Computer processing
of dates outside the
twentieth century

This paper presents practical solutions to problems
envisioned in extending computer processing of dates
beyond the twentieth century. Many data processing
managers are concerned with processing cross-cen-
tury dates, and in doing so using existing systems,
with a minimum of disruption to normal operations.
The use of existing date formats can eliminate the
need for massive system modifications. Methods of us-
ing existing date formats across century boundaries
are explained. The use of a format termed the Lilian
date format in honor of Luigi Lilio, the inventor of the
Gregorian calendar, is introduced. The requirements
for an effective date-processing algorithm are pre-
sented.

he Gregorian calendar serves us quite well in

our day-to-day living. Due to discontinuities in
various date divisions, however, it is not readily
adaptable to computer programming. This fact be-
comes more apparent as we approach the new cen-
tury. Few efficient, easy-to-use functions for manip-
ulating dates have been produced. Also to be consid-
ered are the human requirements for ease of use,
development, and maintenance. Other considera-
tions include storage costs, efficiency, and adaptabil-
ity across many different applications and environ-
ments.

Some early date-conversion programs were acts of
expediency rather than planning, created to solve
specific problems rather than for general program-
ming use. Different functions were created at differ-
ent times. Naming conventions, invocation formats,
and implementation methods have often been in-
consistent. Programs that provided a day-of-week

244 onws

by B. G. Ohms

function were rare. Also rare were programs for
deriving a new date by adding or subtracting from
another date in a different year. The functions that
were available were normally not part of an inte-
grated system for providing compatibility with most
of the common date formats. Since documentation
was not always created or maintained, individuals
were often unaware of what was available. Today,
dating format standards are being discussed inter-
nationally. The date-processing method presented in
this paper is expected to be compatible with any
foreseeable international standard date format as
well as with the several formats discussed in this

paper.

Typically, dates are displayed and stored in the Ju-
lian and Gregorian formats. Concepts and formats
of both Julian and Gregorian date formats are dis-
cussed later in this paper. Simply stated, the Julian
date is the number of the year together with the serial
number of the day of that year. The Gregorian date
format consists of month, day of month, and year.
Many calendars show Julian dates printed in small
numerals.

A format termed the Lilian date format is presented
here as the basis for making date conversions of the

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

type mentioned earlier. The Lilian format, which
may be stored in three bytes of memory, provides
the storage capacity for dates well beyond the year
10 000. This format handles processing across cen-
tury years and other aspects of date conversion not
currently adaptable to computer programming,
Practical date processing services must provide ease
of use for the end user, developer, and maintainer.
Such services must also eliminate date ambiguity,
achieve excellent performance, and minimize stor-
age.

The two positions traditionally used in both Julian
and Gregorian date formats implicitly represent a
year within a century. However, this system is inad-
equate for representing dates in more than one cen-
tury. For example, it is ambiguous as to whether 03
represents the year 1903 or the year 2003. The Lilian
date format avoids the ambiguity by using seven
positions for the number of days from the beginning
of the Gregorian calendar, October 15, 1582.

Origins of date complexity

Julian calendar. The Julian calendar was established
in 46 B.C. by Julius Caesar." It replaced a system of
constant adjustments, more for political reasons than
for correcting inaccuracies in timekeeping. After a
bad start, with the first few leap years being calculated
incorrectly, it served quite adequately for many cen-
turies. The Julian calendar is not the same as the
Julian date, which was previously defined. The Ju-
lian calendar was a time-measuring system, which
we now discuss.

The scheme of the Julian calendar was quite simple.
The calendar year consisted of 365-day years, with
years evenly divisible by four having 366 days. The
resulting average year of 365.25 days was slightly
longer than the tropical year, which is based on the
time marked by the passage of equinoxes. That slight
difference resulted in a gradual drift of the calendar
year. The resulting difficulty in properly setting the
date of celebration of Easter caused great concern to
the Roman Church. The date for Easter is related to
the date for Passover, which is related to the vernal
equinox. By the sixteenth century, the discrepancy
approximated ten days, and the desire for calendar
reform intensified. An artifact of this discrepancy
manifests itself today in the differences in dates for
Christmas and Easter between the Western Church
and the Eastern Church. The latter continues to use
the Julian calendar dates as they were at the time of
the Gregorian calendar reform. That is, the Eastern

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Church recognizes the Gregorian calendar, but for
certain feast days does not void the ten-day error
that existed at the time of the calendar reform.

Gregorian calendar. For the calendar reform, Pope
Gregory XIII selected® the plan of Aloysius Lilius

England and her colonies adopted
the Gregorian calendar on Thursday,
September 14, 1752.

(1510-1576?)," who is also known as Luigi Lilio.?
This reform, known as the Gregorian calendar, was
implemented on Friday, October 15, 1582.2

Although use of the Gregorian calendar spread rap-
idly among Roman Catholic countries, many cen-
turies passed before it was generally used by non-
Catholic countries. England and her colonies, in-
cluding what is now the United States, adopted the
calendar on Thursday, September 14, 1752.> Many
other countries—notably China, Greece, and Rus-
sia—did not adopt it until after the beginning of the
20th century. In fact, Russia adopted the Gregorian
calendar on two separate occasions, first in 1918,
about the same time as many other countries, and
again on June 27, 1940.* Changes made in Russia in
1929 to avoid the religious associations of the Gre-
gorian calendar were unsuccessful, and it was reim-
plemented in 1940.

The reform that synchronized the calendar year with
the tropical year required the removal of ten days
from the calendar. As a result, Friday, October 15,
1582, immediately followed Thursday, October 4,
1582. (An alternate plan would have removed the
ten excess days gradually by canceling leap days for
40 years.) As before, every fourth year is a leap year,
and, to maintain synchronization, centurial years
that are evenly divisible by 400 are also leap years.?
Thus, for example, 1900 was a common year; the
year 2000 will be a leap year, and the year 2100 will
start a series of common centurial years again. The
result is an average calendar year of 365.2425 days,
which closely approximates the tropical year. Despite

onms 245

this close approximation, by the 44th century,’ the
Gregorian calendar will again differ from the tropical
year by one day. Because the tropical year consists
of an irrational number of days, no calendar year
with an integral number of days can exactly match
the tropical year. Not only is there not an integral

Discontinuities in the Gregorian
calendar scheme cause most of the
difficulties with date manipulation.

number of days in a tropical year, but also the length
of the day is not constant. That is, the length of the
tropical year is also changing gradually.

Algorithms for date processing

Centurian date format. Discontinuities in the Gre-
gorian calendar scheme cause most, if not all, of the
difficulties associated with date manipulation. In-
stances of discontinuities are the following:

¢ No calendar unit is evenly divisible by weeks.
¢ The number of days per month varies.

e The number of days per year varies.

e The number of days per century varies.

These facts must be accounted for in calculating the
number of days between two dates, calculating a date
based on the addition or subtraction of days from
another date, and calculating the day of the week for
a date. A centurian date format (DDDDD, represent-
ing the day within a century) works well by giving
continuous values within a century. Also, other date
formats and day of week are readily calculable from
this value. The centurian format is limited to a
century and results in discrepancies when a century
boundary is crossed. Consideration must be given to
century years when making a leap year calculation.
The pDDDD format will not span more than 273
years (or 179 years in a two-byte binary format).
Also, a standard point of origin for the starting day
must be defined.

Lilian date format. The Lilian date format consists
of seven positions for the number of days from the

246 onws

beginning of the Gregorian calendar. Day one is
Friday, October 15, 1582, and the value is incre-
mented by one for each subsequent day. Based on
this format are services supporting 44 experimental
functions (or more if the three pmMY, MDY, and YMD
experimental versions of the Gregorian format are
counted) synthesized from eight mnemonics.

Function-naming convention. Functions are named
to promote easy recall and to suggest the activity to
be performed. In the algorithm and experimental
PL/1 program discussed in this paper, each function
name is synthesized from two 3-letter mnemonic
parts. These mnemonic parts are defined as follows:

e CLL: compact Lilian date
* DAY: day of the week

* GRG: Gregorian date

* JUL: Julian date

* LIL: Lilian date

* SGR: short Gregorian date
* SJL: short Julian date

e VAL: validate a date

The first part is a description of the target, and the
second part is a description of the source. VAL (vali-
dation) and DAY (day of week) can appear only in
the target position of the function.

Arguments presented to any of the conversion func-
tions are always presented in the same order: new
date (target); old date (source); range date (control),
when required; and Gregorian format [specifier(s)],
when required. Table 1 illustrates the format for
conversion arguments. In all instances, a return code
is set.

The format descriptions in Table 1 refer to the type
of data—D for day, M for month, and Y for year,
as well as the number of positions (e.g., YY for two
year positions)—that the data occupy. The origin of
the term “Julian date” for the YyDDD format is given
in Reference 6. Nevertheless, dates represented in
the Julian format conform to the Gregorian calendar
and not to the Julian calendar. The Julian date for
Thursday, November 14, 1985, is 85318 (short form)
and 1985318 (extended form).

Algorithms. The process of conversion between a
Lilian format date and a Julian format date is now
described. The algorithms are simpler to calculate by
choosing a virtual base date rather than the real one.
After the calculations are made, any discrepancies
are resolved. In the following algorithms, the num-

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Table 1 Examples of conversion function arguments

Argument

Description

target=JULSJL (source, 1925)
range 1925-2024

target=JULGRG (source, DMY)
target=LILGRG (source, YMD)
target=CLLJUL (source}
target=SGRGRG (source, YMD, MDY)
CALL VALJUL (source)
target=DAYSJL (source 1925)

Conversion to a Julian (YYYYDDD) date from a short Julian (YYDDD) date within the

Conversion to a Julian (YYYYDDD) date from a Gregorian (DDMMYYYY) date
Conversion of a Lilian (packed format) date from a Gregorian (YYYYMMDD) date
Conversion of a compact Lilian (binary format) date from a Julian date

Conversion of a short Gregorian (YYMMDD) date from a Gregorian (MMDDYYYY) date
Validation of a Julian date

Day of week for a short Julian date

bers in parentheses are results of calculations made
on the previously given date, November 14, 1985.

Extended Julian to Lilian. Given an extended Julian
date (YYYYDDD), compute the corresponding Lilian
date. First, compute the number of days from virtual
January 1, 1501, to the start of the year being con-
verted (1985318 Julian).

e Subtract 1501 from the Julian year (484).

e Multiply the difference by 365.25 (i.e., the average
number of days per year) (176 781.00).

¢ Truncate the result. The leap day is kept only for
full four years (176781).

Then compute the number of Julian calendar (not
Julian format) days from October 15, 1582, to the
date being converted.

e Subtract 29872, i.e., the number of days between
virtual January 1, 1501, and October 15, 1582
(146 909).

¢ Add the Julian days (+318 = 147227).

Next, make the Gregonan calendar adjustments to
this value.

e Subtract 1501 from the Julian year (484).

e Divide the difference by 100. One leap year is
usually skipped each century (4.84).

¢ Truncate the result to obtain the number of whole
leap days. Partial leap days do not exist (4).

e Subtract the number of whole leap days from the
number of Julian calendar days (147223).

Because one out of every four centuries keeps all of
its leap years, use the virtual year 1201, which is the

iBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

beginning of the four-century cycle that contains the
year 1582, to compute the number of leap years up
to the target date.

¢ Subtract 1201 from the Julian year. The first four-
hundred-year cycle began with virtual year 1201
and ended in the real 1600 (784).

¢ Divide the difference by 400 because one century
leap year per 400 years is kept (1.96).

e Truncate the result because partial leap days do
not exist (1).

e Add these leap days back into the adjusted Julian
calendar days (147 224).

This final result is the number of Gregorian calendar
days from the beginning of the Gregorian calendar
(October 15, 1582) to the date being converted. This
result is the sought-for Lilian date.

Lilian to extended Julian. The purpose of this ex-
ample is to show the procedure for converting a
Lilian date to an extended Julian date. First, create
a virtual Lilian date, with a starting point of January
1, 1201. Convert this result into a Julian calendar
(not Julian format) date. Then convert the Julian
calendar date to a Julian format date. The procedure
1s as follows (147224 Lilian):

¢ Add 139 444 to the Lilian date. This is the number
of days from virtual January 1, 1201 (the start of
a 400-year cycle) to October 15, 1582. The result
is a pseudo-Lilian date (286668).

¢ Divide the pseudo-Lilian date by 36524.25, the
average number of days per century (7.85).

¢ Truncate the result to obtain the number of cen-
tury leap days (7).

oms 247

e Add the number of century leap days to the
pseudo-Lilian date (286 675).

¢ Divide the number of century leap days by 4
(1.75).

¢ Truncate the result to obtain the number of four-
century leap days (1).

e Subtract the number of four-century leap days
from the pseudo-Lilian date, because they are
already included (286 674).

The result is the number of full Julian calendar days
from January 1, 1201, to the date being converted.
We now convert this to an extended Julian format
date.

¢ Divide full Julian calendar days by 365.25. This
usually gives one less than the year for the date
being converted (784.87).

e If there is no remainder from the division, subtract
one from the quotient; otherwise, truncate the
quotient to get the pseudo-Julian prior year (784).

e Multiply the pseudo-Julian prior year by 365.25
to determine the number of annual Julian calen-
dar days prior to the year for the date being
converted (286 356.00).

¢ Truncate the number of annual Julian calendar
days to eliminate partial leap days (286 356).

¢ Subtract the number of truncated annual Julian
calendar days from the full number of Julian
calendar days to obtain the number of current
Julian calendar days in the year of the date being
converted (318).

e Add 1201 to the pseudo-Julian prior year to obtain
the real Julian year, i.e., 1200 for years prior to
1200 plus one for the current year (+784 = 1985).

e Multiply the real Julian year by 1000 to put it into
its proper Julian format position (1985000).

¢ Add the current Julian calendar days to the result
to complete the Julian format date from the Lilian
format date (1985318).

Ease of conversion

Accommodating end users. End users usually enter
two digits for the year in a date and understand the
ambiguity that this represents. Therefore, even at the
turn of the century, to avoid adverse user reaction,
programs must continue to function with only two
digits for year. The inference of the year 1997 from
97 and 2003 from 03 must continue. For the excep-
tional case where the correct meaning could be 1897
and 1903, entry of all four digits may be required.

248 oms

The month-day-year and day-month-year formats
are ambiguous. Therefore, it might be advisable to
continue presenting the date in its conventional U.S.
format with a parenthetical explanation of the for-
mat—such as (MM/DD/YY)—to avoid the ambiguity.

It is not necessary to change date
formats in files, because it is possible
to change the programs only.

However, it may be necessary to provide a conver-
sion function that receives a definition of the implied
century as a parameter. An excellent way to do this
unambiguously is to specify a year as the desired
starting point of a 100-year range. For example, if
the starting year for the range is specified as 1925,
dates with year digits of 25 through 99 would be
between 1925 and 1999, and dates with year digits
of 00 through 24 would lie between 2000 and 2024.

Accommodating systems support. The conversion of
isolated files to new date formats presents a rather
trivial problem. In most cases, however, it is not
possible to isolate the process. All programs that
access the modified data must be changed simulta-
neously. In some large systems, literally thousands
of programs may be involved. In these large systems,
it may be prudent to avoid the cost and risk of
massive changes in a short period of time.

It is not necessary to change date formats in files,
because it is possible to change the programs only,
so that the implied century in a date is recognized.
Of course, in the vast majority of cases, that is exactly
what does take place. Dates familiarly and implicitly
exist within the 100-year range beginning with 1900
or 1901. Thus it is necessary merely to modify the
programs so that the 100-year range starts at a later
date. A beginning date set eighty years prior to the
current systems date may be a reasonable conven-
tion. This is well within the range now in use.

The significant feature of this approach is that every-

thing need not be modified at once. The modifica-
tions may be made over a period of years during

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

normal program maintenance. Of course, as systems
are maintained or replaced, it would be practical to
implement full information date formats. Where
systems contain dates that span a range of more than
100 years, the century must already have been car-
ried. In the rare event that this is not true, immediate
conversion is unavoidable. Fortunately, in most ap-
plications, we can deal with centuries as exceptions
rather than as a common probiem.

Computational considerations

Storage. The two main considerations pertaining to
storage are (1) the cost of storing large quantities of
data; and (2) the computational cost of converting
records within computer files to larger date-field
sizes. When miillions of dates are stored, as they are
in most business systems, every additional byte re-
quired to save a single date multiplies to millions of
additional bytes of storage. The programming nec-
essary to accommodate larger date-field sizes in rec-
ords further complicates date conversion.

Putting bounds on data-storage costs at reasonable
levels and reducing conversion complications are
both achievable. The allocation of additional space
to record four positions for year, rather than the
traditional two, is not the only possibility. Many
systems currently store dates internally in packed
Julian format, requiring three bytes of storage. In
packed format, a Lilian date or an extended Julian
date (YYYYDDD) both require four bytes of storage.
However, if a binary format were to be adopted,
either form of date could be stored in the three bytes
used at present.

A more restrictive situation exists for systems in
which dates are stored in two bytes instead of three.
These systems use a binary format to record centu-
rian or other forms of dates. In the near term for
these systems, it may be necessary to continue storing
dates in only two bytes. This cannot be accommo-
dated with a Julian format. However, it is possible
to store a range of dates by taking advantage of the
continuous characteristic of a Lilian date.

Using the Lilian date system, any date in a selected
range of 179 years may be stored as follows. Assume
that the selected range is January 1, 1901, through
December 31, 2079. Find the Lilian value of Decem-
ber 31, 1900. Subtract this value from the Lilian
value of the date to be stored. Convert the result to
a 16-bit (two-byte) binary value and store the result.
Reverse the process to restore the two-byte date to

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Lilian format. Continuing to store dates in two bytes
should be considered only where the programming
cost of increasing record sizes in an existing system
is prohibitive. The decreasing cost of storage makes
the use of the full Lilian or Julian format a practical
possibility when an application is being modified.

In the experiments on which this paper is based, the
three-byte Lilian format for data storage has been

The continuous nature of the Lilian
date accommodates the types of
processing that normally take place.

found to be preferable. Internally, in computer use,
the continuous nature of the Lilian date accommo-
dates the types of processing that normally take place
within a program. In addition, for all three storage
sizes, a consistent format (i.e., the all-Lilian format
or the quasi-Lilian format) is maintained.

Flexibility. In our experiments, the 1BM System 360/
370 assembly language was used for coding the date
functions. However, the method is easily adaptable
to other programming languages such as COBOL,
PL/1, and RPG. The experimental functions were also
made re-entrant for flexibility within on-line envi-
ronments.

Validity. Ideally, the validation of a date is necessary
only at the point of its manual entry into a system.
Experience teaches us that it is not unusual for an
interfacing system to provide invalid dates. There-
fore, all dates passed to conversion functions must
be validated. When an invalid date is encountered
by the experimental system, a null value is returned
to the invoking program and a return code is set to
indicate the nature of the invalid condition.

Efficiency. Date conversions are used heavily within
certain applications. Because of the impact on a
single system or an installation, efficiency must be
inherent in date-conversion programs. Storage re-
quirements for external display and internal calcu-
lations by computer programs are expected to mo-

oms 249

tivate a high volume of conversions. Widely used
programs in high-volume environments must per-
form well and not consume excessive amounts of
storage. A date-conversion program that is good in
all other ways will not be widely used if it is an
operational bottleneck.

For the program discussed in this paper, written in
System 360/370 assembly language and imple-

Experimental results indicated good
efficiency.

mented as a set of PL/1 functions, the experimental
results indicated good efficiency. The longest execu-
tion paths, including pL/1 prologue, validation, con-
version, and PL/1 epilogue, are a little more than one
hundred machine-language instructions. Although
the functions appear to the invoking PL/I program
to be separate programs, they are all actually pro-
vided within a single program that requires less than
4K bytes of storage.

Concluding remarks

Programmers require date-processing functions that
effectively handle applications for both the present
and the future. For the present, it is sufficient to
validate source dates, to convert from one traditional
date format to another, and to perform addition or
subtraction operations involving dates. For the fu-
ture, additional functions are required that support
processing restricted only by the limitations of the
Gregorian calendar. These functions must be fully
compatible with existing date-format and record-size
restrictions. Massive conversion efforts should not
be required to process and store dates outside the
twentieth century. Also, end users should be able to
continue to use existing two-digit date formats when
interacting with computer systems. In all cases the
programs that provide these services must be reliable,
efficient in the use of both processor and storage,
and flexible in application.

250 oHms

Programs that embody all these qualities have been
written and tested experimentally. The application
as written requires less than 4K bytes of storage and
has an average execution path of fewer than 100
machine language instructions. Re-entrancy and the
possibility of multilanguage implementation indicate
excellent flexibility. This approach presents a prac-
tical method of processing dates that is compatible
with any dating format standard.

Acknowledgments

No significant work is done in isolation. Over the
years, [have experienced the inspiration, assistance,
and patience of many individuals. My colleagues
Tom Gauthier and Jim Willard first sparked my
interest in date processing several years ago. Recently
Alex Chang, Barb Henderson, Jack Henriksen, Fred
Lange, Bob Lord, Libby Ross, Karen Seabury, and
Billy Shih have patiently served as a sounding board,
made helpful suggestions, and have been active sup-
porters. Sandy Mink provided valuable editorial sup-
port. Many unnamed others have been involved in
my experiment, including every member of my fam-
ily. Their support is also greatly appreciated.

Cited references

1. G. Moyer, “Luigi Lilio and the Gregorian reform of the calen-
dar,” Sky and Telescope 64, No. 11, 418-419 (November 1982).

2. 1.J. Bond, Handy Book of Rules and Tables for Verifying Dates
Within the Christian Era, Russell & Russell, a Division of
Atheneum House, Inc., New York (1966).

3. The New Encyclopedia Britannica, Encyclopedia Britannica,
Inc., Chicago (1980), p. 602.

4. F. Parise, Editor, The Book of Calendars, Facts on Life, Inc.,
New York (1982).

5. G. Moyer, “The Gregorian calendar,” Scientific American 246,
No. 5, 144-152 (May 1982).

6. M. A. Covington, “A calendar for the ages,” PC Tech Journal
3, No. 12, 136-142 (December 1985). Joseph Justice Saliger
(1540-1609) named the Julian date in honor of his uncle Julius.

General references

G. Moyer, “Astronomical scrapbook—Notes on the Gregorian
calendar reform,” Sky and Telescope 64, No. 12, 530-533 (Decem-
ber 1982).

International Organization for Standardization, “Writing of cal-
endar dates in all-numeric form,” Reference No. ISO 2014-1976(E)
(April 1976).

International Organization for Standardization, “Information
processing interchange—Representation of ordinal dates,” Refer-
ence No. ISO 2711-1973(E) (January 1973).

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Bruce G. Ohms IBM Information Systems Group, 301 Merritt 7,
Norwalk, Connecticut 06856. Mr. Ohms joined IBM in 1967 and
is currently a senior programmer/analyst working in the area of
applications systems development. Prior to his current assignment,
he has held a variety of positions in programming, systems design,
analysis, and development center implementations. He received
an A.A.S. degree in data processing from Belleville Area College,
Belleville, Itlinois, and he attended Yale University.

Reprint Order No. G321-5274.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

onms 251

