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This  paper  presents  practical  solutions to problems 
envisioned  in  extending  computer  processing  of  dates 
beyond the  twentieth  century. Many data processing 
managers  are  concerned  with  processing crosscen- 
tury dates, and  in  doing so using  existing  systems, 
with  a minimum  of  disruption to normal  operations. 
The  use  of  existing date  formats can eliminate  the 
need  for  massive  system  modifications.  Methods  of  us- 
ing  existing  date  formats  across  century  boundaries 
are  explained. The  use  of a  format  termed  the  Lilian 
date  format in  honor  of  Luigi  Lilio, the inventor  of the 
Gregorian  calendar,  is  introduced. The  requirements 
for  an  effective  date-processing  algorithm are pre- 
sented. 

T he Gregorian calendar serves  us quite well in 
our day-to-day  living. Due to discontinuities in 

various date divisions,  however, it is not readily 
adaptable to computer programming. This fact  be- 
comes more apparent as we approach the new cen- 
tury. Few  efficient,  easy-to-use functions for manip- 
ulating dates have  been produced. Also to be consid- 
ered are the human requirements for  ease of  use, 
development, and maintenance. Other considera- 
tions include storage  costs,  efficiency, and adaptabil- 
ity  across many different applications and environ- 
ments. 

Some early  date-conversion  programs were acts of 
expediency rather than planning, created to solve 
specific problems rather than for  general  program- 
ming  use.  Different functions were  created at differ- 
ent times. Naming conventions, invocation formats, 
and implementation methods have often been in- 
consistent. Programs that provided  a day-of-week 

function were rare. Also rare were programs  for 
deriving  a new date by adding or subtracting from 
another date in a  different  year. The functions that 
were available were normally not part of an inte- 
grated  system  for  providing compatibility with  most 
of the common date formats.  Since documentation 
was not always  created or maintained, individuals 
were often  unaware of what was available. Today, 
dating format standards are being  discussed inter- 
nationally. The date-processing method presented in 
this paper is expected to be compatible with any 
foreseeable international standard date format as 
well as  with the several formats discussed  in this 
paper- 

Typically, dates are displayed and stored  in the Ju- 
lian and Gregorian formats. Concepts and formats 
of both Julian and Gregorian date formats are  dis- 
cussed later in this paper. Simply stated, the Julian 
date is the number of the year  together  with the serial 
number of the day  of that year. The Gregorian date 
format consists of month, day  of month, and year. 
Many calendars show Julian dates printed in small 
numerals. 

A format termed the Lilian  date  format is  presented 
here  as the basis  for making date conversions of the 
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type mentioned earlier. The Lilian format, which 
may be stored in three bytes of memory, provides 
the storage  capacity  for dates well beyond the year 
10 000. This format handles processing  across  cen- 
tury years and other aspects of date conversion not 
currently adaptable to computer programming. 
Practical date processing  services must provide  ease 
of  use for the end user,  developer, and maintainer. 
Such  services  must  also eliminate date ambiguity, 
achieve  excellent performance, and minimize stor- 
age. 

The two positions traditionally used in both Julian 
and Gregorian date formats implicitly  represent a 
year  within a century. However, this system  is inad- 
equate for  representing dates in more than one cen- 
tury. For example, it is ambiguous as to whether 03 
represents the year 1903 or the year  2003. The Lilian 
date format avoids the ambiguity by using  seven 
positions for the number of days  from the beginning 
of the Gregorian calendar, October 15,  1582. 

Origins of date complexity 

Julian calendar. The Julian calendar was established 
in 46  B.C.  by Julius Caesar.' It  replaced a system  of 
constant adjustments, more for  political  reasons than 
for correcting inaccuracies in timekeeping.  After a 
bad start, with the first few leap  years  being  calculated 
incorrectly, it served quite adequately for many cen- 
turies. The Julian calendar is not the same as the 
Julian date, which  was  previously  defined. The Ju- 
lian calendar was a time-measuring system,  which 
we  now discuss. 

The scheme of the Julian calendar was quite simple. 
The calendar year  consisted of  365-day  years,  with 
years  evenly  divisible by four having 366  days. The 
resulting  average  year of 365.25  days was  slightly 
longer than the tropical year, which  is  based on the 
time marked by the passage  of equinoxes. That slight 
difference  resulted in a gradual drift of the calendar 
year. The resulting  difficulty  in  properly  setting the 
date of celebration of Easter  caused  great concern to 
the Roman Church. The date for  Easter  is  related to 
the date for  Passover,  which  is  related to the vernal 
equinox. By the sixteenth century, the discrepancy 
approximated ten days, and the desire  for calendar 
reform  intensified. An artifact of this discrepancy 
manifests  itself  today  in the differences  in dates for 
Christmas and Easter  between the Western Church 
and the Eastern Church. The latter continues to use 
the Julian calendar dates as they were at the time of 
the Gregorian calendar reform. That is, the Eastern 

IBM SYSTEMS JOURNAL. VOL 25, No 2, 1986 

Church recognizes the Gregorian calendar, but for 
certain  feast  days  does not void the ten-day error 
that existed at the time of the calendar reform. 

Gregorian  calendar. For the calendar reform,  Pope 
Gregory XI11 selected2 the plan of Aloysius  Lilius 

England  and  her  colonies  adopted 
the  Gregorian  calendar  on  Thursday, 

September 14,1752. 

(1510-1576?),' who  is also  known  as Luigi Li1i0.~ 
This reform,  known  as the Gregorian calendar, was 
implemented on Friday, October 15, 1 582.2 

Although use  of the Gregorian calendar spread  rap- 
idly among Roman Catholic countries, many cen- 
turies passed  before it was  generally  used  by non- 
Catholic countries. England and her  colonies, in- 
cluding  what is  now the United States, adopted the 
calendar on Thursday, September  14,  1752.3  Many 
other countries-notably China, Greece, and Rus- 
sia-did not adopt it until after the beginning of the 
20th century. In fact,  Russia adopted the Gregorian 
calendar on two  separate  occasions, first in 19  18, 
about the same time as many other countries, and 
again on  June 27, 1 940.4  Changes made in  Russia in 
1929 to avoid the religious  associations of the Gre- 
gorian calendar were  unsuccessful, and it was reim- 
plemented in 1940. 

The  reform that synchronized the calendar year  with 
the tropical year  required the removal of ten days 
from the calendar. As a result,  Friday, October 15, 
1582,  immediately  followed Thursday, October 4, 
1582.  (An alternate plan  would  have  removed the 
ten excess days  gradually by canceling  leap  days  for 
40  years.)  As before,  every fourth year  is a leap  year, 
and, to maintain synchronization, centurial years 
that are  evenly  divisible by 400  are  also  leap years2 
Thus, for  example,  1900 was a common year; the 
year 2000 will  be a leap  year, and the year 2 100  will 
start a series of common centurial years  again. The 
result is an average calendar year of  365.2425  days, 
which  closely approximates the tropical year.  Despite 



this close approximation, by the 44th c e n t ~ r y , ~  the 
Gregorian calendar will again  differ  from the tropical 
year by one day.  Because the tropical year  consists 
of an irrational number of days, no calendar year 
with an integral number of days  can  exactly match 
the tropical year. Not only is there not an integral 

Discontinuities  in  the  Gregorian 
calendar  scheme  cause  most of the 
difficulties  with  date  manipulation. 

number of days in a tropical year, but also the length 
of the day  is not constant. That is, the length of the 
tropical year  is  also  changing  gradually. 

Algorithms for date processing 

Centurian  date  format. Discontinuities in the Gre- 
gorian calendar scheme  cause most, if not all, of the 
difficulties  associated  with date manipulation. In- 
stances of discontinuities are the following: 

No calendar unit is evenly  divisible by  weeks. 
The number of days  per month varies. 
The number of days  per  year  varies. 
The number of days  per century varies. 

These  facts must be accounted for in calculating the 
number of days  between  two  dates,  calculating a date 
based on the addition or subtraction of days  from 
another date, and calculating the day of the week for 
a date. A centurian date format (DDDDD, represent- 
ing the day  within a century) works well  by  giving 
continuous values  within a century. Also, other date 
formats and day of  week are readily  calculable  from 
this value. The centurian format is limited to a 
century and results  in  discrepancies  when a century 
boundary is  crossed. Consideration must be  given to 
century years  when making a leap  year  calculation. 
The DDDDD format will not span more than 273 
years (or 179  years in a two-byte binary format). 
Also, a standard point of origin  for the starting day 
must be  defined. 

Lilian  date  format. The Lilian date format consists 
of  seven positions for the number of days from the 
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beginning of the Gregorian  calendar.  Day one is 
Friday, October 15,  1582, and the value is incre- 
mented by one for  each subsequent day. Based on 
this format are services supporting 44 experimental 
functions (or more if the three DMY,  MDY, and YMD 
experimental versions  of the Gregorian format are 
counted) synthesized  from  eight mnemonics. 

Function-naming convention. Functions are named 
to promote easy  recall and to suggest the activity to 
be performed. In the algorithm and experimental 
PL/I program  discussed in this paper,  each function 
name is synthesized  from  two  3-letter mnemonic 
parts.  These mnemonic parts are  defined  as follows: 

CLL: compact Lilian date 
DAY: day of the week 
GRG: Gregorian date 
JUL: Julian date 
LIL: Lilian date 
SGR: short Gregorian date 
SJL: short Julian date 
VAL: validate a date 

The first part is a description of the target, and the 
second part is a description of the source. VAL (vali- 
dation) and DAY (day of  week) can appear only in 
the  target  position of the function. 

Arguments  presented to any of the conversion  func- 
tions are always  presented in the same order: new 
date (target); old date (source); range date (control), 
when required; and Gregorian format [specifier(s)], 
when required. Table 1 illustrates the format for 
conversion arguments. In  all  instances, a return code 
is set. 

The format descriptions in Table 1 refer to the type 
of  data-D for  day, M for month, and Y for  year, 
as well as the number of positions  (e.g., YY for  two 
year  positions)-that the data occupy. The origin of 
the term “Julian date” for the YYDDD format is  given 
in  Reference 6 .  Nevertheless, dates represented in 
the Julian format conform to the Gregorian calendar 
and not to the Julian calendar. The Julian date for 
Thursday,  November 14,1985, is 853 18 (short form) 
and 19853  18  (extended  form). 

Algorithms. The process  of  conversion  between a 
Lilian format date and a Julian format date is now 
described. The algorithms are simpler to calculate by 
choosing a virtual base date rather than the real  one. 
After the calculations are made, any discrepancies 
are  resolved.  In the following  algorithms, the num- 
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Table 1 Examples of conversion  function  arguments 

Argument  Description 

target=JULSJL  (source. 1925) Conversion  to  a  Julian (YYYYDDD)  date from a short Julian (YYDDD)  date within the 
range  1925-2024 

target=JULGRG  (source, DMY) Conversion  to  a  Julian (YYYYDDD)  date from a  Gregorian  (DDMMYYYY)  date 

target=LILGRG  (source,  YMD) Conversion of a Lilian (packed format)  date from a  Gregorian  (YYYYMMDD)  date 

target=CLLJUL  (source) Conversion of a  compact  Lilian  (binary  format) date from a Julian date 

target=SGRGRG  (source,  YMD. MDY) Conversion of a  short  Gregorian  (YYMMDD)  date from a  Gregorian  (MMDDYYYY)  date 

CALL  VAWUL  (source) Validation  of a Julian date 

target=DAYSJL  (source 1925) Day of week for a  short  Julian  date 

bers  in  parentheses are results of calculations made 
on the previously  given date, November  14,  1985. 

Extended  Julian to Lilian. Given an extended Julian 
date (YYYYDDD), compute the corresponding  Lilian 
date.  First, compute the number of days  from  virtual 
January 1, 150 1, to the start of the year  being  con- 
verted ( 1985 3 18 Julian). 

Subtract 150 1 from the Julian year  (484). 
Multiply the difference by 365.25  (i.e., the average 
number of  days  per  year) ( 176  78 1 .00). 
Truncate the result. The leap  day  is  kept  only  for 
full four years  (1  76  78  1). 

Then compute the number of Julian calendar (not 
Julian format) days  from  October  15,  1582, to the 
date being  converted. 

Subtract 29  872,  i.e., the number of days  between 
virtual January 1,  1501, and October  15,  1582 
( 146  909). 
Add the Julian days (+3 18 = 147  227). 

Next,  make the Gregorian calendar adjustments to 
this value. 

Subtract 150 1 from the Julian year  (484). 
Divide the difference by  100. One leap  year  is 

Truncate the result to obtain the number of  whole 

Subtract the number of  whole  leap  days  from the 

usually  skipped  each century (4.84). 

leap  days.  Partial  leap  days do not exist  (4). 

number of Julian calendar days ( 147  223). 

Because one out of  every four centuries keeps  all of 
its leap  years,  use the virtual  year  1201,  which  is the 
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beginning  of the four-century  cycle that contains the 
year  1582, to compute the number of leap  years up 
to the target date. 

Subtract 1201  from the Julian year. The first  four- 
hundred-year  cycle  began  with  virtual  year  1201 
and ended  in the real  1600  (784). 
Divide the difference by 400  because one century 
leap  year  per  400  years  is  kept ( 1.96). 
Truncate the result  because  partial  leap  days do 
not exist  (1). 
Add  these  leap  days  back into the adjusted Julian 
calendar days ( 147  224). 

This final  result  is the number of Gregorian calendar 
days  from the beginning of the Gregorian calendar 
(October  15,  1582) to the date being  converted. This 
result  is the sought-for  Lilian date. 

Lilian to extended  Julian. The purpose of this ex- 
ample  is to show the procedure  for  converting a 
Lilian date to an extended Julian date.  First,  create 
a virtual  Lilian date, with a starting point of January 
1,  1201.  Convert  this  result into a Julian calendar 
(not Julian format) date. Then convert the Julian 
calendar date to a Julian format date. The procedure 
is  as  follows  (147224  Lilian): 

Add  139  444 to the Lilian  date. This is the number 
of days  from  virtual January 1,  120 1 (the start of 
a 400-year  cycle) to October  15,  1582. The result 
is a pseudo-Lilian date (286668). 
Divide the pseudo-Lilian date by 36524.25, the 
average number of days per century (7.85). 
Truncate the result to obtain the number of  cen- 
tury leap  days  (7). 



Add the number of century leap  days to the 
pseudo-Lilian date (286675). 
Divide the number of century leap  days by 4 
(1.75). 
Truncate the result to obtain the number of four- 
century leap  days  (1). 
Subtract the number of fourcentury leap  days 
from the pseudo-Lilian date, because  they are 
already  included (286674). 

The result  is the number of  full Julian calendar days 
from January 1,  1201, to the date being  converted. 
We  now convert this to an extended Julian format 
date. 

Divide  full Julian calendar  days by 365.25. This 
usually  gives one less than the year  for the date 
being  converted  (784.87). 
If there is no remainder from the division, subtract 
one from the quotient; otherwise, truncate the 
quotient to get the pseudoJulian prior  year  (784). 
Multiply the pseudo-Julian  prior  year by  365.25 
to determine the number of annual Julian calen- 
dar days prior to the year  for the date being 
converted  (286  356.00). 
Truncate the number of annual Julian calendar 
days to eliminate partial  leap  days  (286  356). 
Subtract the number of truncated annual Julian 
calendar days  from the full number of Julian 
calendar days to obtain the number of current 
Julian calendar days in the year  of the date being 
converted (3 18). 
Add  120 1 to the pseudo-Julian  prior  year to obtain 
the real Julian year,  i.e.,  1200  for  years  prior to 
1200  plus one for the current year (+784 = 1985). 
Multiply the real Julian year  by lo00  to put it into 
its proper Julian format position (1985OOO). 
Add the current Julian calendar days to the result 
to complete the Julian format date from the Lilian 
format date ( 19853  18). 

Ease of conversion 

Accommodating  end users. End  users  usually enter 
two  digits  for the year in a date and understand the 
ambiguity that this represents.  Therefore,  even at the 
turn of the century, to avoid  adverse  user  reaction, 
programs must continue to function with  only  two 
digits for  year. The inference of the year  1997  from 
97 and 2003  from 03 must continue. For the excep 
tional case  where the correct  meaning  could  be  1897 
and 1903, entry of  all four digits  may  be  required. 

OHMS 

The month-day-year and day-month-year formats 
are  ambiguous.  Therefore,  it  might  be  advisable to 
continue presenting the date in  its conventional U.S. 
format with  a  parenthetical  explanation of the for- 
mat-such as (MM/DD/YY)-to avoid the ambiguity. 

It is  not  necessary to change date 
formats  in  files,  because it is possible 

to change  the  programs only. 

However,  it  may be necessary to provide  a  conver- 
sion function that receives  a  definition  of the implied 
century as a  parameter. An excellent way to do this 
unambiguously  is to specify  a  year as the desired 
starting point of a  100-year  range.  For  example,  if 
the starting year  for the range  is  specified as 1925, 
dates  with  year  digits of  25 through  99  would  be 
between  1925 and 1999, and dates with  year  digits 
of 00 through  24  would  lie  between  2000 and 2024. 

Accommodating systems support. The conversion of 
isolated  files to new date formats presents  a rather 
trivial  problem.  In  most  cases,  however,  it  is not 
possible to isolate the process. All programs that 
access the modified data must be changed  simulta- 
neously.  In  some  large  systems,  literally thousands 
of programs  may  be  involved.  In  these  large  systems, 
it may  be prudent to avoid the cost and risk  of 
massive  changes in a short period  of  time. 

It is not necessary to change date formats in files, 
because  it  is  possible to change the programs  only, 
so that the implied  century in a date is  recognized. 
Of course, in the vast  majority  of  cases, that is  exactly 
what  does  take  place.  Dates  familiarly and implicitly 
exist  within the 100-year  range  beginning  with  1900 
or 190 1. Thus it is  necessary  merely to modify the 
programs so that the 100-year  range starts at a  later 
date. A beginning date set  eighty  years  prior to the 
current systems date may  be  a  reasonable  conven- 
tion. This is well within the range  now in use. 

The significant  feature  of  this  approach  is that every- 
thing need not be  modified at once. The modifica- 
tions may  be  made  over  a  period  of  years during 
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normal program maintenance. Of course, as systems 
are maintained or replaced,  it  would  be  practical to 
implement full information date formats.  Where 
systems contain dates that span  a  range  of  more than 
100  years, the century  must  already  have  been car- 
ried.  In the rare  event that this is not true, immediate 
conversion  is  unavoidable. Fortunately, in most  ap- 
plications, we can  deal  with  centuries  as  exceptions 
rather than as a common problem. 

Computational  considerations 

Storage. The two  main  considerations  pertaining to 
storage are (1) the cost  of  storing  large quantities of 
data; and (2) the computational cost of converting 
records  within computer files to larger  date-field 
sizes.  When millions of dates are stored, as they are 
in most  business  systems,  every additional byte  re- 
quired to save  a  single date multiplies to millions of 
additional bytes  of  storage. The programming  nec- 
essary to accommodate larger  date-field  sizes in rec- 
ords further complicates date conversion. 

Putting bounds on  data-storage  costs at reasonable 
levels and reducing  conversion  complications are 
both  achievable. The allocation of additional space 
to record four positions  for  year, rather than the 
traditional two,  is not the only  possibility.  Many 
systems currently store dates internally  in  packed 
Julian format, requiring three bytes  of  storage.  In 
packed format, a  Lilian date or an extended Julian 
date (YYYYDDD) both  require  four  bytes  of  storage. 
However,  if  a  binary format were to be adopted, 
either form of date could  be  stored  in the three bytes 
used at present. 

A more restrictive situation exists  for  systems in 
which dates are stored in two  bytes  instead  of  three. 
These  systems use a  binary format to record centu- 
rian or other forms of dates.  In the near term for 
these  systems,  it  may  be  necessary to continue storing 
dates in only  two  bytes. This cannot be accommo- 
dated  with  a Julian format.  However,  it  is  possible 
to store  a  range of dates by taking  advantage of the 
continuous characteristic of a  Lilian  date. 

Using the Lilian date system,  any date in a  selected 
range  of  179  years  may  be  stored  as  follows.  Assume 
that the selected  range  is January 1,  1901,  through 
December  3 1,2079. Find the Lilian  value  of  Decem- 
ber  3  1,  1900. Subtract this value  from the Lilian 
value  of the date to be  stored.  Convert the result to 
a  16-bit  (two-byte)  binary  value and store the result. 
Reverse the process to restore the two-byte date to 
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Lilian format. Continuing to store dates in  two  bytes 
should be considered  only  where the programming 
cost  of  increasing  record  sizes in an existing  system 
is  prohibitive. The decreasing  cost  of  storage  makes 
the use  of the full  Lilian or Julian format a  practical 
possibility  when an application  is  being  modified. 

In the experiments on which  this  paper  is  based, the 
three-byte  Lilian format for data storage  has  been 

The  continuous  nature of the  Lilian 
date  accommodates  the types of 

processing  that  normally take place. 

found to be  preferable.  Internally, in computer use, 
the continuous nature of the Lilian date accommo- 
dates the types  of  processing that normally take place 
within  a  program.  In addition, for all three storage 
sizes,  a  consistent format (i.e., the all-Lilian format 
or the quasi-Lilian format) is maintained. 

Flexibility.  In our experiments, the IBM System  360/ 
370  assembly  language  was  used  for  coding the date 
functions.  However, the method  is  easily adaptable 
to other programming  languages  such as COBOL, 
PL/I, and RPG. The experimental functions were also 
made re-entrant for  flexibility  within  on-line  envi- 
ronments. 

Validity.  Ideally, the validation of a date is  necessary 
only at the point of its manual entry into a  system. 
Experience  teaches  us that it  is not unusual for an 
interfacing  system to provide  invalid  dates.  There- 
fore,  all dates passed to conversion functions must 
be validated.  When an invalid date is encountered 
by the experimental  system,  a  null  value  is returned 
to the invoking  program and a return code  is  set to 
indicate the nature of the invalid condition. 

Efficiency. Date conversions are used  heavily  within 
certain  applications.  Because  of the impact on a 
single  system or an installation,  efficiency  must  be 
inherent in date-conversion  programs.  Storage  re- 
quirements for  external  display and internal calcu- 
lations by computer programs are expected to mo- 



tivate  a high volume of conversions.  Widely  used 
programs  in  high-volume environments must  per- 
form well and not consume  excessive amounts of 
storage. A date-conversion  program that is  good  in 
all other ways will not be widely  used  if it is  an 
operational  bottleneck. 

For the program  discussed  in  this  paper,  written  in 
System 360/370 assembly  language and imple- 

Experimental  results  indicated good 
efficiency. 

mented  as  a  set  of PL/I functions, the experimental 
results  indicated  good  efficiency. The longest  execu- 
tion  paths,  including PL/I prologue,  validation,  con- 
version, and PL/I epilogue, are a  little  more than one 
hundred machine-language  instructions.  Although 
the functions appear to the invoking PL/I program 
to be separate  programs,  they are all  actually  pro- 
vided  within  a  single  program that requires less than 
4K bytes of storage. 

Concluding  remarks 

Programmers  require  date-processing functions that 
effectively  handle  applications  for  both the present 
and the future.  For  the  present,  it  is  sufficient to 
validate  source  dates, to convert  from one traditional 
date format to another, and to perform addition or 
subtraction  operations  involving  dates.  For the fu- 
ture,  additional  functions are required that support 
processing  restricted  only by the limitations of the 
Gregorian  calendar.  These  functions  must be  fully 
compatible  with  existing  date-format and record-size 
restrictions.  Massive  conversion  efforts  should not 
be required to process and store dates outside the 
twentieth  century. Also, end users  should  be  able to 
continue to use  existing  two-digit date formats when 
interacting  with computer systems.  In  all  cases  the 
programs that provide  these  services  must  be  reliable, 
efficient  in the use  of both  processor and storage, 
and flexible  in  application. 

Programs that embody  all  these  qualities  have  been 
written and tested  experimentally. The application 
as written  requires less than 4K bytes of storage and 
has an average  execution path of  fewer than 100 
machine  language  instructions.  Re-entrancy and the 
possibility  of  multilanguage  implementation  indicate 
excellent  flexibility. This approach  presents  a  prac- 
tical  method of  processing dates that is  compatible 
with any  dating  format  standard. 
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