
Prolog  for  applications 
programming 

by W. G. Wilson 

This  paper  discusses  the  problems  and  benefits  of us- 
ing the Prolog  language to write  application  programs. 
Much  attention  is  currently  focused  on  expert-systems 
shells,  which  play a  role  in  artificial  intelligence (AI) 
systems  similar to that of application  generators  in 
more  conventional  applications.  The  Prolog  program- 
ming  language  embodies  many  of the  features found  in 
these  shells,  while  providing a  relatively  general  and 
complete  programming  language. MVS performance 
tuning  is used as an application  that  typifies  a  broad 
class of applications  suitable  for  implementation  in 
this  language.  Some of the difficulties  that had to be 
overcome to use  the  language  are  presented,  with  their 
solutions. 

P rolog  is  a computer language that has  aspects 
that make it different from such other languages 

as PL/I, Pascal, COBOL, or FORTRAN. This difference 
goes deeper than syntax or a  set of primitives. It is 
at the very core  of the language, in what  a  Prolog 
program means. A Prolog  program can be  viewed as 
a  set  of  logical  axioms,  where  executing  a  Prolog 
establishes a proof that a certain desired conclusion 
follows  from that set of axioms. 

The name Prolog stands for Programming in Logic. 
The language was invented in the early 1970s as  a 
practical implementation of a theorem prover  for  a 
subset of first-order l~gic ."~  Intended as an imple- 
mentation language  for  artificial  intelligence (AI) ap- 
plications,  Prolog incorporates many of the features 
of other languages,  such  as LISP, and deals primarily 
with tree structures of  which the LISP list  is  a  subset. 
Prolog  programs are usually re~ursive.~ 

After an introduction to the Prolog  language,  a  par- 
ticular application is described that is  typical of a 
broad class  of applications suitable for implementa- 

tion in this language.  Some of the difficulties that 
had to be overcome in order to use the language- 
and their solution-are  presented. In this paper, the 
term author refers to the analyst and application 
programmer, and user refers to the user  of an appli- 
cation. When the application is an expert  system, 
other writers  sometimes use the terms knowledge 
engineer and client in place of author and user. The 
term logic refers to the relationship that holds among 
data structures. This usage  follows  from the fact that 
Prolog  is  based in mathematical logic.  It  is not used 
synonymously  with control, as  is customary when 
talking about procedural  languages. 

Prolog 

The Prolog  language  has  been  shown to be  useful  for 
such  complex  problems  as  analysis of hardware and 
 oftw ware.'.^ It  also  has  useful  software  engineering 
aspects  for  less  complex  problem^.^ Several  people 
have noted the usefulness  of  Prolog  for implement- 
ing  expert  systems.8-'2 The language  provides  a  basis 
for  utilizing natural paralleli~m,'~-'~ and variations 
of the language  apply to non-AI-type applications.16,'7 
Prolog  has  had many different implementations with 
different  syntax and built-in procedures, but they  all 
involve the same essential concepts that make  Prolog 
recognizable in many forms.  Prolog  is  probably the 
best known of several  languages that utilize theorem 
proving  in  logic  as  a programming tool in the general 
area called logic programming.L8-2Q 

Copyright 1986 by  International  Business  Machines  Corporation. 
Copying  in  printed  form  for  private use is  permitted  without 
payment of royalty  provided  that (1) each  reproduction  is done 
without  alteration  and (2) the Journal reference  and  IBM  copyright 
notice  are  included on the  first  page.  The  title  and  abstract,  but no 
other  portions, of this  paper  may be copied or distributed  royalty 
free  without  further  permission  by  computer-based  and  other 
information-service  systems.  Permission  to republish any  other 
portion of this  paper  must be obtained  from  the  Editor. 

IBM SYSTEMS JOURNAL, VOC 25, NO 2.1986 



Procedural versus  declarative meaning. One might 
question whether there truly is a relationship be- 
tween theorem proving and programming. In fact, a 
close relation exists  because  Prolog knits together a 
procedural (or programming) and a declarative (or 
logical)  view  of a program, from  which  process 
comes its value.’’ This relationship can be illustrated 
by contrasting the meanings of procedural progrzms 
with the meanings of  logic  programs. The meaning 
of a Pascal  program  lies  in the sequence of steps that 
the computer performs,  given certain input. The 
relationship of input to output and the procedural 
flow are  mingled  together and cannot be separated. 
A demonstration that the program  actually  realizes 
its English  language  specification can be  difficult, 
however. 

A Prolog program, on the other hand, has two clear 
and distinct meanings. One meaning is the proce- 
dural one which,  like  Pascal, instructs the computer 
on the sequence of steps it is to take. The declarative 
meaning has nothing to  do with a computer. A 
Prolog  program  can be read  as a set  of statements 
(called axioms or clauses) about the real  world that 
are either true or false.  Executing a Prolog program, 
from this viewpoint, amounts to showing that a 
certain statement can be deduced  from the logical 
statements that make up the program. A proofof the 
goal statement is constructed and demonstrates that 
the goal  logically  follows  from the axioms that are 
the Prolog  program. This is the fundamental essence 
of Prolog. 

Prolog and  theorem  proving 

It is not  necessary to understand theorem proving to 
use the Prolog  language.  However, a little discussion 
of the origins of the language  may  help put it in 
perspective  with other languages and with  expert- 
systems  shells. 

At the time Prolog was introduced, there were com- 
plete theorem provers  for the first-order  predicate 
calculus,  which  is the logical  system  developed by 
logicians to express the bulk of deductive reasoning, 
a central problem  in AI ~ e s e a r c h . ~ ~ . ~ ~  Although a 
theorem prover can in principle deduce any valid 
proof, the time required  may be excessive.  At each 
step in a deduction there may  be many ways to 
proceed.  Since any of the possible deductive paths is 
logically  valid, the decision about which path to take 
does not affect the correctness of the result. Rather, 
it is a question of the efficiency  with  which a correct 
result is obtained. Deciding which  way to proceed  in 
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the deduction is done by the control component of 
the theorem-proving system. 

On this point there are two main divergent opinions. 
One is that a general-purpose control strategy or set 
of strategies can be  devised. The other is that to be 

The  declarative  meaning  of  a  Prolog 
program  makes it different  from 

procedural  programs. 

efficient, the author must be able to specify control 
information that relates to the specific  problem the 
program is to solve. 

Prolog  gives this second  facility to the author. The 
general  framework of a Prolog  proof  is that of back- 
ward  reasoning  from a desired conclusion to uncon- 
ditional facts. Within this framework, the author has 
explicit control over the order in  which axioms and 
subgoals are tried. This gives the author of a Prolog 
program  as much control over  how the program 
executes  as a Pascal programmer has.  Because  they 
are  based in logic,  however,  Prolog  programs  also 
have a declarative or logical  meaning, which  Pascal 
programs do not have. The  author can separate the 
issue  of  correctness  from the issue  of  efficiency. This 
makes the author’s tasks  in  each of these areas sim- 
pler than when  they are mingled  together, as they 
are in procedural  languages. 

The existence of the declarative meaning of a Prolog 
program is what  makes it different  from  strictly 
procedural  programs. The problems and advantages 
described  here  arise  from this feature of the Prolog 
language.  Because  Prolog  has both logic and pro- 
gramming aspects, certain nonlogical  features were 
introduced into the language to take care of such 
pragmatic concerns as  reading and writing data. To 
reap the maximum benefit  of the logic-programming 
paradigm, an author must  strive to isolate  these 
nonlogical  aspects of a program. 

From this declarative  viewpoint,  executing the 
Prolog  program  establishes a logical  proof that a goal 
follows from the axioms.  Given the axioms that 



make up the Prolog program, the result is true re- 
gardless of the method used to establish the proof. 
The method is  called the proofprocedure or strategy. 

Prolog uses one particular strategy, but  any  other 
sound strategy could be  used on the same program 
to reach a  true conclusion. This is  like not having to 
consider the order in which  Pascal statements  are 
executed, but still being guaranteed a  true result, 
because a proof is a proof no matter how it was 
established. The Prolog strategy is termed top-down 
or backward chaining, because the direction of rea- 
soning is from the desired conclusion to uncondi- 
tional axioms. 

Programming with Prolog 

Writing a Prolog program. Consider first the follow- 
ing paragraph of ordinary English  prose: 

New York City gets its water from a variety of 
sources. One of these sources is the Ashokan Reser- 
voir in upstate New York. This reservoir  occasionally 
dries up, at which times it is empty. Whenever a city 
gets its water from an  empty reservoir, that city 
should limit water use. 

This paragraph expresses a variety of thoughts, so 
that  a person after reading it  is in a position to 
answer such questions as the following: 

Should New York City ration water use? 
Where does New York City get its water? 

The simplified  logical content of this paragraph 
could be  expressed in the following three sentences. 

1. New York City gets its water from the Ashokan 

2 .  The Ashokan Reservoir is empty. 
3. A city should ration water use  if it gets its water 

from some reservoir and  that reservoir  is empty. 

Notice that  the first two sentences express simple 
facts,  whereas the last sentence expresses a condi- 
tional truth. When expressed in Prolog, each sen- 
tence is  called a clause. The conditions following the 
word “if” are called the body of the clause. The first 
two sentences have no body, in which  case the body 
is said to be “empty.” 

There are many ways  of formalizing these sentences 
in logic. The degree of complexity of the formaliza- 

Reservoir. 

192 WILSON 

tion depends on  the questions that  are expected to 
be answered. At the least detailed level, for example, 
the first sentence could be considered as simply a 
statement with neither generality nor structure. It 
could be used to answer only the question “Does 
New York City get its water from the Ashokan 
Reservoir?” 

At the most detailed level, the sentence could be 
considered to express a variety of things. There are 
two objects, a reservoir (the Ashokan) and  a city 
(New York City). There is another object (water) 
and  a relation (gets) that says one thing (New York 
City) is getting another thing (water) from the  third 
thing (the Ashokan). 

The usual  case  is somewhere between  least and most 
detailed levels. In this example, consider two objects, 
the Ashokan Reservoir and New York City, and 
make “getting water from”  the relation between these 
two  objects. This relation can then be used to express 
other facts, such as  where Albuquerque gets its water 
(i.e., the  Rio  Grande  and underground aquifers). 

The second sentence ascribes the property of being 
empty to  the Ashokan Reservoir. The  third sentence 
gives a rule for when a city needs to ration water  use. 
Definite but unspecified objects (such as “some city”) 
play the role of  variables. 

These sentences about rationing water use can be 
represented in Pascal data structures and programs, 
but the Prolog language  allows particularly simple 
representations of these sentences. The  normal form 
of a Prolog relation is  called a predication and is 
expressed as follows: 

<relation name> (<list of objects being related>) 

As in other languages,  variables must be distin- 
guished from constants  and relation names. In these 
examples, the variables begin  with uppercase letters. 
The words “if” and  “and”  are represented by  <-.and 
&. Letting A,  B, and C be arbitrary predications, the 
general form of a Prolog clause is as follows: 

A < - B & C  

which  is read “A is true if B  and C are  true.” As 
mentioned previously, the conditions (B & C)  are 
called the body of the clause. The conclusion (A) is 
termed the head. There may  be any number of 
conditions in the body. 

The following Prolog clauses correspond to  the pre- 
viously  given sentences: 
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1. empty(reservoir(ashokan)). 
2.  city-getswater-from-reservoir( 

new-yorkcity, ashokan). 
3. shouldation-water-use(Some-city) <- 

city-getswater-from-reservoir( 
Some-city, Some-reservoir) & 
empty(reservoir(Some-reservoir)). 

In addition to this normal form, most Prolog imple- 
mentations allow a syntactic sugaring. That is,  by 
suitably instructing the Prolog parser, the following 
more English-like syntax can be  used: 

1. the ashokan reservoir  is empty. 
2 .  new-yorkcity gets its water from the ashokan 

3. Some-city should ration water use  if 
reservoir. 

Some-city  gets its water from Some reservoir and 
Some reservoir is empty. 

Difference  between English and Prolog. The English- 
like nature of this example is deceptive. The declara- 
tive meaning of this program is straightforward, as 
can be  seen by reading each statement  as  the corre- 
sponding sentence. However, Prolog does not  un- 
derstand the English, so that editorial variations or 
equivalent expressions do not work. “The Ashokan 
Reservoir is out of water” cannot be  used in place of 
“The Ashokan Reservoir is empty.” A person can 
answer questions about  the paragraph because a 
human reader understands what is being said. Prolog 
performs only formal operations on  the axioms it is 
given. Within these limitations, however,  Prolog op- 
erations are such that  the result  is true (as determined 
by a person) if the axioms are  true  (as determined 
by a person). 

The particular symbols used  have no meaning to 
Prolog. One could replace “shouldation-water- 
use”  with “apples” and  “getsitswater-from” with 
“oranges,” and it would make no difference to 
Prolog, which  would  still carry out its operations 
mechanically. In Prolog as in other languages, 
whether the program and  the results have any mean- 
ing depends strictly on  the observer. One would have 
to know that “apples” really means that a city should 
ration water use, and  that “oranges” really means 
that a city  gets its water from some particular place, 
before the program or its results would have mean- 
ing. 

Of course, this limitation affects  all programs, not 
just Prolog programs. The meaning of symbols de- 
pends on  the  human observer and  not on the  com- 
puter. Prolog cannot  make associated judgments 
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about  the  content or meaning of the symbols used 
in a program, and can deduce nothing other  than 

Prolog uses  a  pattern-matching 
process  called  unification  to  give 

values to variables. 

what  is strictly given. It has none of the general or 
commonsense knowledge that a person  has. 

Executing a Prolog program. We have  seen  how a 
Prolog program looks and how it is read. We now 
discuss  how the program executes. Each relation in 
a Prolog program is a procedure. In the water-ration- 
ing example, there are three procedures: “empty,” 
“city-getswater-fromdeservoir,” and ‘‘should- 
ration-water-use.”  In this example, there is only 
one clause for each procedure, but there could be 
more. One might also know that Kingston gets water 
from the Catskill Reservoir: 

city-getswater-fromreservoir(kingston, catskill). 

Then there would be two clauses for the procedure 
“city-getswater-fromreservoir.” Considering the 
whole  world, there could be thousands. In Prolog, a 
procedure call  is also known as a goal to be proved. 
The body  of a clause is a sequence of procedure calls. 
It is also called a goal. The body of the only clause 
in the procedure for “should-ration-water-use” is 
a sequence of two procedure calls, “city-gets 
water-fromdeservoir” and “empty.” Prolog proce- 
dures contain only calls to  other procedures. 

A Prolog procedure call  may either succeed or fail. 
If it succeeds, a proof has been established for a true 
instance of the goal;  if it fails, no proof has been 
established. 

Prolog does not have an assignment statement. In- 
stead it uses a pattern-matching process  called uni- 
jication to give values to variables. When a procedure 
is  called, each clause in the procedure is tried in turn. 
The variables and  data structures in the goal are 
matched against those in the head of the clause. A 
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variable matches anything, and a constant matches 
only the same constant. 

For the following  example, the goal 

city-getsitswaterfromreservoir(R, ashokan) 

matches 

city-getsitswaterArom-reservoir( 
new-yorkcity, ashokan) 

In this process of matching, the variable R is  assigned 
the value “new-yorkcity.” 

When  a  clause is found whose  head matches the 
goal, the process is repeated on each of the goals in 
the body. If they  all  succeed, the goal that matches 
the head  of this clause  also  succeeds. All of the 
matches that occur usually  cause  some  of the calling 
variables to become bound by unification. This is 
the way results are generated. 

Suppose the goal  is the following: 

city-gets-water-fromservoir(new-yorkcity, 
R). 
There are the following  two  clauses in this procedure: 

city-getswaterfromreservoir( new-yorkcity, 
ashokan). 
city-getswaterfrom_reservoir(kingston, catskill). 

Trying the first  clause, the constant “new-york 
city” matches itself  in both the goal and the head. 
The variable R in the goal then matches “ashokan.” 
Because this clause  has no conditions to try, the goal 
immediately succeeds. 

Suppose the goal  is 

city-getswater-from-reservoir(kingston, R). 

The match of “new-yorkcity” with “kingston” 
fails,  which  causes the second  clause to be tried. This 
clause  succeeds, matching the goal  variable R with 
catskill. 

Where  a  goal  consists of a  sequence of procedure 
calls, one subgoal  may  succeed while a subsequent 
subgoal  fails.  In this case, backtracking occurs, 
whereby an alternative solution to the previously 
succeeding  subgoal is sought.  Although we do not 
discuss the details of backtracking, it is  sufficient to 
understand that, in order for  a goal to succeed,  all 
procedure calls in the body  of  a matching clause 
must succeed. 

If the goal  is 

shoulrlation-water-use(Some-city) 

the corresponding  rule  is  invoked. So far,  “Some- 
city”  does not have  a  value. The rule  has  two 

The  programmer  does  not  have to 
be concerned  about  the  control of 

the  program to establish  correctness 
of the  results. 

subgoals in its body.  Each of these  must be  satisfied 
in turn as follows: 

city-getswater-fromservoir(Some-city, 
Some-reservoir) & 
empty(reservoir(Some-reservoir)). 
First, the procedure “city-getswaterfromser- 
voir” is  called. Then the procedure empty is called. 

Suppose the goal 

city-getswater-from-reservoir(Some-city, 
Some-reservoir) 

first matches the clause 

city-getswater-fromreservoir(kingston, catskill) 

Now the following  variables  have  values: 

Some-city = kingston 
Some-reservoir = catskill 

The next  goal  is 

empty(reservoir(catskil1)) 

Given  what is in the program, this cannot be proved. 
Therefore, the call  fails,  which  causes  backtracking. 
The previous goal has the following solution that 
matches the clause: 

city-getswater-fromservoir(new-yorkcity, 
ashokan) 

Therefore, the variables  get the following  new  values: 
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Some-city = new-yorkcity 
Some-reservoir = ashokan 

This time the subgoal “empty(reservoir(ash0kan))” 
succeeds.  We  now  have the following,  because both 
goals  have  succeeded: 

shou!d-ration_water-use(new-yorkcity) because 
city-getswater-fromservoir(new-york-city, 
ashokan) & 
empty(reservoir(ash0kan)). 

Prolog  also  allows  tree structures as well as  variables 
and constants, which makes the matching process 
quite powerful.  However, we do not discuss tree 
structures in this paper. 

Separate logic from control. We have  shown a way 
of reading a Prolog  program  as a logical statement 
and another way  of reading it as a series of procedure 
calls.  It  is this logical meaning that makes  Prolog 
different to work  with. The author of a Prolog  pro- 
gram can switch  between  these  two  ways  of  viewing 
a program, which  makes  some  activities much easier. 
For example,  from the declarative  viewpoint, the 
correctness of a Prolog  program is independent of 
the particular method used to carry out the proof. 
That means that the programmer does not have to 
be concerned about the control of the program to 
establish  correctness of the results. The programmer 
does,  however,  have to pay attention to the control 
aspects to improve eficiency. 

The previous  example  shows that the declarative 
meaning of the program is correct  when it answers 
(in effect):  Yes,  New York  City  should ration water 
use. This is true without regard  for either the order 
in which the subprocedures are called or the order 
in which the sentences appear in the program. Of 
course, one may  disagree  with the assumptions, in 
which  case one may  also  disagree  with the conclu- 
sion. However, if one agrees that the assumptions 
are true, then one must  agree that the conclusion is 
also true. 

This program can answer questions about empty 
reservoirs (Which reservoirs are empty?) and about 
water  supplies of cities  (Which  city  gets its water 
from  which  reservoirs?). The program is not limited 
to the one question about New York City’s limiting 
its water  use. Logic programs  are more general in 
this sense than procedural programs.  They are also 
very modular, for the same reason, in the sense that 
everything  is  written  as many small  procedures. 
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These  procedures  can  also  be used in the relational 
data base  style. The one procedure “getsitswater- 
fromthe-reservoir” can tell either which  reservoir 
New York  City  gets its water from, or which  cities 
get their water  from the Ashokan  Reservoir, or check 
whether New York  City  gets its water  from the 
Ashokan  Reservoir, and so on. Which  variables are 
input and which are output can vary from one call 
to the next. This property of Prolog  programs,  re- 
ferred to as relational reversibility, is often  useful  in 
reducing the amount of code that has to be written. 

The  application  selected is that of 
assisting  in  the  performance  tuning 

of MVS. 

In Pascal,  for  example,  separate functions have to be 
written  for  finding  reservoirs of cities and for finding 
cities that use  reservoirs,  whereas  in  Prolog there is 
but one relational procedure. 

A performance-tuning  application 

The application selected  for  exploring the potential 
of  Prolog  programming  technology  is that of assisting 
in the performance tuning of MVS, IBM’S primary 
operating system  for  large  systems. For systems as 
complex as MVS on large mainframes, there are many 
ways to approach the problem of performance tun- 
ing. Therefore, our approach is to use methods and 
knowledge  provided by an expert  in the field  of 
performance tuning, D. W. Hunter. Thus, the appli- 
cation may  be  said to be an expert  system. 

This application is restricted to TSO environments, 
where  secondary-storage (DASD), control-unit, and 
paging  problems  can  cause degradation in  response 
time. The recommended solutions are those that take 
relatively  long times to implement, such as balancing 
dataset  activity or installing more main storage. The 
system does not perform minute-by-minute adjust- 
ments of operating system parameters such as target 
multiprogramming level or number of active  batch 
job initiators. 



The  data on which the recommendations are based 
are  the Resource Management Facility (RMF) trace 
inf~rmation,’~ the System Generation (SYSGEN) con- 
figuration inf~rmation,’~  and information known 
only to  the systems programmer, such as which 
performance groups identify TSO users. 

The RMF data  are produced on MVS in variable 
blocked spanned records. This file organization is 
not supported by the VM/CMS operating system on 

The  system is organized  into  three 
levels  corresponding  to  the 

expected  performance  experience 
of its  user. 

which the  tuning system runs. Therefore, a PL/I 
program was written to convert the file format to 
one supported by CMS. The PL/I program also nor- 
malizes all data units. That portion of the system 
written in PL/I, though a small part functionally, 
required nearly one  third of the total development 
time.  The programmers involved were equally shlled 
in both Prolog and PL/I. 

Because SYSGEN information is maintained on line 
in a file format already supported by CMS, it did not 
require format translation, but was read directly by 
Prolog programs. 

Two major versions of the expert MVS tuning system 
were produced. The first  version dealt with MVS/370 
only. The second version was expanded to handle 
also MvS/XA. This was a significant conversion be- 
cause there were major input  data format and con- 
tent alterations, as well as changes to  the  tuning 
methodology embodied in the program. Prolog 
proved remarkably valuable in minimizing the con- 
version time. 

The features of Prolog that contributed to making 
conversion easier are extendability and modularity. 

Extendability. The XA version of RMF and SYSGEN 
data had records not present in the System/370 
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version, and  the meaning or content of some of the 
fields in other records was changed. New records 
could be handled by simply adding clauses that 
defined these new records and others that expressed 
the knowledge  of  how  they  were to be used.  Existing 
knowledge about information valid in System/370 
systems did not require changing. The knowledge 
was cumulative. For records whose meanings had 
changed, definitions were  given with conditions 
added specifying the level to which they applied. 

Modularity. Because everything in Prolog is done  in 
essence by a subroutine, replacing or extending the 
logic  was  simplified.  In contrast, the PL/I procedures 
we had to modify had much in-line code that had to 
be inspected and modified whenever the control or 
data references  were inappropriate. 

Capabilities. The system  is organized into three lev- 
els corresponding to  the expected performance ex- 
perience of its user. 

Generalized level. The most elementary level, this 
is a simple step-by-step  process for users  who know 
nothing about performance tuning  in general or 
about  the problems specific to the MVS system for 
which advice is requested. At this level, a user can 
ask such questions as “Is there a TSO response time 
problem?” and “What should I do about it?”. See 
Figure 1A. The user  gets only one recommenda- 
tion about  the most troublesome problem, even 
though more than  one recommendation may be 
applicable. Without knowledge  of the  tuning proc- 
ess, the user  is not  in a position to evaluate more 
than  one possible solution. The next level  of detail 
can be  used to investigate other problems if de- 
sired. 
Localized level. This level  is for users  who know 
about  the performance problems of a particular 
system and who want to direct the  tuning activity 
in more detail, focusing it on  one of  eleven  pri- 
mary problem areas that is suspected of causing 
the  current performance problem. At this level, 
more than  one problem can be exposed if multiple 
performance problems exist in a particular system. 
The user can ask questions such as “Is there an 
overloaded DASD device or control unit?” and  “Is 
the system demand paging rate too high?”.  See 
Figure 1B. 
Data extract. At this level systems programmers 
who are familiar with the performance tuning of 
large systems can use the  tuning system in sum- 
mary mode as an easy-to-use window on  the basic 
performance data. They can pursue a problem 
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outside the current scope of the tuning system, 
using their own  expertise. This level provides such 
information as the Start Subchannel (SSCH) rate 
for a particular device or for all devices on a 
control unit, and response time for specific MVS 
performance groups and periods. See  Figure 1C 
for an example of the type of information avail- 
able. 

System queries. During the course of attempting  to 
identify a performance problem and recommend a 
solution, the  tuning system may need information 
that is not currently part of its knowledge  base and 
that  cannot be inferred from existing rules. One 
example is RMF trace data.  The  tuning system does 
not  come prepackaged with tuning  data  about a 

particular system on a particular day. When it needs 
this information and it is not currently available in 
the active workspace, the user  is  asked  where to get 
the information. Then  the appropriate file is con- 
sulted. 

There may be some information that only the user 
can provide. For example, each MVS installation gives 
separate performance group identifiers to different 
departments for various accounting and administra- 
tive  uses. RMF performance information is  collected 
on the basis of these performance groups. The  tuning 
system needs to know which of the performance 
groups are  to be considered in establishing response- 
time characteristics. This information is available 
only from the installation’s systems programmer. 

Figure 1 (A) Example of a menu  for  common use, (B) example of a  menu  for  an  experienced  user, (C) example  of  a  menu 
for use by a performance  expert 

MVS/XA  PERFORMANCE  TUNING EXPERT SYSTEM 
SYSTEM  A1  1NTERVAL:MOZl  03-22-85 13:OO SCREEN:  MAIN 

1. S t a r t / r e s t a r t  a c o n s u l t a t i o n .  

2. Is t h e r e  a l o n g  TSO response  t ime  problem? 

3. Is t h e r e  a s o l u t i o n   t o   t h e   l o n g  TSO response  t ime  problem? 
( T h i s   c h o i c e   a p p l i e s   a l l   a v a i l a b l e   t u n i n g   k n o w l e d g e   t o   l o c a t e  
a problem. 

To e x a m i n e   t h e   s o l u t i o n   p o s s i b i l i t i e s   s e p a r a t e l y ,   p r e s s  PF7 now.) 

ENTER  YOUR  CHOICE  OR  PRESS A PF  KEY ====> - 
1-HLP  2-BRW  3-QUIT  4-EXIT  5-REV  6-NXT  7-ALL  8-PRO  12-CMS 



MVS/XA  PERFORMANCE  TUNING  EXPERT  SYSTEM 
SYSTEM A1 1NTERVAL:MOZl  03-22-85 1 3 : O O  SCREEN:  SLTN 

1. Show  any  overloaded  device (of the  top 10 candidates). 
2 .  Show  any DASD chpid  with  heavy  tape usage. 
3 .  Show  any  overloaded  chpid  causing DASD delays. 
4. Show if there  are  any  long  channel  programs on a DASD chpid. 
5. Show  any  excessive  reserve  delay on a  device. 

6. Show  whether  the  working  set  is  too small. 
7. Show if  the  system  total  paging i s  too much. 
8. Show  whether  the  logical  swaps  are  being  physically  swapped. 

9 .  Show  whether  there  are  any  overloaded  control units. 
10. Show  whether  there  are  any  chpids  with  high  utilization. 
11. Show  whether  there  are  any  chpids  with  high  service time. 

ENTER  YOUR  CHOICE OR PRESS  A  PF  KEY -===> - 
1-HLP 2-BRW 3-QUIT  4-EXIT  5-REV  6-NXT  7-ALL  8-PRO  12-CMS 

MVS/XA  PERFORMANCE  TUNING  EXPERT  SYSTEM 
SYSTEM  A1  1NTERVAL:MOZl  03-22-85 13:OO SCREEN: SSCH 

1. Show  the SSCH rate  for  this DASD. -=> - 
2. Show  the SSCH rate  for  this  string of DASD. ==> - 
3 .  Show  the SSCH rate  for  this  physical  control  unit. =-> - 

4 .  Show  the SSCH rate  for  this  logical  control unit. ==> - 
5. Show  the  rate  that SRM issued STCPS to  sample  chpid busy. 

ENTER  YOUR  CHOICE OR PRESS  A  PF  KEY -=-=> 
1-HLP 2-BRW 3-QUIT  4-EXIT  5-REV  6-NXT  7-ALL  8-PRO  12-CMS 

- 
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Figure 2 Example of a question the  system asks the user 

MVS/XA  PERFORMANCE  TUNING  EXPERT  SYSTEM 
SYSTEM A 1  1NTERVAL:MOZl  03-22-85  13:OO  SCREEN: TSOPGS 

What  performance  groups  are  for  TSO  in  this  interval? 

Performance  group ===> - 
Performance  group ===> - 
Performance  group ===> - 

1-HLP  2-BRW  3-QUIT  4-EXIT  5-REV  6-NXT  7-ALL  8-PRO  12-CMS 

In  these  cases, the tuning system  asks the user to 
supply the missing information. This is done by 
means of a query screen, as may  be  seen  in  Figure 2. 

System responses. The system  locates a problem, 
gives a recommendation, and justifies its recommen- 
dation. The justification is a logical explanation of 
the problem and the recommendation in terms 
meaningful to the user.  See  Figure 3 for an example. 
The degree  of detail and the terms used  are under 
author control and can be made dynamically  respon- 
sive to a particular user’s interests or background. 
One user  may  want to know  only  which buttons to 
push to set things right,  whereas another may  wish 
to know the device  activity  characteristics of those 
strings of  devices that are  causing the problem. In 
this particular application no significant use  was 
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made of this dynamic capability. Answers are given 
at one level  of detail. However, the capability  is there 
in case  of future need. 

Capturing the performance  knowledge. The tuning 
system  does not contain an explicit performance 
model of MVS. It operates at a superficial  level, by 
mimicking the observed  processes of human experts. 
These  experts undoubtedly do have a mental model 
of MVS to which they  refer  when questions go outside 
established  procedures. In that sense the tuning sys- 
tem is incomplete. Although  Prolog is suitable for 
implementing such a model, the design  decision not 
to do so was originally  made in order to be more 
faithful to the capabilities and mode of behavior of 
the broad class of applications we  were trying to 
represent. Likewise, most standard data processing 



Figure 3 Example of results  the  system  shows  the  user 

MVS/XA  PERFORMANCE  TUNING EXPERT SYSTEM 
SYSTEM  Ai  1NTERVAL:MOZl  03-22-85  13:OO  SCREEN:  RSLT 

(PRESS  PF2  TO  BROWSE  COMPLETE  RESULTS  FILE) 
There e x i s t s  a DASD s o l u t i o n   t o   r e d u c e   r e s p o n s e   t i m e .  
An o v e r l o a d e d   d e v i c e   e x i s t s .  
Use GTF a n a l y s i s   t o   s p r e a d   w o r k l o a d   f o r   d e v i c e  0570. 

Device  0570 i s  a 'problem  device' .  

Device  0570 i s  o v e r l o a d e d   d u r i n g   i n t e r v a l  13:OO. 

The SSCH r a t e   t o   d e v i c e  0570 i s  5 . 0 9 / s e c o n d .  

A SSCH count   grea ter   than   5 / second  is t o o   h i g h .  

The a v e r a g e   q u e u e   l e n g t h   f o r   d e v i c e  0570 i s  7.277. 

An average   queue   l ength   ( enqueue   count )   grea ter   than  5 i s  too   h igh .  
1-HLP  2-BRW 3 - Q U I T  4-EXIT  5-REV  6-NXT  7-ALL  8-PRO  12-CMS 

applications as well as  expert  systems do not incor- 
porate a detailed model of an enterprise when  pro- 
ducing a loss/earnings report, for  example, or when 
diagnosing a system  failure. 

However,  experience  with the existing tuning capa- 
bility  has  convinced us that such a deep model of an 
MVS system should be incorporated. It  would  be 
useful  for  predicting the effects of  suggested changes 
to the installation being tuned and in providing more 
tutorial types of explanations. It is important that 
the language  used to implement the application be 
able to support both types of knowledge:  superficial 
behavior  copied  from an expert and a deep model 
of the domain. Without such a model, the system 
cannot be considered to understand a problem  in 
any significant  sense. 

Prolog  is a language  whose  basic concepts are pow- 
erful  enough to provide the underlying  representa- 
tion for a variety of knowledge-representation meth- 
ods.  In our case, a simplified  version of the language 
was  used to represent  directly  the  rules  provided by 
the tuning expert. As in most applications, program- 
mers and analysts  are  used as intermediaries between 
the expert and the machine. A fair  degree  of  expertise 
in putting together applications, including what the 
screens  should  look  like and how to make  procedures 
more  efficient,  is  required  with applications of the 
type we  were emulating.  After  studying  various ap- 
plication  generators and expert-systems  shells, we 
are  convinced that the role  of programmer/analyst 
still  exists.  New  tools  may shorten the path from 
expert to program, but it still  requires a programmer/ 
analyst or knowledge engineer as intermediary. 
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Application  development 

Production of rules. The production of the rules for 
the MVS tuning application proceeded in three stages: 

1. We interviewed the expert on particular tuning 
issues and took detailed notes of the interview. 

2. We then organized the notes and expressed the 
expert’s thoughts in complete sentences. We re- 
viewed the resultant transcript with the expert for 
accuracy and completeness. This occasionally re- 
sulted in revisions of the expert’s original state- 
ments. 

3. The sentences were translated directly into Prolog 
and validated on sample data by comparing pro- 
gram results with the expert’s  results. 

This process was repeated several times to  add more 
scope. A general review  was performed in the con- 
version from MVS/370 to MVS/XA. Here we used the 
extendable nature of Prolog programming advanta- 
geously. 

Programming environment. During this process, 
common functions were extracted from the Prolog 
procedures and incorporated into  a set  of utilities 
that made programming significantly easier. These 
constituted a program development environment. 
Although developed independently in response to 
perceived  need for the task at  hand, this program- 
ming environment for Prolog is similar in many 
respects to facilities available in Augmented Prolog 
for Expert Systems (APES)~~-**  and in the Expert 
System/Development En~ i ronmen t .~~  

Metarules. We are able to keep the rules simple and 
logical by providing a metarule capability. Metarules 
look exactly like the Prolog clauses that express the 
performance-tuning knowledge, but they express 
control and user interface information. Essentially, 
they say how the actual performance rules are to be 
used, what intermediate results are  to be remem- 
bered for future use,  when questions are to be asked 
of the user, and what information is to be given to 
the user for an explanation. 

For example, suppose that  the rules about water use 
do not include the information about which  reser- 
voirs are  empty. It may be that this information is 
available only from the user of the system. Then the 
metarule can be added to tell the system to ask the 
user whether it needs this information: askable 
(empty(reservoir(*))). 
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When the following clause is invoked, 

shouldration-water-use(Some-city) <- 
city-gets-water-from-reservoir( 
Some-city,Someseservoir)& 
empty(reservoir(Someseservoir)). 

the subgoal empty(reservoir(ashokan)) cannot be 
proved from existing information. Because  of the 
metarule that says this subgoal  is askable, the user 
will  be  asked whether it is true. An affirmative reply 
causes the subgoal to succeed. This in  turn causes 
the initial goal  regarding rationing water use to suc- 
ceed also. This is not  a direct feature of  Prolog, but 
is provided by our program development environ- 
ment.  The  author can specify a full-screen interface 
to be  used to ask the question or give a procedure 
that  can generate a line-oriented message.  However, 
the details of this feature are not given here. 

In addition to asking the user for information, meta- 
rules are available to remember intermediate results, 
to control processing, and  to generate the form of a 
result. The interesting thing about using metarules 
is that  the knowledge remains expressed as pure 
logic, and  the metarules themselves are strictly de- 
clarative. Yet such pragmatic considerations as user 
interface and control are handled satisfactorily. Oth- 
erwise these usually require imperative or nonlogical 
constructs. 

Translating from English to  Prolog. With an eye to 
translating into Prolog, the English sentences are 
either simple statements or compound conditionals 
of the form IF . . . AND . . . A R E  TRUE, THEN . . . AND 
. . . ARE TRUE. In the following example, xx and yy 
are specific  values not reportable here. 

Example: A device  in the list  of problem devices  is 
overloaded if the start-subchannel rate for the device 
is greater than xx and  the average enqueue delay is 
greater than yy. 

After the interview with the expert had been put  in 
complete English sentences and verified  by the ex- 
pert, the act of coding the rules in the Prolog language 
began.  Because of the strong correspondence be- 
tween Prolog forms and  the English sentences, this 
was a straightforward process that proceeded as fol- 
lows: 

A list of all the types of objects mentioned by the 
expert was drawn up. 



Example:  device  list of problem  devices, control 
unit, page  swap,  string  of  devices,  etc. 

All relevant properties of these  object  types were 
listed,  as determined by the expert  interviews. 

Example:  device start-subchannel rate, device  re- 
sponse time, device  average enqueue delay,  etc. 

All mentioned relationships among these  objects 
were identified. 

Example:  systems can share control units. 

The representation of an object of each  type was 
determined. For example,  because a device  is  re- 
ferred to in MVS/370  by a three-character address, 
we represent  devices by their MVS/370 addresses. 
An address was  realized  as a record  having the 
Channel (cH), Control Unit (cu), and specific 
device (D) as three subfields. The Prolog data 
structure representing this record is CH.CU.D. 
Prolog pattern matching can then be  used,  for 
example, to refer to any device on channel 1 by 
using the term (1 .*.*). 
Formal names were  given to properties and rela- 
tions.  These were  selected so as to be  meaningful 
to subsequent authors or others having  cause to 
read the program. 

Example: rmf-device-specific-startsubchan- 
nelrate, overloadehdevice, . . . 
The English  sentences were rephrased,  using their 
formal counterparts: 

overloadehdevice IF 
rmf-device-specificstartsubchannelrate > 
XX AND 
rmf-device-specific-enqueue-delay > yy. 

Then the formal arguments were added: 

overloadehdevice(D) IF 
rmf-devicespecific-startsubchannel 
rate@) > xx AND 
rmf-device-specific-enqueue-delay@) > yy. 

We noticed that all of these  properties,  relations, 
etc.  varied depending on the specific RMF record- 
ing interval. A device  might  be  overloaded  from 2 
p.m. to 3 p.m. but perfectly  utilized an hour later. 
Therefore an implicit argument was identified and 
added to represent the recording  interval: 

overloadehdevice(1,D) IF 
rmf-device-specificstartsubchanneL 
rate(1,D) > xx AND 
rmf-device-specific-enqueue-delay(1,D) > yy. 
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Because  Prolog  is a relational rather than a func- 
tional language, functions must be  expressed  as 
relations. Thus “rmf-device-specific-startsub- 
channelrate” is a relationship that holds  between 
a device and a rate during an interval. Other 
variables  representing the resulting  rate  must be 
added. 

overloadehdevice(1,D) IF 
rmf-device-specific-startsubchannel“ 
rate(I,D,R) AND R > XX 

AND 
rmf-device-specific-enqueue-delay( 
I,D,Delay) AND Delay > yy. 

The final act of programming for this rule  is to 
specify the user interface information. In this case 
that simply  requires us to tell the application 
development  system that this rule is an interesting 
part of an explanation about a detected  problem. 
Also, the procedure to be  used  in producing the 
explanatory  text  must  be  specified.  Both  things are 
done by adding another rule that we term a meta- 
rule in the application development system: 

interesting(overloadehdevice(I,D), Text) IF 
concatenate( 
‘Device’. D. ‘is overloaded in interval’. I, Text). 

In this example, the text-formatting procedure 
“concatenate” produces  as  second argument a 
string  Text by concatenating each of the strings in 
the  list that is its first argument. Thus, if D is 
bound to ‘0570’ and I is bound to ‘13:00,’ the 
above  subgoal  binds  Text to ‘Device  0570  is  over- 
loaded in interval 13:OO.’ 

The actual text-formatting rules can be arbitrarily 
complex,  including  calling on a natural-language 
paraphraser if one is available. For this applica- 
tion, relatively  simple  text  formatting-essentially 
messages  with  variables-suffices for  presenting 
most  results. 

System  data. For this application, the data base 
consisted of the RMF monitor data concerning target- 
system performance and the SYSGEN data concerning 
target-system configuration. These were data sets 
found on the MVS system.  Because our experimental 
development environment was  vM-based,  we had to 
make the data available in the VM/CMS environment. 

Because the data format of the RMF data is not 
supported on CMS, we wrote a PL/I program to run 
on MVS that converts the RMF data format to one 
handled by CMS. At the same time, it normalizes and 
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reformats the  data  into  the Prolog term structure 
format. A similar preprocessor was written in Prolog 
for the SYSGEN data. Subsequent revisions of both 
programs for MVS/XA provided a dramatic  demon- 

Content of the  rules  is  formulated  by 
the  expert,  and  the  appearance of 

the  user’s  view  of  the  application  is 
designed by  the  programmer/ 

analysts. 

stration of the benefit  of  Prolog. The update time 
per change for the Prolog program was about one- 
fifth the  time required to update the PL/I program. 

Designing the user’s  view of the  application. The 
general content of the rules is formulated by the 
expert, and  the appearance and  structure of the user’s 
view of the application are designed by the program- 
mer/analysts. The following three types of screens 
are used to interface with the user: 

Menus 
Queries 
Results 

Menus, illustrated in Figures lA, B, and C, give the 
user choices about what the  tuning system  is to do. 
Queries are used by the application to get informa- 
tion from the user. A typical query screen for the 
MVS tuning application is  shown in Figure 2. Query 
screens may in fact  be menus in which the user can 
select an appropriate answer. However, we restrict 
the use of the term menu to designate the first type 
of screen. Results present the sought-for information 
to the user. An example is shown in Figure 3. Note 
that  the text for “overloaded device” is included in 
the explanation in Figure 3. Results screens may 
have any look the  author creates. The development 
environment provides a special  service that is  used 
for nearly every  result  screen in the MVS tuning 
application. This service provides a file containing 
the text associated with  every interesting rule that 
went into determining an answer. When one rule 
invokes another,  the hierarchical structure is main- 
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tained. The example in Figure 3 has three levels. The 
result  is a file that provides a complete explanation 
of the results and how  they are justified. This file 
may be displayed as part of a result  screen or it may 
be  browsed by the user. 

Discussion of results  and  concluding  remarks 

Validation. The results of the application have  been 
validated by comparing answers produced by the 
MVS tuner with answers given  by experts for real data 
in eleven internal IBM installations. The results were 
accurate for all cases that fell within the scope  of the 
tuner.  The system fell short of the expert’s ability to 
extrapolate to new situations. It could not guess 
about  anomalous situations or compare  one with 
another. For example, it could not say why one 
installation was about half as efficient  as another, 
even though the facilities and workloads seemed 
similar. The expert could make a guess,  because that 
person was familiar with those systems and had a 
general  knowledge of MVS. The IBM Large Systems 
Center in Brussels,  Belgium, also validated the En- 
glish form of the rules by reading to see  if they made 
sense and fit the reviewer’s concepts of performance 
tuning. This was not a validation of the program 
itself, but rather a cross-check on  the expertise. The 
validation showed that although the system performs 
accurately within its scope, it must be considerably 
broadened if it is to perform at  the level expected of 
an expert. At a minimum it should be extended to 
encompass batch, data base, and mixed workloads 
in addition to TSO environments. 

Suitable applications. Our experience with the MVS 
tuning application suggests that  the Prolog language, 
when augmented with certain application develop- 
ment utilities, is suitable for a large  class  of applica- 
tions that have some or all of the following charac- 
teristics: 

Are driven via menus 
Engage in a dialog with a user to get particular 

Embody a significant amount of  knowledge about 

Present final as well as intermediate results 
Provide justifications of results 
Require access to shared mainframe data 
Utilize a wide  variety  of  system  services 
May be large, small, simple, or complex 

The development process for such applications typ- 
ically requires multiple authors, frequent revision, 

information 

their subject 
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and a flexible menu structure. Thus we have found 
that  the method encompasses a wide body of appli- 
cations. This wide applicability is the result  of  gen- 
eralizing from a relatively  large application and sev- 

The  tuner  engages  in  a  dialog  with 
the  user  to  get  particular 

information. 

era1 smaller ones. At each stage in the development 
of the  tuning application, care has been taken to 
produce solutions to problems that  are expected to 
be  useful in  other applications. 

The MVS tuning application has all  of the previously 
mentioned characteristics in varying  degrees. For 
example, it is menu-driven. There are three major 
classes  of menus provided in the application, graded 
according to the  amount of performance tuning 
expertise expected of the user. The  tuner also engages 
in a dialog with the user to get particular informa- 
tion. Since some  information is not available from 
any formal system data,  the user  is expected to 
provide such information as special-use  devices, 
groups of operating system  users, and the location 
of such basic information as system trace data. 

Within its designed  scope, the results of applying the 
system to actual tuning situations, using 1000 and 
4000 rules,  show it to be as good as  the best expert. 
The  tuning system presents final as well as interme- 
diate results. That is, the system locates performance 
problems, suggests solutions and their justification, 
and provides detailed statistics as requested. To  do 
this, the system requires access to large volumes of 
shared mainframe data.  The system trace data  that 
form the bulk of the  input  to  the program consist of 
complete RMF information detailing such activities 
as device activity, significant processor activity, pag- 
ing activity, and operating system  users over several 
recording periods. Because the system handles prob- 
lems for DASD that are shared among systems, rele- 
vant data for all systems connected to a device must 
be available. The  tuning system has access to a wide 
variety of system services. Through the application 
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development utilities it has access to full-screen map- 
ping, command-language processing, file editing, 
RMF recording, and system accounting facilities. 

In the development process, four authors were in- 
volved in  the formulation of rules, menus, and  an- 
cillary routines. In addition to twice  significantly 
extending the scope  of the problems handled by the 
tuning system, they  revised the rules for a new  ver- 
sion of the operating system, from MVS/370 to MvS/ 
370 Extended Architecture (MVSIXA). 

Problems with the use of Prolog. Like other pro- 
gramming languages,  Prolog must provide control 
constructs, the ability to read and write data, and 
other nonlogical features. These weaken the declar- 
ative nature of a program and emphasize the proce- 
dural interpretation. When this happens, the  main 
benefit of using the Prolog  language is diluted. The 
purpose of the tools and utilities we developed is to 
minimize the need for these nonlogical features. This 
lets an application author maintain the declarative 
nature of a program. 

The expression of knowledge  is but  one aspect of 
developing an application. There are a number of 
other pragmatic concerns that must be recognized in 
providing a total development environment, includ- 
ing the following: 

The application must be able to use  existing data 
and programs not originally written to co-operate 
with the application. 
It must be easy to design and produce the user 
interface, including screen format and processing. 
Control of the processing of the knowledge rules 
must be simple and straightforward. 
Debugging aids must be provided. 
Provision must be made for the explanation of 
results to  the user. 

Since the Prolog language  is so general, there are 
many ways to express a problem, which  is not always 
an advantage. It gives the  author  much power in  the 
language, but also requires more understanding and 
experience than does a less comprehensive language. 

Although the logic expressed by Prolog clauses is 
neutral with  respect to  the processing strategy, Prolog 
provides only a backward chaining strategy. Other 
control strategies are sometimes useful. 

The power of  Prolog’s relational data retrieval is 
available only for data structures represented as re- 
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lations. The nature of Prolog as a first-order logic 
subset presupposes that  the set of axioms does not 
change during  the proof. This means that  the notion 
of changing state must be  explicitly represented as 
terms, which are structured data items that  can be 
passed from procedure to procedure. Examining and 
modifying these data structures must be  explicitly 
programmed, as in other languages. 

Prolog advantageously handles problems whose  size 
allows  all relevant data  to be loaded into active 
memory. However, when the problem is too large, 
one must plan for and program data access on sec- 
ondary storage (DASD), which Prolog handles with 
about  the same efficiency as such standard languages 
as pL/I, COBOL, or FORTRAN. 
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