Software engineering:
An emerging discipline

Software engineering is an emerging discipline whose
goal is to produce reliable software products in a cost-
effective manner. This discipline is evolving rapidly as
the challenges faced by its practitioners keep extend-
ing their skills. This paper gives a quick tour of the
main ideas and thrusts that have driven software engi-
neering in its first 25 years and attempts to look ahead
at the next set of advances.

Our society has adopted the use of computers at
a rate that staggers the imagination. Every seg-
ment of society has discovered programs that seem
to make its jobs more productive. This demand for
programs has required a tremendous amount of code
to be written by a population of producers whose
training and tradition are recent. Every estimate of
the number of programs that remain to be written,
because of a perceived need that these programs are
expected to fill, seems to depend on the number of
programmers available to write the programs. Thus,
when we increase the number of programmers, we
also add to their work. However, the number of
programmers appears limited.

The results of this dilemma have been diverse. They
range from increased pressure on the existing pro-
grammer population to produce more in a shorter
period, to attempts to change the way programs are
produced through the invention of new tools and
approaches.

At one extreme, the pressure to produce more with
less has been one of the causes of disaffection with
the software community of the 1960s and 1970s.
There were many examples of attempts to produce
software applications that had tremendous cost over-
runs, failed to provide the function promised, and

334 coioserc

by R. Goldberg

were subject to unexpected and disastrous failure.
The rising cry was, “Why isn’t software production
as predictable as engineering?” The response, at least
partially, was to attempt to create a software engi-
neering discipline to solve these problems.

At the other extreme, an attempt was made to find
scientific principles leading to new insights and re-
lationships that would revolutionize the way soft-
ware is produced. This approach would certainly
produce a better product. The direction in which to
go stemmed from this approach and drew from what
appeared to be the source discipline of software
production, computer science. The faculties of col-
leges and universities that had computer science
departments were asked to provide the new ap-
proaches, tools, or techniques to solve the problem
of improving software development.

The requests for instantaneous fixes have to be
viewed in the context of the past 25 years, during
which time computer applications came to be ac-
cepted. In some ways the data processing community
is being asked to ease the transfer of a new technology
to the population at large. The focus of this rapidly
changing technology is on its application to provid-
ing practical software to all segments of society. The
model provided by other engineering disciplines
should be useful in understanding the pace of devel-
opment and the limitations to be faced by software

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

engineering. As an illustrative example, consider a
stylized view of the growth of civil engineering as
seen through the development of pyramids in Egypt.

The pyramids were monuments built by the pha-
raohs of Egypt as burial sites. A pharaoh attempted
to have his name last through the centuries by build-
ing a structure of a size sufficient to ensure its inde-
structibility. The first pyramids must have been built
by trial and error, until a successful approach was
found. The skills so painfully learned by generations
of builders were then passed on by apprenticing their
children, relatives, and others.

As time went by, each successive pharaoh wanted a
bigger pyramid built, and each successive generation
of builders attempted to build it. But increasing the
size was not all that simple. The relationship between
the height of the pyramid and the area of the base
required to support it was not linear, and the builders
needed to learn the proper relationship. Egypt is
dotted with collapsed pyramids attesting to lessons
painfully learned.

Eventually this relationship was learned, and the
pyramid builders developed rules of thumb to assist
them in designing stable pyramids. The engineers,
however, did not understand why this stability was
attained and how it depended on the weight of the
material with which the pyramid was constructed.
They perhaps did not realize how different construc-
tion techniques would change the weight of the
structure and allow a different relationship among
the weight, area, and height. They might not have
realized how using newer, lighter materials would
have similarly altered these relationships. These in-
sights came much later, after the tools of mathemat-
ical analysis and experimentation were applied by
natural scientists to develop tables of rules of thumb
that civil engineers could use for practical purposes.

This sequence of events implies the following stages:
First, a pragmatic need causes trial-and-error at-
tempts. The knowledge gained is not acquired sys-
tematically, and it is passed down from generation
to generation and from master to apprentice. Sec-
ond, a science is created to try to understand the
rules of thumb that the “practical” engineers have
discovered. In this process the scientists begin to put
together a base of knowledge from which the engi-
neer can learn in order to make the final product
more predictable.

In the third stage, engineers are trained in institutions
that teach the pragmatic engineering approach to-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

gether with the acquired base of knowledge. The
partnership developed between the faculties of engi-
neering and science becomes synergistic. Each draws
from its own specialty, while retaining the thrust that
separates the two disciplines. As a result we can build
bigger “pyramids,” and we certainly have defined
what a pyramid is.

If this model is general, and I believe that it is, it is
reasonable to ask how the development of software
engineering fits. Clearly it will be difficult to squeeze
it into the 25 years of computer applications. In the
early years programmers learned their skills through
on-the-job training. At that time, there was disagree-
ment about what constituted appropriate training
for a programmer, with opinions ranging from math-
ematics at one extreme to musicology and romance
languages at the other. One inevitable result of this
confusion was the number of projects in which the
result overran budget, exceeded schedule, and did
not work as predicted.

The software crisis, officially identified as such in a
1968 NaTO conference, resulted in a call for a new
class of programmer who was to become the engineer
of software development. The engineer would make
certain that schedules and budgets were met and that
the function promised would be doable. The engi-
neer was to be the practical professional who would
make certain that effort was expended efficiently and
effectively.

In practice this idea became an attempt to form a
discipline of training and perhaps even certification
before the base of accepted knowledge was identified.
Types of problems similar to those faced by the
pyramid builders were given to the software engineer:
Was there a sufficient body of practical and theoret-
ical information that could become a curriculum in
software engineering? Could the university faculty
trained in software engineering teach a new software
engineer what to do? Could the university faculty
trained in software engineering do the experiments
that determined the equivalent of what the ratio of
height to base should be and then apply the results
to other projects? Could the university faculty ana-
lyze the data accumulated, generalize the data by
following the applicable scientific rules, and devise
new experiments to further our knowledge of soft-
ware engineering? Could all of this be done in a few
short years?

These questions are but some of the challenges that
software engineering has faced in its attempt to reach

GoLoserG 335

a first level of growth. Curricula in software engi-
neering did not exist because the scope of the subject
had never been defined. No methodology was devel-
oped for experimentation. The models that were
available were either from the natural sciences, where
exact rules existed and the researcher was limited by
technique and the accuracy of instruments, or from
the behavioral sciences, in which the variability of
the subjects caused a different level of uncertainty
and a dependence on other statistical techniques.
Software was a combination of both of these and
required some level of cross-training to design and
analyze the experiments.

The experiments that were done occurred on a small
scale, and few of the researchers had the experience
to scale up the results to a level that made sense
when a million-line-of-code system was being de-
signed. The measurements themselves were done in
an atmosphere of uncertainty because we had not
determined what should be measured and certainly
had no standards for comparison. Results are rarely
stated in terms showing the inherent accuracy con-
tained in the data. Thus, it is not unusual to see
documents that report results of estimates involving
people and measurements of project attributes
quoted at four or five significant digits.

All this leads to an era of great excitement, devel-
opment, and confusion. Software engineering is ex-
periencing a growth rate consistent with those of all
emerging disciplines. Those of us who attempt to
help it along must be ready for change in approach
and change in direction, and, to paraphrase the story
of the frog climbing up the inside of the well, be
ready consistently to take two steps forward and fall
back one.

What is software engineering?

The discussions regarding software engineering have
all taken place without a formal definition that even
a plurality of the concerned population has accepted.
The domain of software engineering has been as-
sumed to include three intrinsic areas of concern:
software reliability, software management, and pro-
grammer productivity. One can usually find a body
of practitioners who are convinced that one of these
three areas is the most important and that the other
two are secondary. Thus, a school of thought has
grown up favoring software reliability and the drive
to produce error-free code as the primary purpose of
software engineering. The exponents of this ap-
proach have developed rigorous and formal lan-

336 coloeera

guages to express specification and design. The goal
of proof techniques, either constructive, following
the school of Linger, Mills, and Witt,' or axiomatic,
following Hoare,? is looked upon as the ultimate task
of software engineering research and education.

A second school of thought has focused on the
management aspects of software engineering. These
practitioners have examined the planning and con-
trol techniques of large development projects in
other engineering domains and have attempted to
transfer these techniques to software development.
The argument has been “If we could place human
beings on the moon on a scheduled basis, we ought
to be able to use these same techniques to write an
operating system.” The disciplined life-cycle ap-
proaches, which have been described in many places
in the literature,>-> are examples of some of the end
products of this group’s efforts to date.

Each of these first two groups agree that productivity
is a by-product of following their advice. The first
group proves that the cost of error detection and
correction is at least half of the development cost of
any software component, and therefore the elimi-
nation of any errors first must increase productivity
dramatically. Further, they argue, automatic tools
will make certain that many of the error-prone activ-
ities of the past will be eliminated, and as a result,
the new, more automatic approach will inherently
be more productive.

The second group has a similar argument. If we
know what we are doing, they say, and if we can
plan and control more efficiently, there will be less
backtracking because of misplaced and contradictory
effort. The result of proper plans and controls will
be to lower the error rate to an understood and
controllable level while simultaneously increasing
productivity. The automatic tools that we introduce
to keep track of where we are will act as multipliers
for the work of the software developers, making
certain that we accumulate the data required to
improve the process even more.

As a result, these two approaches have led the prag-
matist to question the validity of the theoretician’s
experience and the theoretician to doubt the ability
of the pragmatist to cope with the formal constructs
that are viewed as necessary for error-free software.
An example of the dissonance between these two
groups has been the scant effort applied, until re-
cently, to the theory of testing and to an understand-
ing of how to deal with maintenance issues.

BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

A further example of the problem is the scarcity of
colleges and universities offering a degree in software
engineering. No generally accepted curriculum has
even been defined. The United States government is
sponsoring a Software Engineering Institute® to ad-
dress practical issues. It has been established at Car-
negie-Mellon University, and one of the first orders
of business of its education division is the creation
of a task force or workshop to identify the core
curriculum of such a degree.

For this paper, we use the working definition that
stresses the practical nature of applying established
principles so that efficient development occurs: the
establishment and use of sound engineering princi-
ples (methods) to obtain economically software that
is reliable and works on real machines.’

This definition stresses the engineering component
of software engineering and takes for granted that
principles do exist, have been discovered, or will be
discovered shortly. It also assumes that the accu-
mulated body of knowledge will be packaged coher-
ently, so that in the not too distant future we will
have degreed or certified software engineers.

The ideas that are embodied in this definition and
that seem to be firmly in place are the following:

* Each step in the production of a piece of software
should be designed to contain only independent,
abstract components.

¢ Each step in the production of a piece of software
must have a verification alongside it, preferably
done by an independent agent.

e Each piece of work to be accomplished should be
estimated for size and effort before it is begun and
compared with that estimate on completion so
that differences can be understood.

The development of software engineering. The first
idea above leads to more robust designs and imple-
mentations. It allows for the isolation of function
and data so that they can be constructed as cleanly
as possible. It allows the designer to achieve intellec-
tual control over a complex piece of software.

The second idea instills the discipline of reliability at
all levels. Just as a carpenter should always measure
one more time before cutting, so the developer
should verify the correctness of the translation from
the “plan” to the completed product at that stage.
Similarly, the software engineer should validate at
the earliest possible time that what is constructed is
identical to what should be constructed.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

The third idea is the engineer’s way of developing
new insight and rules of thumb. By approaching
each part of the work process with this mental dis-
cipline, the software engineer is prepared for the

The software engineering evolution
has followed several major streams.

early warning signals of possible probiems. When
completed, the analyses of both successful and un-
successful estimates become grist for the mill of
experience.

This combination of three ideas is what distinguishes
an engineering discipline from the ad hoc creations
of both artists and artisans.

Software engineering: The major themes

The software engineering evolution has followed sev-
eral major streams and has in the process gone
through different eras in which the solution to the
problem of developing software has changed dra-
matically. One stream that is visible as we look at
the last two decades is the relationship between
process and data. Ross and Schoman®® observed
during the early Structured Analysis and Design
Technique (SADT) papers that data and process reveal
one another’s duality. Each represents the opposite
side of the same coin. The nature of this duality
stems from the observation that both must be present
when an activity occurs. Examples in other areas are
nouns and verbs, objects and operations, and passive
and active voices. If we specify the process that
occurs, we must also specify the data used by that
process. This means that any analysis done to un-
derstand the contents of a system must include a
data analysis component and a procedure analysis
component.!°

The apparent universality of the dual nature of data
and process suggests that a fruitful approach to use
in information processing might be to apply similar
approaches in solving process problems and data
problems. An example of this duality might be the

coweerc 337

relationship between levels of abstraction in system
design and data abstraction as drivers of system
description and design.

The idea of levels of abstraction in system design
states that the most secure system design will be done
in a series of steps. Each step assumes the existence
of an architecture that represents a complete descrip-
tion of the system required to complete the step now
being done. There may be many strategies for defin-
ing the appropriate layers, with one approach defin-
ing function successively nearer the exercise of the
actual hardware!' and another perhaps segmenting a
design into independent components, or vocabulary
approximating the vocabulary of the application.'”
The strategy employed prohibits any one layer from
communicating with anything other than the layer
directly beneath it in the ladder of abstractions. This
approach isolates function so that unexpected com-
plex interactions are held to a minimum.

When the concept of abstract data items was intro-
duced,"® some of the thinking was very much the
same as in function abstraction. The intent was to
create data structures and keep them isolated from
any other component of the system. No inadvertent
access was to be allowed, and no unexpected com-
plex interaction would occur. A package was to be
created as a combination of the data storage access
routines and all of the functions that would be
performed on a particular data structure. All users
would have to be funneled through the code sup-
porting the abstract data item.

The thinking that went into both of these concepts
1s similar and is an example of the dual approaches
one can take toward both data and process. A further
example comes from a comparison of two concep-
tually similar papers, one by Bohm and Jacopini'
on the number of constructs required for a general
program, and the other by Mills and Linger"’ on
how to create a program with a constrained number
of data structures.

In a similar fashion, consider the relationship be-
tween data base systems and program design librar-
ies. This dual relationship appears quite general, and
one should expect that every improvement in one of
the two will eventually result in a symmetric im-
provement in the other.

A second stream of the software engineering evolu-
tion is the scope of the development process that
must be used to manage a software development
project. The view in the 1950s included only the

338 coioeers

writing of code. The view in the 1960s extended
toward design on one side and test on the other. By
today it is recognized that a development cycle must
include all aspects that go into determining the con-

Software engineering can be said to
have begun in the late 1960s.

tents of a software product prior to implementation
and must be extended to consider what may take
place in the future when the system will no longer
be used. This increase in the scope of a development
cycle has extended the purview of system analysis
into the world of business strategic planning for the
application community and into product strategy for
the system development community. Along with this
extension has come the realization that the time
span now included is so long that the attributes of
the delivered products no longer match the require-
ments of the consumers of the product. The rate of
change of user concerns is faster than the rate of
production of software to support these same users.
This situation leads to the inescapable conclusion
that we are faced with a paradox. How do we include
all of what i1s needed for an efficient development
cycle in a time span short enough to satisfy our
customers?

Throughout the years when software engineering was
developing, many individuals made enormous con-
tributions and advanced our understanding of what
needed to be done. Not all of the advances were
appreciated in their own time, and some were for-
gotten completely. Any attempt to provide even a
rough chronology will only look at highlights and try
to plot the crest of acceptance. For example, ideas
that may first have been presented in 1970 but did
not achieve broad acceptance until the late 1970s
will be listed, with only minor historical license, at
the time of their acceptance.

The eras of software engineering are roughly these:
We first looked for a single magic solution, with
structured programming as the promise. When this
was insufficient, the second approach suggested that

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

the use of a consistent methodology would solve the
problem. This approach did not solve the problem
either. The third solution suggested that, in addition
to a consistent methodology, one ought to create an
environment to support the developer. This combi-
nation, it was believed, would create the best pro-
gramming environment. Of course, there are no
perfect solutions. Today some are suggesting that
expert systems will help. The best solution will be
the expert software engineer, assisted by a large va-
riety of tools, using experience, judgment, and crea-
tivity to advance the state of the art. This is just as
it is in all other engineering disciplines.

The first era. The development of software engi-
neering can be said to have begun in the late 1960s
with the observation by Dijkstra'® that “Goto’s are
considered harmful.” This observation began the first
really systematic investigation of how the structure
and language of a program affected the way it was
produced and the way it behaved. The structured
programming revolution is the first of the waves of
change suggested to the programming community
to produce a product that was more reliable, was
produced more productively, and was more manage-
able.

If you belonged to the school of thought that stressed
the reliability of software products, you viewed the
direction as consisting of the following theoretical
argument. Any logical construct could be built out
of no more than two or three program structures,
sequence, iteration, and choice. These items were
equivalent to the programming constructs of next
statement, DO-WHILE Or DO-UNTIL, and IF-THEN-ELSE.
The unrestricted branch statements were excluded
(either totally if you were a purist or until absolutely
required if you considered yourself to be more prag-
matic) as causing problems. Procedures were to be
turned into proper programs with a single entry and
a single exit point so that a minimally constructed
algorithm, small and compact, easily verified algo-
rithmically as being correct by a manual or auto-
matic proof technique, could be produced. It was
only a matter of time, you believed, until efficient
theorem-proving algorithms would be made avail-
able to the development community. At that time
all errors would be gone.

If you were a pragmatist, you stressed the human
factors of eliminating goto statements and keeping
the program constructed from a minimal number of
constructs. This group added the idea of variable
names which were easily understood as being a way

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

of decreasing the error-proneness of the software.
The Psychology of Computer Programming by
Weinberg'’ was a hallmark publication in this era.

In this work, Weinberg put forth the idea of egoless
programming as a way of increasing the reliability
of software. The notion was that many of the prob-
lems introduced into software arise because of the
defensiveness that the programmer feels about the
program just written. Programmers see what they
expect to see, and do not see those “errors” that will
make them appear to be less than perfect. The solu-
tion suggested in the book is code reading. Each
programmer should be self-motivated to share source

Technology transfer is a slow
process.

code and accept criticism. In this manner many
perspectives are used to create an error-free system.

Code reading inevitably led to walkthroughs, design
reviews, and inspections as being ways to detect
errors earlier because it was less expensive to produce
systems this way.

The idea of a development life cycle had already
taken hold, although the important part of the life
cycle was considered to be coding. The early stages
of requirements were important but not crucial; the
late stages of maintenance were only an unavoidable
cost of using software. When the process of produc-
ing correct programs had finally been accomplished,
maintenance would simply fade away.

This era, like the ones that followed, never formally
ended. There are still individuals who believe that
the introduction of a few simple ideas will solve all
of the problems. Technology transfer is a slow proc-
ess, even in a field as fast-moving as information
technology. A recent study’® suggested that the length
of time required to transfer an idea into the culture
of the recipients is 15 to 20 years. At that rate, if
structured programming had been introduced in
1968, it would have been widely accepted by 1985.

GOLDBERG 339

This acceptance rate does not mean that everyone
will use structured programming (this is just an
example), only that no one will disagree that it
should be used.

In those locations where structured programming
and inspections were instituted, management did see
an improvement. The general rate was three to seven
percent!®? better than before these techniques had
been introduced. The feeling was expressed that the
development cycle needed to be expanded; the ap-
proaches should be applied not only to coding but
to design. The portion of the development cycle that
needed to be managed was extended to include de-
sign on one side and testing on the other. Structured
programming was supplanted by stepwise refinement
and structured analysis, to name just two ap-
proaches.

The dual principle was expressed in the relationship
between strength and coupling in the works of Your-
don and Constantine?' and Myers.?? Strength was
related to the purpose of the piece of a program being
worked on. The more cleanly the purpose could be
defined, the greater was the strength of the compo-
nent. The ideal was to be able to describe the purpose
in a simple sentence which contained no connec-
tives—no ands, buts, thens, or whiles.

The notion of coupling extended these ideas to the
realm of data, data sharing in particular. It was held
that any pieces of data or code generally available to
many programmers were error-prone and should be
eliminated. The revered FORTRAN common state-
ment was now on the list of ten worst enemies of
program reliability.

The two ideas of strength and coupling, together
with the previously cited work of Parnas'? describing
what criteria should be used to break systems into
smaller pieces, firmly established what a module
should be. The clarification obtained by separating
strength and coupling began the inevitable path to-
ward acceptance of data abstraction as a concept
equal to Dijkstra’s levels of abstraction on the pro-
cedural or functional side.

The second era. The era of methodologies was driven
by the idea that the developer needed to have a
general meta-approach to specify what should be
done next. This idea would make certain that no
matter what the level of understanding, the next
thing to do would be known. The concept was ex-
emplified by general rules that were laid down, each

340 coioeenc

tending to consist of multistep processes. An exam-
ple of the kind of instructions written down as meth-
odologies would be this excerpt from the Jackson
Design Technique:*

1. Consider the problem environment and record
our understanding of it by defining structures for
the data to be processed.

2. Form a program structure based on the data
structures.

3. Define the task to be performed in terms of the
elementary operations available, and allocate
each of those operations to suitable components
of the program structure.

The methodology expressed by Jackson is very dif-
ferent from that expressed in Linger, Mills, and Witt?
and in the works of Yourdon and Constantine?! and
Myers.?? The breadth of approaches made popular
in the era of methodologies extended across the
dualism of data and process, with the stepwise re-
finement of Wirth?* and Linger, Mills, and Witt? on
one end. The middle ground was held by structured
analysis, as defined by Constantine and his followers.
The data side of the spectrum was espoused by both
Jackson?® and Warnier.?

The user was at a loss to decide which of these
approaches made the most sense. Which one was
right? If there was not one that was more correct
than the others, the question was changed: Which
one is right for me at my location? There were no
definitive answers to these questions. In his review
article, Bergland®® placed these approaches in per-
spective and highlighted reasons why none were
perfect. A recent review article by Yau and Tsai?’
gives a 1986 perspective on comparisons.

Software engineering has not yet measured the dif-
ferences between approaches, and very little seems
to have been done to establish an experimental dif-
ference between various methodologies. The closest
to an early definitive measurement was provided by
Basili and Reiter,?® who showed that any disciplined
approach, consistently applied, is better than lack of
discipline.

A second dimension was added to the discussion of
methodologies as those people who were mathemat-
ically oriented used formal language structures to
express their ideas. The contention was that the
ambiguity of natural language caused confusion in
system requirements and specification. This ambi-
guity was interpreted differently by members of a

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

development team and inevitably led to confusion,
inconsistency, and contradiction. The problem
would be solved when the language of expression
was exact. The formal structures introduced seemed
directed at the theoreticians to the exclusion of the
practitioners.

In their examination of the application development
environment, Gillenson and Goldberg'® laid out the
combinations of approaches together with the for-
mality of the language on a two-dimensional piot to
show the diversity of methodologies and compare
them with one another. This chart is reproduced in
Figure 1.

For these structures to become widespread, there
would have to be a broad educational effort designed
to change the way of thinking of a large group of
people. If the period of time for technology transfer
suggested previously in the discussion on structured
programming is valid, any such education program
would require something like 15 to 20 years to be
effective, which in this context would mean “ac-
cepted as the right way to do things by a majority of
the affected community.” A good starting date for
an education process might be October 1977,%° when
the 1BM Federal Systems Division began its celebrated
education program, later transferred to the rest of
the 1BM commercial programming population.3*3'!
General acceptance would then exist in 1994 (again,
not when everyone would use a formal language, but
when all would agree that one should be used). This
effort provides an example of why progress appears
slow even in an accelerated environment.

As with the first era of change, software management
ideas were introduced on an entirely new level. If
during the first era most thought of the life cycle in
a constrained fashion of design, code, and unit test,
those in the latter era looked at system analysis and
design and system testing as crucial elements of the
development process. Compare Aron’s approach in
the two parts of The Program Development Process,
Part I*2 having a 1974 date and Part II’* 2 1983 date.

The life-cycle concept also began to assume some of
the attributes of a set of discrete steps. The attempt
by Fagan* to introduce the ideas of quality control
via the inspection process used the notion of discrete
tasks having entry and exit criteria to delimit them.
By implication, this method provided a series of
stages that could be independently verified before
proceeding with the next stage. The method also
provided identifiable tasks during which pieces of
work having a tangible end product were produced.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 1 Relationship among development methodologies ™

STEPWISE
REPLACEMENT

STRUCTURED
ANALYSIS
TECHNIQUES

WARNIER
WARNIER-ORR
JACKSON
DESIGN

l‘ ! Q:IEitll"EEl' EVEL

The product could be estimated before work began
and measured after it had been completed. Although
all of this was not seen at the introduction of inspec-
tions, the success of the technique in improving
defect detection led to widespread acceptance and
would allow the introduction of more advanced
management concepts in the next era.

The extension of life-cycle management and concern
into the testing domain began to focus attention on
software maintenance. It no longer appeared to be
inevitable that maintenance as an activity would
cease to exist. The studies® began to suggest that
there were three separate related activities being
charted. The first, of course, dealt with correction
caused by human oversight or error. This activity
could be reduced with better attention paid to error-
detection mechanisms.

The second cause of maintenance was due to the
natural evolution of the environment in which the
program resided. This evolution was interpreted as
meaning natural growth in business volumes, new
classes of function wanted by users of systems, new
devices that needed to be supported, and many other
changes that were made by choice because of justified
business decisions.

Gopserc 341

The third class of maintenance occurred because of
mandated change. When the United States govern-
ment changes the Social Security laws, each payroll
program must be changed. When a company decides
that all application programs will use the same data
base system, each application program must be mod-
ified. Not all owners of these programs would have
voluntarily chosen to make the change, even though
good global business reasons exist for attempting
such changes.

The role of maintenance was given some philosoph-
ical support in the work of Putnam.3¢3” He studied
the data file at the Rome Air Force Development
Center and came to some conclusions based on the
application of Norden’s work®” on Rayleigh models
for development processes. The originally astonish-
ing conclusion he drew was that if (1) a Rayleigh
curve describes software development, and (2) the
time during which the largest number of people are
employed developing the system to be delivered is
just at or around customer delivery, this inevitable
conclusion follows: 39 percent of the cost is in de-
velopment, 61 percent in maintenance.

Although there is no universal agreement that an
ideal development cycle will follow the Putnam-
Norden model, there is agreement that some split in
development-maintenance costs such as 50-50 or
40-60 is 10 be expected. As a result of this more
mature view of maintenance, continuous modifica-
tion was understood to be inevitable, and software
engineering needed to address the designing of gen-
erations of programs rather than a single version at
atime. This view would cause a further strengthening
of the need to make program design and coding
simpler. It was not enough to make it work; it also
had to be made easier to modify. Because of such
issues, the concept of configuration management and
control began to be looked at as having potential
utility in the production of larger pieces of software.
The successes of the early space program served as a
model of project management for software develop-
ment, and these concepts are an example of the ideas
gleaned from the program.

There had been many earlier attempts to transfer the
project management concepts used in the space pro-
gram into software development. The network
scheduling techniques PERT (Project Evaluation and
Review Technique) and cpMm (Critical Path Meth-
ods)’ use directed graphs to connect the identified
tasks of a project and place them in relationship to
one another. The combination of predecessor, suc-

342 cowosera

cessor, and duration, identified for the piece of work
to be done, creates a visible model of the flow of the
project and identifies the critical path of subtasks
that determines the rate of completion.

Configuration management and control is the disci-

pline that organizes, documents, and tracks any sys-
tem consisting of multiple parts. It is charged with

A new addition to software
management and control began with
the introduction of programming
dynamics.

identifying the components and their relationship to
one another, controlling the changes made to a con-
figuration, keeping track of the status of each element
of a configuration, and providing the mechanism for
satisfying an audit of the compliance of a system to
its required configuration.*® The application of this
discipline to software development has been driven
by the U.S. Department of Defense, as evidenced by
the 1968 Military Standard.*® There also exists a
more recent IEEE standard for Software Configura-
tion Management Plans.*

The history of the evolution of Software Configura-
tion Management is given in Bazelmans,*® and ad-
ditional information is contained in the IEEE tutorial
on the subject.*’ There were isolated pockets where
each was found useful; however, there was not
enough commonality and discipline in the develop-
ment process to allow for sharing of work. Each
installation had to begin anew and rediscover areas
of applicability. This lack of sharing, together with a
programming tradition of free-form work styles,
made the use of these project management tech-
niques less efficient than their designers had hoped.
But the seed was planted.

A new addition to the repertoire of software man-
agement and control began with the introduction of
programming dynamics by Belady and Lehman.*>43
From 1969 through 1980, they published papers

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

indicating that large systems seemed to obey the laws
of software evolution. The analogy was drawn from
statistical mechanics and thermodynamics. Systems
were not able to grow indiscriminately in size with-
out suffering a form of arthritis. Constant additions
to already existing pieces of code scrambled the
original design integrity, causing less efficient, more
error-prone code. This phenomenological approach
to measurement has worked well in other areas of
science as a precursor to a more axiomatic under-
standing of the underlying science. Here, too, we
have the beginnings of a more exact science.

The toolkit that the software professional used at
work was still very personal. Each tool was chosen
to satisfy a particular need, not to provide a way to
move the work from life-cycle stage to life-cycle
stage. Even among one development team, profes-
sionals chose to use or not to use particular tools. Of
course, as development became more complex, the
magnitude of the task grew, and more tools filled the
toolbox, covering ever more of the development
process.

Some particularly successful examples began to be
widely used, and families of tools became common-
place. Almost none of the tools were designed to
support a particular development methodology.
Each of the popular methodologies remained a men-
tal discipline that answered the question: What shall
I do next? None of the methodologies were em-
bedded in an automated factory for the development
of software, even though it was now understood that
this had to be the next step. The use of a particular
methodology did not bring the quantum increase in
capability that some expected; productivity increased
just seven percent per year.

No discussion of this period would be complete
without describing the introduction of Ada,® the
programming language which was to be the embod-
iment of all that software engineering had learned
up until that point in time. One of the largest users
of software is the U.S. Department of Defense
(DoD). It was using virtually every language and
machine architecture that had been created. The
software ranged in complexity from simple programs
to complex communication, command, and control
programs to be embedded in hardware components.

In 1975 a search began for a better language that
could be used in all DoD applications. This search
culminated in a language competition in which a
language design that was to become Ada was chosen.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Toward the end of the competition a similar attempt
was begun to define the Ada Programming Support
Environment which identified the tools support to
go along with Ada.** Booch*® contains a historical
overview of the timetable and events that led to the
current description of Ada. As of today, the language
has been defined, it has been described in both
technical material and popular texts, and the initial
compilers have been written. Full production com-
pilers and large systems will follow soon.

The Department of Defense instituted several initi-
atives in information processing. The two already
referenced are the definition of Ada and the crea-
tion of the Software Engineering Institute at Car-
negie-Mellon University. A third initiative is the Soft-
ware Technology for Adaptable, Reliable Systems
(STARS)*® program. STARS led to the charter of the
Software Engineering Institute. STARS is seeking to
create an integrated, automated environment to
cover all of the development life cycle with a man-
agement and measurement system that brings the
newest technology to bear as quickly as possible.
This environment involves measurement, experi-
mentation, tools, and education.

The third era. What then should be done to increase
our ability to produce correct software? All estimates
of the pent-up demand pointed to an environment
in which the major limitation on new software ap-
plications was the insufficient supply of program-
mers. The limitation stemmed from the inability of
the software community to produce the quantity of
software at a level of complexity specified by the
requirements. The solution appeared to be automa-
tion. Rather than have manual methodologies sup-
ported by a set of unrelated tools, developers began
to talk about software environments containing in-
tegrated tool sets to take development from require-
ments into design, code, and test. The tools would
accumulate the management statistics required and
would become the catalog of component parts. The
catalog of component parts represents the bill of
materials for a software product of manufacturing,
For the first time software development would con-
sist of a traceable product. Each requirement could
be connected to all realizations of it in code, and
because of this string connecting dependent pieces,
we would be able to make certain that the inevitable
changes did not cause unforeseen side effects in other
pieces of a system.

Software configuration control and management
have been achieving a wider range of acceptance and

Gooserg 343

have begun to enter the world of the programmer.
In this third era, software as a potentially profitable
product has excited the imagination of managers
and entrepreneurs alike. Together with the potential

The use of environments forced the
move toward more formal
requirements and design languages.

profits have come the product project management
techniques found necessary in other manufacturing
environments. The discipline of using a development
methodology has led to the discipline of project
control.

The technology of development had accepted the
ideas of data and procedure abstraction. The use of
environments forced the move toward more formal
requirements and design languages because they
needed to be machinable. It is but a small intellectual
step from insisting that all aspects of a design be
captured to insisting that it also must become exe-
cutable. This requirement had strong appeal because
in the process the machine-programmer interface
would be pulled higher, and part of the productivity
and reliability improvement would come about from
eliminating much of the coding. Coding had already
been limited to 10 to 20 percent*’ of the invested
effort in software development.

The Ada-based languages now evolving allow for
better verification of the design and the code that
flows from it. They are more formal, and hence have
fewer (if any) unresolved ambiguities that lead to
design errors in a completed product. Ada introduces
the concept of a Package® as a set of computational
resources pulled under a single boundary. Previ-
ously, abstractions of data and procedure were used
as entities whose purpose was to isolate the developer
from the machine, thereby diminishing the potential
for error. The package concept takes this idea one
step further by allowing the designer to choose the
inherent elementary ideas in the physical aspects of
the real problems to be solved. Thus, problems in-
volved in designing a system to implement on-line
circulation control in a library would be able to

344 colosera

identify packages representing nouns such as collec-
tion and verbs such as borrow, reserve, and return.
The librarian would then be able to assume a more
productive role in creating and validating the soft-
ware application.

The resulting design should read like the subject
specialist’s description of the scope of work. The
implementation specialist designs the packages and
produces the connecting logic that ties together the
data flow aspects of the real-world circumstance. It
is one step closer to capturing design in executable
form and one step closer to solving the problem of
requirements that change faster than our ability to
produce the code to implement them.

The defect-detection methodologies include a pat-
terned set of inspections which fit into those cracks
between distinct stages of a development process.
We now understand how important these methodol-
ogies are and expend the effort to detect errors as
early as possible. In a graph produced by Boehm,? it
was shown that the ratio of the relative cost to fix a
problem decreases when it is found early in the
development cycle. Testing itself has been subjected
to theoretical analysis, and more attention is being
paid to test tools that assist the developer in produc-
ing an error-free product. Zero defects for all prod-
ucts is something like absolute zero in thermody-
namics—you may never reach it, but you can come
very close in approaching it.

The strategy has moved away from defect detection
to defect prevention. Methods of design verification,
which the individual developer can use, make it
possible to “guarantee” that the design and its code
are exact translations of the specifications defining
what is to be done. This verification is made possible
by the flow of ideas in similar if not identical lan-
guages from specification to executable code. The
support environment has begun to be defined.

The next step in the completion of the support
environment occurs when the tools supporting the
use of the design languages meld into the tools
supporting the remaining portion of the develop-
ment process. The shift to a defect-prevention strat-
egy will eliminate the insertion of errors into a
product. Testing is required to find them and take
them out. However, errors of omission, which occur
because a software product either is performing an
inappropriate function or has neglected to include
an operation that the end user really wants, have still
not been eliminated.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Errors of omission are caused by many factors, in-
cluding inadequate gathering of requirements at the
beginning of software development and problems
with the consistency, completeness, and correctness
of requirements for several of the independent
pieces. Unfortunately, the length of time needed to
produce a software product is long, and many of the
symptoms of errors of omission do not appear until
the product is completed.

Requirement definition is a problem that appears on
lists of probiems to be solved, from the first*® to the
most currently*® compiled. The early software engi-
neering focus viewed the problem as requiring a
more formal language of expression. The use of a
natural language led to ambiguity, incompleteness,
inconsistency, and contradiction. The grudging use
of approaches such as the Problem Statement Lan-
guage/Problem Statement Analyzer (pSL/pSA)® im-
proved the situation somewhat but not for everyone
nor for every instance of its use.

Similar approaches derived from pSL/PsA use Entity-
Attribute-Relationship models to name the objects
whose properties are being modeled in a software
product and to show how these objects relate to one
another. These objects are described in terms of their
attributes and how they relate to other objects simi-
larly described. Once the tables of information have
been entered in machine-readable form, a network
of relationships can be constructed and used to de-
termine definitions in which descriptions do not
match. This network becomes an early tool for pick-
ing out ambiguities and inconsistencies.

Another approach that becomes appropriate after
the initial set of requirements has been analyzed and
the “fuzzy cloud” of raw user requirements cleared
up is the finite-state machine.>! The model used to
describe a system whose implementation is proposed
is structured as a series of states and events. An
event, for example, the occurrence of a particular
piece of data, causes a transition from the current
state to some other state. If the high-level designer
can assign identified functional requirements to a
state with defined transition rules, it should be pos-
sible to model the logical completeness of the set of
requirements for which the proposed system design
has been suggested.

Each technique is capable of providing some auto-
matic assistance in improving requirements but is
still unable to solve the complete problem of provid-
ing customers with a product to satisfy their needs
at the time they receive the software product. Their

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

requirements depend on an understanding of what
they are to accomplish. This last item changes the
first time the enhanced environment (hopefully) be-
came available for use; i.e., it is impossible to hit a
moving target.

One view of a software development process is as a
large “V,” shown in Figure 2. In this view, the top
left leg of the “V™ represents the earliest stages of
requirements, and the top right point of the “V”
represents customer acceptance. As you draw hori-
zontal lines across the “V,” the right leg validates the
work done on the left leg. Therefore, the earliest
validation of requirements occurs at the time the
customer accepts the package. For large systems this
time is many years after the statement of needs was
compiled. The solution to this impossible dilemma,
suggested initially by Brooks®? and becoming gener-
ally accepted in the third era, is rapid prototyping.

The idea is to build a working model, simulation,
interpretation, breadboard, etc., of the final product
and to allow the user to “play” with the prototype
and suggest improvements to the concept. The final
prototype becomes the specification that enters the
design methodology, to be implemented in an effi-
cient and cost-effective manner.

There were early difficulties with accepting prototyp-
ing as a step in software development because pro-
totyping foundered on the attitude that a throw-
away failure was being produced. The developers
could almost be seen thinking, “If it is really bad,
the work is not worth anything; if it is any good,
make it better and ship it.”

A more appropriate view is to treat prototyping as
the implementation portion of an independent de-
velopment cycle, the final output being a specifica-
tion from which the operational system will be built.
The “V” described above is replaced by a lopsided
“W” in which three distinct operations might occur:
First, analysis of raw requirements leading to a state-
ment of the contents of the system; second, a finite-
state description, which may even be executable, to
test the logical completeness of the proposed ele-
ments; and finally a set of connected screen designs
which can be tried out and, with a user’s assistance,
can lead to a very early evaluation of the system.
The result is an interface specification to build the
working product. This view is shown in Figure 3.

A management advantage gained by following a
scenario of this type is to define and be able to track
each of the requirements that must be satisfied in

gowoserc 345

Figure 2 The “V” of software development

NEEDS
ANALYSIS

ACCEPTANCE
TESTING

SYSTEMS
DESIGN

COMPONENT
DESIGN

SYSTEMS
TEST

CODE AND
UNITTEST

Figure 3 The “W” of software development

RAW
REQUIREMENTS

HIGH-LEVEL <SCREEN

DESIGN PROTOTYPE
"VERIFICATION SYSTEMS
OF LOGICAL FLOW DESIGN

INTERFACES
FULLY SPECIFIED

COMPLETED
SYSTEM
DELIVERED

CODE AND
UNIT TEST

the final product. The use of machinable descriptions
to enforce consistency, completeness, and correct-
ness produces a version of the requirements that can
be entered into a configuration management data
base. The accepted prototype, intended to become
the specification, defines a baseline as a marker

346 cowosera

against which all changes can be measured and
logged. The combination should provide a mecha-
nism for tracking each function through a product,
such as in the bill of materials processor and the
diagrams of parts explosions of manufacturing sys-
tems.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

What evolves in this era of development environ-
ments is a set of integrated tools allowing the designer
to be free for the creative efforts of design. The
bureaucratic paperwork of keeping track of details is
best left to the machine. The time-consuming effort
of making certain that we have not accidentally
changed a name or an attribute is done automati-
cally. The questions that the bill of materials was
invented to answer (i.e., Where is each named part
used? What are the components of each subassem-
bly?) can now be extended into the domain of soft-
ware construction. This scheme begins to provide a
consistent, integrated library package for parts inven-
tory and version control.

To complete this dream will require an incredible
amount of machine power and machine availability.
The solution appears to be to provide each developer
with a personal computer workbench acting alone
or in concert with a host or a network of peers
throughout the world. This solution creates its own
complex software design requirement, in which rules
of distributed processing and software architecture
are tied to management control issues.

We now come to the change in management style
toward which the third era is headed. One name for
this approach is software process control manage-
ment.>* It borrows its ideas from other process con-
trol environments and applies a quantitative man-
agement technique to the software development
process. It attempts to change the thinking patterns
of the software development manager by creating an
atmosphere in which each step, large or small, is
preceded by a numerical estimate of what is to be
produced with respect to size, cost, quality level,
time, etc. The manager is directed to end each step
with a measurement of what was achieved and a
pattern of thought that asks the questions: Am I on
target? Why? What’s wrong? What does this mean
about other estimates I have made? Will I make my
goals? The result is better control and incremental
improvement activities. This approach is an example
of measurement-directed software management.’*

The approach outlined above is a natural outgrowth
of the inspection strategy introduced by Fagan
many (in software engineering chronology) years
ago. It depends on the “crisp entry and exit criteria”
that delineate stages and tangible pieces of develop-
ment. In the “process control management” termi-
nology, the entry and exit criteria referred to above
have been translated into the “eTvx” (Entry-Task-
Validation-Exit) paradigm of the 1BM programming
process architecture.*

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 4 The first three ages of software engineering

TECHNOLOGY MANAGEMENT
FOCUS FOCUS

TECHNIQUE

EXAMPLE:
STRUCTURED
PROGRAMMING

FIRST 1960s INDIVIDUAL

SECOND 1970s METHODOLOGY

—~STEPWISE
REFINEMENT

—~STRUCTURED
ANALYSIS

LIFE-CYCLE
COMPONENTS

THIRD 1980s ENVIRONMENT PROCESS

As a further consequence of the increased use of
metrics to control a development process, a way to
have a true software engineering laboratory is finally
provided. For the first time, the manager of software
development is given the incentive to participate
in the data collection activity and become an ac-
tive participant in advancing software engineering
knowledge.

Figure 4 summarizes the three eras through which
software engineering has progressed.

The future

We are still investigating the advantages to be gained
by creating workbenches and development environ-
ments. Much of the information to be gained about
the advantages of an integrated tool structure will
come from Ada environments. Certainly we will
have to continue the steady pace of development if
we are to improve our engineering discipline. The
technology that is being developed will draw out the
utmost from the development processes now in
place. To the extent that we can stabilize these
processes for some length of time, we will be able to
learn much more about the way development occurs.
Consistent improvements come about only through
the steady accumulation of data. Qur experience
with the industrial development of software provides
no examples of spectacular improvements across the
board. No single idea has burst forth to change the
nature of development. It has been a steady improve-

cooeerc 347

ment year after year. This pace can only continue
with a disciplined approach and a steady accumula-
tion of knowledge.

The reason for the lack of sudden improvements is
not known. It may be as simple as having to wait
the time needed to transfer the technology we have
developed to a large enough segment of the popula-
tion so that a large impact can be noticed. Another
possibility is that we may have simply missed the
key ideas leading to the breakthroughs for spectacu-
lar improvements. The third possibility is that there
is no hidden approach, and we will continue to make
progress at a slow but steady pace.

Regardless of whatever combination is closest to
reality, we must assume that hard, steady work is the
only sure technique for improving productivity and
reliability, and we must begin with our accumulated
base of knowledge. If this is true, the future direction
must fall within these broad categories. We can
improve the way our mechanisms operate, deriving
in this way the final measure of improvement pos-
sible. We can change the way our mechanisms op-
erate by eliminating steps or drastically redesigning
the sequence of steps to accomplish the same work
with many fewer resources. This change would mean
a reformulation of the life cycles as we know them
today. Finally, we can eliminate the steps associated
with producing software entirely by having the end
users describe their problems and using those de-
scriptions to produce the information and systems
required.

The first of these three approaches is the domain of
the engineer. Experience teaches us where the gears
need oiling and where the belts need tightening. The
software engineer examines the development process
and determines where the critical bottlenecks reside.
These bottlenecks are eliminated one at a time. As
each layer is peeled back, the process becomes more
efficient, and the next bottleneck is revealed. Such
slow and steady progress causes productivity im-
provements on the order of three to five percent per
year.

The thrust today to study, gather data, analyze, and
streamline development processes is an example of
the approach of applied software engineering. It is a
necessary task for all programming organizations
and is a prerequisite for real progress. However, it
only sets the stage for the work necessary to get the
next level of improvement after the diminishing
returns of the tuning process. There are limits to the
total productivity to be gained in this way. Radice*’

348 coosera

estimates that the maximum improvement possible
with today’s development process is four to one,
because software is a labor-intensive occupation. The
approach then must be to redesign our basic way of
thinking about the way software is developed.

If other engineering disciplines are assumed as
models, a sensible approach is to identify or develop
software building blocks that can be reused in mul-
tiple applications. Just as interchangeable parts al-
lowed the industrial revolution to reach the average
consumer with affordable products, so too the use of
interchangeable software parts may make it possible
to decrease the labor-intensive component of soft-
ware development.

This approach is being examined seriously. A recent
issue of the 1EEE Transactions on Software Engineer-
ing was devoted to this topic.’” One report from
Toshiba*® described a real-time process control “soft-
ware factory” in which customers accepted the equiv-
alent of four million lines of assembler code, of which
50 percent was reused code. Other reports circulating
through the software community promise or hint at
reuse rates of 85 percent.

If there is such great potential for increasing produc-
tivity in the consistent reuse of code, why have we
not used the already completed billions of lines to
ease our workloads? There have been at least three
inhibitors to the widespread reuse of existing code.
The first results from the multiple languages that
have been popular. Each is unique in some way and
cannot coexist with programs written in some other
language without a level of effort equivalent to writ-
ing the piece over again.

A second inhibitor stems from the dependence of a
piece of software on the environment in which it is
embedded. A design philosophy formerly used, to
what appeared to be great advantage, was to share
data among the modules and subroutines of an
application. It was felt that the programming would
be easier and the performance would be better be-
cause it would not be necessary to name every data
item. A consequence of this technique was to require

" the description of the data environment in which the

software fragment would be found, in order for it to
be recreated for reuse. This description was possible
only in a few instances, and consequently the work
produced could not be shared. The introduction of
abstraction as a key element of software design
changes the language and environment restrictions
that made reuse so difficult, and specific pieces can
be commissioned to act as building blocks in spe-
cialized environments.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 19686

The next problem is how to determine when a
component has already been written. The term “in-
formation explosion” referred to the quantity of
printed material produced and available in our in-
formation-rich culture. Information retrieval experts
began to design and create software products capable
of assisting the browser in locating and retrieving
potentially relevant material.

Similarly, the number of modules being written and
stored in a haphazard fashion is also exploding. For
the written word, a centuries-old cataloging tradition
exists. Useful schemes and descriptors have been

Code is less portable than design.

written, and we are trained in their use in elementary
school. However, the module description language
and its associated descriptors are not commonly
available, and an implementer must serendipitously
come across a used module that can be inserted into
a current project. The Ada construct of packaging
should increase the potential for reuse and lead to
an improvement in software development methods.

A further application of this approach is to consider
the reuse of design fragments.*® Code is less portable
than design and has by now become the least expen-
sive segment of the development process. The basic
design of an algorithm or procedure can be trans-
ported across architecture boundaries. For example,
sorting algorithms are rarely topics of crucial impor-
tance. We have understood the relative merits of
each of the algorithms for some time and know how
to choose which will work best for a current need.
Many more examples of this class exist, and as
specification languages become formal and machin-
able, we will begin to accumulate libraries of design
fragments that can be retrieved and translated into
the architecture of the machine we are working on.

An additional benefit of reusable software will be the
increased reliability of the systems produced. It will
be possible to choose components whose defect his-
tories are well known and which have been shown

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

to behave in a reliable manner. Ringland® reported
that the reliability of a software product was im-
proved as a consequence of software reuse.

The second alternative of modifying the process and
thus eliminating steps is also being pursued with
vigor. The ideas behind this approach include most
of the fourth-generation language techniques®' that
have been fruitful in the recent past. The approach
is that of the “almost complete program.” The de-
signers of systems produce general-purpose applica-
tion generators which are completed by the individ-
ual who has a data processing program to produce.
The standard pieces of code required to access the
data base or the input/output devices are already
written. The effect of this combination is to produce
an environment in which only the details of the
problem at hand need to be entered into the appli-
cation generator. Most of the extraneous design is-
sues, those related to the details of the hardware and
systems in which the problem is embedded, are
resolved for the designer, thus improving the
achieved productivity by a considerable amount.
Included in this broad classification are report gen-
erators, query processors, and screen design aids.

This approach has been most successful in applica-
tions programming, especially for those applications
in which the efficiency of execution is least crucial.
In system production, however, there have yet to be
sufficient inroads to make this approach useful. It
does point to a direction in which an application
support environment may be able to provide some
more of the common functions and free the software
engineer from the need to invent similar repeated
components over again. Notice that this is a special
instance of the principle of reuse being applied.

Another example of modifying the development
process is the use of software prototyping. As de-
scribed above, prototyping would allow the devel-
opers to get an earlier warning as to the areas of
concern in the programming system as they see it.
Additionally, prototyping could be used as a partici-
pative design aid. The developers would work with
the ultimate users, who would suggest changes to the
initial version. Each change would bring the final
form closer to the needs of the ones for whom the
system was created.’? This approach includes systems
testing as a part of the requirements process, thus
tying what was the first step to what was the last step.
In those cases where it is applicable, this approach
has the potential for improving the speed with which
programs are turned around.

GobeerG 349

The third alternative, doing away with the process,
must also be explored. The fourth-generation lan-
guages move in this direction. The use of expert
systems to diagnose what a user requires is an addi-

Our understanding of what is to be
measured has matured.

tional step in this direction. Application knowledge
in the form of standards, the layout of forms, flows
of information, job descriptions, and organization
structure could be matched to catalogs of potentially
reusable design fragments, dictionaries of data defi-
nitions already captured, and modules and programs
already written. The software engineer would direct
a process in which pattern matching would occur
under a set of rules or axioms that describe what is
wanted, thus slowly approaching a system design.
This method is a guided process, with intuition and
experience supplied by the sofiware engineer and
high-speed pattern matching supplied by the com-
puter.

Although this method cannot be carried out today,
some applications of knowledge engineering and ar-
tificial intelligence have begun.®*%*

The alternative approaches to improvement assume
that we can make intelligent choices about future
directions. The major themes of technology insertion
and management control assume that we have a
sufficient amount of information to choose the di-
rection in which we wish to head. The transition to
an engineering discipline begins when information
to analyze is available. This transition has finally
begun to take place. Software development processes
are beginning to stabilize, and the software engineers
have accepted the concepts of goal-directed manage-
ment. It is now possible to identify stages of devel-
opment at which specific pieces of work will have
been completed and compare the goal that manage-
ment set at the beginning of development with what
has actually been achieved. Comparisons with pre-
vious instances of using this process help set the
goals, and stability makes the comparison meaning-
ful.

350 cowoeera

Our understanding of what is to be measured has
matured. It is possible to differentiate between those
measures focusing primarily on a software compo-
nent, those focusing primarily on a producer of
software, and those which measure a software proc-
ess. The measures that concentrate upon the software
component deal with issues of how efficiently it runs,
how much space it consumes, the number of errors
it still contains (none after shipment), etc. The meas-
ures dealing with the role of the producer are con-
cerned with the productivity and work quality of
that individual. For example, programmer variabil-
ity is well known to be of the order of 10:1.

Measures of software process are concerned with
how well a set of steps allows the development team
(or single individual) to produce a final product. The
measure is of the efficiency in converting resources
into a finished product. Examples of this might be
the effectiveness of Inspection Step A in finding
errors and the ability of Tool B to analyze require-
ments assertions for correctness. By separating meas-
ures into various categories of applicability, the soft-
ware engineer can distinguish between the ability of
a development process to assist in producing soft-
ware and the effect of a particular technique. This
ability is still rudimentary, but conceptually it is
significant.

Making comparisons between diverse environments
is still impossible. However, the comparison can be
made within local, well-understood environments,
the same location, application type, or machine ar-
chitecture. We have not yet defined a set of universal
measurements that can be compared across diverse
borders. However, we have begun to experiment,®
and this will eventually lead to a better understand-
ing of measures and their use.

The power of the personal computer is leading to an
increased use of tools at the programmer’s desk. The
programmer workbenches are providing the raw
processing power for each individual to do editing
and checking that formerly required large machines.
When the history of the development of data proc-
essing is written some decades from now, the key
tool that will be pointed to as improving the lot of
the individual developer will be the editor and text
processor. This tool has opened the way to record
information about programs quickly and to manip-
ulate the programs directly. This, in turn, has led to
the on-line syntax checkers, debuggers, etc. making
up the programmers’ workbenches that will support
future environments.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Finally, the attention being paid to validation and
verification of the final product must be stressed.
Whether it is the drive begun with structured pro-
gramming concepts in the 1960s, or the management
stress on productivity and control, the central point
is that the most productive environment exists when
no rework is required and we get it right the first
time. This concept unites all of the elements of
software production in a single theme and is the
prerequisite for any next step.

A future scenario. If we were to imagine something
like an ideal development environment sometime in
the next decade, we might include the following
approach. The software engineering team is assigned
a task to produce a system. Each has an independent
software workbench but can send, receive, and share
files with all other members of the development
team. The statement of work lists the objectives and
goals that this program is to satisfy. The team mem-
bers reduce the objectives to a group of work prod-
ucts and, together with the writer of the objectives,
describe the attributes that this work product will
have.

The workbench keeps track of the entries and does
the “paperwork” of keeping track of inconsistencies,
ambiguities, and holes. With the information pro-
vided, the designers identify a potentially feasible
core for the product to be designed. The prototype
of that core is simulated, given to users to manipu-
late, and exercised by the developers themselves.
When a satisfactory prototype is accepted, the con-
tents become the master library of the project man-
ager. The developers use the prototype to search for
completed design fragments and string them to-
gether. The missing pieces are identified, and a de-
cision is made as to what components should be
rewritten and what ones used from the library.

During this time, work effort is monitored by an
instrumentation package. It keeps track of the mod-
ules and the relationship of those modules to each
piece. This tracking ties into the statement of objec-
tives and goals with which the project began. At any
design change it will be possible to determine each
work product that is attached to that change. Each
test that verifies a deliverable is invoked automati-
cally after each change. Each part that has not been
used before is examined very carefully, since used
parts are always better.

This scenario is not far-fetched. It can and is being
enacted today. The difference is the percentage of

1BM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

parts being reused and the integrated tool strategy
that ties the components together. The change in
approach heralded by the scenario is the rapid de-
crease in effort associated with the use of reliable
pieces. The building-block approach allows the en-

Software engineers must
concentrate on trade-offs.

gineer to concentrate on the pragmatism of a project,
not the design of the algorithms of the project. Each
newly crafted piece must be verified to a level of
correctness that is equivalent to the “used” parts.

Engineering is a discipline concentrating on practical
trade-offs. Software engineers must also concentrate
on trade-offs—not ones associated with the cost of
production versus testing, but those of size versus
performance and function versus cost.

The role of the science of software development is
to come up with the laws of software development,
the algorithms, transformation rules, and techniques
that make new applications possible.

The utility of computers lies in their ability to point
out techniques to improve the way we do our work.
For the consumer of computational power, the de-
tails of programming and software engineering need
to be made transparent. For this class of users the
process will be eliminated. It will be replaced by
software systems designed and constructed by soft-
ware scientists and software engineers.

To complete the analogy to pyramid building, we
should consider structures with the grace of the Eiffel
Tower, the size of the World Trade Center, the
pleasure of the best of our homes, and the beauty
and spontaneity of a sand castle. The principles are
the same, the purpose is different, and all derive from
a tradition which stretches the creativity of the en-
gineer working in partnership with the scientist.

Software engineering is beginning its rapid trip from
its own era of pyramids to the Eiffel Tower. There
will be many mistakes along the way, but the direc-

cowoeera 351

tion is clear. Patience, good will, and the creativity
of the software professional will lead to a discipline
which will be a bona fide member of the engineering
community.

Acknowledgments

The author would like to thank the staff of the 1BM
Software Engineering Institute and the 1BM Systems
Research Institute for many discussions in the last
dozen years. The Institutes have fostered an inde-
pendent atmosphere and have always encouraged
professional involvement by their employees. The
author would also like to express his appreciation to
the referees who reviewed this paper. Their sugges-
tions were very helpful, and any remaining errors
are solely the responsibility of the author.

Ada is a registered trademark of the U.S. Government, Ada Joint
Program Office.

Cited references

1. R. C. Linger, H. D. Mills, and B. 1. Witt, Structured Program-
ming: Theory and Practice, Addison-Wesley Publishing Co.,
Reading, MA (1979).

2. C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM 12, No. 10, 576-583
(1969).

3. Phillip W. Metzger, Managing A Programming Project, 2nd
Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ (1981).

4. Randall W. Jensen and Charles C. Tonies, Sofiware Engineer-
ing, Prentice-Hall, Inc., Englewood Cliffs, NJ (1979).

5. Barry W. Boehm, Sofiware Engineering Economics, Prentice-
Hall, Inc., Englewood, Cliffs, NJ (1981).

6. M. R. Barbacci, A. N. Habermann, and M. Shaw, “The
Software Engineering Institute: Bridging practice and poten-
tial,” Software 2, No. 6, 4-21 (1985).

7. F. L. Bauer, “Sofiware engineering,” Information Processing
71, North-Holland Publishing Co., Amsterdam (1972), p. 530.

8. D. T. Ross and K. E. Schoman, Jr., “Structured analysis for
requirements definition,” JEEE Transactions on Software En-
gineering SE-3, No. 1, 6-15 (1977).

9. D. T. Ross, “Structured Analysis (SA): A language for com-
municating ideas,” Transactions on Sofiware Engineering
SE-3, No. 1, 16-33 (1977).

10. M. L. Gillenson and R. Goldberg, Strategic Planning, Systems
Analysis, and Database Design: A Continuous Flow Approach,
Wiley-Interscience, New York (1984).

11. E. Dijkstra, “The structure of ‘THE’-multiprogramming sys-
tem,” Communications of the ACM 11, No. 6, 341-346 (May
1968). ’

12. B. A. Silverberg, “An overview of the SRI hierarchical devel-
opment method,” Software Engineering Environments,
H. Hunke, Editor, North-Holland Publishing Co., New York
(1980), p. 235.

13. D. L. Parnas, “On criteria to be used in decomposing systems
into modules,” Communications of the ACM 15, No. 12,
1053-1058 (December 1972).

14. C. Bohm and G. Jacopini, “Flow diagrams, Turing machines,
and languages with only two formation rules,” Communica-
tions of the ACM 9, No. 5, 366-371 (1966).

352 ocoioeers

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

. H. D. Mills and R. C. Linger, “Data structured programming:
Program design without arrays and pointers,” IEEE Trans-
actions on Software Engineering SE-12, No. 2, 192-197 (Feb-
ruary 1986).

. E. W. Dijkstra, “Go to statement considered harmful,” Com-
munications of the ACM 11, No. 3, 147-148 (1968).

. G. Weinberg, The Psychology of Computer Programming, Van
Nostrand Reinhold, New York (1971).

. Samuel T. Redwine and William E. Riddle, “Software tech-
nology maturation,” Proceedings, 8th International Confer-
ence on Software Engineering, IEEE, Washington, DC (1985),
p. 189.

. J. H. Morrissey and L. S.-Y. Wu, “Software engineering . . .

An economic perspective,” Proceedings, 4th International

Conference on Software Engineering, IEEE, Washington, DC

(1979), pp. 412-422.

M. J. Flaherty, “Programming process productivity measure-

ment system for System/370,” IBM Systems Journal 24, No.

2, 168-175 (1985).

E. Yourdon and L. L. Constantine, Structured Design, Pren-

tice-Hall, Englewood Cliffs, NJ (1978).

G. J. Myers, Composite/Structured Design, Van Nostrand

Reinhold, New York (1978).

M. A. Jackson, Principles of Program Design, Academic Press,

Inc., New York (1975).

N. Wirth, “Program development by stepwise refinement,”

Communications of the ACM 4, No. 4, 221-227 (1971).

J. D. Warnier, The Logical Construction of Programs, Van

Nostrand Reinhold, New York (1974).

G. D. Bergland, “A guided tour of program design methodol-

ogies,” Computer 14, No. 10, 13-37 (1981).

S. S. Yau and J. J.-P. Tsai, “A survey of software design

strategies,” [EEE Transactions on Software Engineering

SE-12, No. 6, 713-721 (June 1986).

V. R. Basili and R. W, Reiter, Jr., “An investigation of human

factors in software development,” Computer 12, No. 12, 21~

38 (December 1979).

D. O’Neill, “The management of software engineering, Part

II: Software engineering program,” IBM Systems Journal 19,

No. 4, 421-431 (1980).

M. B. Carpenter and H. K. Hallman, “Quality emphasis at

IBM’s Software Engineering Institute,” IBM Systems Journal

24, No. 2, 121-133 (1986).

M. Schaul, “Design using software engineering principles:

Overview of an educational program,” Proceedings, 8th Inter-

national Conference on Sofiware Engineering, IEEE, Washing-

ton, DC (1985), pp. 201-209.

J. D. Aron, The Program Development Process: The Individual

Programmer, Addison-Wesley Publishing Co., Reading, MA

(1974).

J. D. Aron, The Program Development Process: The Program-

ming Team, Addison-Wesley Publishing Co., Reading, MA

(1983).

M. E. Fagan, “Design and code inspections to reduce errors

in program development,” IBM Systems Journal 15, No. 3,

182-211 (1976).

B. P. Lientz and E. B. Swanson, Sofiware Maintenance

Management, Addison-Wesley Publishing Co., Reading, MA

(1980).

Tutorial: Software Cost Estimating and Life-Cycle Control:

Getting The Software Numbers, 1EEE, Washington, DC

(1980).

P. V. Norden, “Curve fitting for a model of applied research

and development scheduling,” IBM Journal of Research and

Development 2, No. 3, 232-248 (July 1958).

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

38. R. Bazelmans, “Evolution of configuration management,”
ACM Software Engineering Notes 10, No. 5, 37-46 (1985).

39. Configuration Control—Engineering Changes, Deviations and
Waivers, U.S. Department of Defense, Washington, DC
(1968).

40. IEEE Standard for Sofiware Configuration Management
Plans, IEEE, New York (1983).

41. W. Bryan, C. Chadbourne, and S. G. Siegal, Tutorial: Software
Configuration Management, IEEE, Washington, DC (1980).

42, L. A. Belady and M. M. Lehman, “A model of large program
development,” IBM Systems Journal 15, No. 3, 225-252
(1976).

43. M. M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE 68, No. 9, 1060-1076
(1980).

44. Computer (Special Issue: Ada) 14, No. 6 (1981).

45. G. Booch, Sofiware Engineering with Ada, Benjamin/Cum-
mings, Menlo Park, CA (1983).

46. Computer (Special Issue: The DoD STARS Program) 16, No.
11 (1983).

47. R. A. Radice, “Productivity measures in software,” The Eco-
nomics of Information Processing, Volume 2, R. Goldberg and
H. Lorin, Editors, Wiley-Interscience, New York (1982).

48. Barry W. Boehm, “Software engineering—As it is,” Proceed-
ings, 4th International Conference on Sofiware Engineering,
IEEE, Washington, DC (1979), p. 11.

49. Information Technology R & D Critical Trends and Issues,
U.S. Congress, Office of Technology Assessment, OTA-CIT-
286, Washington, DC (1985).

50. D. Teichroew and E. A. Hershey III, “PSL/PSA: A computer-
aided technique for structured documentation and analysis of
information processing systems,” IEEE Transactions on Sofi-
ware Engineering SE-3, No. 1, 41-48 (1977).

51. M. Chandrasekharan, B. Dasarthy, and Z. Kishimoto, “Re-
quirements-based testing of real-time systems: Modeling for
testability,” Computer 18, No. 4, 71-78 (1985).

52. F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley
Publishing Co., Reading, MA (1975).

53. W. S. Humphrey, “The IBM large-systems software develop-
ment process: Objectives and direction,” IBM Systems Journal
24, No. 2, 76-78 (1986).

54, T. DeMarco, Controlling Software Projects, Yourdon, Inc.,
New York (1982).

55. C. V. Ramamoorthy, W.-T. Tsai, T. Yamaura, and A. Bhide,
“Metrics guided methodology,” Proceedings: COMPSAC 85,
IEEE, Washington, DC (1985), p. 111.

56. R. A. Radice, N. K. Roth, A. C. O’Hara, Jr., and W. A.
Ciarfella, “A programming process architecture,” IBM Sys-
tems Journal 24, No. 2, 79-90 (1985).

57. IEEE Transactions on Sofiware Engineering (Special Issue on
Software Reusability) SE-10, No. 5 (1984).

58. Y. Matsumoto, “Some experiences in promoting reusable
software: Presentation in higher abstract levels,” JEEE Trans-
actions on Software Engineering SE-10, No. 5, 502-513
(1984).

59. J. M. Neighbors, “The Draco approach to constructing soft-
ware from reusable components,” [EEE Transactions on Soft-
ware Engineering SE-10, No. 5, 564-574 (1984).

60. G. Ringland, “Software engineering in a development group,”
Software Practice and Experience 14, No. 6, 533-559 (1984).

61. James Martin, Fourth Generation Languages, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1985).

62. B. W. Boehm, “Prototyping vs. specifying: A multi-project
experiment,” IEEE Transactions on Software Engineering
SE-10, No. 3, 290-303 (1984).

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

63. M. T. Harandi, “Applying knowledge-based techniques to
software development,” Perspectives in Computing 6, No. 1,
14-21 (1986).

64. R. C. Waters, “The programmer’s apprentice: A session with
KBEmacs,” IEEE Transactions on Software Engineering SE-
11, No. 11, 1296-1320 (1985).

65. V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimen-
tation in software engineering,” IEEE Transactions on Soft-
ware Engineering SE-12, No. 7, 733-743 (1986).

Robert Goldberg /BM Corporate Technical Institutes, 500 Co-
lumbus Avenue, Thornwood, New York 10594. Dr. Goldberg is an
IBM Software Engineering Institute Consultant. Before assuming
his current position he was a Senior Institute Instructor at the IBM
Systerns Reseach Institute, where he taught and developed courses
in the areas of software engineering, office automation, informa-
tion systems architecture, and text processing and retrieval. He
joined IBM as a systems engineer in 1968 in a branch office in
New Jersey, where he was associated primarily with higher-edu-
cation accounts. In 1973 he joined the faculty of the Systems
Reseach Institute and in 1983 moved to his current position. He
is co-editor with Hal Lorin of Economics of Information Process-
ing, Volume I and II. He is coauthor with Mark Gillenson of
Strategic Planning, Systems Analysis, and Database Design—A
Continuous Flow Approach. Dr. Goldberg received his B.S. in
physics from the Polytechnic University of New York in 1960,
and his Doctorate in physics from Rutgers University in 1969,

Reprint Order No. G321-5279.

coLoeerc 353

