Systems architecture
in transition—An overview

Systems architecture refers to the distribution of func-
tion and control among elements of a system. It is
primarily a structural concept that includes the original
meaning of the word architecture in the form of “proc-
essor architecture.” This paper undertakes to describe
topics of current interest in the evolution of computing
structures. It discusses various unit structures that
may emerge as the economics and capabilities of tech-
nology relax more and more constraints. Of particular
interest is the internal structure of a central computing
complex, the relation of computing elements and /O
elements, and the maturity of the 1/O elements. The
paper also suggests that the structures found within a
single computing unit may be realized across larger
elements more widely dispersed. Hardware and soft-
ware issues are addressed.

In the computer industry, “architecture” was first
used to mean the view of a computing system as
seen by a programmer or automated code generator.
Thus, the addressing scheme, register population,
and instruction set are architectural ideas, whereas
cache, instruction pipeline, microcode, and circuit
densities are design or implementation concepts. The
output of an architectural effort is a document that
imposes requirements on a design. The output of a
design effort is a mapping of the architecture into a
technology in order to achieve stated price/perform-
ance goals for a model of the architecture. Thus, a
program-compatible product line (various models
each of which respond in the same way to a list of
operation codes and addresses) can be defined at
different price/performance levels.

Used without any adjective, the word “architecture”
still has that meaning for many. However, there has
always been some informality in the use of the word,
and informal usage often blurs the distinction be-
tween design and architecture. In addition, we have

256 LORN

by H. Lorin

begun to use the word with various adjectives in
phrases such as “1/0 architecture,” “communications
architecture,” and “systems architecture.” All of
these phrases share some intent to distinguish a set
of interfaces and constraints from a technology map-
ping. They shift the meaning of the word “architec-
ture” away from its initial processor-oriented view
of a computing system. They suggest a concern with
some form of system “structure”: the functional
relationships between logical elements of a system
or of a subsystem.

Changing uses of a word suggest changes in focus
and a reordering of interests and issues. Recently we
have been primarily concerned with the structure of
systems—flows of data and control points of storage,
and intelligence. At the same time we are broadening
our notion of what a system is. We now mean
something more than a single collection consisting
of a processor, memory, and 1/0 devices. The word
“system” is frequently used to mean collections of
interconnected computers at various geographical
distances cooperating at different levels of intensity.
This paper discusses some topics of “systems archi-
tecture” in its broader meaning, although we will not
exclude some concepts of “architecture” in its origi-
nal meaning, topics that one might now call “proc-
essor architecture.” The intent is to bring to the
attention of the reader some of the considerations
and points of interest relative to the evolution of
computing systems and to suggest various views of
the nature of that evolution.

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NOS 374, 1986

Figure 1 System layers (n, n — k hierarchy)

AN DBMS, OFFICE, ETC.

SUBSYSTEM LEVEL

NETWORK INTERFACE

COMMUNICATIONS LEVEL

“0S” INTERFACE

EACH LEVEL MAY SEE MULTIPLE LEVELS BENEATH

SOFTWARE INTERFACE

Elements of systems architecture

The concerns of systems architecture focus on the
definition of major system elements, hardware and
software, and on the flow of control and information
among them. Considerations include:

1. The internal structure of a central electronic com-
plex (CEC) involving the number of processors,
whether the processors should be homogeneous
or heterogeneous, whether address spaces should
be shared among processors, whether there should
be single or multiple sites of system control.

2. The essential structure of an 1/0 subsystem and
its relation to the Cec. At issue is the nature of
system changes implied by an increased ability to
site intelligence and storage in an 1/0 subsystem,
combined with considerably faster interconnec-
tion technology.

3. The relation among the “nodes” of a computing
system connected at various distances. Within the
limits of local-area networking (and beyond those
limits) what degrees of interdependency, load
sharing, backup, and cooperation are achievable?
What views of an “aggregate” computing system
should be presented to a community of users?

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Another dimension of systems architecture (unfor-
tunately blurring the edges between architecture and
design) concerns the way particular functions should
be delivered. A classical aspect of this dimension is
the “hardware-software” interface. To what extent
should the processor and systems architecture be
extended to include basic functions and structures
inherent in now-mature operating systems? Should
certain control blocks be architecturally defined as
basic data types? Should certain basic functions such
as QUEUE, LIST, and SORT be included in the systems
architecture? There is also a “hardware-firmware”
interface. Should function taken down from tradi-
tional software be developed in various forms of
microcode or “hardwired” in some way?

Figure 1 shows the traditional layers of a computing
system. The hardware-firmware question asks how
“fat” the underlying digital level should be. The
hardware-software question asks how “fat” the mi-
crocode level combined with the digital level should
be relative to the software levels. There are similar
issues within the software levels, related to the distri-
bution of functions among them. What are the func-
tions of a basic operating system as opposed to a
communications subsystem or a data base manage-
ment system? Figure 1 suggests an important attri-

Lorn 257

Figure 2 Classical layer representation (n, n —1 hierarchy)

CONTROL

ARCHITECTURE

DIGITAL

COMMUNICATIONS
SUBSYSTEM

APPLICATION

bute of real systems that is often hidden by represen-
tations like Figure 2. Figure 2 suggests, for example,
that Level 5 “sees” only Level 4. That is, Level 4 is
the “interpreter” of the functions at Level 5. Such a
system would be a perfectly encapsulated hierarchy
in which the nature of any level beneath Level 4
would be of no concern to Level 5. In contemporary
systems structure, however, multiple lower levels are
visible to a higher-level function. Thus, an applica-
tion program is constructed from calls to the services
of a subsystem, but it may also make service calls to
the operating system. Of course, each time a function
is represented as a machine instruction, the applica-
tion sees the instruction set and addressing schemes
of the underlying processor architecture. The full
range of compatibility, portability, and cohabitabil-
ity issues of current computing systems, hardware
and software, derive from the multilayered views
that are available to end users, application programs,
subsystems, etc.

258 Lomn

Processor architecture, of course, is directly relevant
to the hardware-software issues. Currently we express
preferences between Reduced Instruction Set Com-
puters (Risc), Complex Instruction Set Computers
(cisc), and High-Level Language Architecture (HLL).
In this area there is sometimes more passion than
crisp definition. A full understanding of the various
trade-offs in the processor architecture area involves
an appreciation not only for architecture, but for
design methodologies, underlying technologies, and
compiler methodologies as well as for the costs of
hardware and software production in different tech-
nology intervals. A “good architecture” (processor
architecture) should be easily and efficiently repre-
sented in the technology, and should provide for
simple, efficient compilation. But there may be other
considerations whose importance becomes greater
over time. A serious problem is that we lack a
universally accepted metric either for a “good archi-
tecture” (although many have been proposed) or for
the “complexity” of a compiler, and we seem cer-
tainly unready to deal with issues about the quanti-
tative impact an architecture should have on the cost
of producing and maintaining code, etc.

The remaining sections discuss issues of the central
electronic complex structure, 1/0 structure, and hard-
ware-software-firmware, with the intent of suggesting
what the current trends are, what the limits on
current trends may be, and what mature computer
systems may look like in the future. Nowhere is a
statement of the direction or intent of a particular
vendor intended.

Unit structure

I use the word “unit” for lack of another word to
suggest what we formerly called a “computer sys-
tem.” The word “node” is sometimes used for this,
but Systems Network Architecture (SNA) purists use
that word with a somewhat different meaning. A
fundamental problem is that the characteristics of
this “unit” are quite variable. Some try to define it
as that collection of resources which falls under the
control of a single operating system. But this defini-
tion runs into the phenomenon of processors within
a single frame that have individual operating sys-
tems. In some years we may think of all of the
computing power at a single establishment (a site of
business activity for an enterprise) as effectively a
single computational node, regardless of its physical
disbursement around the establishment and regard-
less of the number of “local operating systems.”

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Let the word “unit” represent the aggregation of
processor(s), memory, and 1/0 devices that we have
been used to thinking of as a “computer system.”
The introductory section suggested that we have
some choices to make about the number and type
of processors in this unit and the relationships among
them. There is a wide range of opinion, prototypes,
experiments, and literature about the virtues and
uses of various unit structures. The measurements
of quality involve issues of raw performance, avail-
ability, configurability, and evolvability.

Figure 3 shows a few possibilities for the internal
structure of a computing unit. Part A shows a sym-
metrical tightly coupled multiprocessor with the fol-
lowing essential features:

1. All processing elements are identical in architec-
ture and design. (They are model-identical.)

2. All processing elements have full addressability
over the addressing range of the system. They get
service from memory at effectively the same rate.

3. There is a single operating system responsible for
the resources that are “global” across the context
of the system. In a common version of this struc-
ture, any processor may execute the algorithms
of the single operating system upon shared system
status data and resources.

Part B shows a system in which the processor set is
not homogeneous. There is a group of “general-
purpose processors,” but there is also a group of
functionally specialized processors that are used for
such things as 1/0 operations, communications man-
agement, system scheduling, and vector manipula-
tion. Certain parts of the operating system and sub-
systems, as well as certain application programs, or
parts of application programs, may be executed on
the specialized processors.

A system like the 1BM 3090 lies somewhere between
these models. It is not exactly symmetrical, but its
asymmetry is limited to 1/0 and vector processing.
And that itself raises an observation that there is
another dimension to structure. We may think of
the general-purpose processors and the special-pur-
pose processors as full cooperating peers, or we may
recognize that some are more equal than others and
see the structure as hierarchical. The 1/0 processors
are in some sense subservient to the general-purpose
processors or (and more interestingly) the other way
around. Both systems shown in Parts A and B of
Figure 3 have an important property of memory-
shared systems. That property is sometimes called

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure3 Computing unit structures. (A) symmetrical
multiprocessor, (B) functional multiprocessor,
(C) multicomputer

SYMMETRICAL MULTIPROCESSOR

MULTICOMPUTER

Lorn 259

Figure 4 Pipeline structure

CACHE FOR
INSTRUCTION

“space-time coherence.” In a space-time-coherent
system, it is possible to represent the status of a
complete system at a particular time, and it is also
possible to shift resources to processes and processors
with great efficiency (relative to systems that do not
have this property). The property comes from the
shared memory that enables the single operating
system to manage and inspect all resources within
the context of a single system. As we will later see,
this property of “space-time” coherence is what is
particularly lacking in “distributed systems.”

Part C of Figure 3 shows a system without shared
address space and with consequent multiple copies
of operating systems with associated subpools of
resources. Processes running on one processor com-
municate on a message basis with processes running
on another. Processors may be homogeneous or
heterogeneous. This system is a form of “distributed”
system (although it may exist within a single physical
frame) that lacks the property of space-time coher-
ence. This means that it is very difficult to get an
accurate picture of the status of all resources at a

260 wo~n

single point in time. From any point of enquiry it
would be necessary to poll other processors to collect
status information. While that was being done, the
status of previously polled processors would be
changing. Thus it would be difficult to balance loads
across such a system and difficult to do global per-
formance analysis. The property of space-time co-
herence could be afforded such a system if the inter-
connectton bus were fast relative to the processors
themselves and/or if a single point of systems control
were established. Perhaps one shared control mem-
ory with or without an associated control processor,
for example, could bring a distributed system closer
to the characteristics of a memory-shared single-
operating-system design.

These three suggested unit structures represent a
somewhat compressed view of the variations possible
within a single unit. However, the view gives us
enough of a sample to focus on the following three
major questions:

1. What should the “granularity” of the processors
be?

2. What is a proper split of work in certain hetero-
geneous structures?

3. What are the proper relationships between the
processors and memory (memories)?

Of course, the measures of goodness are perform-
ance, price/performance, availability, and configur-
ability, and there are examples and counterexamples
of preferability under different workloads and as-
sumptions of technology, etc. If this were not true,
there would by now not be so many contending
approaches.

Granularity. Granularity refers to the speed and ca-
pacity of an individual processing element. A small-
grained system achieves speed with a large popula-
tion of slow or simple processors. One hundred or
one thousand or one million processors might com-
bine together to deliver aggregate service to a work-
load. A large-grained system has a smaller number
of processors, each of which is relatively fast. The
ultimate large-grained system is the uniprocessor.

The question of granularity can be seen as an issue
in how to use circuits. Is it “better” to create a large
population of small processors or to develop systems
with a small population of more capable processors?
“More capable” may mean more powerful instruc-
tion sets, more elaborate instruction pipelines, spe-
cialized execution units (e.g., vector). (Figure 4 shows
the basic concept of pipelining.)

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

There is a systems trade-off between the complexity
and power of a single processor and the population
of processors. An aspect of this trade-off is the use of
technology or the use of design to achieve speed in
a larger processor. For example, the internal struc-
ture of the 1BM 3033 computer system is quite com-
plex, involving somewhat sophisticated pipelining
and tracking of branch histories. The internal struc-
ture of an 1BM 3084 system is quite simple by com-
parison, while the 1BM 3090 system reintroduces
some of the more sophisticated design of the 1BM
3033. One can view this sequence, in an abstract
way, as an issue in granularity. To build a faster
system, should one stress more processors or speed
them up? If one speeds up processors, should one
use circuits for elaborate designs or try to simplify
designs in a faster technology?

In a broader context, we are faced with systems
structures that may now include 500 or so processors
and theoretical systems structures having in excess
of a million computing “elements.” What role will
such small-grained systems play in the development
of computing? Can one expect that the mainstream
commercial computing systems of the future will
consist of large populations of small-grained ma-
chines as part of their essential structure? Will speed
be achieved by massive parallelism on small units of
work? The constraints on the efficiency of large
populations of processors are (1) memory interfer-
ence between processors, resulting in delays at the
memory interface for data and instruction reference,
(2) the overhead of processor-to-processor commu-
nications, (3) the overhead of creating processes rel-
ative to the expected duration of a process, and (4)
the creation or discovery of proper workload struc-
tures to achieve populations of concurrent tasks or
subtasks.

Given these constraints and the state of the art in
overcoming the fourth constraint, one may reason-
ably project that

1. Mainstream commercial systems will have small
populations of large-grained processors for the
foreseeable future. Tightly coupled multiproces-
sors with populations of 2 or 4 processors will be
characteristic, and speed will be designed by bal-
ances of more elaborate processor design and
faster technology.

2. The small-grained systems will develop along two
lines: as stand-alone specialized processors and as
functional enhancements to general-purpose
large-grained processors. Tremendous computing

1BM SYSTEMS JOURNAL, VOL 25, NOS 374, 1986

power is needed for speech recognition and for
artificial intelligence function to support natural-
language interfaces. A large population of small
processors is a frequently encountered model of
computing in such applications. There are ma-
chines, for example, with up to 65000 processors
that seem directed to these areas. Since interface
functions will likely occur at workstation levels
in the future, it may be that network-connected
personal computers will be the first of the breed
of highly parallel machines.

Small-grained functional components may be added
to systems in a more integrated manner to support
vector operations for example, or data base functions
that might profit from massive parallel search capa-
bility. An advantage of the small-grain approach to
“supercomputers” is the potential configurability
and flexibility. It may be that there is no such thing
as a general-purpose supercomputer. Some scientific
problems are processor-intensive, some are memory-
intensive, and still others are 1/0-intensive. In addi-
tion, there is wide variation in algorithmic structure,
control flow, and data flow from one application to
another. Small-grain approaches may permit super-
computers specialized according to application to be
built out of different configurations of processor
populations with specialized data and control flow
relations among them.

The structure of large-population, small-grained
processor systems has received much attention over
time. Various models of peer and hierarchic struc-
tures have been promulgated. One model of general
interest, shown in Figure 5, is the “cube.” In a cube
organization, we consider the system to consist of an
n-dimensional cube with processors or process/
memory units at the vertices. A cube organization
in n dimensions can have N = 2" processors and
n » 2"~! interconnection paths. Thus, a three-dimen-
sional system can have 2° (8) processors and 12
interconnections. This organization is one of a class
of network topologies that addresses the problem of
interconnecting large populations of elements while
avoiding an unwieldy interconnection network
whose paths increase as the square of connected
elements. In general, network topologies for large
population systems attempt to achieve something in
the area of Nlog interconnection pathways.

Heterogeneity. Multiple-processor systems need not
be homogeneous either in function or in underlying
architecture and design. Across the context of a unit
of computing there are naturally heterogeneous ele-

worn 261

Figure 5 The cube

Figure 6 Layers of 1/0 function

MAKE FORMATTED RECORD
AVAILABLE TO APPLICATION

CREATE RECORD IN ACCORDANCE
WITH APPLICATION VIEW

SEQUENCE INDIVIDUAL RECORDS
IN A PHYSICAL BLOCK

SEQUENCE PHYSICAL BLOCKS

MANAGE /0 SPACE FOR BLOCKS

START, STOP DEVICES

ments—oprocessors, controllers, devices, etc. Even
within the processor population one may have 1/0
processors, computational processors, scheduling
processors, compiling processors, etc. The central
problem of heterogeneity is how to divide function
among the elements.

262 Lomn

Consider 1/0 operations. In Figure 6 we show some
basic 1/0 functions. Each line represents a potential
split point. We can bundle all of these functions onto
a single processor, or we can group them across a
computational element (CPE) and 1/0 processor (I0P)
in various ways. We might even dedicate an element
to each of the layers. Part A of Figure 7 shows the
CPE executing all function except the lowest level of
device support. Part B shows the cPE and 1/0 engine
as cooperating peers. In such a structure, the CPE
might enqueue 1/0 requests in a shared memory area
(or send messages to the 1/0 engine). The 1/0 engine
inspects the queues at its own discretion and under-
takes work when it finds requests. When an 1/0 event
has completed, the 1/0 engine enqueues completion
packets that the cPE discovers at times that are con-
venient for it. Thus, 1/0 ceases to be a disruptive and
interruptive phenomenon for the cpe. This condition
is especially important in pipelined or cache-oriented
CPEs, where longer intervals of predictable processing
have a large payback.

Memory sharing. Memory sharing is a topic dis-
cussed in terms of performance, security, or availa-
bility. As regards availability, high-availability sys-
tems have been developed using both approaches so
that the issue does not seem critical in this regard.
From the security standpoint, other architectural
features, such as the structure of the operating system
and the basic addressing scheme, seem more signifi-
cant. So the question of memory sharing seems
primarily related to performance in the presence of
different types of workloads.

Much depends upon the nature of the workload and
the degree of desired cooperation between proces-
sors. With multijobbing, multitasking, or other con-
texts where the interaction between processes is fairly
“loose,” nonmemory-shared systems may be quite
effective. Where processes do not cooperate, or where
they need only synchronize one another from time
to time, the message burden is not severe. Algorithms
for “explicit” synchronization exist for both mem-
ory-shared and nonmemory-shared systems. (A
process wishing to acquire a resource for change
must request a LOCK on the resource for the interval
in which it is in the “critical section.” The critical
section is that part of the code where lack of exclusive
control over a resource may bring about an improper
result.) The support of LoCK synchronization without
some point of shared memory is not necessarily more
burdensome than with shared memory.

There are some who feel that when concurrency and
close cooperation are to be achieved within the struc-

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

ture of a single computational program, memory
sharing is the preferred approach. This approach is
preferred because the burden of sending messages
across addressing boundaries may become a per-
formance bottleneck. A problem with memory-
shared systems, of course, is the memory interference
problem. Processors making references to shared
memory (and to the interconnection network that
associates the processor elements with memory ele-
ments) get in one another’s way. An area receiving
important attention in small-grained memory-
shared systems is the topology of the interconnection
network between memory and processors. The de-
sign of memory-interconnect topologies that mini-
mize pathway count as well as minimizing interfer-
ence delays is a fast-developing area. It is necessary
to achieve the performance of full crossbar networks
with considerably fewer pathways in the network.
We saw how the “cube” approaches this problem.
However, it is necessary to go beyond this approach
and to do such things as recognizing intersecting and
duplicated references, and reducing the number of
loads and stores, etc. Some developers design intel-
ligence into the memory-interconnect network with
more circuits in this part of the system than in
individual processors or populations.

It was mentioned previously that high-availability
systems may or may not share memory. In the 1BM
family of computers, high-availability versions of the
Series/1 may be built without memory sharing,
whereas the System/88 is a memory-shared system.
A high-availability system, unlike a parallel proces-
sor, tends to minimize interdependency among proc-
essors since increased interdependency reduces avail-
ability. (The probability that all processors will be
down is lower in an eight-processor unit than in a
two-processor system. However, so is the probability
that all processors will be up.)

A third concern sometimes mentioned in connection
with memory sharing or nonsharing is security. It is
necessary to show that barriers can be built between
the virtual address spaces of operating processes.
Given a certain address space, a process cannot forge
access to another address space. Given a portion of
an address space, a process cannot acquire access to
an unauthorized portion. Physical isolation of proc-
esses within the context of their processors has been
promulgated as one way of achieving such isolation.
This isolation would surely be the case in a network
where each unit had a special class of data, and the
model is sometimes proposed for processors within
a frame. However, emerging security requirements

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 7 Relations between CPE and |/0 function.
(A) CPE-oriented, (B) peers

CPE /O ENGINE

BUFFER

DEVICE CONTROL

A CPE-ORIENTED

CPE /O ENGINE

BLOCK

BUFFER

DEVICE

B PEERS

may require that the isolation of virtual address
spaces be achieved in memory-shared models which
have data of differing sensitivity within a single unit
context. This scheme suggests that the security issue
is one of addressability control and not of physical
sharing,

What links all of the structures that we have dis-
cussed—homogeneous, heterogeneous, with or with-

Lorn 263

Figure 8 Memory interference, CPE and /0 operations

out memory sharing—is the need for internal buses
that are fast enough to take the load of interprocessor
interaction or processor-to-memory interaction
without becoming a bottleneck. Fifteen years ago the
objection to the multicomputer organization was the
time it would take for one processor to communicate
with another processor relative to the time it would
take to execute instructions itself. As internal buses
became fast, this issue relaxed and the Multiple
Instruction Multiple Data (MiMD) machine became
mainstream design. In a later section we will suggest
how extensions of this phenomenon of relaxation of
communications as a system constraint may impact
system structure at higher conceptual levels where
we are concerned with networks.

input/output

The second aspect of systems architecture mentioned
in the introductory section is the relation of com-
putational processors to I/0 function. 1/0 operations
have always been a problem because 1/0 devices
characteristically operate at speeds that are orders of
magnitude slower than the speeds of processors or
memories. Therefore, much attention must be given
to maintaining an adequately rapid data flow to and
from the computing elements.

The problem has been partially solved by providing
parallel pathways into the memory. By reading and
writing multiple devices on multiple channels si-
multaneously, a maximum aggregate data rate can
potentially be achieved. This maximum rate is the
rate at which the memory, given the requirement for

264 Lomn

also serving the processors, can respond to 1/0 trans-
fer. One problem with this approach is illustrated in
Figure 8. The line chart shows instances of granting
memory access to a processor and to elements of the
1/0 subsystem. Because of memory interference be-
tween the 1/0 subsystem and processor, the speed of
the processor is effectively reduced. Some units have
attempted to use independent memory banks to
alleviate this problem. The hope is that the processor
will work in one memory bank while 1/0 function is
flowing into or out of another. In a complex multi-
user environment, however, it is essentially impos-
sible for an operating system to avoid processor-1/0
memory contention. It is possible that some form of
specialized data caching may be useful to address
this problem.

The ultimate goal of 1/0 design is to make data
transfer appear to the processor as if it were occurring
at memory speeds rather than at device speeds. One
method of achieving this concept is deep buffering
throughout the 1/0 elements. Large memories may
be placed at different stages of the 1/0 flow, and 1/0
operations move as memory-to-memory transfers
through these stages. Figure 9 shows this concept.
With sufficient intelligence associated with the stages
it may be possible to build macro analogs of proc-
essor caches in order to significantly increase the
data rate. An associated architectural notion might
be to extend the concept of uniform addressability
(a processor uses the same address whether an ele-
ment is in cache or primary memory) throughout
the 1/0 buffers.

In a previous section, I discussed the split of work
between the computational elements and 1/0 ele-
ments of a structure within a single frame. Important
advances in computing come from the scaling up of
structures because of the relaxation of interconnect
constraints. Structures within a “processor,” such as
an instruction preparation unit fronting a family of
execution units, are replicated by the structure of the
Job Entry Subsystem (JES) with a Support Processor
scheduling Main Processors. (The phenomenon of
transferring structures from one level of system ab-
straction to another goes in both directions. We see,
for example, the idea of “loose coupling,” originally
associated with channel interconnection, now occur-
ring on a single board.) Let us look again at the
structure in Figure 6, but this time at a higher level
of system abstraction so that it looks as depicted in
Figure 10. Here we show much larger functional
granules, more similar in size to major software
components. Figure 11 shows some possible splits of

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 9 Deeply buffered 1/0 function

FLOW OF DATA IS MEMORY-TO-MEMORY FROM ALL LEVELS

DEVICE
CONTROLLER

work between the processor component and the 1/0
component of a computing unit when we cross frame
boundaries.

In Part C of Figure 11, perhaps most interesting of
the three shown, we have the “Data Engine” as the
heart of the system (from the view of function and
control), and the “processor” as only an application
host. This concept is that of the “Data Node.” In its
most extreme form, the Data Node:

1. Is the repository of all enterprise-level data.

2. Is the single point of change for any data element.

3. Runs no application code, but responds to
“scripts” from application processors requesting
changes to data.

4. Imposes a security screen between its data and
application requests.

5. Provides data locking and synchronization.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

6. Provides translation from different data models
to a uniform physical view.

7. Forms and transmits application-specific views to
applications as they request them (but not for the
purpose of update).

8. Applies “integrity” rules to data so that no change
request from an application can cause an opera-
tion that violates the integrity rules.

The search for an efficient instrument to perform
these functions (or some of them) has been underway
for over a decade. We search for an engine capable
of fast search, excellent manipulation of directory
and index structures, good recovery, etc. The search
has led to a number of quite different architectures
and structures for the Data Node. One candidate,
for example, is in fact a small-grained processor
population capable of massive parallel searching.
Another approach is the enhancement of a general-

LORN 265

Figure 10 Software 1/0 layering

DBMS

ACCESS METHODS
S 08

/O SUPERVISOR

purpose processor architecture so that it performs
certain functions more efficiently. The search for the
optimum data engine encounters the same problem
as the earlier search for a perfect sorting engine. So
much of the function requires the power of a general-
purpose architecture that only marginal contribu-
tions to system throughput can be made by optimi-
zation of unique elements. What seems to be re-
quired is an ability to configure instances of the
general-purpose processor into an effective data en-
gine. A way to do this is to provide architectural
enhancement (much as one might do for vector
manipulation) in a general-purpose processor and to
refine elements of the 1/0 pathway. In this way,
systems could be configured from populations of
“application elements” and “data elements,” where
the data elements were those with the enhanced
architecture and refined 1/0 elements.

This structure can be upscaled to a networking con-
cept. Figure 12 shows an “establishment”-level sys-
tem where application units and data units are con-
figured around a local-area ring. Such a structure
would have the advantages of isolating data from
application malfunction and of providing multiple
data repositories accessible from a family of appli-
cation hosts. In such a structure as Figure 12 we
begin to lose some conviction about the distinction
between a single computer unit and a network. With
the distribution of intelligence and function into the
1/0 subsystem, and with each application element
talking to a data element, our concept of a single
system is considerably extended. The availability of
a good local-area interconnect facility allows us to

266 Lomn

scale some structures common to a single frame
upward to an establishment (a single site of business
for an enterprise).

Systems and system structures

The last section ended with the observation that fast,
reliable, and inexpensive interconnection technology

Figure 11 System structures. (A) channel style, (B) peer
style, (C) data engine style

A CHANNEL STYLE

PRESENTATION

ACCESS METHODS
0 SUPERVISOR .

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 12 Application and data nodes

DATA ENGINE
HIERARCHY

DATA ENGINE
HIERARCHY

® ANY APPLICATION TO ANY SUBJECT
& APPLICATION FAILURE CANNOT BRING DOWN SUBJECT NODE

DATA ENGINE
HIERARCHY

forms the basis for thinking of aggregations of com-
puting units as a single system. The variety of struc-
tures possible within a frame become possible over
a wider geographical area. In effect, a population of
units such as 1BM 3090s, System/38s, 1BM 43XXs,
and varieties of 18M Personal Computers may com-
bine in variations of data and control flows with the
increasing sense that they are a single system.

One important impact of the emergence of larger
system contexts may be on the structure of software.
We may be forced to reconsider our ideas of what
constitutes a “single” operating system. This recon-
sideration must have end-user and programmer as-
pects as well as operational aspects. Is it desirable
that all end users have a single view of a system
through standard end-user interfaces? Is it desirable
that all application programmers have a single view

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

of a system? Is it desirable that there be a single and
unified view of operational control? Or is it better to
allow multiple views that are functionally mapped
into one another at deeper levels of the software
structure? As an example, should we strive to present
a single image of query and relational data base or
should we allow multiple images that can commu-
nicate with one another across various “bridges?”
This question can be best understood in terms of the
levels of a system where homogeneity may exist:

1. Implementation and design. Each unit of the
interconnected system is the same model of the
same architecture running identical software at
all software levels.

2. Architecture. Each unit of the system is architec-
turally identical but may differ in model. In such
a system we may well find different software

Lorn 267

environments because the operating system for
the largest system cannot fit on the smallest, etc.

3. Operating system. The same operating system
interfaces exist for operations and application
development despite the fact that there are differ-
ent architectures and/or models underneath.

4. Subsystem. The same set of interfaces and func-
tions exists for application developers and some
end users (those who deal directly with subsystem
interfaces rather than working through an inter-
face defined by an application program), although
there may be different operating systems under-
neath.

Given the existence of multiple architectures and
models, the real choices seem to be whether to
establish homogeneity at the operating system level
or at the subsystem level. Those who believe in a
single operating system solution (represented com-
monly by the UNIX® community) believe that it is
easiest to replicate an operating system among var-
ious architectures. With such proliferation of the
operating system all higher-level software layers can
be made available with little effort. Those who be-
lieve in subsystem-level homogeneity claim that the
replication of subsystems across various operating
systems is the best first step toward achieving system
coherence. The difficulty with operating system por-
tability is the high degree of machine-specific func-
tion that is in any case associated with the operating
system level. Therefore, it may be best to duplicate
subsystems or interfaces to subsystems on top of
already existing mature operating systems.

The underlying phenomenon that motivates the
need for more uniform software interfaces and for
more function sharing across units on a network is
the anticipation of dramatic improvement in inter-
connect facility. One provocative speculation comes
from the convergence of 1/0 and local-area network
technologies. Traditionally we have been motivated
by orders of magnitude of difference in cost, reliabil-
ity, and speed of 1/0 systems and any networking
facility. Software structures have responded by sep-
arating 1/0 and communications function quite rig-
orously. But if it becomes possible, within the con-
text of local-area networks at first, to approximate
the speed of local 170 functions, we must consider
once again our ideas of sameness and difference. In
what way does a processor channel interacting with
a highly intelligent 1/0 controller differ from an ap-
plication processor interacting with a file server,
when identical technology is involved? If a brand-
new operating system were to be developed, would

268 Lorn

the split of work between its 1/0 and communications
portions be as history has developed it? Would the
split of function between operating system and sub-
systems be as it is today? In reaction to the changing
of the underlying technology we may expect signifi-
cant new developments in software structure. But

An alternative to the control flow
concept is the data flow concept.

along what path? Shall we integrate new function
into older operating systems, or should we begin to
“hide” these older systems, to think of them as only
components of a single operating system that con-
tains all software elements and maintain them only
so long as we maintain the architectures on which
they run? These questions are just now coming to
our attention and it is difficult, given the constraints
of resource and history, to predict the long-term
evolutionary trends.

What seems reasonably sure is that communications
and computer elements will continue to merge with
and interpenetrate each other so that in time the
structures and architectures now possible in a single
frame will become possible at long geographical dis-
tances.

Data flow machines

Up to this point I have assumed no fundamental
change in the nature of a processor. Computing
systems have always been “control flow” machines.
In a control flow machine the sequence of instruction
execution is controlled by a sequence counter which
points to the next instruction to be performed. An
instruction is fetched from the memory location
indicated by the sequence counter and executed. The
sequence counter is augmented, the next instruction
fetched, etc. Conditional branches replace the con-
tents of the sequence counter with the starting loca-
tion of a new sequence. The fact that some look-
ahead or pipeline machines may do all this in a
rather elaborate manner does not change the basic

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

Figure 13 Highly overiapped uniprocessor

© FLOATING POINT, FIXED POINT,
DECIMAL OPS IN PARALLEL

® MULTIPLE INSTRUCTIONS IN EACH
PIPE AT DIFFERENT STAGES

® INSTRUCTION PREPARATION
IN PARALLEL WITH EXECUTION

FLOATING-POINT PIPE

t
INSTRUCTION
)

et————
——
——————
————
———
—
——

«— STAGES OF PIPE—> |

DECODED
INSTRUCTIONS

FIXED-POINT PIPE

i

«+— STAGES OF PIPE —» £

DECIMAL PIPE

concept. The machine depicted in Figure 13, which
can execute a number of instructions in parallel, is
still a control flow machine.

An alternative to the control flow concept is the
“data flow” concept. We can think of a data flow
machine as a modification to a deeply pipelined
machine like that of Figure 13. In a control flow
machine, instruction fetch, decode, address forma-
tion, and operand fetch functions are performed in
an Instruction Preprocessor Function (1ppF) or I-Box
that operates upon instructions as determined by its
sequence counter. In a data flow machine, the se-
quencing mechanism of the 1ppF is replaced by a
concept that says an instruction is executed when its
operands are available. It is a sequence-counterless
machine.

Such a machine is shown in Figure 14. There is a
control unit fronting a family of functional units
arranged around a network. A functional unit per-
forms when it receives a packet containing a function

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

designator and data values on which to apply the
function. When the function is complete, it sends a
result packet back to the 1ppr. (In this version of a
data flow machine I assume that all finished opera-
tions are returned to the control unit, This restriction
is by no means necessary to such a system. Some
structures move packets between functional units.)
The 1PPF maintains a queue of instruction packets
that are waiting for results from functional units.
Whenever a result packet arrives at the 1ppF, it fills
in the operands of a waiting packet. It may then
release this packet to the functional unit network.
The operands required for a function to be executed
are gathered from two sources: memory and returned
packets. Thus, an instruction may have an operand
from memory and another operand which is the
result of a previous instruction. When both operands
are available, the instruction is released for execution
at a functional unit. In this way instructions are
executed at the rate at which their operands become
available. Long lists of nondependent instructions
may be executed with a high degree of paralielism,

Lorn 269

Figure 14 l-counterless SIMD data flow concept

1. FETCHFROMQ

2. PASSTOFU

3. RETURN TO CONTROL
4. CONTROL UPDATES PACKETS
5.ENTERINQ

TEMPLATE STOR|

ADD SUB MPY
t 1 0 1 10 1
1 ¢t 1 0 1
DEST DEST DEST
Z=(X+Y)* (X-Y)

and dependent instructions are “fired” as soon as
their operands arrive. In this way instructions may
be executed out of “sequence,” and maximum use
of functional units may be achieved.

The concept can be scaled up, and frequently is, to
network structures containing large functional units,
each of which may itself contain queues and local
ordering. There is interest in data flow in both the
supercomputer and the network model areas. It is
not at all clear at what rate, or if, this concept will
impact mainstream commercial processors, and a
good guess is that these products will maintain their
control flow characteristics for the foreseeable future.

Cellular machines

As logic becomes denser and denser and cheaper and
cheaper, the basic building block of a system may
itself be a very small-grained special-purpose proc-
essor. In such a system each processor is connected
to a neighbor, and each processor performs a unitary

270 Lorn

function on a unit of data. Basic functions are per-
formed by predefined network topology. Thus, a
high-level function such as sort or search or Sine
would be implemented by a set of cellular units
connected in a network topology that maps the data
flow of the function. A computational unit is itself a
collection of thousands and thousands of little spe-
cial-purpose processors that are organized into func-
tional units. Such a system could be massively par-
allel.

An interesting implication of this concept concerns
the hardware-software-firmware trade-offs of a sys-
tem. As more logic is available in this form and as
we learn to build a larger set of functional units using
cellular structures, can we reduce the amount of
software that a system requires? Can, for example,
basic operating system functions such as queue man-
agement, list searching, dispatching, and ordering be
built into systolic arrays? There is accumulating evi-
dence that, over time, the answer will be positive,
and a good deal of the function we associate with

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

software may be represented in hardware, not in
microcode, as we currently assume, but in pre-
planned cellular arrays.

The “level of an architecture”

For many years there has been continuing argument
about the relative efficiency of “interpretation” ver-
sus “compilation” of programs. From the early days
of computing there have been advocates of direct
execution by interpreters in lieu of compilation.
Program translators and program interpreters ar-
rived in the computing culture at about the same
time (late 1950s).

The current form of this continuing conversation is
RISC versus HLL architectures. The RISC advocates
believe that it is most efficient to provide a processor
with a minimum instruction set, easily mappable
into a design, and to depend upon compiler design
elegance to provide efficient programs. The compil-
ers, RISC advocates believe, can be extremely efficient
because they do not need to spend much time in-
volved in the assessment of “special cases” due to
the complex instruction set. Compiler optimization
can address issues of global program structure and
optimization without concern about recognizing
large sets of odd conditions. RISC advocates point out
that the cisc is inefficient because it “special-cases”
a compiler to distraction, it uses enormous amounts
of circuitry for instructions that will not be used (25
percent of instructions account for 95 percent of
code), and it consequently adds complexity to design
as well as cost to implementation.

Essentially the view of the RisC advocate is that given
a certain population of circuits, it is best to use those
circuits to support efficient designs that will allow
rapid execution of a minimal instruction. Rather
than consume large amounts of microcode or logic
to support many instructions, it is better to use
control code and circuits for caches and pipelines
that can help achieve concurrency and achieve an
instruction execution rate close to one instruction
per machine cycle.

The HLL advocates contend that an architecture has
responsibilities to close the “semantic gap” between
programming languages, to encourage certain forms
of programming that are known to be efficient, and
to recognize and prevent many types of run-time
errors that compilers cannot recognize and prevent.
The overall success of an architecture, they claim,
lies not in the instruction execution rate, but in the

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

reduction of the cost of creating and debugging pro-
grams. The legitimate use of circuit count and mi-
crocode space is to support higher-level architectural
abstractions such as tagged data, object-oriented ca-
pability-based addressing, generic instruction sets,
etc. Good higher-level architectures will ease the
burdens of compilation and will significantly im-
prove the economics of the programming process.
An architecture should be extended in the direction

There is no real metric for
complexity of compilation.

of the forms and structures of higher-level languages
and should include direct support of a number of
abstract programming concepts.

What are we to make of these two positions? Both
groups claim they will increase the ease of compila-
tion, but that is the only point at which even diver-
gences converge. The RISC group seems oriented
toward price/performance and efficient use of cir-
cuits; the HLL group seems oriented toward the use
of the architecture to minimize the expense of de-
veloping and maintaining programs and to the
achievement of security.

How are we to approach these viewpoints? One
problem is that there is no real metric for the com-
plexity of compilation, so that the argument of which
approach leads to better compilers cannot be re-
solved. Rrisc advocates point with pride at how much
simpler it is to compile with the addressing conven-
tions of the register file model as opposed to richly
varied addressing structures. But on the other hand,
while claiming ease of compilation, they point with
pride at the sophistication necessary to compile good
programs in a pipelined register file machine.
Whether code rearrangement for pipelines is more
or less difficult than determining which addressing,
form should be used is not an easily resolvable point.

An important part of the RISC argument is the as-
sumption that higher-level functions will be imple-
mented in microcode. This current assumption is

RN 271

reasonable, but by no means (in view of the last
section, for example) a permanent assumption.

Surely the RISC advocates are right in their claim that
too many instructions are unnecessary and wasteful.
They may be a little less right in specifically insisting
that all instructions execute in one cycle (or two
cycles for cached memory references), because they
are forcing themselves to rely on subroutine multiply
and divide whose performance will be pipeline-crit-
ical. The argument against allowing more flexible
addressing (two or three addresses of any type can
be used in any order with any operation code) seems
most uncertain and is closest to saying that good
compilation can overcome a deficient architecture.

So we have a scapegoat in the middle (the cisc) with
the risc and HLL advocates on either side and some
difficulty in defining the turf, along with a good deal
of passion. (Certain architects from some universities
will not go to meetings that architects from other
universities are attending.) In any case we are in a
period where RIsC is having its day and where, for
that reason, traditional concerns about what is a
good architecture in the original meaning of the word
are being revisited at a time when it is not clear how
important this issue really is to system structure.
Some claim that dramatic improvements in price/
performance are a potential of RiSC architectures,
others claim that forthcoming technology will show
that System/370-style cisc can achieve the same
levels of price/performance. The HLL people are
resting in the background and hinting that price/
performance is not the measure to be used at all.
The proper measure is the degree to which the ar-
chitecture encourages proper use of critical software
engineering methodology in application develop-
ment.

The argument is interesting mostly because of the
interest it focuses on what we think is important, on
the relations between architecture and design and
architecture and software, as well as on our wonder-
ful ability as an industry to make great progress
without actually ever really defining our terms.
Everyone’s view of the world is partial.

Concluding observation

We have discussed a number of ideas relative to
transition in system structure. Perhaps the central
and underlying themes are twofold:

272 Lorn

1. There is going to be a significant restructuring of
concepts and merging of ideas that we have tra-
ditionally thought to be distinct and separate.

2. Wide variation in system structure is going to be
enabled by changing technology.

But in particular, for this coming time frame,

1. There will be dramatic improvement in local
interconnection that will allow the scaling-up of
structures to the establishment level. The Single
System Image will begin to form for units inter-
connected at a site of business.

2. 1/0 structures will become much more elaborate
and will involve a great deal more intelligence
and storage.

3. Communication and 1/0 elements will begin to
interpenetrate each other.

4. System structures will begin to include specialized
communications, applications, and data server
units.

5. Highly parallel machines will not become main-
stream systems. Neither will data flow machines.

6. We will continue to argue about issues that are
more fun than critical.

The underlying technologies seem to be telling us we
can scale up our concepts and truly take large system
views. The constraints on interunit interconnection
will be relaxed, and aggregations of systems at sig-
nificant distances can be used and managed as co-
herent structures. All of our dreams are coming true,
and all of the problems of dreams coming true are
being visited upon us.

UNIX is a trademark of AT&T Bell Laboratories.

General references

A complete bibliography in this area would be overwhelming.
Following is a list of references, recent and classical, that will
enrich the reader’s understanding of this area and that are easily
(for the most part) accessible. IBM sources are not listed.

C. G. Bell et al.,, “Encore continuum: A complete distributed
workstation multiprocessor computer environment,” Proceedings
of the AFIPS 1985 National Computer Conference (1985), pp.
147-155.

Communications of the ACM (Special Issue on Computer Archi-
tecture) 21, No. 1 (1978).

P. H. Enslow, Jr., Multiprocessing and Parallel Processing, John
Wiley & Sons, Inc., New York (1974).

P. H. Enslow, Jr., “Multiprocessor organization—A survey,” 1977

Computer Surveys of the Association of Computing Machinery
(1977), pp. 103-121,

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

T.-Y. Feng and W. Young, “Parallel control algorithm for reduced
omega-omega networks,” Proceedings of the AFIPS 1985 National
Computer Conference (1985), pp. 167-174.

D. W. Hockney and C. R. Jesshope, Parallel Computing, Adam
Hilger & Company, London (1981).

A. G. Kamlayashi, “A database machine based on data distribution
approach,” Proceedings of the AFIPS 1984 National Computer
Conference (1984), pp. 613-628.

N. Matelan, “Flex 32/Multicomputer,” Proceedings of the AFIPS
1985 National Computer Conference (1985), pp. 139-145.

H. Lorin, Aspects of Distributed Processing, John Wiley & Sons,
Inc., New York (1980).

H. Lorin, Parallelism in Hardware and Software: Real and Appar-
ent Concurrency, Prentice-Hall, Inc., Englewood Cliffs, NJ (1972).

L. H. Magnuson, “OpenNet: A network architecture for commu-
nicating different operating systems,” Proceedings of the AFIPS
1985 National Computer Conference (1985), pp. 619-625.

L. Polk, “Dataflow architecture for knowledge representation,”
Proceedings of the AFIPS 1985 National Computer Conference
(1985), pp. 287-297.

C. V. Ramamoorthy and H. F. Li, “Pipeline architecture,” Com-
puter Surveys of the Association for Computing Machinery, pp.
61-102.

J. Rattner, “Concurrent processing—A new idea in scientific com-
puting,” Proceedings of the AFIPS 1985 National Computer Con-
ference (1985), pp. 157-166.

A. Sekino et al., “The DCS—A new approach to multisystem
data-sharing,” Proceedings of the AFIPS 1984 National Computer
Conference (1984), pp. 59-68.

G. Serlin, “New microprocessor based computer architectures,”
Proceedings of the AFIPS 1984 National Computer Conference
(1984), pp. 123-130.

C.-L. Wa et al., “Prototype of Star architecture,” Proceedings of
the AFIPS 1985 National Computer Conference (1985), pp. 191-
201.

Harold Lorin IBM Corporate Technical Institutes, 500 Columbus
Avenue, Thornwood, New York 10594. Mr: Lorin joined IBM in
1965 and is currently Consulting Facuity Member at the IBM
Systems Research Institute and Senior Professor of Computing
Science at Hofstra University. He has previously served on the
senior staff of the Service Bureau Corporation and has held a
variety of professional and management positions with the Sperry
Rand Corporation, the Systems Development Corporation, and
the United States Air Force. He is the author or coauthor of a
number of books and articles on various aspects of computing.
The books include Parallelism in Hardware and Software, Sorting
and Sorting Systems, Aspects of Distributed Processing, Operating
Systems, Economics of Information Processing, and Introduction
to Computer Architecture and Organization. Mr. Lorin is a fre-
quent participant at professional development seminars. He has
been a speaker in programs at the Massachusetts Institute of
Technology Center for Information Systems Research (CISR), the
New York University Graduate Center for Computer Applications
and Information Systems (CAIS), the Diebold Research Program,
the Association for Systems Management, and other organizations.
He has organized IBM Corporate Symposia at the IBM Systems
Research Institute in key information processing issues. He is a
frequent contributor to special IBM institutes and seminars and is
on the advisory board of Abacus Magazine.

Reprint Order No. G321-5275.

IBM SYSTEMS JOURNAL, VOL 25, NOS 3/4, 1986

LorN 273

