
Software  engineering: 
An emerging  discipline 

by R. Goldberg 

Software  engineering is an  emerging  discipline  whose 
goal is to produce  reliable  software  products  in  a cost- 
effective  manner.  This  discipline is  evolving  rapidly  as 
the  challenges  faced by its practitioners  keep  extend- 
ing  their  skills.  This  paper  gives  a  quick tour of the 
main  ideas  and  thrusts  that  have  driven  software  engi- 
neering  in  its  first 25 years  and attempts  to look  ahead 
at  the  next  set of advances. 

0 ur society  has adopted the use  of computers at 
a rate that staggers the imagination. Every  seg- 

ment of  society  has  discovered  programs that seem 
to make  its jobs more  productive. This demand for 
programs  has  required a tremendous amount of  code 
to be written by a population of producers  whose 
training and tradition are recent. Every estimate of 
the number of programs that remain to be  written, 
because  of a perceived  need that these  programs are 
expected to fill,  seems to depend on the number of 
programmers  available to write the programs. Thus, 
when  we increase the number of programmers, we 
also  add to their work.  However, the number of 
programmers  appears  limited. 

The results  of  this dilemma have  been  diverse.  They 
range  from  increased  pressure  on the existing  pro- 
grammer population to produce  more  in a shorter 
period, to attempts to change the way programs are 
produced  through the invention of  new tools and 
approaches. 

At one extreme, the pressure to produce more with 
less  has  been one of the causes  of  disaffection  with 
the software community of the 1960s and 1970s. 
There were many  examples of attempts to produce 
software  applications that had tremendous cost  over- 
runs, failed to provide the function  promised, and 

were  subject to unexpected and disastrous  failure. 
The rising  cry  was,  “Why  isn’t  software  production 
as  predictable  as  engineering?” The response, at least 
partially, was to attempt to create a software  engi- 
neering  discipline to solve  these  problems. 

At the other extreme, an attempt was  made to find 
scientific  principles  leading to new insights and re- 
lationships that would  revolutionize the way soft- 
ware is  produced. This approach  would  certainly 
produce a better product. The direction  in  which to 
go stemmed  from this approach and drew  from  what 
appeared to be the source  discipline of software 
production, computer science. The faculties of col- 
leges and universities that had computer science 
departments were  asked to provide the new ap- 
proaches,  tools,  or  techniques to solve the problem 
of improving  software  development. 

The requests  for instantaneous fixes  have to be 
viewed  in the context of the past 25 years, during 
which time computer applications came to be  ac- 
cepted. In some ways the data processing community 
is  being  asked to ease the transfer of a new  technology 
to the population at large. The focus of this  rapidly 
changing  technology  is  on  its  application to provid- 
ing  practical  software to all  segments of society. The 
model  provided by other engineering  disciplines 
should  be  useful  in  understanding the pace  of  devel- 
opment and the limitations to be  faced by software 

0 Copyright 1986 by  International  Business Machines Corporation. 
Copying in printed  form  for  private use is permitted without 
payment of royalty  provided  that (1) each reproduction  is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first  page. The title  and  abstract,  but no 
other portions, of this paper  may be copied or distributed  royalty 
free without further  permission  by  computer-based and other 
information-service systems. Permission to republish any other 
portion of this paper  must be obtained from  the  Editor. 

IBM SYSTEMS JOURNAL. VOL 25, NOS 3/4,1986 



engineering. As an illustrative example, consider a 
stylized view  of the growth of  civil engineering as 
seen through the development of pyramids in Egypt. 

The pyramids were monuments built by the pha- 
raohs of  Egypt as burial sites. A pharaoh  attempted 
to have  his name last through the centuries by build- 
ing a  structure of a size  sufficient to ensure its inde- 
structibility. The first pyramids must have been built 
by trial and  error, until a successful approach was 
found.  The skills so painfully learned by generations 
of builders were then passed on by apprenticing their 
children, relatives, and others. 

As time went  by, each successive pharaoh wanted a 
bigger pyramid built, and each successive generation 
of builders attempted  to build it. But increasing the 
size was not all that simple. The relationship between 
the height  of the pyramid and the area of the base 
required to support it was not linear, and  the builders 
needed to learn the proper relationship. Egypt  is 
dotted with collapsed pyramids attesting to lessons 
painfully learned. 

Eventually this relationship was learned, and  the 
pyramid builders developed rules of thumb  to assist 
them in designing stable pyramids. The engineers, 
however, did not understand why this stability was 
attained  and how  it depended on  the weight  of the 
material with  which the pyramid was constructed. 
They perhaps did not realize  how different construc- 
tion techniques would change the weight of the 
structure and allow a different relationship among 
the weight, area, and height.  They might not have 
realized  how  using  newer, lighter materials would 
have similarly altered these relationships. These in- 
sights came much later, after the tools of mathemat- 
ical analysis and experimentation were applied by 
natural scientists to develop tables of rules of thumb 
that civil engineers could use for practical purposes. 

This sequence of events implies the following  stages: 
First, a pragmatic need causes trial-and-error at- 
tempts. The knowledge  gained  is not acquired sys- 
tematically, and it is passed down from generation 
to generation and from master to apprentice. Sec- 
ond,  a science  is created to try to understand the 
rules of thumb that  the “practical” engineers have 
discovered. In this process the scientists begin to  put 
together a base  of  knowledge from which the engi- 
neer can learn in order to make the final product 
more predictable. 

In the  third stage, engineers are trained in institutions 
that teach the pragmatic engineering approach to- 
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gether with the acquired base  of  knowledge. The 
partnership developed between the faculties of  engi- 
neering and science becomes synergistic.  Each draws 
from its own  specialty,  while retaining the  thrust  that 
separates the two disciplines. As a result we can build 
bigger “pyramids,” and we certainly have defined 
what a pyramid is. 

If this model is general, and I believe that it is, it is 
reasonable to ask  how the development of software 
engineering fits.  Clearly  it will  be  difficult to squeeze 
it into  the 25 years of computer applications. In the 
early  years programmers learned their skills through 
on-the-job training. At that time, there was disagree- 
ment about what constituted appropriate training 
for a programmer, with opinions ranging from math- 
ematics at  one extreme to musicology and romance 
languages at the other. One inevitable result  of this 
confusion was the  number of projects in which the 
result overran budget, exceeded schedule, and did 
not work as predicted. 

The software crisis,  officially  identified as such in a 
1968 NATO conference, resulted in a call for a new 
class of programmer who was to become the engineer 
of software development. The engineer would make 
certain that schedules and budgets were met and  that 
the function promised would be doable. The engi- 
neer was to be the practical professional  who  would 
make certain that effort  was expended efficiently and 
effectively. 

In practice this idea became an  attempt to form a 
discipline of training and perhaps even certification 
before the base of accepted knowledge was identified. 
Types of problems similar to those faced by the 
pyramid builders were  given to the software  engineer: 
Was there a sufficient  body of practical and theoret- 
ical information that could become a  cumculum in 
software engineering? Could the university faculty 
trained in software engineering teach a new software 
engineer what to do? Could the university faculty 
trained in software engineering do the experiments 
that determined the equivalent of what the  ratio of 
height to base should be and then apply the results 
to other projects? Could the university faculty ana- 
lyze the  data accumulated, generalize the  data by 
following the applicable scientific  rules, and devise 
new experiments to further our knowledge of soft- 
ware engineering? Could all of this be done in a few 
short years? 

These questions are  but some of the challenges that 
software engineering has faced in its attempt  to reach 



a first  level of growth. Cumcula  in software engi- 
neering did not exist  because the scope of the subject 
had never been defined. No methodology was  devel- 
oped for experimentation. The models that were 
available were either from the  natural sciences,  where 
exact rules existed and  the researcher was limited by 
technique and  the accuracy of instruments, or from 
the behavioral sciences, in which the variability of 
the subjects caused a different level  of uncertainty 
and a dependence on  other statistical techniques. 
Software was a combination of both of these and 
required some level  of cross-training to design and 
analyze the experiments. 

The experiments that were done occurred on a small 
scale, and few of the researchers had the experience 
to scale up  the results to a level that made sense 
when a million-line-of-code system was being de- 
signed. The measurements themselves were done in 
an atmosphere of uncertainty because we had not 
determined what should be measured and certainly 
had  no  standards for comparison. Results are rarely 
stated in terms showing the  inherent accuracy con- 
tained in  the  data. Thus, it is not unusual to see 
documents  that report results of estimates involving 
people and measurements of project attributes 
quoted  at four or five significant  digits. 

All this leads to  an era of great excitement, devel- 
opment, and confusion. Software engineering is  ex- 
periencing a growth rate consistent with those of all 
emerging disciplines. Those of us who attempt  to 
help it along must be ready for change in approach 
and change in direction, and,  to paraphrase the story 
of the frog climbing up the inside of the well,  be 
ready consistently to take two steps forward and fall 
back one. 

What  is  software  engineering? 

The discussions regarding software engineering have 
all taken place without a formal definition that even 
a plurality of the concerned population has accepted. 
The  domain of software engineering has been  as- 
sumed to include three intrinsic areas of concern: 
software reliability, software management, and pro- 
grammer productivity. One  can usually  find a body 
of practitioners who are convinced that  one of these 
three areas is the most important  and  that  the  other 
two are secondary. Thus, a school  of thought has 
grown up favoring software reliability and  the drive 
to produce error-free code as the primary purpose of 
software engineering. The exponents of this ap- 
proach have developed rigorous and formal lan- 
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guages to express specification and design. The goal 
of proof techniques, either constructive, following 
the school  of Linger, Mills, and Witt,’ or axiomatic, 
following  Hoare,’  is looked upon as  the ultimate task 
of software engineering research and education. 

A second school of thought has focused on the 
management aspects of  software engineering. These 
practitioners have examined the planning and con- 
trol techniques of large development projects in 
other engineering domains  and have attempted  to 
transfer these techniques to software development. 
The argument has been  “If we could place human 
beings on  the moon on a scheduled basis, we ought 
to be able to use these same techniques to write an 
operating system.” The disciplined life-cycle ap- 
proaches, which have been described in many places 
in the  are examples of some of the end 
products of this group’s  efforts to  date. 

Each  of these first two groups agree that productivity 
is a by-product of following their advice. The first 
group proves that  the cost of error detection and 
correction is at least  half  of the development cost of 
any software component,  and therefore the elimi- 
nation of any errors first must increase productivity 
dramatically. Further, they argue, automatic tools 
will make certain that many of the error-prone activ- 
ities of the past will be eliminated, and as a result, 
the new, more  automatic approach will inherently 
be more productive. 

The second group has a similar argument. If  we 
know what we are doing, they  say, and if  we can 
plan and control more efficiently, there will be less 
backtracking because of misplaced and contradictory 
effort. The result  of proper plans and controls will 
be to lower the error rate to  an understood and 
controllable level  while simultaneously increasing 
productivity. The  automatic tools that we introduce 
to keep track of where we are will act as multipliers 
for the work of the software developers, making 
certain that we accumulate the data required to 
improve the process  even more. 

As a result, these two approaches have led the prag- 
matist to question the validity of the theoretician’s 
experience and  the theoretician to  doubt  the ability 
of the pragmatist to cope with the formal constructs 
that  are viewed as necessary  for error-free software. 
An example of the dissonance between  these two 
groups has been the scant effort applied, until re- 
cently, to the theory of testing and  to  an understand- 
ing of  how to deal with maintenance issues. 
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engineering. No generally accepted &riculum has 
even  been defined. The United States government is 
sponsoring a Software Engineering Institute6 to ad- 
dress practical issues. It has been established at Car- 
negie-Mellon University, and  one of the first orders 
of  business  of its education division is the creation 
of a task force or workshop to identify the core 
curriculum of such a degree. 

For this paper, we  use the working definition that 
stresses the practical nature of applying established 
principles so that efficient development occurs: the 
establishment and use of sound engineering princi- 
ples (methods)  to obtain economically software that 
is  reliable and works on real  machines.’ 

This definition stresses the engineering component 
of software engineering and takes for granted that 
principles do exist, have  been discovered, or will  be 
discovered shortly. It also assumes that  the accu- 
mulated body  of  knowledge will  be  packaged coher- 
ently, so that  in  the not too distant future we  will 
have degreed or certified software engineers. 

The ideas that are embodied in this definition and 
that seem to be  firmly in place are  the following: 

Each step in the production of a piece  of  software 
should be designed to  contain only independent, 
abstract components. 
Each step in the production of a piece of software 
must have a verification  alongside it, preferably 
done by an independent agent. 
Each  piece  of  work to be accomplished should be 
estimated for size and effort  before it is  begun and 
compared with that estimate on completion so 
that differences can be understood. 

The development  of  software  engineering. The first 
idea above leads to more robust designs and imple- 
mentations. It allows for the isolation of function 
and  data so that they can be constructed as cleanly 
as possible. It allows the designer to achieve intellec- 
tual control over a complex piece of software. 

The second idea instills the discipline of reliability at 
all  levels. Just  as a carpenter should always measure 
one more time before cutting, so the developer 
should verify the correctness of the translation from 
the  “plan”  to  the completed product at  that stage. 
Similarly, the software engineer should validate at 
the earliest possible time that what is constructed is 
identical to what should be constructed. 
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each pa; of the work  process  with this mental dis- 
cipline, the software engineer is prepared for the 

The  software  engineering  evolution 
has  followed  several  major  streams. 

early warning signals  of  possible problems. When 
completed, the analyses of both successful and  un- 
successful estimates become grist for the mill  of 
experience. 

This combination of three ideas is what distinguishes 
an engineering discipline from the ad hoc creations 
of both artists and artisans. 

Software  engineering:  The  major  themes 

The software engineering evolution has followed  sev- 
eral major streams and has in the process gone 
through different eras in which the solution to the 
problem of developing software has changed dra- 
matically. One stream that is  visible as we look at 
the last  two decades is the relationship between 
process and  data. Ross and S~homan*.~  observed 
during the early Structured Analysis and Design 
Technique (SADT) papers that  data  and process  reveal 
one another’s duality. Each represents the opposite 
side of the same coin. The nature of this duality 
stems from the observation that both must be present 
when an activity occurs. Examples in other areas are 
nouns  and verbs, objects and operations, and passive 
and active voices.  If  we  specify the process that 
occurs, we must also specify the  data used  by that 
process. This means that any analysis done  to  un- 
derstand the  contents of a system must include a 
data analysis component  and a procedure analysis 
component.” 

The apparent universality of the dual nature of data 
and process  suggests that a fruitful approach to use 
in information processing might be to apply similar 
approaches in solving  process problems and  data 
problems. An example of this duality might  be the 
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relationship between  levels  of abstraction in system 
design and  data abstraction as drivers of  system 
description and design. 

The idea of levels of abstraction in system  design 
states that  the most secure system  design will  be done 
in a series  of  steps.  Each step assumes the existence 
of an architecture that represents a complete descrip- 
tion of the system required to complete the step now 
being done. There may be many strategies for defin- 
ing the  appropriate layers,  with one approach defin- 
ing function successively nearer the exercise of the 
actual hardware" and  another perhaps segmenting a 
design into  independent  components,  or vocabulary 
approximating the vocabulary of the application.'2 
The strategy employed prohibits any one layer from 
communicating with anything other  than  the layer 
directly beneath it in the ladder of abstractions. This 
approach isolates function so that unexpected com- 
plex interactions are held to  a  minimum. 

When the concept of abstract data items was intro- 
duced,13 some of the thinking was  very much the 
same as in function abstraction. The  intent was to 
create data structures and keep them isolated from 
any other  component of the system. No inadvertent 
access was to be allowed, and  no unexpected com- 
plex interaction would occur. A package was to be 
created as a  combination of the  data storage access 
routines and all of the functions that would be 
performed on  a particular data structure. All users 
would have to be funneled through the code sup- 
porting the abstract data item. 

The thinking that went into both of these concepts 
is similar and is an example of the  dual approaches 
one can take toward both data  and process. A further 
example comes from a comparison of two concep- 
tually similar papers, one by Bohm and Jacopini14 
on  the  number of constructs required for a general 
program, and  the  other by Mills and Linger15 on 
how to create a program with a constrained number 
of data structures. 

In a similar fashion, consider the relationship be- 
tween data base systems and program design librar- 
ies. This dual relationship appears quite general, and 
one should expect that every improvement in one of 
the two will eventually result in a symmetric im- 
provement in the  other. 

A second stream of the software engineering evolu- 
tion is the scope of the development process that 
must be used to manage a software development 
project. The view  in the 1950s included only the 

338 GOLDBERG 

writing of code. The view in the 1960s extended 
toward design on  one side and test on  the other. By 
today it is  recognized that  a development cycle must 
include all aspects that go into determining the con- 

Software  engineering  can  be  said  to 
have  begun  in  the late 1960s. 

tents of a software product prior to implementation 
and  must be extended to consider what may take 
place in  the future when the system will no longer 
be used. This increase in the scope of a development 
cycle has extended the purview of system analysis 
into  the world of business strategic planning for the 
application community  and  into product strategy for 
the system development community. Along  with this 
extension has come the realization that  the  time 
span now included is so long that  the attributes of 
the delivered products no longer match the require- 
ments of the consumers of the product. The rate of 
change of user concerns is faster than  the rate of 
production of software to support these same users. 
This situation leads to  the inescapable conclusion 
that we are faced  with a paradox. How do we include 
all  of  what  is  needed for an efficient development 
cycle in a time span short enough to satisfy our 
customers? 

Throughout  the years when software engineering was 
developing, many individuals made  enormous con- 
tributions and advanced our understanding of what 
needed to be done. Not all  of the advances were 
appreciated in their own time, and some were for- 
gotten completely. Any attempt to provide even a 
rough chronology will only look at highlights and try 
to plot the crest of acceptance. For example, ideas 
that may  first  have  been presented in 1970 but did 
not achieve broad acceptance until  the late 1970s 
will be listed, with only minor historical license, at 
the time of their acceptance. 

The eras of software engineering are roughly  these: 
We  first looked for a single  magic solution, with 
structured programming as the promise. When this 
was insufficient, the second approach suggested that 
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the use  of a consistent methodology would  solve the 
problem. This approach did  not solve the problem 
either. The  third solution suggested that, in addition 
to a consistent methodology, one ought to create an 
environment to support the developer. This combi- 
nation, it  was  believed, would create the best pro- 
gramming  environment. Of course, there are  no 
perfect solutions. Today some are suggesting that 
expert systems will help. The best solution will be 
the expert software engineer, assisted by a large  va- 
riety  of tools, using experience, judgment, and crea- 
tivity to advance the state of the  art. This is just as 
it  is in all other engineering disciplines. 

The first era. The development of software  engi- 
neering can be said to have begun in the late 1960s 
with the observation by Dijkstra16 that “Goto’s are 
considered harmful.” This observation began the first 
really systematic investigation of  how the structure 
and language  of a program affected the way it was 
produced and  the way it behaved. The structured 
programming revolution is the first  of the waves  of 
change suggested to  the programming community 
to produce a product that was more reliable, was 
produced more productively, and was more manage- 
able. 

If you  belonged to  the school  of thought that stressed 
the reliability of  software products, you viewed the 
direction as consisting of the following theoretical 
argument. Any  logical construct could be built out 
of no more than two or three program structures, 
sequence, iteration,  and choice. These items were 
equivalent to the programming constructs of  next 
statement, DO-WHILE or DO-UNTIL, and IF-THEN-ELSE. 
The unrestricted branch statements were excluded 
(either totally if  you  were a purist or until absolutely 
required if  you considered yourself to be more prag- 
matic) as causing problems. Procedures were to be 
turned  into  proper programs with a single entry and 
a single exit point so that a minimally constructed 
algorithm, small and  compact, easily  verified  algo- 
rithmically as being correct by a manual  or  auto- 
matic proof technique, could be produced. It was 
only a matter of time, you  believed, until efficient 
theorem-proving algorithms would be made avail- 
able to  the development community. At that time 
all errors would be gone. 

If you  were a pragmatist, you  stressed the  human 
factors of eliminating goto statements  and keeping 
the program constructed from a minimal number of 
constructs. This group added the idea of variable 
names which  were  easily understood as being a way 
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of  decreasing the error-proneness of the software. 
The Psychology of Computer Programming by 
Weinberg’’  was a hallmark publication in this era. 

In this work, Weinberg put forth the idea of  egoless 
programming as a way of increasing the reliability 
of software. The  notion was that many of the prob- 
lems introduced into software  arise  because  of the 
defensiveness that  the programmer feels about  the 
program just written. Programmers see  what  they 
expect to see, and  do not see those “errors” that will 
make them appear  to be  less than perfect. The solu- 
tion suggested in the book is code reading. Each 
programmer should be self-motivated to share source 

Technology  transfer is a slow 
process. 

code and accept criticism. In this manner  many 
perspectives are used to create an error-free system. 

Code reading inevitably led to walkthroughs, design 
reviews, and inspections as being  ways to detect 
errors earlier because  it  was  less  expensive to produce 
systems this way. 

The idea of a development life  cycle had already 
taken hold, although the  important part of the life 
cycle  was considered to be coding. The early  stages 
of requirements were important  but  not crucial; the 
late stages of maintenance were only an unavoidable 
cost of using  software. When the process  of produc- 
ing correct programs had finally been accomplished, 
maintenance would simply fade  away. 

This era, like the ones that followed, never formally 
ended. There  are still individuals who  believe that 
the  introduction of a few simple ideas will solve  all 
of the problems. Technology transfer is a slow proc- 
ess, even in a field as fast-moving as information 
technology. A recent study18  suggested that  the length 
of time required to transfer an idea into  the culture 
of the recipients is 15 to 20 years.  At that rate, if 
structured programming had been introduced in 
1968, it would have been widely accepted by 1985. 



This acceptance rate does not mean that everyone 
will use structured programming (this is just  an 
example), only that  no  one will disagree that it 
should be used. 

In those locations where structured programming 
and inspections were instituted, management did see 
an improvement. The general rate was three to seven 

better than before these techniques had 
been introduced. The feeling was expressed that  the 
development cycle  needed to be expanded; the ap- 
proaches should be applied not only to coding but 
to design. The  portion of the development cycle that 
needed to be managed was extended to include de- 
sign on one side and testing on the other. Structured 
programming was supplanted by stepwise refinement 
and  structured analysis, to  name just two ap- 
proaches. 

The dual principle was expressed in the relationship 
between strength and coupling in the works  of Your- 
don  and  Constantine”  and Myers.22 Strength was 
related to  the purpose of the piece  of a program being 
worked on.  The more cleanly the purpose could be 
defined, the greater was the strength of the compo- 
nent.  The ideal was to be able to describe the purpose 
in a simple sentence which contained no connec- 
tives-no ands, buts, thens, or whiles. 

The  notion of coupling extended these ideas to  the 
realm of data,  data sharing in particular. It was held 
that  any pieces  of data  or code generally available to 
many programmers were error-prone and should be 
eliminated. The revered FORTRAN common state- 
ment was now on the list  of ten worst enemies of 
program reliability. 

The two ideas of strength and coupling, together 
with the previously cited work  of  Pamas13 describing 
what criteria should be  used to break systems into 
smaller pieces,  firmly established what a module 
should be. The clarification obtained by separating 
strength and coupling began the inevitable path to- 
ward acceptance of data abstraction as a concept 
equal to Dijkstra’s levels  of abstraction on the pro- 
cedural or functional side. 

The  second era. The era of methodologies was driven 
by the idea that  the developer needed to have a 
general meta-approach to specify what should be 
done next. This idea would make certain that no 
matter what the level  of understanding, the next 
thing to  do would be known. The concept was  ex- 
emplified by general rules that were laid down, each 
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tending to consist of multistep processes.  An exam- 
ple  of the kind of instructions written down as meth- 
odologies  would  be this excerpt from the Jackson 
Design Technique:23 

1. Consider the problem environment  and record 
our understanding of it by defining structures for 
the  data to be  processed. 

2. Form a program structure based on  the  data 
structures. 

3. Define the task to be performed in  terms of the 
elementary operations available, and allocate 
each of those operations to suitable components 
of the program structure. 

The methodology expressed by Jackson is  very  dif- 
ferent from that expressed in Linger,  Mills, and Witt’ 
and  in  the works  of Yourdon and Constantine2’ and 
Myersz2  The breadth of approaches made popular 
in  the  era of methodologies extended across the 
dualism of data  and process,  with the stepwise  re- 
finement of Wirth24 and Linger,  Mills, and Witt2 on 
one end.  The middle ground was held by structured 
analysis, as defined by Constantine  and his  followers. 
The data side of the spectrum was espoused by both 

and Warnier.25 

The user  was at a loss to decide which  of these 
approaches made the most sense.  Which one was 
right? If there was not  one  that was more correct 
than  the others, the question was changed: Which 
one is  right for me at my location? There were no 
definitive answers to these questions. In his  review 
article, Bergland26  placed these approaches in per- 
spective and highlighted reasons why none were 
perfect. A recent review article by Yau and Tsai2’ 
gives a 1986 perspective on comparisons. 

Software engineering has not yet measured the dif- 
ferences  between approaches, and very little seems 
to have  been done  to establish an experimental dif- 
ference  between various methodologies. The closest 
to  an early definitive measurement was provided by 
Basili and Reiter,28 who showed that any disciplined 
approach, consistently applied, is better than lack of 
discipline. 

A second dimension was added to  the discussion  of 
methodologies as those people who were mathemat- 
ically oriented used formal language structures to 
express their ideas. The  contention was that  the 
ambiguity of natural language caused confusion in 
system requirements and specification. This ambi- 
guity  was interpreted differently by members of a 
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development team  and inevitably led to confusion, 
inconsistency, and contradiction. The problem 
would  be  solved  when the language  of expression 
was exact. The formal structures introduced seemed 
directed at  the theoreticians to  the exclusion of the 
practitioners. 

In their examination of the application development 
environment, Gillenson and Goldberg” laid out the 
combinations of approaches together with the for- 
mality of the language on a two-dimensional plot to 
show the diversity of methodologies and compare 
them with one  another.  This  chart is reproduced in 
Figure 1. 

For these structures to become widespread, there 
would  have to be a broad educational effort  designed 
to change the way  of thinking of a large group of 
people. If the period of time for technology transfer 
suggested  previously in the discussion on structured 
programming is valid, any such education program 
would require something like 15 to 20 years to be 
effective,  which in this context would mean “ac- 
cepted as the right way to  do things by a majority of 
the affected community.” A good starting date for 
an education process  might be October 1977,29 when 
the IBM Federal Systems Division began its celebrated 
education program, later transferred to  the rest of 
the IBM commercial programming p o p ~ l a t i o n . ~ ~ , ~ ’  
General acceptance would then exist in 1994 (again, 
not when everyone would  use a formal language, but 
when  all would agree that  one should be used). This 
effort provides an example of why progress appears 
slow  even in  an accelerated environment. 

As with the first era of change, software management 
ideas were introduced on an entirely new  level.  If 
during the first era most thought of the life  cycle in 
a constrained fashion of  design, code, and unit test, 
those in  the latter era looked at system analysis and 
design and system testing as crucial elements of the 
development process. Compare Aron’s approach in 
the two parts of The Program Development Process, 
Part 132 having a 1974 date  and Part 1133 a 1983 date. 

The life-cycle concept also began to assume some of 
the  attributes of a set of discrete steps. The attempt 
by Fagan34 to  introduce  the ideas of quality control 
via the inspection process  used the notion of discrete 
tasks having entry and exit criteria to delimit them. 
By implication, this method provided a series  of 
stages that could be independently verified  before 
proceeding with the next stage. The method also 
provided identifiable tasks during which  pieces  of 
work having a tangible end product were produced. 
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The product could be estimated before  work  began 
and measured after it had been completed. Although 
all  of this was not seen at the  introduction of  inspec- 
tions, the success of the technique in improving 
defect detection led to widespread acceptance and 
would  allow the  introduction of more advanced 
management concepts in the next era. 

The extension of  life-cycle management and concern 
into  the testing domain began to focus attention on 
software maintenance. It no longer appeared to be 
inevitable that maintenance as an activity would 
cease to exist. The began to suggest that 
there were three separate related activities being 
charted. The first, of course, dealt with correction 
caused by human oversight or error. This activity 
could be reduced with better attention paid to error- 
detection mechanisms. 

The second cause of maintenance was due  to  the 
natural evolution of the  environment in which the 
program resided. This evolution was interpreted as 
meaning natural growth in business volumes, new 
classes  of function wanted by users  of  systems, new 
devices that needed to be supported, and many other 
changes that were made by choice because ofjustified 
business decisions. 
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The third class  of maintenance occurred because of 
mandated change.  When the United States govern- 
ment changes the Social  Security laws, each  payroll 
program must be  changed.  When a company decides 
that all application programs will  use the same data 
base  system,  each application program must be mod- 
ified. Not all  owners of these programs would  have 
voluntarily  chosen to make the change,  even though 
good  global  business reasons exist  for attempting 
such changes. 

The role  of maintenance was  given  some  philosoph- 
ical support in the work  of P ~ t n a m . ~ ~ . ~ '  He studied 
the data file at the Rome Air  Force  Development 
Center and came to some conclusions based on the 
application of Norden's work3' on Rayleigh  models 
for development processes. The originally astonish- 
ing conclusion he drew was that if (1) a Rayleigh 
curve describes  software development, and (2) the 
time during which the largest number of people are 
employed  developing the system to be  delivered is 
just  at  or around customer delivery, this inevitable 
conclusion follows: 39 percent of the cost  is in de- 
velopment, 6 l percent in maintenance. 

Although there is no universal  agreement that an 
ideal development cycle  will  follow the Putnam- 
Norden model, there is agreement that some  split in 
development-maintenance costs such as 50-50 or 
40-60 is to be expected. As a result of this more 
mature view of maintenance, continuous modifica- 
tion was understood to be inevitable, and software 
engineering  needed to address the designing  of  gen- 
erations of programs rather than a single  version at 
a time. This view  would  cause a further strengthening 
of the need to make  program  design and coding 
simpler. It was not enough to make it work; it also 
had to be made easier to modify.  Because of such 
issues, the concept of configuration management and 
control began to be looked at as  having potential 
utility in the production of  larger  pieces  of  software. 
The successes  of the early  space  program  served as a 
model of project management for  software  develop- 
ment, and these concepts are an example of the ideas 
gleaned from the program. 

There had  been many earlier attempts to transfer the 
project management concepts used in the space pro- 
gram into software development. The network 
scheduling techniques PERT (Project Evaluation and 
Review Technique) and CPM (Critical Path Meth- 
o d ~ ) ~  use directed graphs to connect the identified 
tasks of a project and place them  in relationship to 
one another. The combination of predecessor, SUC- 
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cessor, and duration, identified  for the piece  of  work 
to be done, creates a visible  model of the flow  of the 
project and identifies the critical path of subtasks 
that determines the rate of completion. 

Configuration management and control is the disci- 
pline that organizes, documents, and tracks any sys- 
tem  consisting of multiple parts.  It is  charged  with 

A new  addition  to  software 
management  and  control  began  with 

the  introduction of programming 
dynamics. 

identifying the components and their relationship to 
one another, controlling the changes made to a con- 
figuration,  keeping track of the status of each element 
of a configuration, and providing the mechanism  for 
satisfying an audit of the compliance of a system to 
its  required c~nfiguration.~' The application of this 
discipline to software development has  been driven 
by the US.  Department of Defense,  as  evidenced  by 
the  1968  Military Standard.39 There also  exists a 
more recent IEEE standard for  Software  Configura- 
tion Management  Plans.40 

The history of the evolution of Software  Configura- 
tion Management is  given  in Ba~elmans ,~~ and ad- 
ditional information is contained in the IEEE tutorial 
on the ~ubject.~' There were isolated  pockets  where 
each was found useful;  however, there was not 
enough commonality and discipline  in the develop- 
ment process to allow  for  sharing  of  work.  Each 
installation had to begin  anew and rediscover areas 
of applicability. This lack of sharing,  together  with a 
programming tradition of free-form  work  styles, 
made the use  of these  project management tech- 
niques less  efficient than their designers  had hoped. 
But the seed  was planted. 

A new addition to the repertoire of  software man- 
agement and control began  with the introduction of 
programming dynamics by  Belady and Lehman.42,43 
From 1969 through 1980, they  published  papers 
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indicating that large systems seemed to obey the laws 
of  software evolution. The analogy was drawn from 
statistical mechanics and thermodynamics. Systems 
were not able to grow indiscriminately in size  with- 
out suffering a form of arthritis. Constant additions 
to already existing pieces  of code scrambled the 
original design integrity, causing less  efficient, more 
error-prone code. This phenomenological approach 
to measurement has worked well in other areas of 
science as a precursor to  a more axiomatic under- 
standing of the underlying science. Here, too, we 
have the beginnings of a more exact  science. 

The toolht that  the software professional  used at 
work was still  very personal. Each tool was chosen 
to satisfy a particular need, not to provide a way to 
move the work from life-cycle  stage to life-cycle 
stage.  Even among one development team, profes- 
sionals chose to use or not to use particular tools.  Of 
course, as development became more complex, the 
magnitude of the task grew, and more tools filled the 
toolbox, covering ever more of the development 
process. 

Some particularly successful examples began to be 
widely  used, and families of tools became common- 
place.  Almost none of the tools were  designed to 
support  a particular development methodology. 
Each of the  popular methodologies remained a men- 
tal discipline that answered the question: What shall 
I do next? None of the methodologies were em- 
bedded in an automated factory for the development 
of software, even though it was  now understood that 
this had to be the next step. The use of a particular 
methodology did not bring the  quantum increase in 
capability that some expected; productivity increased 
just seven percent per  year. 

No discussion of this period would  be complete 
without describing the introduction of Ada,@ the 
programming language  which was to be the embod- 
iment of all that software engineering had learned 
up until that point in time.  One of the largest  users 
of software is the U.S. Department of Defense 
(DoD). It  was  using virtually every  language and 
machine architecture that had been created. The 
software  ranged in complexity from simple programs 
to complex communication,  command,  and control 
programs to be embedded in hardware components. 

In 1975 a search began for a better language that 
could be  used in all DoD applications. This search 
culminated in a language competition in which a 
language  design that was to become Ada was chosen. 
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Toward the  end of the competition a similar attempt 
was begun to define the Ada Programming Support 
Environment which identified the tools support to 
go along with Ada.44 Booch4’ contains a historical 
overview  of the timetable and events that led to  the 
current description of Ada. As  of today, the language 
has  been defined, it has  been  described in both 
technical material and popular texts, and  the initial 
compilers have  been written. Full production com- 
pilers and large  systems will  follow soon. 

The Department of Defense instituted several initi- 
atives in information processing. The two already 
referenced are  the definition of Ada and  the crea- 
tion of the Software Engineering Institute at Car- 
negie-Mellon University. A  third initiative is the Soft- 
ware Technology for Adaptable, Reliable Systems 
( S T A R S ) ~ ~  program. STARS led to the charter of the 
Software Engineering Institute. STARS is seeking to 
create an integrated, automated  environment  to 
cover  all of the development life  cycle  with a  man- 
agement and measurement system that brings the 
newest  technology to bear as quickly as possible. 
This environment involves measurement, experi- 
mentation, tools, and education. 

The third era. What then should be done  to increase 
our ability to produce correct software? All estimates 
of the pent-up  demand pointed to  an environment 
in  which the major limitation on new software ap- 
plications was the insufficient  supply  of program- 
mers. The limitation stemmed from the inability of 
the software community  to produce the  quantity of 
software at a level  of complexity specified by the 
requirements. The solution appeared to be automa- 
tion.  Rather  than have manual methodologies sup- 
ported by a set of unrelated tools, developers began 
to talk about software environments containing in- 
tegrated tool sets to take development from require- 
ments into design,  code, and test. The tools would 
accumulate the management statistics required and 
would become the catalog of component parts. The 
catalog of component parts represents the bill  of 
materials for a software product of manufacturing. 
For the first time software development would con- 
sist  of a traceable product. Each requirement could 
be connected to all realizations of it in code, and 
because of this string connecting dependent pieces, 
we would  be able to make certain that  the inevitable 
changes did not cause  unforeseen side effects in other 
pieces  of a system. 

Software configuration control and management 
have  been achieving a wider  range of acceptance and 



have begun to  enter  the world  of the programmer. 
In this third era, software as a potentially profitable 
product has excited the imagination of managers 
and  entrepreneurs alike. Together with the potential 

The  use of environments forced  the 
move  toward  more  formal 

requirements  and  design  languages. 

profits have come  the product project management 
techniques found necessary in  other manufacturing 
environments.  The discipline of  using a development 
methodology has led to  the discipline of project 
control. 

The technology of development had accepted the 
ideas of data  and procedure abstraction. The use  of 
environments forced the move toward more formal 
requirements and design  languages  because they 
needed to be machinable. It is but a small intellectual 
step from insisting that all aspects of a design  be 
captured to insisting that it also must become exe- 
cutable. This requirement had strong appeal because 
in the process the machine-programmer interface 
would be pulled higher, and part of the productivity 
and reliability improvement would come  about from 
eliminating much of the coding. Coding had already 
been limited to 10 to 20  percent4’ of the invested 
effort in software development. 

The Ada-based  languages  now  evolving  allow for 
better verification  of the design and  the code that 
flows from it. They are more formal, and hence have 
fewer (if any) unresolved ambiguities that lead to 
design errors in a completed product. Ada introduces 
the concept of a Package45 as a set  of computational 
resources pulled under a single boundary. Previ- 
ously, abstractions of data  and procedure were  used 
as entities whose purpose was to isolate the developer 
from the machine, thereby diminishing the potential 
for error.  The package concept takes this idea one 
step further by allowing the designer to choose the 
inherent elementary ideas in the physical aspects of 
the real problems to be solved. Thus, problems in- 
volved in designing a system to  implement on-line 
circulation control in a library would be able to 
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identify  packages representing nouns such as collec- 
tion and verbs such as borrow, reserve, and  return. 
The librarian would then be able to assume a more 
productive role in creating and validating the soft- 
ware application. 

The resulting design should read  like the subject 
specialist’s description of the scope of  work. The 
implementation specialist  designs the packages and 
produces the connecting logic that ties together the 
data flow aspects of the real-world circumstance. It 
is one step closer to capturing design  in executable 
form and  one step closer to solving the problem of 
requirements that change faster than  our ability to 
produce the code to implement them. 

The defect-detection methodologies include a pat- 
terned set of inspections which fit into those cracks 
between distinct stages of a development process. 
We now understand how important these methodol- 
ogies are and expend the effort to detect errors as 
early as possible. In a graph produced by Boehm,’ it 
was shown that  the ratio of the relative  cost to fix a 
problem decreases  when it is found early in the 
development cycle. Testing itself has been subjected 
to theoretical analysis, and more attention is being 
paid to test tools that assist the developer in produc- 
ing an error-free product. Zero defects for all prod- 
ucts is something like absolute zero in thermody- 
namics-you  may  never  reach it, but you can come 
very close in approaching it. 

The strategy  has  moved  away from defect detection 
to defect prevention. Methods of design verification, 
which the individual developer can use, make it 
possible to “guarantee” that  the design and its code 
are exact translations of the specifications defining 
what  is to be done. This verification  is made possible 
by the flow  of ideas in similar if not identical lan- 
guages from specification to executable code. The 
support environment has begun to be defined. 

The next step in the completion of the support 
environment occurs when the tools supporting the 
use  of the design  languages  meld into  the tools 
supporting the remaining portion of the develop- 
ment process. The shift to a defect-prevention strat- 
egy  will eliminate the insertion of errors into a 
product. Testing is required to find them  and take 
them out. However, errors of omission, which occur 
because a software product either is performing an 
inappropriate function or has  neglected to include 
an operation that  the  end user  really wants, have  still 
not been eliminated. 
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Errors of omission are caused by many factors, in- 
cluding inadequate gathering of requirements at  the 
beginning of software development and problems 
with the consistency, completeness, and correctness 
of requirements for  several  of the independent 
pieces. Unfortunately, the length of time needed to 
produce a software product is  long, and many of the 
symptoms of errors of omission do not appear until 
the product is completed. 

Requirement definition is a problem that appears on 
lists of problems to be solved, from the first48 to  the 
most currently49 compiled. The early software engi- 
neering focus viewed the problem as requiring a 
more formal language of expression. The use  of a 
natural language  led to ambiguity, incompleteness, 
inconsistency, and contradiction. The grudging  use 
of approaches such as the Problem Statement Lan- 
guage/Problem Statement Analyzer (PSL/PSA)~’ im- 
proved the situation somewhat but  not for everyone 
nor for every instance of its use. 

Similar approaches derived from PSL/PSA use Entity- 
Attribute-Relationship models to  name  the objects 
whose properties are being modeled in a software 
product and  to show  how these objects relate to  one 
another. These objects are described in terms of their 
attributes  and how  they relate to  other objects simi- 
larly described. Once the tables of information have 
been entered in machine-readable form, a network 
of relationships can be constructed and used to de- 
termine definitions in  which descriptions do not 
match. This network becomes an early tool for pick- 
ing out ambiguities and inconsistencies. 

Another approach that becomes appropriate after 
the initial set of requirements has been analyzed and 
the “fuzzy cloud” of  raw  user requirements cleared 
up is the finite-state ma~hine .~’  The model used to 
describe a system  whose implementation is proposed 
is structured as a series of states and events.  An 
event, for example, the occurrence of a particular 
piece of data, causes a transition from the  current 
state to  some  other state. If the high-level  designer 
can assign identified functional requirements to a 
state with defined transition rules,  it should be pos- 
sible to model the logical completeness of the set  of 
requirements for which the proposed system  design 
has been  suggested. 

Each technique is capable of providing some auto- 
matic assistance in improving requirements but is 
still unable to solve the complete problem of provid- 
ing customers with a product to satisfy their needs 
at ,the time  they receive the software product. Their 
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requirements depend on  an understanding of what 
they are  to accomplish. This last item changes the 
first time  the enhanced environment (hopefully) be- 
came available for use; i.e., it is impossible to hit a 
moving target. 

One view  of a software development process is as a 
large “V,” shown in Figure 2. In this view, the  top 
left  leg  of the “V” represents the earliest stages  of 
requirements, and  the  top right point of the “V” 
represents customer acceptance. As you draw hori- 
zontal lines across the “V,” the right leg validates the 
work done  on  the left  leg. Therefore, the earliest 
validation of requirements occurs at  the time the 
customer accepts the package. For large systems this 
time is many years after the statement of needs was 
compiled. The solution to this impossible dilemma, 
suggested initially by and becoming gener- 
ally accepted in the  third era, is rapid prototyping. 

The idea is to build a working model, simulation, 
interpretation, breadboard, etc., of the final product 
and  to allow the user to “play” with the prototype 
and suggest improvements to  the concept. The final 
prototype becomes the specification that enters the 
design methodology, to be implemented in an effi- 
cient and cost-effective manner. 

There were  early  difficulties  with accepting prototyp- 
ing  as a step in software development because pro- 
totyping foundered on  the  attitude  that  a throw- 
away failure was being produced. The developers 
could almost be  seen thinking, “If it is  really bad, 
the work  is not worth anything; if it is any good, 
make it better and ship it.” 

A more appropriate view  is to  treat prototyping as 
the implementation portion of an independent de- 
velopment cycle, the final output being a specifica- 
tion from which the operational system will  be built. 
The “V” described above is  replaced by a lopsided 
“W” in which three distinct operations might occur: 
First, analysis of  raw requirements leading to  a state- 
ment of the contents of the system; second, a finite- 
state description, which may even  be executable, to 
test the logical completeness of the proposed ele- 
ments; and finally a set of connected screen  designs 
which can be tried out  and, with a user’s assistance, 
can lead to a very early evaluation of the system. 
The result is an interface specification to build the 
working product. This view  is shown in Figure 3. 

A management advantage gained by following a 
scenario of this type is to define and be able to track 
each of the requirements that  must be satisfied in 



Figure 2 The “V”of software  development 
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Figure 3 The “W” of software  development 

the final product. The use  of machinable descriptions against  which  all changes can be measured and 
to enforce consistency, completeness, and correct- logged. The  combination should provide a mecha- 
ness produces a version of the requirements that  can nism for tracking each function through a product, 
be entered into  a configuration management data such as in  the bill  of materials processor and  the 
base. The accepted prototype, intended to become diagrams of parts explosions of manufacturing sys- 
the specification, defines a baseline as a marker tems. 
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What evolves in this era of development environ- 
ments is a set of integrated tools allowing the designer 
to be free for the creative efforts  of design. The 
bureaucratic paperwork of keeping track of details is 
best  left to  the machine. The time-consuming effort 
of making certain that we have not accidentally 
changed a name or an  attribute is done  automati- 
cally. The questions that  the bill  of materials was 
invented to answer (i.e.,  Where  is each named part 
used? What are  the  components of each subassem- 
bly?) can now be extended into  the  domain of soft- 
ware construction. This scheme begins to provide a 
consistent, integrated library package for parts inven- 
tory and version control. 

To complete this  dream will require an incredible 
amount of machine power and machine availability. 
The solution appears to be to provide each developer 
with a personal computer workbench acting alone 
or in concert with a host or a network of peers 
throughout  the world. This solution creates its own 
complex software design requirement, in which rules 
of distributed processing and software architecture 
are tied to management control issues. 

We  now come to the change in management style 
toward which the third era is headed. One name for 
this approach is software process control manage- 
ment.53  It borrows its ideas from other process con- 
trol  environments  and applies a quantitative  man- 
agement technique to the software development 
process. It attempts to change the thinking patterns 
of the software development manager by creating an 
atmosphere in which each step, large or small, is 
preceded by a numerical estimate of what is to be 
produced with  respect to size, cost, quality level, 
time, etc. The manager is directed to  end each step 
with a measurement of what was achieved and a 
pattern of thought  that asks the questions: Am I on 
target? Why?  What’s  wrong? What does this mean 
about  other estimates I have made? Will I make my 
goals? The result  is better control and incremental 
improvement activities. This approach is an example 
of measurement-directed software management.54,55 

The  approach outlined above is a natural outgrowth 
of the inspection strategy introduced by  Fagan3‘ 
many (in software engineering chronology) years 
ago. It depends on the “crisp entry and exit criteria” 
that delineate stages and tangible pieces  of  develop- 
ment. In the “process control management” termi- 
nology, the  entry  and exit criteria referred to above 
have been translated into  the “ETVX” (Entry-Task- 
Validation-Exit) paradigm of the IBM programming 
process a r~hi tec ture .~~ 
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Figure 4 The  first  three  ages of software  engineering 
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As a further consequence of the increased use  of 
metrics to control a development process, a way to 
have a true software engineering laboratory is  finally 
provided. For  the first time, the manager of software 
development is given the incentive to participate 
in the  data collection activity and become an ac- 
tive participant in advancing software engineering 
knowledge. 

Figure 4 summarizes the three eras through which 
software engineering has progressed. 

The future 

We are still investigating the advantages to be gained 
by creating workbenches and development environ- 
ments. Much of the information to be gained about 
the advantages of an integrated tool structure will 
come from Ada environments. Certainly we  will 
have to  continue  the steady  pace of development if 
we are to improve our engineering discipline. The 
technology that is being developed will draw out  the 
utmost from the development processes  now in 
place. To the extent that we can stabilize these 
processes for some length of time, we  will  be able to 
learn much more about  the way development occurs. 
Consistent improvements come about only through 
the steady accumulation of data.  Our experience 
with the industrial development of software provides 
no examples of spectacular improvements across the 
board. No single idea has burst forth to change the 
nature of development. It has been a steady improve- 



ment year after year. This pace can only continue 
with a disciplined approach and a steady accumula- 
tion of knowledge. 

The reason for the lack  of sudden improvements is 
not known. It may be as simple as having to wait 
the  time needed to transfer the technology we have 
developed to a large enough segment of  the popula- 
tion so that a large impact can be noticed. Another 
possibility  is that we may have simply missed the 
key ideas leading to  the breakthroughs for spectacu- 
lar improvements. The  third possibility  is that there 
is no hidden approach, and we  will continue  to make 
progress at a slow but steady pace. 

Regardless  of whatever combination is  closest to 
reality, we must assume that hard, steady work  is the 
only sure technique for improving productivity and 
reliability, and we must begin  with our accumulated 
base of knowledge. If this is true,  the future direction 
must fall within these broad categories. We can 
improve the way our mechanisms operate, deriving 
in this way the final measure of improvement pos- 
sible. We can change the way our mechanisms op- 
erate by eliminating steps or drastically redesigning 
the sequence of steps to accomplish the same work 
with many fewer  resources. This change would mean 
a reformulation of the life  cycles as we know them 
today. Finally, we can eliminate the steps associated 
with producing software entirely by having the  end 
users describe their problems and using those de- 
scriptions to produce the  information and systems 
required. 

The first of these three approaches is the  domain of 
the engineer. Experience teaches us where the gears 
need oiling and where the belts need tightening. The 
software engineer examines the development process 
and determines where the critical bottlenecks reside. 
These bottlenecks are eliminated one  at a time. As 
each layer  is  peeled back, the process becomes more 
efficient, and  the next bottleneck is  revealed. Such 
slow and steady progress causes productivity im- 
provements on  the order of three to five percent per 
year. 

The  thrust today to study, gather data, analyze, and 
streamline development processes  is an example of 
the  approach of applied software engineering. It is a 
necessary task for all programming organizations 
and is a prerequisite for real  progress. However, it 
only sets the stage for the work  necessary to get the 
next level  of improvement after the diminishing 
returns of the  tuning process. There  are limits to  the 
total productivity to be gained in this way.  Radice4’ 

estimates that  the  maximum improvement possible 
with  today’s development process  is four to one, 
because  software  is a labor-intensive occupation. The 
approach then must be to redesign our basic way of 
thinking about  the way software  is developed. 

If other engineering disciplines are assumed as 
models, a sensible approach is to identify or develop 
software building blocks that  can be reused in mul- 
tiple applications. Just  as interchangeable parts al- 
lowed the industrial revolution to reach the average 
consumer with  affordable products, so too  the use  of 
interchangeable software parts may make it possible 
to decrease the labor-intensive component of  soft- 
ware development. 

This approach is being examined seriously. A recent 
issue  of the IEEE Transactions  on  Software Engineer- 
ing was devoted to  this  topi^.^' One report from 
Toshiba” described a real-time process control “soft- 
ware factory” in which customers accepted the equiv- 
alent of four million lines of assembler code, of which 
50 percent was reused code. Other reports circulating 
through the software community promise or hint at 
reuse rates of 85 percent. 

If there is such great potential for increasing produc- 
tivity in the consistent reuse  of code, why  have we 
not used the already completed billions of lines to 
ease our workloads? There have been at least three 
inhibitors to  the widespread  reuse of existing code. 
The first results from the multiple languages that 
have  been popular. Each is unique in some way and 
cannot coexist  with programs written in some other 
language without a level  of  effort equivalent to writ- 
ing the piece over again. 

A second inhibitor stems from the dependence of a 
piece  of  software on  the  environment in which it is 
embedded. A design philosophy formerly used, to 
what appeared to be great advantage, was to share 
data  among  the modules and subroutines of an 
application. It was felt that  the programming would 
be  easier and  the performance would be better be- 
cause it would not be  necessary to name every data 
item. A consequence of this technique was to require 
the description of the  data  environment in which the 
software fragment would be found, in order for it to 
be recreated for reuse. This description was possible 
only in a few instances, and consequently the work 
produced could not be shared. The  introduction of 
abstraction as a key element of  software  design 
changes the language and  environment restrictions 
that  made reuse so difficult, and specific  pieces can 
be commissioned to act as building blocks in spe- 
cialized environments. 
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The next problem is  how to  determine when a 
component has already been written. The  term  “in- 
formation explosion” referred to the  quantity of 
printed material produced and available in  our  in- 
formation-rich culture. Information retrieval experts 
began to design and create software products capable 
of  assisting the browser in locating and retrieving 
potentially relevant material. 

Similarly, the  number of modules being written and 
stored in a haphazard fashion is also exploding. For 
the written word, a centuries-old cataloging tradition 
exists.  Useful schemes and descriptors have  been 

Code  is  less  portable  than  design. 

written, and we are trained in their use in elementary 
school. However, the module description language 
and its associated descriptors are  not commonly 
available, and  an implementer must serendipitously 
come across a used module that can be inserted into 
a current project. The Ada construct of  packaging 
should increase the potential for reuse and lead to 
an  improvement in software development methods. 

A further application of this approach is to consider 
the reuse  of  design  fragment^.^' Code is  less portable 
than design and has by now become the least expen- 
sive segment of the development process. The basic 
design of an algorithm or procedure can be trans- 
ported across architecture boundaries. For example, 
sorting algorithms are rarely topics of crucial impor- 
tance. We have understood the relative merits of 
each of the algorithms for some time and know how 
to choose which will work  best for a current need. 
Many more examples of this class exist, and as 
specification  languages become formal and machin- 
able, we  will begin to accumulate libraries of  design 
fragments that  can be retrieved and translated into 
the architecture of the machine we are working on. 

An additional benefit  of reusable software will  be the 
increased reliability of the systems produced. It will 
be  possible to choose components whose  defect  his- 
tories are well known and which  have  been shown 
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to behave in a reliable manner. Ringland6’ reported 
that  the reliability  of a software product was im- 
proved as a consequence of software  reuse. 

The second alternative of modifying the process and 
thus eliminating steps is also being pursued with 
vigor. The ideas behind this approach include most 
of the fourth-generation language techniques6’ that 
have been fruitful in the recent past. The approach 
is that of the “almost complete program.” The de- 
signers of systems produce general-purpose applica- 
tion generators which are completed by the individ- 
ual  who has a data processing program to produce. 
The  standard pieces  of code required to access the 
data base or  the  input/output devices are already 
written. The effect  of this combination is to produce 
an  environment in which only the details of the 
problem at  hand need to be entered into  the appli- 
cation generator. Most of the extraneous design is- 
sues, those related to  the details of the hardware and 
systems in which the problem is embedded, are 
resolved for the designer, thus improving the 
achieved productivity by a considerable amount. 
Included in this broad classification are report gen- 
erators, query processors, and screen  design aids. 

This approach has been most successful in applica- 
tions programming, especially  for those applications 
in which the efficiency  of execution is  least crucial. 
In  system production, however, there have yet to be 
sufficient inroads to make this approach useful. It 
does point to a direction in which an application 
support environment may  be able to provide some 
more of the  common functions and free the software 
engineer from the need to invent similar repeated 
components over again. Notice that  this is a special 
instance of the principle of reuse  being applied. 

Another example of modifying the development 
process  is the use  of software prototyping. As de- 
scribed above, prototyping would  allow the devel- 
opers to get an earlier warning as to  the areas of 
concern in the programming system as they see  it. 
Additionally, prototyping could be used as a partici- 
pative design aid. The developers would  work  with 
the ultimate users,  who  would  suggest changes to  the 
initial version.  Each change would bring the final 
form closer to  the needs of the ones for whom the 
system was created.62 This approach includes systems 
testing as a part of the requirements process, thus 
tying  what was the first step to what  was the last  step. 
In those cases  where  it is applicable, this approach 
has the potential for improving the speed  with  which 
programs are  turned  around. 



The third alternative, doing away  with the process, 
must also be explored. The fourth-generation lan- 
guages move in this direction. The use  of expert 
systems to diagnose what a user requires is an addi- 

Our understanding of what is to be 
measured  has  matured. 

tional step in this direction. Application knowledge 
in the form of standards, the layout of forms, flows 
of information, job descriptions, and organization 
structure could be matched to catalogs of potentially 
reusable design fragments, dictionaries of data defi- 
nitions already captured,  and modules and programs 
already written. The software engineer would direct 
a process in which pattern matching would occur 
under a set  of rules or axioms that describe what  is 
wanted, thus slowly approaching a system  design. 
This method is a guided process,  with intuition  and 
experience supplied by the software engineer and 
high-speed pattern matching supplied by the com- 
puter. 

Although this method cannot be carried out today, 
some applications of  knowledge engineering and  ar- 
tificial intelligence have b e g ~ n . ~ ~ . ~ ~  

The alternative approaches to improvement assume 
that we can make intelligent choices about future 
directions. The major themes of technology insertion 
and management control assume that we have a 
sufficient amount of information to choose the di- 
rection in which we  wish to head. The transition to 
an engineering discipline begins  when information 
to analyze is available. This transition has finally 
begun to take place.  Software development processes 
are beginning to stabilize, and  the software engineers 
have accepted the concepts of goal-directed manage- 
ment. It is  now  possible to identify stages  of  devel- 
opment  at which  specific  pieces  of  work  will  have 
been completed and  compare  the goal that manage- 
ment set at  the beginning of development with  what 
has actually been achieved. Comparisons with  pre- 
vious instances of using this process help set the 
goals, and stability makes the comparison meaning- 
ful. 

Our understanding of  what  is to be measured has 
matured. It is  possible to differentiate between those 
measures focusing primarily on a software compo- 
nent, those focusing primarily on a producer of 
software, and those which measure a software  proc- 
ess. The measures that concentrate upon the software 
component deal with  issues of how  efficiently it runs, 
how much space it consumes, the  number of errors 
it  still contains  (none after shipment), etc. The meas- 
ures dealing with the role  of the producer are con- 
cerned with the productivity and work quality of 
that individual. For example, programmer variabil- 
ity  is well known to be  of the order of 10: 1. 

Measures of  software  process are concerned with 
how  well a set of steps allows the development team 
(or single individual) to produce a final product. The 
measure is  of the efficiency in converting resources 
into a finished product. Examples of this might be 
the effectiveness  of Inspection Step A in finding 
errors and  the ability of Tool B to analyze require- 
ments assertions for correctness. By separating meas- 
ures into various categories of applicability, the soft- 
ware engineer can distinguish between the ability of 
a development process to assist in producing soft- 
ware and  the effect  of a particular technique. This 
ability is still rudimentary, but conceptually it is 
significant. 

Making comparisons between diverse environments 
is still impossible. However, the comparison can be 
made within local, well-understood environments, 
the same location, application type, or machine ar- 
chitecture. We have not yet defined a set  of universal 
measurements that  can be compared across diverse 
borders.  However, we have begun to e~periment,~’ 
and this will eventually lead to a better understand- 
ing  of measures and their use. 

The power  of the personal computer is leading to  an 
increased  use of tools at  the programmer’s desk. The 
programmer workbenches are providing the raw 
processing  power for each individual to  do editing 
and checking that formerly required large machines. 
When the history  of the development of data proc- 
essing  is written some decades from now, the key 
tool that will  be pointed to as improving the lot of 
the individual developer will be the editor and text 
processor. This tool has opened the way to record 
information about programs quickly and  to manip- 
ulate the programs directly. This, in turn, has led to 
the on-line syntax checkers, debuggers, etc. making 
up the programmers’ workbenches that will support 
future environments. 
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Finally, the  attention being paid to validation and 
verification  of the final product must be  stressed. 
Whether it is the drive begun  with structured pro- 
gramming concepts in the 1960s, or the management 
stress on productivity and  control,  the central point 
is that  the most productive environment exists  when 
no rework  is required and we get it right the first 
time. This concept unites all  of the elements of 
software production in  a single theme  and is the 
prerequisite for any next step. 

A future scenario. If  we were to imagine something 
like an ideal development environment sometime in 
the next decade, we might include the following 
approach. The software engineering team is  assigned 
a task to produce a system. Each has an  independent 
software workbench but  can send, receive, and share 
files  with  all other members of the development 
team. The  statement of  work  lists the objectives and 
goals that this program is to satisfy. The team mem- 
bers reduce the objectives to  a group of work prod- 
ucts and, together with the writer of the objectives, 
describe the  attributes  that this work product will 
have. 

The workbench keeps track of the entries and does 
the “paperwork” of  keeping track of inconsistencies, 
ambiguities, and holes. With the information pro- 
vided, the designers identify a potentially feasible 
core for the product to be designed. The prototype 
of that core is simulated, given to users to  manipu- 
late, and exercised by the developers themselves. 
When a satisfactory prototype is accepted, the con- 
tents become the master library of the project man- 
ager. The developers use the prototype to search for 
completed design fragments and string them to- 
gether. The missing pieces are identified, and  a de- 
cision is made as to what components should be 
rewritten and what ones used from the library. 

During this time, work  effort  is monitored by an 
instrumentation package. It keeps track of the mod- 
ules and  the relationship of those modules to each 
piece. This tracking ties into  the  statement of objec- 
tives and goals with which the project began. At any 
design change it will  be  possible to  determine each 
work product that is attached to that change. Each 
test that verifies a deliverable is invoked automati- 
cally after each change. Each part that has not been 
used  before  is examined very carefully, since  used 
parts  are always better. 

This scenario is not far-fetched. It can  and is  being 
enacted today. The difference  is the percentage of 
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parts being  reused and  the integrated tool strategy 
that ties the  components together. The change in 
approach heralded by the scenario is the rapid de- 
crease in effort  associated  with the use  of  reliable 
pieces. The building-block approach allows the  en- 

Software  engineers  must 
concentrate on trade-offs. 

gineer to concentrate on  the pragmatism of a project, 
not the design  of the algorithms of the project. Each 
newly crafted piece must be  verified to  a level  of 
correctness that is equivalent to  the “used” parts. 

Engineering is a discipline concentrating on practical 
trade-offs.  Software engineers must also concentrate 
on trade-offs-not ones associated  with the cost of 
production versus testing, but those of size  versus 
performance and function versus cost. 

The role of the science of software development is 
to come up with the laws of  software development, 
the algorithms, transformation rules, and techniques 
that make new applications possible. 

The utility of computers lies in their ability to point 
out techniques to improve the way  we do our work. 
For the consumer of computational power, the de- 
tails of programming and software engineering need 
to be made transparent. For this class of users the 
process will  be eliminated. It  will  be  replaced by 
software systems designed and constructed by soft- 
ware scientists and software  engineers. 

To complete the analogy to pyramid building, we 
should consider structures with the grace  of the Eiffel 
Tower, the size  of the World Trade Center, the 
pleasure of the best  of our homes, and  the beauty 
and spontaneity of a sand castle. The principles are 
the same, the purpose is different, and all derive from 
a tradition which stretches the creativity of the en- 
gineer working in partnership with the scientist. 

Software engineering is beginning its rapid trip from 
its own era of pyramids to the Eiffel Tower. There 
will  be many mistakes along the way, but the direc- 



tion is clear. Patience, good will, and  the creativity 
of the software professional will lead to a discipline 
which will be a bonajde member of the engineering 
community. 
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