Prolog for applications
programming

This paper discusses the problems and benefits of us-
ing the Prolog language to write application programs.
Much attention is currently focused on expert-systems
shells, which play a role in artificial intelligence (Al)
systems similar to that of application generators in
more conventional applications. The Prolog program-
ming language embodies many of the features found in
these shells, while providing a relatively general and
complete programming language. MVS performance
tuning is used as an application that typifies a broad
class of applications suitable for implementation in
this language. Some of the difficulties that had to be
overcome to use the language are presented, with their
solutions.

Prolog is a computer language that has aspects
that make it different from such other languages
as pL/1, Pascal, cOBOL, or FORTRAN. This difference
goes deeper than syntax or a set of primitives. It is
at the very core of the language, in what a Prolog
program means. A Prolog program can be viewed as
a set of logical axioms, where executing a Prolog
establishes a proof that a certain desired conclusion
follows from that set of axioms.

The name Prolog stands for Programming in Logic.
The language was invented in the early 1970s as a
practical implementation of a theorem prover for a
subset of first-order logic.'~* Intended as an imple-
mentation language for artificial intelligence (AI) ap-
plications, Prolog incorporates many of the features
of other languages, such as LIisp, and deals primarily
with tree structures of which the LISP list is a subset.
Prolog programs are usually recursive.*

After an introduction to the Prolog language, a par-
ticular application is described that is typical of a
broad class of applications suitable for implementa-
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tion in this language. Some of the difficulties that
had to be overcome in order to use the language—
and their solution—are presented. In this paper, the
term aquthor refers to the analyst and application
programmer, and user refers to the user of an appli-
cation. When the application is an expert system,
other writers sometimes use the terms knowledge
engineer and client in place of author and user. The
term Jogic refers to the relationship that holds among
data structures. This usage follows from the fact that
Prolog is based in mathematical logic. It is not used
synonymously with control, as is customary when
talking about procedural languages.

Prolog

The Prolog language has been shown to be useful for
such complex problems as analysis of hardware and
software.® It also has useful software engineering
aspects for less complex problems.” Several people
have noted the usefulness of Prolog for implement-
ing expert systems.?'2 The language provides a basis
for utilizing natural parallelism,'*'* and variations
of the language apply to non-Al-type applications.'¢!?
Prolog has had many different implementations with
different syntax and built-in procedures, but they all
involve the same essential concepts that make Prolog
recognizable in many forms. Prolog is probably the
best known of several languages that utilize theorem
proving in logic as a programming tool in the general
area called logic programming.'®-%
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Procedural versus declarative meaning. One might
question whether there truly is a relationship be-
tween theorem proving and programming. In fact, a
close relation exists because Prolog knits together a
procedural (or programming) and a declarative (or
logical) view of a program, from which process
comes its value.?! This relationship can be illustrated
by contrasting the meanings of procedural programs
with the meanings of logic programs. The meaning
of a Pascal program lies in the sequence of steps that
the computer performs, given certain input. The
relationship of input to output and the procedural
flow are mingled together and cannot be separated.
A demonstration that the program actually realizes
its English language specification can be difficult,
however.

A Prolog program, on the other hand, has two clear
and distinct meanings. One meaning is the proce-
dural one which, like Pascal, instructs the computer
on the sequence of steps it is to take. The declarative
meaning has nothing to do with a computer. A
Prolog program can be read as a set of statements
(called axioms or clauses) about the real world that
are either true or false. Executing a Prolog program,
from this viewpoint, amounts to showing that a
certain statement can be deduced from the logical
statements that make up the program. A proofof the
goal statement is constructed and demonstrates that
the goal logically follows from the axioms that are
the Prolog program. This is the fundamental essence
of Prolog.

Prolog and theorem proving

It is not necessary to understand theorem proving to
use the Prolog language. However, a little discussion
of the origins of the language may help put it in
perspective with other languages and with expert-
systems shells.

At the time Prolog was introduced, there were com-
plete theorem provers for the first-order predicate
calculus, which is the logical system developed by
logicians to express the bulk of deductive reasoning,
a central problem in Al research.?>?* Although a
theorem prover can in principle deduce any vahd
proof, the time required may be excessive. At each
step in a deduction there may be many ways to
proceed. Since any of the possible deductive paths is
logically valid, the decision about which path to take
does not affect the correctness of the result. Rather,
it is a question of the efficiency with which a correct
result is obtained. Deciding which way to proceed in
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the deduction is done by the control component of
the theorem-proving system.

On this point there are two main divergent opinions.

One is that a general-purpose control strategy or set
of strategies can be devised. The other is that to be

The declarative meaning of a Prolog
program makes it different from
procedural programs.

efficient, the author must be able to specify control
information that relates to the specific problem the
program is to solve.

Prolog gives this second facility to the author. The
general framework of a Prolog proof is that of back-
ward reasoning from a desired conclusion to uncon-
ditional facts. Within this framework, the author has
explicit control over the order in which axioms and
subgoals are tried. This gives the author of a Prolog
program as much control over how the program
executes as a Pascal programmer has. Because they
are based in logic, however, Prolog programs also
have a declarative or logical meaning, which Pascal
programs do not have. The author can separate the
issue of correctness from the issue of efficiency. This
makes the author’s tasks in each of these areas sim-
pler than when they are mingled together, as they
are in procedural languages.

The existence of the declarative meaning of a Prolog
program is what makes it different from strictly
procedural programs. The problems and advantages
described here arise from this feature of the Prolog
language. Because Prolog has both logic and pro-
gramming aspects, certain nonlogical features were
introduced into the language to take care of such
pragmatic concerns as reading and writing data. To
reap the maximum benefit of the logic-programming
paradigm, an author must strive to isolate these
nonlogical aspects of a program.

From this declarative viewpoint, executing the
Prolog program establishes a logical proof that a goal
follows from the axioms. Given the axioms that
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make up the Prolog program, the result is true re-
gardless of the method used to establish the proof.
The method is called the proof procedure or strategy.

Prolog uses one particular strategy, but any other
sound strategy could be used on the same program
to reach a true conclusion. This is like not having to
consider the order in which Pascal statements are
executed, but still being guaranteed a true result,
because a proof is a proof no matter how it was
established. The Prolog strategy is termed top-down
or backward chaining, because the direction of rea-
soning is from the desired conclusion to uncondi-
tional axioms.

Programming with Prolog

Writing a Prolog program. Consider first the follow-
ing paragraph of ordinary English prose:

New York City gets its water from a variety of
sources. One of these sources is the Ashokan Reser-
voir in upstate New York. This reservoir occasionally
dries up, at which times it is empty. Whenever a city
gets its water from an empty reservoir, that city
should limit water use.

This paragraph expresses a variety of thoughts, so
that a person after reading it is in a position to
answer such questions as the following:

* Should New York City ration water use?
* Where does New York City get its water?

The simplified logical content of this paragraph
could be expressed in the following three sentences.

1. New York City gets its water from the Ashokan
Reservoir.

2. The Ashokan Reservoir is empty.

3. A city should ration water use if it gets its water
from some reservoir and that reservoir is empty.

Notice that the first two sentences express simple
facts, whereas the last sentence expresses a condi-
tional truth. When expressed in Prolog, each sen-
tence is called a clause. The conditions following the
word “if” are called the body of the clause. The first
two sentences have no body, in which case the body
is said to be “empty.”

There are many ways of formalizing these sentences
in logic. The degree of complexity of the formaliza-
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tion depends on the questions that are expected to
be answered. At the least detailed level, for example,
the first sentence could be considered as simply a
statement with neither generality nor structure. It
could be used to answer only the question “Does
New York City get its water from the Ashokan
Reservoir?”’

At the most detailed level, the sentence could be
considered to express a variety of things. There are
two objects, a reservoir (the Ashokan) and a city
(New York City). There is another object (water)
and a relation (gets) that says one thing (New York
City) is getting another thing (water) from the third
thing (the Ashokan).

The usual case is somewhere between least and most
detailed levels. In this example, consider two objects,
the Ashokan Reservoir and New York City, and
make “getting water from” the relation between these
two objects. This relation can then be used to express
other facts, such as where Albuquerque gets its water
(i.e., the Rio Grande and underground aquifers).

The second sentence ascribes the property of being
empty to the Ashokan Reservoir. The third sentence
gives a rule for when a city needs to ration water use.
Definite but unspecified objects (such as “some city”)
play the role of variables.

These sentences about rationing water use can be
represented in Pascal data structures and programs,
but the Prolog language allows particularly simple
representations of these sentences. The normal form
of a Prolog relation is called a predication and is
expressed as follows:

<relation name> (<list of objects being related>)

As in other languages, variables must be distin-
guished from constants and relation names. In these
examples, the variables begin with uppercase letters.
The words “if” and “and” are represented by <- and
&. Letting A, B, and C be arbitrary predications, the
general form of a Prolog clause is as follows:

A<-B&C

which is read “A is true if B and C are true.” As
mentioned previously, the conditions (B & C) are
called the body of the clause. The conclusion (A) is
termed the head. There may be any number of
conditions in the body.

The following Prolog clauses correspond to the pre-
viously given sentences:
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1. empty(reservoir(ashokan)).

2. city_gets_water_from_reservoir(
new__york_city, ashokan).

3. should_ration_water_use(Some_city) <-
city_gets__water__from__reservoir(
Some__city, Some__reservoir) &
empty(reservoir(Some_reservoir)).

In addition to this normal form, most Prolog imple-
mentations allow a syntactic sugaring. That is, by
suitably instructing the Prolog parser, the following
more English-like syntax can be used:

1. the ashokan reservoir is empty.

2. new_york_city gets its water from the ashokan
reservoir,

3. Some_city should ration water use if
Some__city gets its water from Some reservoir and
Some reservoir is empty.

Difference between English and Prolog. The English-
like nature of this example is deceptive. The declara-
tive meaning of this program is straightforward, as
can be seen by reading each statement as the corre-
sponding sentence. However, Prolog does not un-
derstand the English, so that editorial variations or
equivalent expressions do not work. “The Ashokan
Reservoir is out of water” cannot be used in place of
“The Ashokan Reservoir is empty.” A person can
answer questions about the paragraph because a
human reader understands what is being said. Prolog
performs only formal operations on the axioms it is
given. Within these limitations, however, Prolog op-
erations are such that the result is true (as determined
by a person) if the axioms are true (as determined
by a person).

The particular symbols used have no meaning to
Prolog. One could replace “should_ration_water_
use” with “apples” and “gets_its_water_from” with
“oranges,” and it would make no difference to
Prolog, which would still carry out its operations
mechanically. In Prolog as in other languages,
whether the program and the results have any mean-
ing depends strictly on the observer. One would have
to know that “apples” really means that a city should
ration water use, and that “oranges” really means
that a city gets its water from some particular place,
before the program or its results would have mean-
ing.

Of course, this limitation affects all programs, not
just Prolog programs. The meaning of symbols de-
pends on the human observer and not on the com-
puter. Prolog cannot make associated judgments
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about the content or meaning of the symbols used
in a program, and can deduce nothing other than

Prolog uses a pattern-matching
process called unification to give
values to variables.

what is strictly given. It has none of the general or
commonsense knowledge that a person has.

Executing a Prolog program. We have seen how a
Prolog program looks and how it is read. We now
discuss how the program executes. Each relation in
a Prolog program is a procedure. In the water-ration-
ing example, there are three procedures: “empty,”
“city_gets_water_from_reservoir,” and “should_
ration_water_use.” In this example, there is only
one clause for each procedure, but there could be
more. One might also know that Kingston gets water
from the Catskill Reservoir:

city.gets_water_from_reservoir(kingston, catskill).

Then there would be two clauses for the procedure
“city._.gets_water_from._reservoir.” Considering the
whole world, there could be thousands. In Prolog, a
procedure call is also known as a goal to be proved.
The body of a clause is a sequence of procedure calls.
It is also called a goal. The body of the only clause
in the procedure for “should_ration_water_use” is
a sequence of two procedure calls, “city_gets__
water_from_reservoir” and “empty.” Prolog proce-
dures contain only calls to other procedures.

A Prolog procedure call may either succeed or fail.
If it succeeds, a proof has been established for a true
instance of the goal; if it fails, no proof has been
established.

Prolog does not have an assignment statement. In-
stead it uses a pattern-matching process called uni-
Sfication to give values to variables. When a procedure
is called, each clause in the procedure is tried in turn.
The variables and data structures in the goal are
matched against those in the head of the clause. A
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variable matches anything, and a constant matches
only the same constant.

For the following example, the goal
city_gets_its_water._from._reservoir(R, ashokan)
matches

city..gets_its_water_from_reservoir(
new_york_city, ashokan)

In this process of matching, the variable R is assigned
the value “new_york_city.”

When a clause is found whose head matches the
goal, the process is repeated on each of the goals in
the body. If they all succeed, the goal that matches
the head of this clause also succeeds. All of the
matches that occur usually cause some of the calling
variables to become bound by unification. This is
the way results are generated.

Suppose the goal is the following:

city_gets_water__from _reservoir(new_york_ city,
R).

There are the following two clauses in this procedure:

city_gets_water_from._reservoir(new_.york_city,
ashokan).

city__gets_.water__from_reservoir(kingston, catskill).

Trying the first clause, the constant “new_york .
city” matches itself in both the goal and the head.
The variable R in the goal then matches “ashokan.”
Because this clause has no conditions to try, the goal
immediately succeeds.

Suppose the goal is
city_gets_water_from_reservoir(kingston, R).

The match of “new_york_city” with “kingston”
fails, which causes the second clause to be tried. This
clause succeeds, matching the goal variable R with
catskill.

Where a goal consists of a sequence of procedure
calls, one subgoal may succeed while a subsequent
subgoal fails. In this case, backtracking occurs,
whereby an alternative solution to the previously
succeeding subgoal is sought. Although we do not
discuss the details of backtracking, it is sufficient to
understand that, in order for a goal to succeed, all
procedure calls in the body of a matching clause
must succeed.
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If the goal is
should_ration_water_use(Some__city)

the corresponding rule is invoked. So far, “Some_
city” does not have a value. The rule has two

The programmer does not have to
be concerned about the control of
the program to establish correctness
of the results.

subgoals in its body. Each of these must be satisfied
in turn as follows:

city_gets_water_from_reservoir(Some_city,
Some__reservoir) &
empty(reservoir(Some_reservoir)).

First, the procedure “city_gets_water_from_reser-
voir” is called. Then the procedure empty is called.

Suppose the goal

city._gets_water__from_reservoir(Some__city,
Some_reservoir)

first matches the clause
city._gets_water_from_reservoir(kingston, catskill)
Now the following variables have values:

* Some_city = kingston

e Some_reservoir = catskill

The next goal is

empty(reservoir(catskill))

Given what is in the program, this cannot be proved.
Therefore, the call fails, which causes backtracking.
The previous goal has the following solution that
matches the clause:

city_gets_water_from__reservoir(new._.york__city,
ashokan)

Therefore, the variables get the following new values:
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» Some_city = new_york_city
¢ Some_reservoir = ashokan

This time the subgoal “empty(reservoir(ashokan))”
succeeds. We now have the following, because both
goals have succeeded:

should__ration_water_use(new_york..city) because
city_gets_water_from_reservoir(new_york_city,
ashokan) &
empty(reservoir(ashokan)).

Prolog also allows tree structures as well as variables
and constants, which makes the matching process
quite powerful. However, we do not discuss tree
structures in this paper.

Separate logic from control. We have shown a way
of reading a Prolog program as a logical statement
and another way of reading it as a series of procedure
calls. It is this logical meaning that makes Prolog
different to work with. The author of a Prolog pro-
gram can switch between these two ways of viewing
a program, which makes some activities much easier.
For example, from the declarative viewpoint, the
correctness of a Prolog program is independent of
the particular method used to carry out the proof.
That means that the programmer does not have to
be concerned about the control of the program to
establish correctness of the results. The programmer
does, however, have to pay attention to the control
aspects to improve efficiency.

The previous example shows that the declarative
meaning of the program is correct when it answers
(in effect): Yes, New York City should ration water
use. This is true without regard for either the order
in which the subprocedures are called or the order
in which the sentences appear in the program. Of
course, one may disagree with the assumptions, in
which case one may also disagree with the conclu-
sion. However, if one agrees that the assumptions
are true, then one must agree that the conclusion is
also true.

This program can answer questions about empty
reservoirs (Which reservoirs are empty?) and about
water supplies of cities (Which city gets its water
from which reservoirs?). The program is not limited
to the one question about New York City’s limiting
its water use. Logic programs are more general in
this sense than procedural programs. They are also
very modular, for the same reason, in the sense that
everything is written as many small procedures.
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These procedures can also be used in the relational
data base style. The one procedure “gets_its_water._
from__the_reservoir” can tell either which reservoir
New York City gets its water from, or which cities
get their water from the Ashokan Reservoir, or check
whether New York City gets its water from the
Ashokan Reservoir, and so on. Which variables are
input and which are output can vary from one call
to the next. This property of Prolog programs, re-
ferred to as relational reversibility, is often useful in
reducing the amount of code that has to be written.

The application selected is that of
assisting in the performance tuning
of MVS.

In Pascal, for example, separate functions have to be
written for finding reservoirs of cities and for finding
cities that use reservoirs, whereas in Prolog there is
but one relational procedure.

A performance-tuning application

The application selected for exploring the potential
of Prolog programming technology is that of assisting
in the performance tuning of MVS, IBM’s primary
operating system for large systems. For systems as
complex as Mvs on large mainframes, there are many
ways to approach the problem of performance tun-
ing. Therefore, our approach is to use methods and
knowledge provided by an expert in the field of
performance tuning, D. W. Hunter. Thus, the appli-
cation may be said to be an expert system.

This application is restricted to TSO environments,
where secondary-storage (DASD), control-unit, and
paging problems can cause degradation in response
time. The recommended solutions are those that take
relatively long times to implement, such as balancing
dataset activity or installing more main storage. The
system does not perform minute-by-minute adjust-
ments of operating system parameters such as target
multiprogramming level or number of active batch
job initiators.
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The data on which the recommendations are based
are the Resource Management Facility (RMF) trace
information,?* the System Generation (SYSGEN) con-
figuration information,”® and information known
only to the systems programmer, such as which
performance groups identify TSO users.

The RMF data are produced on MvVS in variable

blocked spanned records. This file organization is
not supported by the VM/CMS operating system on

The system is organized into three
levels corresponding to the
expected performance experience
of its user.

which the tuning system runs. Therefore, a PL/I
program was written to convert the file format to
one supported by cms. The PL/I program also nor-
malizes all data units. That portion of the system
written in PL/I, though a small part functionally,
required nearly one third of the total development
time. The programmers involved were equally skilled
in both Prolog and PL/I.

Because SYSGEN information is maintained on line
in a file format already supported by cms, it did not
require format translation, but was read directly by
Prolog programs.

Two major versions of the expert MvS tuning system
were produced. The first version dealt with MVS/370
only. The second version was expanded to handle
also Mvs/XA. This was a significant conversion be-
cause there were major input data format and con-
tent alterations, as well as changes to the tuning
methodology embodied in the program. Prolog
proved remarkably valuable in minimizing the con-
version time.

The features of Prolog that contributed to making
conversion easier are extendability and modularity.

Extendability. The xa version of RMF and SYSGEN
data had records not present in the System/370
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version, and the meaning or content of some of the
fields in other records was changed. New records
could be handled by simply adding clauses that
defined these new records and others that expressed
the knowledge of how they were to be used. Existing
knowledge about information valid in System/370
systems did not require changing. The knowledge
was cumulative. For records whose meanings had
changed, definitions were given with conditions
added specifying the level to which they applied.

Modularity. Because everything in Prolog is done in
essence by a subroutine, replacing or extending the
logic was simplified. In contrast, the PL/I procedures
we had to modify had much in-line code that had to
be inspected and modified whenever the control or
data references were inappropriate.

Capabilities. The system is organized into three lev-
els corresponding to the expected performance ex-
perience of its user.

* Generalized level. The most elementary level, this
is a simple step-by-step process for users who know
nothing about performance tuning in general or
about the problems specific to the Mmvs system for
which advice is requested. At this level, a user can
ask such questions as “Is there a TSO response time
problem?” and “What should I do about it?”. See
Figure 1A. The user gets only one recommenda-
tion about the most troublesome problem, even
though more than one recommendation may be
applicable. Without knowledge of the tuning proc-
ess, the user is not in a position to evaluate more
than one possible solution. The next level of detail
can be used to investigate other problems if de-
sired.

e Localized level. This level is for users who know
about the performance problems of a particular
system and who want to direct the tuning activity
in more detail, focusing it on one of eleven pri-
mary problem areas that is suspected of causing
the current performance problem. At this level,
more than one problem can be exposed if multiple
performance problems exist in a particular system.
The user can ask questions such as “Is there an
overloaded DASD device or control unit?” and “Is
the system demand paging rate too high?”. See
Figure 1B.

* Data extract. At this level systems programmers
who are familiar with the performance tuning of
large systems can use the tuning system in sum-
mary mode as an easy-to-use window on the basic
performance data. They can pursue a problem
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outside the current scope of the tuning system,
using their own expertise. This level provides such
information as the Start Subchannel (SSCH) rate
for a particular device or for all devices on a
control unit, and response time for specific Mvs
performance groups and periods. See Figure 1C
for an example of the type of information avail-
able.

System queries. During the course of attempting to
identify a performance problem and recommend a
solution, the tuning system may need information
that is not currently part of its knowledge base and
that cannot be inferred from existing rules. One
example is RMF trace data. The tuning system does
not come prepackaged with tuning data about a

particular system on a particular day. When it needs
this information and it is not currently available in
the active workspace, the user is asked where to get
the information. Then the appropriate file is con-
sulted.

There may be some information that only the user
can provide. For example, each Mvs installation gives
separate performance group identifiers to different
departments for various accounting and administra-
tive uses. RMF performance information is collected
on the basis of these performance groups. The tuning
system needs to know which of the performance
groups are to be considered in establishing response-
time characteristics. This information is available
only from the installation’s systems programmer.

Figure 1 (A) Example of a menu for common use, (B) example of a menu for an experienced user, (C) example of a menu
for use by a performance expert

MVS/XA PERFORMANCE TUNING EXPERT SYSTEM
SYSTEM Al INTERVAL:M0G21 03-22-85 13:00 SCREEN: MAIN

l. Start/restart a consultation.
2. Is there a long TSO response time problem?
3. Is there a solution to the long TSO response time problem?

(This choice applies all available tuning knowledge to locate
a problem.

To examine the solution possibilities separately, press PF7 now.)

ENTER YOUR CHOICE OR PRESS A PF KEY ====)

1-HLP 2-BRW 3-QUIT 4~EXIT 5-REV 6-NXT 7-ALL B:PRO 12-CMS
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MVS/XA PERFORMANCE TUNING EXPERT SYSTEM
SYSTEM Al INTERVAL:M021 03-22-85 13:00 SCREEN: SLTN

1. Show any overloaded device (of the top 10 candidates).

2. Show any DASD chpid with heavy tape usage.

3. Show any overloaded chpid causing DASD delays.

4. Show if there are any long channel programs on a DASD chpid.
5. Show any excessive reserve delay on a device.

6. Show whether the working set is too small.
7. Show if the system total paging is too much.
8. Show whether the logical swaps are being physically swapped.

9. Show whether there are any overloaded control units.
10. Show whether there are any chpids with high utilization.
11, Show whether there are any chpids with high service time.

ENTER YOUR CHOICE OR PRESS A PF KEY ====)>
1-HLP 2-BRW 3-QUIT 4-EXIT 5-REV 6-NXT 7-ALL 8-PRO 12-CMS

MVS/XA PERFORMANCE TUNING EXPERT SYSTEM
SYSTEM Al INTERVAL:M021 03-22-85 13:00 SCREEN: SSCH

1. Show the SSCH rate for this DASD., ==)>

2. Show the SSCH rate for this string of DASD., ==>

3. Show the SSCH rate for this physical control unit. ==)>

4., Show the SSCH rate for this logical control unit, ==>

5. Show the rate that SRM issued STCPS to sample chpid busy.

ENTER YOUR CHOICE OR PRESS A PF KEY ====)>
1-HLP 2-BRW 3-QUIT 4~-EXIT 5-REV 6-NXT 7-ALL 8-PRO 12~CMS
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Figure 2 Example of a question the system asks the user

MVS/XA PERFORMANCE TUNING EXPERT SYSTEM

SYSTEM Al INTERVAL:MO21

03-22-85

13:00 SCREEN: TSOPGS

What performance groups are for TSO in this interval?

Performance group ===>
Performance group ===>
Performance group ===)

1-HLP 2-BRW 3-QUIT 4-EXIT 5-REV 6-NXT 7-ALL 8-PRO

In these cases, the tuning system asks the user to
supply the missing information. This is done by
means of a query screen, as may be seen in Figure 2.

System responses. The system locates a problem,
gives a recommendation, and justifies its recommen-
dation. The justification is a logical explanation of
the problem and the recommendation in terms
meaningful to the user. See Figure 3 for an example.
The degree of detail and the terms used are under
author control and can be made dynamically respon-
sive to a particular user’s interests or background.
One user may want to know only which buttons to
push to set things right, whereas another may wish
to know the device activity characteristics of those
strings of devices that are causing the problem. In
this particular application no significant use was
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made of this dynamic capability. Answers are given
at one level of detail. However, the capability is there
in case of future need.

Capturing the performance knowledge. The tuning
system does not contain an explicit performance
model of mMvs. It operates at a superficial level, by
mimicking the observed processes of human experts.
These experts undoubtedly do have a mental model
of Mvs to which they refer when questions go outside
established procedures. In that sense the tuning sys-
tem is incomplete. Although Prolog is suitable for
implementing such a model, the design decision not
to do so was originally made in order to be more
faithful to the capabilities and mode of behavior of
the broad class of applications we were trying to
represent. Likewise, most standard data processing
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Figure 3 Example of results the system shows the user

MVS/XA PERFORMANCE TUNING EXPERT SYSTEM

SYSTEM Al INTERVAL:MO21

03-22-85 13:00

SCREEN: RSLT

(PRESS PF2 TO BROWSE COMPLETE RESULTS FILE)
There exists a DASD solution to reduce response time.

An overloaded device exists.

Use GTF analysis to spread workload for device 0570.

Device 0570 is a “problem device”.

Device 0570 is overloaded during interval 13:00.

The SSCH rate to device 0570 is 5.09/second.

A SSCH count greater than 5/second is too high.

The average queue length for device 0570 is 7.277.

An average queue length (enqueue count) greater than 5 is too high.

1-HLP 2-BRW 3-QUIT 4-EXIT 5-REV 6-NXT 7-ALL 8-PRO

applications as well as expert systems do not incor-
porate a detailed model of an enterprise when pro-
ducing a loss/earnings report, for example, or when
diagnosing a system failure.

However, experience with the existing tuning capa-
bility has convinced us that such a deep model of an
Mvs system should be incorporated. It would be
useful for predicting the effects of suggested changes
to the installation being tuned and in providing more
tutorial types of explanations. It is important that
the language used to implement the application be
able to support both types of knowledge: superficial
behavior copied from an expert and a deep model
of the domain. Without such a model, the system
cannot be considered to understand a problem in
any significant sense.
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Prolog is a language whose basic concepts are pow-
erful enough to provide the underlying representa-
tion for a variety of knowledge-representation meth-
ods. In our case, a simplified version of the language
was used to represent directly the rules provided by
the tuning expert. As in most applications, program-
mers and analysts are used as intermediaries between
the expert and the machine. A fair degree of expertise
in putting together applications, including what the
screens should look like and how to make procedures
more efficient, is required with applications of the
type we were emulating. After studying various ap-
plication generators and expert-systems shells, we
are convinced that the role of programmer/analyst
still exists. New tools may shorten the path from
expert to program, but it still requires a programmer/
analyst or knowledge engineer as intermediary.
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Application development

Production of rules. The production of the rules for
the Mvs tuning application proceeded in three stages:

1. We interviewed the expert on particular tuning
issues and took detailed notes of the interview.

2. We then organized the notes and expressed the
expert’s thoughts in complete sentences. We re-
viewed the resultant transcript with the expert for
accuracy and completeness. This occasionally re-
sulted in revisions of the expert’s original state-
ments.

3. The sentences were translated directly into Prolog
and validated on sample data by comparing pro-
gram results with the expert’s results.

This process was repeated several times to add more
scope. A general review was performed in the con-
version from MVS/370 to MVS/XA. Here we used the
extendable nature of Prolog programming advanta-
geously.

Programming environment. During this process,
common functions were extracted from the Prolog
procedures and incorporated into a set of utilities
that made programming significantly easier. These
constituted a program development environment.
Although developed independently in response to
perceived need for the task at hand, this program-
ming environment for Prolog is similar in many
respects to facilities available in Augmented Prolog
for Expert Systems (APEs)**?® and in the Expert
System/Development Environment.?

Maetarules. We are able to keep the rules simple and
logical by providing a metarule capability. Metarules
look exactly like the Prolog clauses that express the
performance-tuning knowledge, but they express
control and user interface information. Essentially,
they say how the actual performance rules are to be
used, what intermediate results are to be remem-
bered for future use, when questions are to be asked
of the user, and what information is to be given to
the user for an explanation.

For example, suppose that the rules about water use
do not include the information about which reser-
voirs are empty. It may be that this information is
available only from the user of the system. Then the
metarule can be added to tell the system to ask the
user whether it needs this information: askable
(empty(reservoir(*))).
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When the following clause is invoked,

should_ration_water__use(Some_city) <-
city_gets_water_from_reservoir(
Some__city,Some_reservoir)&
empty(reservoir(Some_reservoir)).

the subgoal empty(reservoir(ashokan)) cannot be
proved from existing information. Because of the
metarule that says this subgoal is askable, the user
will be asked whether it is true. An affirmative reply
causes the subgoal to succeed. This in turn causes
the initial goal regarding rationing water use to suc-
ceed also. This is not a direct feature of Prolog, but
is provided by our program development environ-
ment. The author can specify a full-screen interface
to be used to ask the question or give a procedure
that can generate a line-oriented message. However,
the details of this feature are not given here.

In addition to asking the user for information, meta-
rules are available to remember intermediate results,
to control processing, and to generate the form of a
result. The interesting thing about using metarules
is that the knowledge remains expressed as pure
logic, and the metarules themselves are strictly de-
clarative. Yet such pragmatic considerations as user
interface and control are handled satisfactorily. Oth-
erwise these usually require imperative or nonlogical
constructs.

Translating from English to Prolog. With an eye to
translating into Prolog, the English sentences are
either simple statements or compound conditionals
of the form IF . .. AND ... ARE TRUE, THEN ... AND
... ARE TRUE. In the following example, xx and yy
are specific values not reportable here.

Example: A device in the list of problem devices is
overloaded if the start-subchannel rate for the device
is greater than xx and the average enqueue delay is
greater than yy.

After the interview with the expert had been put in
complete English sentences and verified by the ex-
pert, the act of coding the rules in the Prolog language
began. Because of the strong correspondence be-
tween Prolog forms and the English sentences, this
was a straightforward process that proceeded as fol-
lows:

* A list of all the types of objects mentioned by the
expert was drawn up.
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Example: device list of problem devices, control
unit, page swap, string of devices, etc.

All relevant properties of these object types were
listed, as determined by the expert interviews.

Example: device start-subchannel rate, device re-
sponse time, device average enqueue delay, etc.

All mentioned relationships among these objects
were identified.

Example: systems can share control units.

The representation of an object of each type was
determined. For example, because a device is re-
ferred to in MVS/370 by a three-character address,
we represent devices by their MvS/370 addresses.
An address was realized as a record having the
Channel (cH), Control Unit (cu), and specific
device (D) as three subfields. The Prolog data
structure representing this record is CH.CU.D.
Prolog pattern matching can then be used, for
example, to refer to any device on channel 1 by
using the term (1.*.*).

Formal names were given to properties and rela-
tions. These were selected so as to be meaningful
to subsequent authors or others having cause to
read the program.

Example: rmf_device_specific_start_subchan-
nel_rate, overloaded_device, . ..

The English sentences were rephrased, using their
formal counterparts:

overloaded_device IF
rmf_device_specific_start_subchannel_rate >
XX AND
rmf__device_specific_enqueue_delay > yy.

Then the formal arguments were added:

overloaded_device(D) IF
rmf_device__specific_start_subchannel _
rate(D) > XX AND
rmf_device_specific_enqueue_delay(D) > yy.

We noticed that all of these properties, relations,
etc. varied depending on the specific RMF record-
ing interval. A device might be overloaded from 2
p.m. to 3 p.m. but perfectly utilized an hour later.
Therefore an implicit argument was identified and
added to represent the recording interval:

overloaded_device(I,D) IF
rmf_device_specific_start_subchannel _
rate(I,D) > XX AND
rmf_device_specific_enqueue_delay(1,D) > yy.
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Because Prolog is a relational rather than a func-
tional language, functions must be expressed as
relations. Thus “rmf._device_specific_start_sub-
channel__rate” is a relationship that holds between
a device and a rate during an interval. Other
variables representing the resulting rate must be
added.

overloaded_device(1,D) IF
rmf_device_specific_start_subchannel _
rate(I,D,R) AND R > XX

AND
rmf_device_specific_enqueue_delay(
I,D,Delay) AND Delay > yy.

» The final act of programming for this rule is to
specify the user interface information. In this case
that simply requires us to tell the application
development system that this rule is an interesting
part of an explanation about a detected problem.
Also, the procedure to be used in producing the
explanatory text must be specified. Both things are
done by adding another rule that we term a meta-
rule in the application development system:

interesting(overloaded__device(1,D), Text) IF
concatenate(
‘Device’. D. ‘is overloaded in interval’. 1, Text).

In this example, the text-formatting procedure
“concatenate” produces as second argument a
string Text by concatenating each of the strings in
the list that is its first argument. Thus, if D is
bound to ‘0570’ and I is bound to ‘13:00,” the
above subgoal binds Text to ‘Device 0570 is over-
loaded in interval 13:00.

The actual text-formatting rules can be arbitrarily
complex, including calling on a natural-language
paraphraser if one is available. For this applica-
tion, relatively simple text formatting—essentially
messages with variables—suffices for presenting
most results.

System data. For this application, the data base
consisted of the RMF monitor data concerning target-
system performance and the SYSGEN data concerning
target-system configuration. These were data sets
found on the mMvs system. Because our experimental
development environment was vM-based, we had to
make the data available in the VM/CMS environment.

Because the data format of the RMF data is not
supported on CMs, we wrote a PL/l program to run
on mvs that converts the RMF data format to one
handled by cMs. At the same time, it normalizes and
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reformats the data into the Prolog term structure
format. A similar preprocessor was written in Prolog
for the SYSGEN data. Subsequent revisions of both
programs for MvS/XA provided a dramatic demon-

Content of the rules is formulated by
the expert, and the appearance of
the user’s view of the application is
designed by the programmer/
analysts.

stration of the benefit of Prolog. The update time
per change for the Prolog program was about one-
fifth the time required to update the PL/I program.

Designing the user’s view of the application. The
general content of the rules is formulated by the
expert, and the appearance and structure of the user’s
view of the application are designed by the program-
mer/analysts. The following three types of screens
are used to interface with the user:

« Menus
s Queries
« Results

Menus, illustrated in Figures 1A, B, and C, give the
user choices about what the tuning system is to do.
Queries are used by the application to get informa-
tion from the user. A typical query screen for the
MVS tuning application is shown in Figure 2. Query
screens may in fact be menus in which the user can
select an appropriate answer. However, we restrict
the use of the term menu to designate the first type
of screen. Results present the sought-for information
to the user. An example is shown in Figure 3. Note
that the text for “overloaded device” is included in
the explanation in Figure 3. Results screens may
have any look the author creates. The development
environment provides a special service that is used
for nearly every result screen in the Mvs tuning
application. This service provides a file containing
the text associated with every interesting rule that
went into determining an answer. When one rule
invokes another, the hierarchical structure is main-
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tained. The example in Figure 3 has three levels. The
result is a file that provides a complete explanation
of the results and how they are justified. This file
may be displayed as part of a result screen or it may
be browsed by the user.

Discussion of resuits and concluding remarks

Validation. The results of the application have been
validated by comparing answers produced by the
MvVS tuner with answers given by experts for real data
in eleven internal 1BM installations. The results were
accurate for all cases that fell within the scope of the
tuner. The system fell short of the expert’s ability to
extrapolate to new situations. It could not guess
about anomalous situations or compare one with
another. For example, it could not say why one
installation was about half as efficient as another,
even though the facilities and workloads seemed
similar. The expert could make a guess, because that
person was familiar with those systems and had a
general knowledge of Mvs. The 1BM Large Systems
Center in Brussels, Belgium, also validated the En-
glish form of the rules by reading to see if they made
sense and fit the reviewer’s concepts of performance
tuning. This was not a validation of the program
itself, but rather a cross-check on the expertise. The
validation showed that although the system performs
accurately within its scope, it must be considerably
broadened if it is to perform at the level expected of
an expert. At a minimum it should be extended to
encompass batch, data base, and mixed workloads
in addition to TSO environments.

Suitable applications. Our experience with the Mvs
tuning application suggests that the Prolog language,
when augmented with certain application develop-
ment utilities, is suitable for a large class of applica-
tions that have some or all of the following charac-
teristics:

& Are driven via menus

* Engage in a dialog with a user to get particular
information

* Embody a significant amount of knowledge about

their subject

Present final as well as intermediate results

Provide justifications of results

Require access to shared mainframe data

Utilize a wide variety of system services

* May be large, small, simple, or complex

The development process for such applications typ-
ically requires multiple authors, frequent revision,
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and a flexible menu structure. Thus we have found
that the method encompasses a wide body of appli-
cations. This wide applicability is the result of gen-
eralizing from a relatively large application and sev-

The tuner engages in a dialog with
the user to get particular
information.

eral smaller ones. At each stage in the development
of the tuning application, care has been taken to
produce solutions to problems that are expected to
be useful in other applications.

The Mvs tuning application has all of the previously
mentioned characteristics in varying degrees. For
example, it is menu-driven. There are three major
classes of menus provided in the application, graded
according to the amount of performance tuning
expertise expected of the user. The tuner also engages
in a dialog with the user to get particular informa-
tion. Since some information is not available from
any formal system data, the user is expected to
provide such information as special-use devices,
groups of operating system users, and the location
of such basic information as system trace data.

Within its designed scope, the results of applying the
system to actual tuning situations, using 1000 and
4000 rules, show it to be as good as the best expert.
The tuning system presents final as well as interme-
diate results. That is, the system locates performance
problems, suggests solutions and their justification,
and provides detailed statistics as requested. To do
this, the system requires access to large volumes of
shared mainframe data. The system trace data that
form the bulk of the input to the program consist of
complete RMF information detailing such activities
as device activity, significant processor activity, pag-
ing activity, and operating system users over several
recording periods. Because the system handles prob-
lems for DASD that are shared among systems, rele-
vant data for all systems connected to a device must
be available. The tuning system has access to a wide
variety of system services. Through the application
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development utilities it has access to full-screen map-
ping, command-language processing, file editing,
RMF recording, and system accounting facilities.

In the development process, four authors were in-
volved in the formulation of rules, menus, and an-
cillary routines. In addition to twice significantly
extending the scope of the problems handled by the
tuning system, they revised the rules for a new ver-
sion of the operating system, from MVS/370 to MVS/
370 Extended Architecture (MVS/XA).

Problems with the use of Prolog. Like other pro-
gramming languages, Prolog must provide control
constructs, the ability to read and write data, and
other nonlogical features. These weaken the declar-
ative nature of a program and emphasize the proce-
dural interpretation. When this happens, the main
benefit of using the Prolog language is diluted. The
purpose of the tools and utilities we developed is to
minimize the need for these nonlogical features. This
lets an application author maintain the declarative
nature of a program.

The expression of knowledge is but one aspect of
developing an application. There are a number of
other pragmatic concerns that must be recognized in
providing a total development environment, includ-
ing the following:

« The application must be able to use existing data
and programs not originally written to co-operate
with the application.

o It must be easy to design and produce the user
interface, including screen format and processing.

« Control of the processing of the knowledge rules
must be simple and straightforward.

» Debugging aids must be provided.

« Provision must be made for the explanation of
results to the user.

Since the Prolog language is so general, there are
many ways to express a problem, which is not always
an advantage. It gives the author much power in the
language, but also requires more understanding and
experience than does a less comprehensive language.

Although the /ogic expressed by Prolog clauses is
neutral with respect to the processing strategy, Prolog
provides only a backward chaining strategy. Other
control strategies are sometimes useful.

The power of Prolog’s relational data retrieval is
available only for data structures represented as re-
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lations. The nature of Prolog as a first-order logic
subset presupposes that the set of axioms does not
change during the proof. This means that the notion
of changing state must be explicitly represented as
terms, which are structured data items that can be
passed from procedure to procedure. Examining and
modifying these data structures must be explicitly
programmed, as in other languages.

Prolog advantageously handles problems whose size
allows all relevant data to be loaded into active
memory. However, when the problem is too large,
one must plan for and program data access on sec-
ondary storage (DASD), which Prolog handles with
about the same efficiency as such standard languages
as PL/I, COBOL, Or FORTRAN.
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