attitude. Once they have used the system, people
want to continue to use it, and they find ways to
expand their personal productivity through system
use.

The importance of measures of success. Both the
builder and the evaluator representing the user must

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

establish specific measurable and testable goals for
their work.® Ultimate success at the user interface

Ultimate success at the user
interface can be evaluated only after
the system is built and put into use.

can be evaluated only after the system is built and
put into use. Because of the expense of building a
system and the difficuity of making design changes
at later stages of development, developers are looking
for cost-effective ways to make the changes needed
at the user interface, without affecting the relative
stability of applications. Developers are also recep-
tive to the potential success of early-warning meth-
ods such as modeling user process knowledge to
identify before system completion those design de-
cisions that may lead to user inefficiency. We explore
what 1s being done to meet these goals in the next
two sections.

Building the user interface

The UIMS as a model for organizing computer re-
sources. The concept of a UIMS is relatively new. As
mentioned earlier, a UIMS is a set of services for
presenting data on a workstation and interpreting
user actions at the workstation. By serving as a bridge
between a variety of applications and a variety of
workstations, the UIMs serves as a tool for simulta-
neously reducing the cost of development, providing
the technical flexibility needed in advanced applica-
tions, and meeting the usability requirements of lay
users.

Implementers of these systems have synthesized
ideas for them from a variety of sources. Many of
the concepts, initially developed as fragments in
graphics applications, are being brought together as
a conceptual whole. Thus the UIMS serves as a focal
point for understanding design options that are im-
portant to the developer (by making it easier to
construct the interface) and indirectly important to
the end user (by improving the quality of the user
interface).

senneTT 357

A uIMs is both a set of tools for building a user
interface and a run-time processing system for sup-
porting the interaction between an end user and the
applications running in the computer. In principle,
all user interactions with the computer go through
the uiMs. The motivation for building a UIMS comes
from the observation that much of the support for
user interaction appears to be common across a wide
variety of applications. When interaction code is
lumped with application function, the work must be
repeated for each application. In addition, end users
are confused by the fact that designers of applications
have varying ideas about what constitute good inter-
action methods. If these details of interaction (many
of them device-specific) can be handled indepen-
dently of the various applications in a way judged
consistent by users, several potential benefits may be
realized.

Olsen et al.? list these benefits as follows:

~ A UIMS can provide a practical means to support
design of an interface suitable for use across ap-
plications.

» User interface specifications (presentation language
and action language), defined separately from the
application specifications (i.e., physical input data
required from the user), can be represented, vali-
dated, and evaluated more easily.

~ User interface designs can be prototyped and im-
plemented more rapidly using the tools provided
as part of the UIMS.

~ Construction and maintenance of interactive ap-
plications can be separated from construction and
maintenance of user interfaces.

~ Functions that support the user interface can be
distributed among systems and processors in a
way that increases responsiveness to user actions
but does not require changes in user interaction
methods.

~ Members of the design and development team can
apply specialized skills throughout the evolution
of the software that shapes the user interface.

The tools provide these benefits by reducing the cost
of development, offering technical flexibility, and
assisting designers to meet the usability requirements
of users. In addition to aiding the work of senior
developers, perhaps an even greater benefit can come
from improving the resuits obtained by relatively
junior personnel. The concept of a UIMS serves as a
focal point for the construction of such tools.

Structural relationships within a UIMS. A uims can
present information in two categories. (Figure 1 gives

358 BENNETT

an overview and Figure 2 gives a more detailed
illustration of the specific content that could be
produced by a UIMS.)

Presentation language. The first category (lighter
area of Figure 2) relates to the presentation context,
the dialog framework within which application in-
formation is shown to the user. This category is
analogous to a desktop work area, with data giving
support for writing a variety of documents. Examples
of context structures are display windows and menu
formats. The dialog framework separates views of
objects, determines whether window overlapping is
allowed, and supplies window border markings.

The second category (darker areas of Figure 2) is
determined by the specific content of an application.
To continue the desktop metaphor, one document
on the desk is distinct from another. Examples of
application content are lines of text for a document
shown in a window or items in a menu of choices
relating to a specific application.

Action language. The UIMS supports parallel cate-
gories in the action language available to the user.
The first category relates to actions on the dialog
framework. Examples are the moving of a display
window on the surface of the terminal or selecting a
menu item. Rules are included for how the window
and content can be moved with respect to the edge
of the screen, whether one window can be moved to
overlap another, and how to link an input device to
the move action.

The second category relates to actions on the appli-
cation-specific content. An example in this category
is selecting a point in an image contained within the
document. Rules determine what can be done with
the image, the sequence of steps needed, and how
the application shapes are linked to input devices.

A UIMS architecture. One way to understand the
concept of a UIMS is suggested by Green’ in his review
of a workshop held by uims developers. Green dis-
cusses a model that divides the UiMs into several
parts to emphasize a division of responsibility. We
can understand the division represented in Figure 3
by tracing the flow of data from the application to
the user. This produces, for example, the kind of
data displayed on the screen in Figure 2. In the same
way, we trace the flow of data from the user back to
the application.

The path from the application to the user. The op-
tions for presentation available to an application are

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 3 Structural relationships among the abstract components of a User Interface Management System

UIMS
DATA BASE

USER
INTERFACE

APPLICATION
PROGRAM
INTERFACE

defined at the application program interface. The
application translation component transforms an ap-
plication request for display into a data structure
designed for the uims. The dialog management com-
ponent maps the application content onto the data
structure representing the context to be displayed to
the user (for example, places the representation of
the document in a window). The presentation/action
component is responsible for the physical appear-
ance of displayed data in accord with the presenta-
tion language, as defined at the user interface. Re-
quests for display from an application are matched
to the particular capability of the terminal. For ex-
ample, window borders on the screen may be in
color (if the device allows it). If the document dis-
played in a window contains an image, and if the
terminal cannot show images, the presentation/ac-
tion component at least preserves spatial fidelity to
show the relative position in which the picture would
appear, within the resolution of the device. If cursor
shape is a part of the presentation language, this
component is responsible for implementing the de-
sign decisions for this terminal that are embodied in
the UIMS.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

The uiMs data base acts as a repository for data that
must be known to the uiMs components. This in-
cludes terminal device characteristics, application
structure, the state of the dialog interaction, and a
means for preserving context when the user switches
among applications.

The path from user action to the application. We
now complete the data path by outlining the loop
from the user back to the application. All interac-
tions with physical devices are isolated in the pre-
sentation/action component, making it easier to add
new devices without changing the application.
Screen layout changes can accommodate user pref-
erences, such as left-handedness. The modularity can
encourage the development and the use of a standard
library of interaction techniques, such as the protocol
for changing a displayed value. The component in-
terprets the actions by the user on the physical
devices available at the interface. Examples of these
actions are pushing a cursor movement key, moving
a mouse, or moving a stylus on a tablet. The com-
ponent forms messages to be interpreted by the
dialog management component.

senneTT 359

The data path through the dialog management com-
ponent may take two branches. If the user action
can be interpreted as a dialog control request, it may
be processed through the first branch without appli-
cation intervention. For example, a request to move
a window on the screen (which by design does not
change the content displayed within it) can be han-
dled at the level of the dialog management compo-
nent. Or another user action may signal the begin-
ning of a sequence of actions to change the value of

Many questions remain in moving
the work from a research laboratory
to routine use.

a variable. The dialog management component can
interact with the user, thereby generating feedback
signals (such as change the shape of the cursor or
highlight content) for the presentation/action com-
ponent to display.

The second branch is taken when the Uims does not
have the information needed to respond to an action.
For example, such a branch might occur in the
selection of an application object that requires ap-
plication processing to place the cursor. This request
must be transmitted back to the application. In this
case the application translation component must
translate from the uiMms data structure into the ap-
plication data structure. This structure represents
distinctions that are known to the application giving
the request for display that started the loop.

Observations. It is interesting to note where devel-
opment of the concepts represented in the UIMS
originated in the evolution of user interface support
tools. In the past, application designers put together
whatever support was needed to access the applica-
tion from a particular workstation. Then, as the field
evolved, developers recognized common functions
for each application and for each workstation. This
work led to the synthesis of ideas represented in the
UIMS.

ISPF. Several existing dialog managers and applica-
tion development tools have some of the character-
istics of a uims. For example, the Interactive System

360 senerr

Productivity Facility (1spF)® is a dialog manager that
has been in use for several years to provide control
and services to allow processing of dialogs in vM,
Mvs, and VSE environments. The display screens of
1BM 3270-type terminals supported by centralized
host services can be split to provide an interface to
two independent applications, though only one can
be active at a time. Panel skeletons and interface
definitions for this class of terminal are stored in
libraries separate from the applications, allowing
programmers to tailor the display formats for differ-
ent system environments. The panel definitions can
be used to select application data for display to allow
user modification of specified variables and to do
verification checks of user input syntax. ISPF’s current
flexibility and potential for evolution are limited by
required compatibility with prior vm and MVs prac-
tices.

GDDM. The Graphical Data Display Manager
{GpbM)® is designed to handle the communication
between application programs and terminals. In ad-
dition to the base tools that define an application
programmer interface, features include an Image
Symbol editor for working with raster images, a
Vector Symbol editor for manipulating objects com-
posed from vectors, and an Interactive Map Defini-
tion editor for implementing dialog frameworks to
be shown through the dialog manager. These features
were designed relatively independently over time in
accord with the data structures then available. Given
the framework for setting usability goals when func-
tions are viewed from the perspective of the user
interface surface, and given an evolution in the tools
provided within GDDM (perhaps shaped by uiMs
concepts), later releases in the product may be able
to consolidate the different pattern of the user actions
now needed to edit these objects.

TopView. TopView!'? has provided some initial win-
dowing functions as a first effort to integrate the wide
variety of applications found on the 18M Personal
Computer. To do this required the setting up of an
application programmer interface. However, many
existing applications did not follow the required
interface rules because TopView had not been de-
fined at the time many of the early applications were
written. Thus, some applications could not use the
full features of TopView. Once the interface had
been established, other applications could evolve to
use it. In a similar way, the uiMs model for presen-
tation/action independence from the applications
may stimulate extensions of TopView and its suc-
Cessors.

IBM SYSTEMS JOURNAL, VOL 25, NOS 374, 1986

The RT Personal Computer. The 1BM RT PC'' uses
UIMS concepts to create a bridge between an operat-
ing system designed for a programmer and applica-
tions offered to occasional users as well as experts. A
dialog manager is used to define, present, and control
the user sequence of actions in order to shield the
application from details of display frame design and
user interaction. The dialog framework content,
stored separately from the application, is preproc-
essed to make it efficient for use in run-time opera-
tion. Support utilities aid the developer in laying out
dialog framework data on the screen. Other utilities
store and access the terminal description used by the
dialog manager. It will be interesting to see how these
elements, similar to those in the UIMS concept, evolve
in later releases as the initial ideas are tested in
practice.

Other commercial and military applications. Signif-
icant progress in the use of UIMS concepts has been
made in computer-aided design and military com-
mand and control. About ten large applications have
been implemented at Boeing Computer Services us-
ing The Interactive Graphics Engineering Resource
(TIGER)'? system for decoupling physical interaction
handling from logical function performance. Func-
tional Language Articulated Interactive Resource
(FLAIR),'? using voice recognition to support the de-
signer, has been in operation at TRw since 1981.Itisin
active use as a dialog design language for exploring
space-age applications using advanced graphics.

Issues. Although the concepts used in developing a
uIMsS are influencing exploratory work, many ques-
tions remain in moving the work from a research
laboratory to routine use in development projects.
The following are examples of some of these ques-
tions:

e Does the memory space required for a UIMS on
workstation processors make implementation fea-
sible on today’s equipment? In a system environ-
ment where many applications are served by one
uIMS, we should eventually see a system advantage
if all the applications can make use of the UiMs
facilities.

¢ [s the time required for a UIMS workstation proc-
essor to handle user actions compatible with in-
teractive response required at the user interface?
This is a function of the available processing power
and the way in which function is distributed be-
tween the UIMS and the application. Current prod-
ucts such as the pC RT'' are serving as a testing
ground for exploring this question.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4. 1986

Can the workable division of function between
uUIMs and applications that is possible in principle
be established in a wide range of practical situa-
tions? Realizing the full benefit of the uiMs re-
quires an agreed-upon definition of the application
programmer interface. Any such standardization
requires engineering trade-offs. The division of
function may require an evolution in application
design as well as in UIMS design.

¢ Do the current tool-kit approaches to providing
uiMs function give the designer valid defaults and
establish enough discipline to meet the usability
criteria as evaluated by the user at the user inter-
face?

Do the tools provided by the uiMms enable devel-
opers to construct applications faster than would
otherwise be possible?

¢ Does a UIMS, once constructed, prove to be por-
table to other environments?

Although developers need tools to construct user
interfaces with advanced features, the presence of a
tool, though it may have been designed with internal

The issue is knowing what needs to
be measured to diagnose user
problems.

elegance and creativity, does not itself automatically
lead to user interfaces that meet user requirements.
To identify operational characteristics of the uiMs
that result in user satisfaction, we can build perform-
ance-monitoring tools into the UIMS run-time sup-
port. The issue, however, is knowing what needs to
be measured in order to diagnose user problems.

Reference 4 suggests the integration of a spelling
checker with a word processor as an example of a
required technical capability for accessing functions
from several applications. Such a capability can aid
the user, but the timing of its invocation is critical.
If, in the kind of work situation shown in Figure 2,
a person is writing using Ez Editor and is barely able
to type fast enough to capture transient thoughts in
text, then the automatic invocation of the WriterAid

BENNETT 361

spelling checker might interrupt the flow of thought
and therefore the user’s progress in the task. A task
analysis might suggest that the system should support
text entry at typing speed, followed by a user-con-
trolled pass through the text to correct spelling. The
need for integration and rapid performance would
still exist, but the invocation would be timed to avoid
interference with the creative process of the user.

As we review recent literature on the developing
concept of the UIMS*>71%!7 and the tools associated
with it, we identify a need to provide a more “con-
sistent,” “uniform,” “supportive” interface for the
user. However, designers, both in the academic com-
munity and in industry, tacitly acknowledge that
they do not have operational definitions for these
terms.

Coutaz’® calls for advice from psychologists, human
factors specialists, and graphic artists who have ac-
quired a better understanding of human behavior
than have computer scientists when making specific
design decisions affecting the user interface. Dialog
design requires the cooperative efforts of technicians
from a variety of disciplines.” By cooperating in this
way, developers increase the chances of building in
effective guidance mechanisms to help the user adapt
to the design. Identified in Reference 5 is a need to
present designers with a standard view of the poten-
tial users, so that designers can provide access to
applications through the workstation in a consistent
way.

Representing user process knowledge

As suggested earlier in this paper (see Figure 1), the
user interface is evaluated by users according to what
they see, what they have to know in order to interpret
what they see, and what actions they can (or must)
take to get useful results. An important current
theme is consistency in presentation and action. We
mentioned earlier that the developer using UIMS tools
must make specific design decisions about the pre-
sentation and action language that affect the user
interface. We are now ready to discuss how work in
modeling the interactive processes needed by a user
is intended to help the developer in making these
decisions. The goal is to give some indication early
in the design process as to how design decisions affect
the ease of learning and the ease of use of an inter-
face. Some insight may be gained even before an
experimental prototype is built.

Much of the detailed uiMs work is in the area of
tools for supporting user input. Also, much of the

362 seneTT

work on representing user knowledge is focused on
studying user input to the computer. Output to the
user tends to be application-dependent and of great

Addressing the issues of
consistency and learning is related
to the psychology of the user.

variety. However, user input to the computer is
much more constrained and limited by that which
the computer can be programmed to deal with.

The designer of any interface assumes that the user
knows from previous experience (or can be trained
to know) the specific sequence of actions needed to
accomplish a particular task required by the design.
For example, the designers of an editor for office
documents assume that the intended users will be
able to acquire the knowledge needed to edit the
documents found in their work. To estimate the
possible gaps between what users already know and
what they have 10 learn, it is helpful for designers to
understand the knowledge already used by prospec-
tive customers as they carry out their current work.
Designers can then arrange the design so that as
much as possible of the current knowledge is trans-
ferred to the new work environment. Addressing the
issues of consistency and learning is related to the
psychology of the user—the see-know-do questions
previously mentioned.

Current practice in product development groups is
to establish usability plans as a basis for representing
performance objectives and for specifying the way in
which the interface will be tested. Excellent examples
are given in a special issue of the 1Bm Systems Jour-
nal.'® Botterill'® reviews practices followed in the
design of the System/38 user interfaces.

Phenomenological studies are carried out by human
factors personnel to observe people as they work. An
understanding of the need for change and sometimes
of what the change should be can often come from
these studies. A limitation of standard human factors

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

evaluations of interfaces is that the analysts need to
observe the actual process of use in order to see
whether the established objectives are met, to com-
pare alternative designs with respect to performance
goals, and to find sources of user errors. Such analysis
requires a working model or prototype. Some human
factors specialists have studied products currently
available in the field, and such existing systems can
serve as helpful prototypes for understanding pro-
posed product features. However, given the current

The formal modeling of user process
knowledge focuses on early-warning
analytical tools.

short development cycle (driven by competition and
affected by new software techniques associated with
new applications), analysis of the actual product
under development often comes so late in the devel-
opment process that significant changes to that par-
ticular interface are not economically feasible.

The formal modeling of user process knowledge
focuses on early-warning analytical tools. One for-
mal approach seeks to develop a representation, a
method for constructing the representation, and a
means for executing the representation to test its
validity. This work is based on the assumption that
the results can be made useful to developers for
predicting, at least in some cases, how changes in
interface design are likely to affect user learning and
throughput.

Ultimately the approach is intended to be suitable
for incorporation into the development cycle. This
means that the user psychology must be introduced
in a way that matches development practices and
expectations. In the following section, we review a
sample of this work and examine its potential to
support predictive and diagnostic analysis of design
decisions made when developers use a UIMS.

Criteria for analytic tools. Reisner?® has reviewed

analytic tools that may eventually provide an impor-
tant supplement to behavioral tests currently per-

BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

formed by human factors professionals. Analytic
methods are intended to provide a filter, suggesting
what can safely be ignored, and to serve as a spotlight,
illuminating which aspects of the interaction are
important in the prediction of user performance.
The experimenter builds a representation of the user
interaction, performs systematic operations on the
representation, and then studies the result to predict
what would happen if actual user behavior were
observed.

To be of practical use, such a method must itself be
validated. The knowledge structure for a particular
situation must be represented using the concepts
defined within the theory. The representation of the
structure must be analyzed to develop predictions
for average user learning time and average produc-
tivity, and to identify likely user errors. People must
be enlisted to use, in experimental situations, the
processes that have been modeled, in order to obtain
actua) values for comparison with the predicted val-
ues (such as learning time for a task, time to complete
a task once learned, or kinds of user errors observed).

In addition, Reisner points out that the modeling
method must itself be easy to use if it is to be
incorporated within the current system development
process. That is, the knowledge and skills needed to
build a model for a particular system under devel-
opment must be available within the development
process. Also, the method must be timely and eco-
nomically feasible within typical development proc-
ess constraints.

One approach to modeling the process of use. One
approach to gaining a better understanding of user
interfaces is to model the knowledge a user must
have when that user carries out tasks through an
interface. Card, Moran, and Newell?! have developed
a formal goal, operator, method, selection-rule
(GoMs) model. This is an analytic approach intended
to aid designers and to allow detailed descriptions of
the mental and physical operations a user must
execute to achieve task results.

Figure 4 (adapted from Reference 21) shows exam-
ples of goals, operators, methods, and selection rules
for part of an editing process. In the GoMS model, a
hierarchy of goals is used to specify the sequence of
subtasks needed to complete a complex task. Shown
on the right of Figure 4 is the Keystroke Model, a
simplified version of the Goms model. The times
required for each observable physical motion (O)
and the times needed for mental operations (M) can

BENNETT 363

Figure 4 An example of the GOMS Model and a simplified Keystroke Model for an editing task

A GOAL HIERARCHY SHOWING
RELATIONSHIPS AMONG GOALS, OPERATORS,
METHODS, AND SELECTION RULES

GOAL: EDIT FROM PAPER

GOAL: EDIT UNIT TASK
GOAL: ACQUIRE UNIT TASK
GOAL: GET FROM PAPER
OPERATOR: LOOK AT PAPER
OPERATOR: SEARCH FOR
GOAL: EXECUTE UNIT TASK
GOAL: LOCATE CHANGE IN COMPUTER
SELECT METHOD 1 OR METHQD 2
METHOD 1: USE STRING SEARCH
(REPEAT AS NEEDED)
GOAL: GET FROM PAPER
GOAL: TYPE IN “/ARG”
GOAL: PUSH ENTER
GOAL: VERIFY MATCH
METHOD 2: USE NEW LINE
(REPEAT AS NEEDED)
GOAL: PUSH “NEW LINE" KEY
OPERATOR: VERIFY MATCH

GOAL: MAKE CHANGE
GOAL: TYPE THE STRING

GOAL: VERIFY
GOAL: LOOK AT DISPLAY
GOAL; LOOK AT MANUSCRIPT
GOAL: COMPARE
GOAL: ACQUIRE UNIT TASK

SIMPLIFIED
KEYSTROKE
MODEL

METHOD 1 METHOD 2

M=MENTAL STEP| -
O =OBSERVABLE L.

be summed to give a Keystroke Model estimate for
the total time needed to complete a task.

The terms used in the GoMs model can be understood
as follows:

o Unit task is a way of expressing how people orga-
nize their behavior into 10- to 15-second, rela-
tively independent tasks. This organization corre-
sponds to human limitations such as short-term
memory and also corresponds to the logical struc-
ture of a task.

s Goal is a symbolic structure representing a user’s
intention to perform a task, a mental operation as
part of a task, or a task-required physical action.
In Figure 4, Edit-Unit-Task represents a high-level
goal, Locate-Change-in-Computer represents a

364 sennerT

middle-level goal with two possible methods, and
Push ENTER represents a goal resulting in a physi-
cal action.

Operator is an elementary perceptual, cognitive,
or physical act the execution of which changes the
user’s mental state or affects the task environment.
User behavior is recordable as a sequence of these
operations that are assumed to be serial in execu-
tion in the GoMs model. In Figure 4, Look-at-
Paper represents an operator high in the task
decomposition that is relatively independent of
interface devices; Type-In “/arg” represents an
operator at the low level that may change, depend-
ing on the device used at the interface.

Method is a sequence of operations. In the GoMs
model a method is shown as a conditional se-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

quence of goals and operators along with condi-
tional tests on the content of user memory and on
the state of the task environment. In Figure 4, the
New Line method is one way for the user to move
the cursor on the screen to the position in the
computer representation of the text where a
change must be made.

o Selection rule is a conditional test that models a
user choice of the method to apply from among
available methods. In Figure 4, Locate-Change-in-
Computer represents the place where a selection
rule would be invoked to choose a method, but
the required condition testing is not shown.

The Keystroke Model shows the lumping of higher-
level, not directly observable mental operations into

Design of a goal structure
representation is at the frontier of
current research.

one or more Ms. Physical actions are observable and
are represented as Os.

This example gives an overview of the concepts that
appear in the theory and a view of the relationship
between the GOMS representation and the Keystroke
Model.

Building a GoMs model requires a special task-anal-
ysis skill. Design of a goal structure representation—
particularly one tuned to the investigation of user-
computer interaction—is at the frontier of current
research. The complexity of the representation and
the detail of the predictions that can be made through
analysis of that representation can vary widely. For
example, a high-level analysis might focus on device-
independent decomposition, whereas at a very de-
tailed level, times due to the particular physical
details of a particular device are more important.

The scope of current research is limited to perform-
ance of routine cognitive skills. This research does
not address the full range of human behavior observ-
able at an interface. For example, error analysis is

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

not included, though modelers can sometimes pre-
dict through an analysis of goal structures where user
errors will be observed.

The potential value from use of the GoMs model is
that formal, theory-based modeling of routine tasks
carried out by a hypothetical well-trained user leads
to an improved basis for interaction design. That is,
we assume that a stable set of routine methods (such
as those found in text editing) forms a foundation
upon which users build their interactions with more
advanced applications.

Studies built on the GOMS model. Kieras and
Polson?? are developing a cognitive-complexity the-
ory that allows training time and throughput esti-
mates to be made, based on analysis of the GOMS
structures. Their additional step is to map GOMS
constructs into executable representations of user
how-to-do-it knowledge. Such representations are
well known to persons in the fields of artificial intel-
ligence, natural-language analysis, and expert sys-
tems as a way to model human information process-
ing.

In Figure 1 we saw an overview of the two sides of
the user interface. In Figure 3 we expanded the right
side of the user interface to show how a uiMs could
provide functions needed to support the presentation
language and the user action language. In Figure 5
we illustrate the parts of the simulation model used
by Kieras and Polson.

The knowledge required to operate the system is
represented in production rules. In parallel with that
representation, the system or device under study is
represented in executable form. A user-device sim-
ulation interprets an external Task List. The simu-
lator drives the simulated device to construct the
task environment (for example, a page of text to be
edited), passes control to an interpreter that processes
the production-rule representation of the goal hier-
archy, and generates a simulated user action. The
simulator continues through the cycles until the Task
List is completed. The statistics collected by the
simulator are interpreted by the experimenters with
respect to the theory to estimate ease of learning and
throughput.

Polson and Kieras®? discuss the relationship between
the content, amount, and structure of user knowl-
edge (as represented in production rules) and predic-
tions of time to learn. As we now understand things,
the time needed to learn a task is a function of the

BENNETT 365

Figure 5 The relationships among the parts of a simulator

SIMULATING TASK LIST
USER-DEVICE TASK1
INTERACTION TASK 2

PRODUCTION
RULE MODEL OF
HOW-TO-DO-IT
KNOWLEDGE

COMPLEXITY
RESULTS

number of new production rules in the task repre-
sentation. The time required to carry out the task
(productivity) is estimated by the unit time for hu-
man execution of each production rule summed over
all production rules needed to emit the correct sim-
ulated stream of user actions.

Clearly, the model of hypothesized user knowledge
must be independently validated through experi-
mental observation of people carrying out the tasks
represented in the model. The level of detail included
in the model (such as time to push a key), the
assumptions about the internal hierarchical structure
of the rules, and the programming style of the person
who creates the production rules can all affect sim-
ulator execution time.

In recent studies by Polson and Kieras on transfer
of training, predictions are based on an assumption
that no extra time is required for a simulated user to
learn the parts of the production-rule structure in a
new task when those parts are the same as those in
a previously learned task. For example, if the MOVE
and cory commands for a text editor are designed
so that the user knowledge required to learn them is
represented by many common production-rule se-
quences, the theory predicts that user training on
MOVE transfers to the COPY operation and the second
command is learned faster than the first, indepen-
dently of which one is learned first. This has been

366 sennert

tested by Polson and Kieras using people in numer-
ous laboratory experiments.?® For this kind of exper-
iment, the model results prove quite accurate.

Using these concepts, we can find in the Kieras and
Polson formal approach a theoretical basis for talking
about the simplicity, the consistency, and the transfer
of user knowledge to new processes. A base of data
obtained from experiments with actual users is now
being built to validate and calibrate the model data.
The user processes so far are relatively simple, but
the researchers are encouraged by their current suc-
cesses.

Limitations. A number of researchers are comparing
results seen in their work with the kind of results
predicted by the GoMs model, particularly at the
keystroke level. Gould and Alfaro® report a com-
parison between their findings and the predictions of
the Keystroke Model. The authors observed that 60
to 80 percent more time is required than the time
predicted for comparable time categories by the
Keystroke Model. This is true even for the skilled
users assumed by the model.

Clearly, we must be cautious about the precision of
estimates generated with the Keystroke Model. How-
ever, even these approximate models can be useful
as an aid during initial system design.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Issues. With this brief overview, we are ready to look
at some of the questions raised by the modeling work
so far:

s Do present models capture enough of the variety
of user behavior to be helpful? The rudimentary
state of the existing theory limits study to routine
cognitive processing. The problem-solving behav-
ior known to be important at the user interface is
not addressed. The working assumption is that
human problem-solving behavior is built on a base
of routine cognitive processing. If designers can
support the routine work (by analogy, the dialog
framework in the uiMS), the user can more easily
do creative problem solving (by analogy, the ap-
plications).

« Is the particular kind of task analysis required by
the modeling work itself well enough understood
that it can be taught reliably to people working in
the development process? Modeling work requires
a task analysis before the goal structure can be
created. The skill appears to be taught currently
through examples provided by mentor to graduate
student at university cognitive science depart-
ments. Progress in learning how to do task analysis
appropriate for the method is valuable in itself, as
the skills are needed for observational work in
human factors experiments, quite aside from
knowledge-representation models.

¢ Are the time and resources that it takes to model
a proposed user interface design and to model the
user processes that the design implies feasible
within the product development cycle in industry?
The uims approach is intended to make it easier
to do top-down modeling of the devices and early
prototyping of the user interface. That is compat-
ible with the approach of Kieras and Polson. The
art of creating the goal structure and writing the
production rules is more problematic. It may be
that current work will lead to standard subroutines
or templates representing current designs that an-
alysts may apply to new designs.

Answers to these questions are being explored in
laboratories. The opportunity for analysis based on
principles and the need for insight give us confidence
that the current work will have practical impact.

Putting theory into practice

This review has examined areas of concern to user
interface builders working within a product-devel-
opment cycle. The concept of a uIMS shows great
promise as a tool for simultaneously reducing the

1BM SYSTEMS JOURNAL, VOL 25, NOS 3/4. 1986

cost of development, providing the technical flexi-
bility needed in advanced applications, and meeting
the usability requirements of users. The analytic
tools for modeling user process knowledge can fit
well within an engineering approach to design and
development.

Gould and Lewis®® advocate early and continual
focus on users, observation of usage on simulated,
prototyped, and actual systems, and iterative modi-
fication as needed. They contrast this approach with
principled design approaches, relying on design
guidelines intended to get it right the first time. Their
advice fits well with the uimMs development concepts
advocated by the authors we have cited. The addition
of models for user process knowledge is intended to
give early-warning indicators of design approaches
that may cause problems for users. These design
implementation and evaluation aids may help crea-
tive designers focus their innovative skills on prob-
lems that need to be solved to support users even
before the prototypes advocated by Gould and Lewis
are ready.

We expect the research cycle of building systems,
studying them to understand what has been built,
and applying the knowledge to implement new sys-
tems to continue to augment our ability to build
user interfaces that are truly advanced.

Acknowledgments

I found valuable the several hours that Jim Rhyne
spent in discussing the experience he gained from
his work with User Interface Management Systems.
Phyilis Reisner has shared her insight over a period
of time in discussions of analytic methods applied to
interface design. The keen interest of Peter Polson
in seeing analytic methods based on cognitive science
theory put into development practice has been an
inspiration for a number of the observations. John
Richards contributed perceptive comments from
both the viewpoint of system developer and cognitive
psychologist. However, 1 am responsible for the
interpretations made in the article.

Cited references

1. Human Factors in Computing Systems—CHI'86 Proceedings,
April 1986, ACM Special interest Group on Computer and
Human Interaction, New York.

2. Human-Computer Interaction—INTERACT 84 Proceedings,
B. Shackel, Editor, Elsevier North-Holland, Inc., New York
(1985).

sennerr 367

10.

I

17.
18.
19.

20.

21.

22.

23.

J. L. Bennett, “Managing to meet usability requirements,”
Visual Display Terminals: Usability Issues and Health Con-
cerns, J. L. Bennett, D. Case, J. Sandelin, and M. Smith,
Editors, Prentice-Hall, Inc., Englewood Cliffs, NJ (1984).

. D. R. Olsen, Jr., W. Buxton, R. Ehrich, D. Kasik, J. Rhyne,

and J. Sibert, “A context for user interface management,”
IEEE Computer Graphics and Applications 4, No. 12, 33-42
{December 1984).

. J. Coutaz, “Abstractions for user interface design,” /EFE

Computer 18, No. 9, 21-34 (September 1985).

. M. Good, T. Spine, J. Whiteside, and P. George, “Empirical

impact analysis as a tool for usability engineering,” Human
Factors in Computing Systems—CHI'86 Proceedings, April
1986, ACM Special Interest Group on Computer and Human
Interaction, New York, pp. 241-246.

. M. Green, “The University of Alberta user interface manage-

ment system” (Proceedings of ACM SIGGRAPH'8S), Com-
puter Graphics 19, No. 3, 205-213 (July 1985).

. Interactive System Productivity Facility (SPF) and ISPF/Pro-

gram Development Fuacility (PDF), General Information,
G(C34-2078, IBM Corporation; available through IBM branch
offices.

. Graphical Data Display Manager, General Information,

G(C33-0100, IBM Corporation; available through IBM branch
offices.

TopView: Programmer’s ToolKit, IBM Personal Computer
software, Program No. 1502483, Boca Raton, FL; available
through IBM branch offices.

IBM RT Personal Computer Technology, Product Design and
Development, SA23-1057, IBM Corporation (1986); available
through IBM branch offices.

. D. Kasik, “A user interface management system,” Computer

Graphics 16, No. 3, 99-106 (July 1982).

. P. Wong and E. Reid, “FLAIR—User interface dialog design

tool,” Computer Graphics 16, No. 3, 87-98 (July 1982).

. J. D. Foley and A. van Dam, Fundamentals of Interactive

Computer Graphics, Addison-Wesley Publishing Co., Read-
ing, MA (1982).

. W. Buxton, M, Lamb, D. Sherman, and K. Smith, “Towards

a comprehensive user interface management system,” Com-
puter Graphics 17, No. 3, 35-42 (July 1983).

. P. Hayes, P. Szekely, and R. Lerner, “Design alternatives for

user interface management systems based on experience with
COUSIN,” Human Factors in Computing Systems—CHI'85
Proceedings, April 1985, ACM Special Interest Group on
Computer and Human Interaction, New York, pp. 169-175.

J. Foley, V. Wallace, and P. Chan, “The human factors of
computer graphics interaction techniques,” JEEE Computer
Graphics and Applications 4, No. 11, 13-48 (November 1984).
IBM Systems Journal 20, No. 2 (1981).

J. H. Botterill, “The design rationale of the System/38 user
interface,” IBM Systems Journal 21, No. 4, 384-423 (1982).

P. Reisner, “Analytic tools for human factors of software,”
Proceedings: Enduser Systems and Their Human Factors,
A. Blaser and M. Zoeppritz, Editors, Lecture Notes in Com-
puter Science, No. 150, Springer-Verlag, New York (1983),
pp. 94-121.

S. Card, T. Moran, and A. Newell, The Psychology of Human-
Computer Interaction, Lawrence Erlbaum Associates, Hills-
dale, NJ (1983).

D. Kieras and P. Polson, “An approach to the formal analysis
of user complexity,” International Journal of Man-Machine
Studies 22, No. 4, 3-50 (1985).

P. Polson and D. Kieras, “A quantitative model of the learning
and performance of text editing knowledge,” Human Factors
in Computing Systems—CHI'85 Proceedings, April 1985,

368 senerr

ACM Special Interest Group on Computer and Human Inter-
action, New York, pp. 207-212.

24. J. Gould and L. Alfaro, “Revising documents with text editors,
handwriting-recognition systems, and speech-recognition sys-
tems,” Human Factors 26, No. 4, 391-406 (August 1984).

25. J. Gould and C. Lewis, “Designing for usability: Key principles
and what designers think,” Communications of the ACM 28,
No. 3, 300-311 (March 1985).

John L. Bennett /BM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120. Mr. Bennett is
a member of the Computer Science Department of the Almaden
Research Center. Since joining IBM in 1961, he has developed his
long-standing interest in all aspects of user interface design. His
work on information retrieval projects and decision support sys-
tems was reported in the book Building Decision Support Systems,
Addison-Wesley (1983), which he edited. During recent years he
has worked on user interface design for office systems, and he has
served as consultant for IBM product divisions on integration of
measurable, testable usability objectives into the development
cycle for interactive software products. He is an editor of the book
Visual Display Terminals: Usability Issues and Health Concerns,
Prentice-Hall (1984), and wrote the chapter “Managing to Meet
Usability Requirements.” At the Interact’84 Conference (London),
he organized four theme sessions on “Behavioral Issues in the
System Development Cycle” as a way of highlighting what it is
like to do human factors work in software development projects.
Mr. Bennett received a B.S. in engineering science from Stanford
in 1959 and an M.S. in electrical engineering from the Massachu-
setts Institute of Technology in 1961. While at IBM Research he
has been manager of Geographic Data Systems and of Interactive
Problem-Solving Systems. He is currently an associate editor of
the Management Information System Quarterly and is on the
editorial board for the journal Behaviour and Information Tech-
nology.

Reprint Order No. G321-5280.

1BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

