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in  transition-An  overview 
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Systems architecture refers to the distribution of func- 
tion and control  among  elements of a  system.  It  is 
primarily  a  structural  concept that includes the original 
meaning of the word  architecture  in the form of “proc- 
essor  architecture.”  This  paper  undertakes to describe 
topics of current  interest  in  the  evolution of computing 
structures. It discusses  various  unit  structures that 
may emerge  as the economics  and  capabilities of tech- 
nology  relax  more  and  more  constraints. Of particular 
interest is the internal  structure of a central computing 
complex, the relation of computing  elements  and 110 
elements,  and the maturity  of the 110 elements.  The 
paper  also  suggests that the structures  found  within  a 
single  computing  unit  may  be  realized  across  larger 
elements  more  widely  dispersed, Hardware and soft- 
ware issues are addressed. 

I n the  computer industry, “architecture” was  first 
used to mean the view of a computing system as 

seen by a programmer or  automated code generator. 
Thus, the addressing scheme, register population, 
and instruction set are architectural ideas, whereas 
cache, instruction pipeline, microcode, and circuit 
densities are design or implementation concepts. The 
output of an architectural effort  is a document  that 
imposes requirements on a design. The  output of a 
design  effort  is a mapping of the architecture into a 
technology in order to achieve stated price/perfonn- 
ance goals for a model of the architecture. Thus, a 
program-compatible product line (various models 
each of which respond in  the same way to a list of 
operation codes and addresses) can be defined at 
different price/performance levels. 

Used without any adjective, the word “architecture” 
still has that meaning for many. However, there has 
always been some informality in the use  of the word, 
and informal usage often blurs the distinction be- 
tween  design and architecture. In addition, we have 
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begun to use the word  with various adjectives in 
phrases such as “I/O architecture,” “communications 
architecture,” and “systems architecture.” All of 
these phrases share some intent  to distinguish a set 
of interfaces and constraints from a technology map- 
ping. They shift the meaning of the word “architec- 
ture” away from its initial processor-oriented view 
of a computing system. They suggest a concern with 
some form of  system “structure”: the functional 
relationships between  logical elements of a system 
or of a subsystem. 

Changing uses  of a word suggest changes in focus 
and a reordering of interests and issues. Recently we 
have  been primarily concerned with the structure of 
systems-flows  of data  and control points of storage, 
and intelligence. At the same time we are broadening 
our  notion of what a system  is. We now mean 
something more than a single collection consisting 
of a processor, memory, and 110 devices. The word 
“system” is frequently used to mean collections of 
interconnected computers  at various geographical 
distances cooperating at different  levels of intensity. 
This paper discusses some topics of “systems archi- 
tecture” in its broader meaning, although we  will not 
exclude some concepts of “architecture” in  its origi- 
nal meaning, topics that  one might now  call “proc- 
essor architecture.” The  intent is to bring to  the 
attention of the reader some of the considerations 
and points of interest relative to  the evolution of 
computing systems and  to suggest various views  of 
the  nature of that evolution. 
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Figure 1 System  layers (n, n - k hierarchy) 
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Elements of systems architecture 

The concerns of  systems architecture focus on  the 
definition of major system elements, hardware and 
software, and  on the flow of control and information 
among  them. Considerations include: 

1. The  internal structure of a central electronic com- 
plex (CEC) involving the  number of  processors, 
whether the processors should be homogeneous 
or heterogeneous, whether address spaces should 
be shared among processors, whether there should 
be  single or multiple sites of  system control. 

2. The essential structure of an 110 subsystem and 
its relation to  the CEC. At  issue  is the  nature of 
system changes implied by an increased ability to 
site intelligence and storage in an 110 subsystem, 
combined with considerably faster interconnec- 
tion technology. 

3. The relation among  the “nodes” of a computing 
system connected at various distances. Within the 
limits of local-area networking (and beyond those 
limits) what degrees  of interdependency, load 
sharing, backup, and cooperation are achievable? 
What views  of an “aggregate” computing system 
should be presented to a community of  users? 

Another dimension of systems architecture (unfor- 
tunately blumng  the edges  between architecture and 
design) concerns the way particular functions should 
be delivered. A classical aspect of this dimension is 
the “hardware-software’’ interface. To what extent 
should the processor and systems architecture be 
extended to include basic functions and structures 
inherent in now-mature operating systems? Should 
certain control blocks be architecturally defined as 
basic data types? Should certain basic functions such 
as QUEUE, LIST, and SORT be included in the systems 
architecture? There is also a “hardware-firmware’’ 
interface. Should function taken down from tradi- 
tional software  be developed in various forms of 
microcode or “hardwired” in some way? 

Figure 1 shows the traditional layers of a computing 
system. The hardware-firmware question asks how 
“fat” the underlying digital level should be. The 
hardware-software question asks  how “fat”  the mi- 
crocode level combined with the digital  level should 
be  relative to  the software  levels. There are similar 
issues within the software  levels, related to the distri- 
bution of functions among  them. What are  the func- 
tions of a basic operating system as opposed to a 
communications subsystem or a data base manage- 
ment system?  Figure 1 suggests an important attri- 
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Figure 2 Classical  layer  representation (n, n -1 hierarchy) 
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bute of real systems that is often hidden by represen- 
tations like Figure 2. Figure 2 suggests, for example, 
that Level 5 “sees” only Level 4. That is,  Level 4 is 
the “interpreter” of the functions at Level 5. Such a 
system would be a perfectly encapsulated hierarchy 
in which the  nature of any level beneath Level 4 
would be  of no concern to Level 5. In contemporary 
systems structure, however, multiple lower  levels are 
visible to a higher-level function. Thus, an applica- 
tion program is constructed from calls to  the services 
of a subsystem, but it may also make service  calls to 
the operating system. Of course, each time a function 
is represented as a machine instruction, the applica- 
tion sees the instruction set and addressing schemes 
of the underlying processor architecture. The full 
range of compatibility, portability, and cohabitabil- 
ity  issues of current  computing systems, hardware 
and software, derive from the multilayered views 
that  are available to  end users, application programs, 
subsystems, etc. 

Processor architecture, of course, is directly relevant 
to the hardware-software issues. Currently we express 
preferences  between Reduced Instruction Set Com- 
puters (RISC), Complex Instruction Set Computers 
(CISC), and High-Level  Language Architecture (HLL). 
In this area there is sometimes more passion than 
crisp definition. A full understanding of the various 
trade-offs in  the processor architecture area involves 
an appreciation not only for architecture, but for 
design methodologies, underlying technologies, and 
compiler methodologies as well as for the costs of 
hardware and software production in different tech- 
nology intervals. A “good architecture” (processor 
architecture) should be  easily and efficiently repre- 
sented in  the technology, and should provide for 
simple, efficient compilation. But there may be other 
considerations whose importance becomes greater 
over time. A serious problem is that we lack a 
universally accepted metric either for a “good archi- 
tecture” (although many have  been proposed) or for 
the “complexity” of a compiler, and we seem  cer- 
tainly unready to deal with  issues about  the  quanti- 
tative impact an architecture should have on  the cost 
of producing and maintaining code, etc. 

The remaining sections discuss  issues of the central 
electronic complex structure, I/O structure, and hard- 
ware-software-firmware,  with the  intent of  suggesting 
what the  current trends are, what the limits on 
current trends may  be, and what mature  computer 
systems may look like in  the future. Nowhere is a 
statement of the direction or  intent of a particular 
vendor intended. 

Unit  structure 

I use the word “unit” for lack  of another word to 
suggest what we formerly called a “computer sys- 
tem.” The word “node” is sometimes used for this, 
but Systems Network Architecture (SNA) purists use 
that word with a somewhat different meaning. A 
fundamental problem is that  the characteristics of 
this “unit”  are quite variable. Some try to define it 
as that collection of resources which  falls under  the 
control of a single operating system. But this defini- 
tion runs  into  the  phenomenon of  processors within 
a single frame that have individual operating sys- 
tems. In some years we may think of  all  of the 
computing power at a single establishment (a site of 
business activity for an enterprise) as effectively a 
single computational node, regardless  of its physical 
disbursement around  the establishment and regard- 
less  of the  number of “local operating systems.” 
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Let the word “unit” represent the aggregation of 
processor(s), memory, and 110 devices that we have 
been used to thinking of as a “computer system.” 
The introductory section suggested that we have 
some choices to make about  the  number  and type 
of processors in  this  unit  and  the relationships among 
them. There is a wide  range  of opinion, prototypes, 
experiments, and literature about  the virtues and 
uses of various unit structures. The measurements 
of quality involve issues  of  raw performance, avail- 
ability, configurability, and evolvability. 

Figure 3 shows a few possibilities for the internal 
structure of a computing  unit. Part A shows a sym- 
metrical tightly coupled multiprocessor with the fol- 
lowing essential features: 

1. All processing elements are identical in architec- 
ture  and design. (They are model-identical.) 

2. All processing elements have  full addressability 
over the addressing range of the system. They get 
service from memory at effectively the same rate. 

3. There is a single operating system responsible for 
the resources that  are “global” across the context 
of the system. In a common version of this struc- 
ture, any processor may execute the algorithms 
of the single operating system upon shared system 
status  data and resources. 

Part B shows a system in which the processor  set  is 
not homogeneous. There is a group of “general- 
purpose processors,” but there is also a group of 
functionally specialized  processors that are used for 
such things as 110 operations, communications  man- 
agement, system scheduling, and vector manipula- 
tion. Certain parts of the operating system and sub- 
systems, as well as certain application programs, or 
parts of application programs, may be executed on 
the specialized  processors. 

A system  like the IBM 3090 lies somewhere between 
these models. It is not exactly symmetrical, but its 
asymmetry is limited to I/O and vector  processing. 
And that itself  raises an observation that there is 
another dimension to structure. We may think of 
the general-purpose processors and  the special-pur- 
pose processors as full cooperating peers, or we may 
recognize that  some are more equal than others and 
see the  structure  as hierarchical. The 110 processors 
are in some sense subservient to the general-purpose 
processors or  (and more interestingly) the  other way 
around. Both systems shown in Parts A and B of 
Figure 3 have an important property of memory- 
shared systems. That property is sometimes called 

Figure 3 Computing  unit  structures. (A) symmetrical 
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Figure 4 Pipellne structure 

INSTRUCTION 

“space-time coherence.” In a space-time-coherent 
system, it is  possible to represent the status of a 
complete system at a particular time, and it  is also 
possible to shift resources to processes and processors 
with great efficiency (relative to systems that do not 
have this property). The property comes from the 
shared memory that enables the single operating 
system to manage and inspect all resources within 
the context of a single system. As we  will later see, 
this property of “space-time” coherence is what is 
particularly lacking in “distributed systems.” 

Part C of Figure 3 shows a system without shared 
address space and with consequent multiple copies 
of operating systems with associated subpools of 
resources.  Processes running  on one processor com- 
municate on a message  basis with processes running 
on another. Processors may be homogeneous or 
heterogeneous. This system  is a form of “distributed” 
system (although it may exist within a single  physical 
frame)  that lacks the property of space-time coher- 
ence. This means  that  it is very  difficult to get an 
accurate picture of the status of  all resources at a 

single point in time. From any point of enquiry it 
would  be  necessary to poll other processors to collect 
status information. While that was being done, the 
status of previously  polled processors would be 
changing. Thus it would be difficult to balance loads 
across such a system and difficult to  do global per- 
formance analysis. The property of space-time co- 
herence could be  afforded such a system  if the inter- 
connection bus were  fast relative to  the processors 
themselves and/or if a single point of systems control 
were established. Perhaps one shared control mem- 
ory  with or without an associated control processor, 
for example, could bring a distributed system  closer 
to  the characteristics of a memory-shared single- 
operating-system design. 

These three suggested unit structures represent a 
somewhat compressed view  of the variations possible 
within a single unit. However, the view  gives us 
enough of a sample to focus on  the following three 
major questions: 

1. What should the “granularity” of the processors 

2. What is a proper split of work in certain hetero- 

3. What are the proper relationships between the 

be? 

geneous structures? 

processors and memory (memories)? 

Of course, the measures of goodness are perform- 
ance, price/performance, availability, and configur- 
ability, and there are examples and counterexamples 
of preferability under different workloads and as- 
sumptions of technology, etc. If this were not  true, 
there would by now not be so many contending 
approaches. 

Granularity. Granularity refers to  the speed and ca- 
pacity  of an individual processing element. A small- 
grained system  achieves  speed  with a large popula- 
tion of  slow or simple processors. One  hundred  or 
one thousand or one million processors  might com- 
bine together to deliver aggregate  service to a work- 
load. A large-grained  system has a smaller number 
of processors, each of which  is  relatively  fast. The 
ultimate large-grained  system  is the uniprocessor. 

The question of granularity can be  seen as an issue 
in how to use circuits. Is it “better” to create a large 
population of small processors or  to develop systems 
with a small population of more capable processors? 
“More capable” may mean more powerful instruc- 
tion sets, more elaborate instruction pipelines,  spe- 
cialized execution units (e.g., vector). (Figure 4 shows 
the basic concept of pipelining.) 
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There is a systems trade-off  between the complexity 
and power of a single  processor and  the population 
of processors.  An aspect of this trade-off  is the use of 
technology or  the use of  design to achieve speed in 
a larger processor. For example, the internal struc- 
ture of the IBM 3033 computer system  is quite com- 
plex, involving somewhat sophisticated pipelining 
and tracking of branch histories. The internal struc- 
ture of an IBM 3084 system  is quite simple by com- 
parison, while the IBM 3090 system reintroduces 
some of the more sophisticated design  of the IBM 
3033. One  can view this sequence, in  an abstract 
way, as an issue in granularity. To build a faster 
system, should one stress more processors or speed 
them up? If one speeds up processors, should one 
use circuits for elaborate designs or try to simplify 
designs in a faster technology? 

In a broader context, we are faced  with systems 
structures that may now include 500 or so processors 
and theoretical systems structures having in excess 
of a million computing “elements.” What role will 
such small-grained systems play  in the development 
of computing? Can one expect that  the mainstream 
commercial computing systems of the future will 
consist of  large populations of small-grained ma- 
chines as part of their essential structure? Will  speed 
be achieved by massive parallelism on small units of 
work? The constraints on the efficiency  of  large 
populations of processors are (1 )  memory interfer- 
ence between  processors, resulting in delays at  the 
memory interface for data  and instruction reference, 
(2) the overhead of processor-to-processor commu- 
nications, (3) the overhead of creating processes  rel- 
ative to  the expected duration of a process, and (4) 
the creation or discovery of proper workload struc- 
tures to achieve populations of concurrent tasks or 
subtasks. 

Given these constraints and  the state of the  art in 
overcoming the fourth constraint, one may reason- 
ably project that 

1. Mainstream commercial systems will have small 
populations of  large-grained  processors for the 
foreseeable future. Tightly coupled multiproces- 
sors with populations of 2 or 4 processors will  be 
characteristic, and speed will  be  designed by bal- 
ances of more elaborate processor  design and 
faster technology. 

2. The small-grained systems will develop along two 
lines: as stand-alone specialized processors and as 
functional enhancements  to general-purpose 
large-grained  processors. Tremendous computing 
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power  is  needed for speech recognition and for 
artificial intelligence function to  support natural- 
language interfaces. A large population of small 
processors  is a frequently encountered model of 
computing in such applications. There are ma- 
chines, for example, with up to 65 000 processors 
that seem directed to these areas. Since interface 
functions will likely occur at workstation levels 
in the future, it may be that network-connected 
personal computers will  be the first  of the breed 
of highly parallel machines. 

Small-grained functional components may be added 
to systems in  a more integrated manner  to  support 
vector operations for example, or data base functions 
that might profit from massive parallel search capa- 
bility.  An advantage of the small-grain approach to 
“supercomputers” is the potential configurability 
and flexibility. It may  be that there is no such thing 
as a general-purpose supercomputer. Some scientific 
problems are processor-intensive, some are memory- 
intensive, and still others are I/o-intensive. In addi- 
tion, there is  wide variation in algorithmic structure, 
control flow, and  data flow from one application to 
another. Small-grain approaches may permit super- 
computers specialized according to application to be 
built out of different configurations of processor 
populations with  specialized data  and control flow 
relations among  them. 

The structure of large-population, small-grained 
processor systems has received much attention over 
time. Various models of peer and hierarchic struc- 
tures have been promulgated. One model of general 
interest, shown in Figure 5 ,  is the “cube.” In a cube 
organization, we consider the system to consist of an 
n-dimensional cube with  processors or process/ 
memory units  at  the vertices. A cube organization 
in n dimensions can have N = 2“ processors and 
n * 2“” interconnection paths. Thus, a three-dimen- 
sional system can have 23 (8) processors and 12 
interconnections. This organization is one of a class 
of network topologies that addresses the problem of 
interconnecting large populations of elements while 
avoiding an unwieldy interconnection network 
whose paths increase as the square of connected 
elements. In general, network topologies for large 
population systems attempt to achieve something in 
the area of NlogN interconnection pathways. 

Heterogeneity. Multiple-processor systems need not 
be homogeneous either in function or in underlying 
architecture and design.  Across the context of a  unit 
of computing there are naturally heterogeneous ele- 
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Figure 5 The cube 

Figure 6 Layers  of 110 function 

Consider 110 operations. In Figure 6 we show some 
basic 110 functions. Each line represents a potential 
split point. We can bundle all of these functions onto 
a single  processor, or we can group them across a 
computational element (CPE) and 110 processor (IOP) 
in various ways.  We might even dedicate an element 
to each of the layers. Part A of Figure 7 shows the 
CPE executing all function except the lowest  level  of 
device support. Part B shows the CPE and 110 engine 
as cooperating peers.  In  such a structure, the CPE 
might enqueue 110 requests in a shared memory area 
(or send messages to  the 110 engine). The 110 engine 
inspects the queues at its own discretion and under- 
takes work  when  it  finds  requests. When an 110 event 
has completed, the 110 engine enqueues completion 
packets that  the CPE discovers at times that  are con- 
venient for it.  Thus, 110 ceases to  be a disruptive and 
interruptive phenomenon for the CPE. This condition 
is  especially important  in pipelined or cache-oriented 
CPES, where longer intervals of predictable processing 
have a large payback. 

Memory sharing. Memory sharing is a topic dis- 
cussed in terms of performance, security, or availa- 
bility. As regards availability, high-availability sys- 
tems have been developed using both approaches so 
that  the issue does not seem critical in this regard. 
From the security standpoint, other architectural 
features, such as the structure of the operating system 
and  the basic addressing scheme, seem more signifi- 
cant. So the question of memory sharing seems 
primarily related to performance in the presence of 
different  types of workloads. 

Much depends upon the nature of the workload and 
the degree  of  desired cooperation between  proces- 
sors. With multijobbing, multitasking, or  other  con- 
texts where the interaction between  processes  is  fairly 
“loose,” nonmemory-shared systems may be quite 
effective. Where processes do not cooperate, or where 
they need only synchronize one  another from time 
to time, the message burden is not severe. Algorithms 
for “explicit” synchronization exist for both mem- 
ory-shared and nonmemory-shared systems.  (A 
process  wishing to acquire a resource for change 
must request a LOCK on the resource for the interval 
in which it is in  the “critical section.” The critical 
section is that part of the code where  lack  of  exclusive 
control over a resource may bring about an improper 

ments-processors, controllers, devices, etc. Even  result.) The support of L a x  synchronization without 
within the Processor Population one may have 110 Some point of shared memory is not necessarily more 
processors, Computational processors, scheduling burdensome than with shared memory. 
processors, compiling processors, etc. The central 
problem of heterogeneity is  how to divide function There are some who  feel that when concurrency and 
among  the elements. close cooperation are to be  achieved within the struc- 
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ture of a single computational program, memory 
sharing is the preferred approach. This approach is 
preferred because the  burden of sending messages 
across addressing boundaries may become a per- 
formance bottleneck. A problem with memory- 
shared systems,  of course, is the memory interference 
problem. Processors making references to shared 
memory (and  to the interconnection network that 
associates the processor elements with memory ele- 
ments) get in  one another’s way.  An area receiving 
important  attention in small-grained memory- 
shared systems is the topology  of the interconnection 
network between memory and processors. The de- 
sign of memory-interconnect topologies that mini- 
mize pathway count as well as minimizing interfer- 
ence delays is a fast-developing area. It is  necessary 
to achieve the performance of full crossbar networks 
with considerably fewer pathways in the network. 
We  saw how the “cube” approaches this problem. 
However, it is  necessary to go beyond this approach 
and  to  do such things as recognizing intersecting and 
duplicated references, and reducing the  number of 
loads and stores, etc. Some developers design intel- 
ligence into  the memory-interconnect network with 
more circuits in this part of the system than in 
individual processors or populations. 

It was mentioned previously that high-availability 
systems may or may not share memory. In the IBM 
family of computers, high-availability versions of the 
Series/l may be built without memory sharing, 
whereas the System/88 is a memory-shared system. 
A high-availability system, unlike a parallel  proces- 
sor, tends to minimize interdependency among proc- 
essors since increased interdependency reduces avail- 
ability. (The probability that all processors will  be 
down is lower in an eight-processor unit  than in a 
two-processor system. However, so is the probability 
that all processors will be up.) 

A third concern sometimes mentioned in connection 
with memory sharing or nonsharing is security. It  is 
necessary to show that barriers can be built between 
the virtual address spaces of operating processes. 
Given a certain address space, a process cannot forge 
access to  another address space. Given a portion of 
an address space, a process cannot acquire access to 
an unauthorized portion. Physical isolation of  proc- 
esses within the context of their processors has been 
promulgated as one way of achieving such isolation. 
This isolation would  surely  be the case in a network 
where each unit had a special  class  of data,  and  the 
model is sometimes proposed for processors within 
a frame. However, emerging security requirements 
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Figure 7 Relations between CPE and 110 function. 
(A) CPE-oriented, (B) peers 
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may require that  the isolation of virtual address 
spaces  be  achieved  in memory-shared models which 
have data of  differing sensitivity within a single unit 
context. This scheme suggests that  the security issue 
is one of addressability control and  not of  physical 
sharing. 

What links all of the structures that we have  dis- 
cussed-homogeneous, heterogeneous, with or with- 
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Figure 8 Memory interference, CPE and 110 operations 
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out memory sharing-is the need for internal buses 
that are fast enough to  take  the load of interprocessor 
interaction or  processor-to-memory interaction 
without becoming a bottleneck. Fifteen years  ago the 
objection to the  multicomputer organization was the 
time it would take for one processor to  communicate 
with another processor relative to  the  time it would 
take to execute instructions itself. As internal buses 
became fast, this issue  relaxed and  the Multiple 
Instruction Multiple Data (MIMD) machine became 
mainstream design. In a later section we  will suggest 
how extensions of this phenomenon of relaxation of 
communications as a system constraint may impact 
system structure  at higher conceptual levels  where 
we are concerned with networks. 

Input/output 

The second aspect of systems architecture mentioned 
in the introductory section is the relation of com- 
putational processors to I/O function. I/O operations 
have  always been a problem because I/O devices 
characteristically operate at speeds that are orders of 
magnitude slower than  the speeds of  processors or 
memories. Therefore, much attention  must be given 
to maintaining an adequately rapid data flow to  and 
from the  computing elements. 

The problem has been partially solved by providing 
parallel pathways into  the memory. By reading and 
writing multiple devices on multiple channels si- 
multaneously, a maximum aggregate data rate can 
potentially be achieved. This maximum rate is the 
rate at which the memory, given the requirement for 
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also serving the processors, can respond to I/O trans- 
fer. One problem with this approach is illustrated in 
Figure 8. The line chart shows instances of granting 
memory access to a processor and  to elements of the 
I/O subsystem. Because  of memory interference be- 
tween the I/O subsystem and processor, the speed  of 
the processor  is  effectively reduced. Some units have 
attempted  to use independent memory banks to 
alleviate this problem. The hope is that  the processor 
will work in one memory bank while I/O function is 
flowing into or out of another. In a complex multi- 
user environment, however, it is  essentially impos- 
sible for an operating system to avoid processor-I/o 
memory contention. It is  possible that some form of 
specialized data caching may be  useful to address 
this problem. 

The ultimate goal  of 110 design is to make data 
transfer appear to  the processor as if it were occumng 
at memory speeds rather than  at device  speeds. One 
method of achieving this concept is deep buffering 
throughout the I/O elements. Large memories may 
be  placed at different stages  of the I/O flow, and 110 
operations move as memory-to-memory transfers 
through these stages.  Figure 9 shows this concept. 
With sufficient intelligence associated  with the stages 
it may be possible to build macro analogs of proc- 
essor  caches in order to significantly increase the 
data rate. An  associated architectural notion might 
be to extend the concept of uniform addressability 
(a processor  uses the same address whether an ele- 
ment is in cache or primary memory) throughout 
the 110 buffers. 

In a previous section, I discussed the split of  work 
between the computational elements and 110 ele- 
ments of a structure within a single frame. Important 
advances in computing come from the scaling up of 
structures because of the relaxation of interconnect 
constraints. Structures within a “processor,” such as 
an instruction preparation unit fronting a family  of 
execution units, are replicated by the  structure of the 
Job Entry Subsystem (JES) with a Support Processor 
scheduling Main Processors. (The phenomenon of 
transferring structures from one level  of  system ab- 
straction to  another goes in both directions. We  see, 
for example, the idea of “loose coupling,” originally 
associated  with channel interconnection, now occur- 
ring on a single board.) Let us look again at  the 
structure in Figure 6 ,  but this time  at a higher  level 
of system abstraction so that it looks as depicted in 
Figure 10. Here we show much larger functional 
granules, more similar in size to major software 
components. Figure 1 1 shows some possible splits of 
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Figure 9 Deeply  buffered I/O function 

FLOW  OF  DATA IS MEMORY-TO-MEMORY  FROM  ALL  LEVELS 

work  between the processor component  and  the I/O 
component of a  computing  unit when we cross frame 
boundaries. 

In Part C of Figure 1 1, perhaps most interesting of 
the three shown, we have the  “Data Engine” as the 
heart of the system (from the view  of function and 
control), and  the “processor” as only an application 
host. This concept is that of the  “Data Node.” In its 
most extreme form, the  Data Node: 

1. Is the repository of all enterprise-level data. 
2. Is the single point of change for any data element. 
3. Runs  no application code, but responds to 

“scripts” from application processors requesting 
changes to data. 

4. Imposes a security screen  between its data  and 
application requests. 

5. Provides data locking and synchronization. 

6. Provides translation from different data models 
to  a uniform physical  view. 

7. Forms  and  transmits application-specific views to 
applications as they request them  (but  not for the 
purpose of update). 

8. Applies “integrity” rules to  data so that  no change 
request from an application can cause an opera- 
tion that violates the integrity rules. 

The search for an efficient instrument  to perform 
these functions (or some of them) has been underway 
for over a decade. We search for an engine capable 
of fast search, excellent manipulation of directory 
and index structures, good  recovery, etc. The search 
has  led to  a  number of quite different architectures 
and structures for the  Data Node. One candidate, 
for example, is in fact a small-grained processor 
population capable of  massive parallel searching. 
Another approach is the  enhancement of a general- 
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Figure 10 Software 110 layering 
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purpose processor architecture so that it performs 
certain functions more efficiently. The search for the 
optimum  data engine encounters the same problem 
as the earlier search for a perfect sorting engine. So 
much of the function requires the power of a general- 
purpose architecture that only marginal contribu- 
tions to system throughput  can be made by optimi- 
zation of unique elements. What seems to be  re- 
quired is an ability to configure instances of the 
general-purpose processor into  an effective data en- 
gine. A way to  do this is to provide architectural 
enhancement  (much as one might do for vector 
manipulation)  in  a general-purpose processor and  to 
refine elements of the I/O pathway. In this way, 
systems could be configured from populations of 
“application elements” and  “data elements,” where 
the  data elements were those with the enhanced 
architecture and refined 110 elements. 

This structure  can be upscaled to  a networking con- 
cept. Figure 12 shows an “establishment”-level sys- 
tem where application units  and  data  units are con- 
figured around  a local-area ring. Such a  structure 
would have the advantages of isolating data from 
application malfunction and of providing multiple 
data repositories accessible from a family of appli- 
cation hosts. In such a  structure as Figure 12 we 
begin to lose some conviction about  the distinction 
between a single computer  unit  and  a network. With 
the distribution of intelligence and function into  the 
110 subsystem, and with each application element 
talking to a  data element, our concept of a single 
system  is considerably extended. The availability of 
a good local-area interconnect facility  allows us to 

scale some structures common  to  a single frame 
upward to  an establishment (a single site of business 
for an enterprise). 

Systems and system structures 

The last section ended with the observation that fast, 
reliable, and inexpensive interconnection technology 

Figure 11 System  structures. (A) channel  style, (B) peer 
style, (C) data  engine  style 

I A  CHANNEL STYLE 
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Figure 12 Application  and  data  nodes 
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forms the basis for thinking of  aggregations  of com- 
puting units as a single system. The variety  of struc- 
tures possible within a frame become possible over 
a wider geographical area. In  effect, a population of 
units such as IBM 3090s, System/38s, IBM 43XXs, 
and varieties  of IBM Personal Computers may com- 
bine in variations of data  and control flows with the 
increasing sense that they are a single system. 

One  important impact of the emergence of larger 
system contexts may be on  the  structure of software. 
We may be forced to reconsider our ideas of what 
constitutes a “single” operating system. This recon- 
sideration must have end-user and programmer as- 
pects as well as operational aspects.  Is it desirable 
that all end users  have a single view  of a system 
through standard end-user interfaces? Is it desirable 
that all application programmers have a single view 

of a system? Is it desirable that there be a single and 
unified view of operational control? Or is it better to 
allow multiple views that  are functionally mapped 
into one another  at deeper levels of the software 
structure? As an example, should we strive to present 
a single image of query and relational data base or 
should we allow multiple images that  can  commu- 
nicate with one  another across various “bridges?” 
This question can be best understood in  terms of the 
levels  of a system  where homogeneity may exist: 

1. Implementation and design. Each unit of the 
interconnected system  is the same model of the 
same architecture running identical software at 
all software levels. 

2. Architecture. Each unit of the system is architec- 
turally identical but may differ in model. In such 
a system we may well find different software 
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environments because the operating system for 
the largest system cannot fit on  the smallest, etc. 

3, Operating system. The same operating system 
interfaces exist for operations and application 
development despite the fact that there are differ- 
ent architectures and/or models underneath. 

4. Subsystem. The same set of interfaces and func- 
tions exists for application developers and some 
end users (those who deal directly with subsystem 
interfaces rather  than working through an inter- 
face defined by an application program), although 
there may be different operating systems under- 
neath. 

Given the existence of multiple architectures and 
models, the real choices seem to be whether to 
establish homogeneity at  the operating system  level 
or  at  the subsystem level. Those who believe in a 
single operating system solution (represented com- 
monly by the UNIX” community) believe that it is 
easiest to replicate an operating system among var- 
ious architectures. With such proliferation of the 
operating system  all  higher-level  software layers can 
be made available with little effort. Those who  be- 
lieve in subsystem-level homogeneity claim that  the 
replication of subsystems across various operating 
systems is the best  first step toward achieving system 
coherence. The difficulty  with operating system por- 
tability is the high  degree  of  machine-specific func- 
tion  that is in  any case associated with the operating 
system  level. Therefore, it may be  best to duplicate 
subsystems or interfaces to subsystems on  top of 
already existing mature operating systems. 

The underlying phenomenon  that motivates the 
need for more uniform software interfaces and for 
more function sharing across units on a network is 
the anticipation of dramatic  improvement in inter- 
connect facility. One provocative speculation comes 
from the convergence of I/O and local-area network 
technologies. Traditionally we have  been motivated 
by orders of magnitude of difference in cost, reliabil- 
ity, and speed of I/O systems and any networking 
facility. Software structures have responded by sep- 
arating I/O and communications function quite rig- 
orously. But if it becomes possible, within the con- 
text of local-area networks at first, to approximate 
the speed  of  local I/O functions, we must consider 
once again our ideas of sameness and difference. In 
what way does a processor channel interacting with 
a highly intelligent 110 controller differ from an ap- 
plication processor interacting with a file server, 
when identical technology is involved? If a brand- 
new operating system  were to be developed, would 

the split of  work  between its 110 and  communications 
portions be as history has developed it? Would the 
split of function between operating system and sub- 
systems  be as it is today? In reaction to  the changing 
of the underlying technology we may expect  signifi- 
cant new developments in software structure. But 

An alternative to  the  control flow 
concept is the data flow concept. 

along what path? Shall we integrate new function 
into older operating systems, or should we begin to 
“hide” these older systems, to  think of them as only 
components of a single operating system that con- 
tains all  software elements and  maintain  them only 
so long as we maintain the architectures on which 
they run? These questions are  just now coming to 
our  attention  and it is  difficult,  given the constraints 
of resource and history, to predict the long-term 
evolutionary trends. 

What seems reasonably sure is that  communications 
and  computer elements will continue  to merge  with 
and interpenetrate each other so that in time the 
structures and architectures now  possible in a single 
frame will become possible at long  geographical  dis- 
tances. 

Data flow machines 

Up  to this point I have assumed no  fundamental 
change in  the  nature of a processor. Computing 
systems  have  always been “control flow” machines. 
In a control flow machine the sequence of instruction 
execution is controlled by a sequence counter which 
points to  the next instruction to be performed. An 
instruction is fetched from the memory location 
indicated by the sequence counter  and executed. The 
sequence counter is augmented, the next instruction 
fetched, etc. Conditional branches replace the con- 
tents of the sequence counter with the starting loca- 
tion of a new sequence. The fact that some look- 
ahead or pipeline machines may do all this in a 
rather elaborate manner does not change the basic 
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Figure 13 Highly  overlapped  uniprocessor 
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concept. The machine  depicted in Figure 13, which 
can  execute a number of instructions in parallel,  is 
still a control flow machine. 

An alternative to the control flow concept  is the 
"data flow" concept. We can think of a data flow 
machine  as a modification to a deeply  pipelined 
machine like that of Figure 13. In a control flow 
machine, instruction fetch,  decode,  address  forma- 
tion, and operand fetch functions are  performed in 
an Instruction Preprocessor Function (IPPF) or I-Box 
that operates upon instructions as determined by its 
sequence counter. In a data flow machine, the se- 
quencing  mechanism of the IPPF is  replaced by a 
concept that says an instruction is  executed  when  its 
operands are available. It is a sequence-counterless 
machine. 

Such a machine is  shown  in  Figure 14. There is a 
control unit fronting a family  of functional units 
arranged around a network. A functional unit per- 
forms when it receives a packet containing a function 

designator and data values on which to apply the 
function. When the function  is  complete,  it  sends a 
result  packet  back to the IPPF. (In this  version of a 
data flow machine I assume that all  finished  opera- 
tions are returned to the control  unit. This restriction 
is  by no  means  necessary to such a system.  Some 
structures move  packets  between functional units.) 
The IPPF maintains a queue of instruction packets 
that are  waiting  for  results  from functional units. 
Whenever a result  packet  arrives at the IPPF, it  fills 
in the operands of a waiting  packet. It may then 
release  this  packet to the functional unit network. 
The operands required  for a function to be  executed 
are  gathered  from  two  sources:  memory and returned 
packets. Thus, an instruction may  have an operand 
from  memory and another operand  which  is the 
result  of a previous instruction. When both operands 
are  available, the instruction is released  for  execution 
at a functional unit. In this way instructions are 
executed at the rate at which their operands become 
available.  Long  lists of nondependent instructions 
may  be  executed  with a high  degree  of parallelism, 
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Figure 14 I-counterless SlMD data flow concept 
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and dependent instructions are “fired” as soon  as 
their operands arrive. In this way instructions may 
be  executed out of “sequence,” and maximum use 
of functional units may be achieved. 

The concept can be  scaled up, and frequently is, to 
network structures containing large functional units, 
each of  which  may  itself contain queues and local 
ordering. There is interest in data flow in both the 
supercomputer and the network  model  areas. It is 
not at all  clear at what rate, or if, this concept will 
impact mainstream commercial processors, and a 
good  guess  is that these products will maintain their 
control flow characteristics  for the foreseeable future. 

Cellular machines 

As logic becomes denser and denser and cheaper and 
cheaper, the basic  building  block of a  system  may 
itself  be  a  very  small-grained  special-purpose  proc- 
essor. In such a  system  each  processor  is connected 
to a  neighbor, and each  processor performs a unitary 

function on a unit of data. Basic functions are per- 
formed by predefined  network  topology. Thus, a 
high-level function such  as sort or search or Sine 
would  be implemented by a  set of cellular units 
connected in a  network  topology that maps the data 
flow  of the function. A computational unit is  itself  a 
collection of thousands and thousands of little spe- 
cial-purpose  processors that are organized into func- 
tional units.  Such  a  system  could  be massively par- 
allel. 

An interesting implication of this concept concerns 
the hardware-software-firmware  trade-offs of a sys- 
tem. As more logic is  available in this form and as 
we learn to build  a  larger  set of functional units using 
cellular structures, can we reduce the amount of 
software that a  system  requires? Can, for  example, 
basic operating system functions such as queue man- 
agement,  list  searching,  dispatching, and ordering be 
built into systolic  arrays? There is accumulating evi- 
dence that, over time, the answer will be positive, 
and a  good  deal  of the function we associate  with 
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software  may  be  represented in hardware, not in 
microcode, as we currently  assume, but in pre- 
planned cellular  arrays. 

The  “level of an  architecture” 

For many  years there has  been continuing argument 
about the relative  efficiency  of “interpretation” ver- 
sus “compilation” of  programs.  From the early  days 
of computing there have  been  advocates of direct 
execution by interpreters in lieu  of compilation. 
Program translators and program interpreters ar- 
rived in the computing culture at about the same 
time (late 1950s). 

The current form of this continuing conversation  is 
RISC versus HLL architectures. The RISC advocates 
believe that it  is  most  efficient to provide  a  processor 
with  a minimum instruction set,  easily  mappable 
into a  design, and to depend upon compiler  design 
elegance to provide  efficient  programs. The compil- 
ers, RISC advocates  believe, can be extremely  efficient 
because  they do not need to spend  much time in- 
volved  in the assessment of “special  cases” due to 
the complex instruction set.  Compiler optimization 
can  address  issues of global  program structure and 
optimization without  concern about recognizing 
large  sets  of odd conditions. RISC advocates point out 
that the CISC is  inefficient  because  it  “special-cases” 
a  compiler to distraction, it  uses enormous amounts 
of  circuitry for instructions that will not be  used (25 
percent of instructions account for 95 percent of 
code), and it  consequently  adds  complexity to design 
as well  as  cost to implementation. 

Essentially the view  of the RISC advocate  is that given 
a  certain population of circuits,  it  is  best to use  those 
circuits to support efficient  designs that will allow 
rapid  execution of a minimal instruction. Rather 
than consume large amounts of microcode or logic 
to support many instructions, it is  better to use 
control code and circuits  for  caches and pipelines 
that can  help  achieve  concurrency and achieve an 
instruction execution  rate  close to one instruction 
per  machine  cycle. 

The HLL advocates contend that  an architecture  has 
responsibilities to close the “semantic gap”  between 
programming  languages, to encourage certain forms 
of programming that are known to be  efficient, and 
to recognize and prevent  many  types of run-time 
errors that compilers cannot recognize and prevent. 
The overall  success of an architecture, they  claim, 
lies not in the instruction execution rate, but in the 
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reduction of the cost  of  creating and debugging  pro- 
grams. The legitimate use  of circuit count and mi- 
crocode  space  is to support higher-level architectural 
abstractions  such  as tagged data, object-oriented  ca- 
pability-based  addressing,  generic instruction sets, 
etc. Good higher-level  architectures will  ease the 
burdens of compilation and will  significantly  im- 
prove the economics of the programming  process. 
An architecture should be extended in the direction 

There is no real metric for 
complexity of compilation. 

of the forms and structures of  higher-level  languages 
and should include direct support of a number of 
abstract  programming  concepts. 

What are we to make  of  these  two  positions?  Both 
groups  claim  they will increase the ease  of compila- 
tion, but that is the only point at which  even  diver- 
gences  converge. The RISC group  seems  oriented 
toward  price/performance and efficient  use  of  cir- 
cuits; the HLL group  seems  oriented  toward the use 
of the architecture to minimize the expense of de- 
veloping and maintaining programs and  to the 
achievement of security. 

How are we to approach  these  viewpoints? One 
problem  is that there is no real metric for the com- 
plexity  of compilation, so that the argument of  which 
approach  leads to better  compilers cannot be  re- 
solved. RISC advocates point with  pride at how much 
simpler  it  is to compile  with the addressing  conven- 
tions of the register  file model  as  opposed to richly 
varied  addressing  structures.  But on the other hand, 
while  claiming  ease  of compilation, they point with 
pride at the sophistication  necessary to compile  good 
programs in a  pipelined  register  file  machine. 
Whether  code  rearrangement  for  pipelines  is  more 
or less  difficult than determining which  addressing. 
form  should be  used  is not an easily  resolvable  point. 

An important part  of the RISC argument is the as- 
sumption that higher-level functions will  be imple- 
mented in microcode.  This current assumption  is 



reasonable, but by no means  (in view  of the last 
section,  for  example)  a permanent assumption. 

Surely the RISC advocates are right in their claim that 
too many instructions are unnecessary and wasteful. 
They  may  be  a little less  right in specifically  insisting 
that all instructions execute in one cycle (or two 
cycles  for  cached  memory  references),  because  they 
are forcing  themselves to rely on subroutine multiply 
and divide  whose  performance  will  be  pipeline-crit- 
ical. The argument against  allowing more flexible 
addressing  (two or three addresses  of any type  can 
be  used in any order with any operation code)  seems 
most uncertain and is  closest to saying that good 
compilation can  overcome  a  deficient  architecture. 

So we have a scapegoat in  the middle (the CISC) with 
the RISC and HLL advocates on either side and some 
difficulty in defining the turf, along  with  a  good  deal 
of  passion. (Certain architects from  some  universities 
will not go to meetings that architects  from other 
universities are attending.) In any case  we are in a 
period  where RISC is  having its day  and  where,  for 
that reason, traditional concerns about what  is  a 
good architecture in the original  meaning of the word 
are being  revisited at a time when it is not clear  how 
important this issue  really  is to system structure. 
Some  claim that dramatic improvements in price/ 
performance are a potential of RISC architectures, 
others claim that forthcoming  technology will  show 
that System/370-style CISC can achieve the same 
levels  of  price/performance. The HLL people are 
resting in the background and hinting that price/ 
performance  is not the measure to be  used at all. 
The proper  measure  is the degree to which the ar- 
chitecture encourages  proper  use  of  critical  software 
engineering  methodology in application develop- 
ment. 

The argument is  interesting  mostly  because of the 
interest  it  focuses  on  what we think is important, on 
the relations between architecture and design and 
architecture and software,  as  well as on our wonder- 
ful  ability as an industry to make  great  progress 
without actually  ever  really  defining our terms. 
Everyone’s  view  of the world  is  partial. 

Concluding  observation 

We have  discussed  a number of  ideas  relative to 
transition in system structure. Perhaps the central 
and underlying themes are twofold 
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1. There is  going to be  a  significant restructuring Of 
concepts and merging  of  ideas that we have  tra- 
ditionally  thought to be distinct and separate. 

2. Wide  variation in system structure is  going to be 
enabled  by  changing  technology. 

But in particular,  for  this  coming time frame, 

1. There will  be dramatic improvement in local 
interconnection that will  allow the scaling-up  of 
structures to the establishment  level. The Single 
System  Image  will  begin to form  for units inter- 
connected at a  site  of  business. 

2. 110 structures will become  much  more  elaborate 
and will  involve  a  great  deal more intelligence 
and storage. 

3. Communication and 110 elements will begin to 
interpenetrate each  other. 

4. System structures will  begin to include  specialized 
communications, applications, and data server 
units. 

5. Highly  parallel  machines will not become main- 
stream  systems.  Neither  will data flow machines. 

6 .  We  will continue to argue about issues that are 
more  fun than critical. 

The  underlying  technologies  seem to be telling  us we 
can  scale up our concepts and truly  take  large  system 
views. The constraints on interunit interconnection 
will  be relaxed, and aggregations of systems at sig- 
nificant  distances can be used and managed  as  co- 
herent  structures. All  of our dreams are coming true, 
and all  of the problems of dreams coming true are 
being  visited upon us. 
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