
YES/MVS and  the 
automation of operations 
for large computer 
complexes 

The  Yorktown  Expert  SystemlMVS  Manager  (known  as 
YESIMVS) is an  experimental  expert  system  that  as- 
sists with the operation of a  large  computer  complex. 
The first version  of YESIMVS (called YESIMVS I) was 
used  regularly in the computing  center of  IBM’s 
Thomas J. Watson  Research  Center for most  of a year. 
Based  on the experience  gained in developing  and us- 
ing YESIMVS I, a second  version  (YESIMVS 11) is  being 
developed for  further  experimentation.  This  paper  dis- 
cusses  characteristics of the  domain  of  large  comput- 
ing  system  operation that have  been  illuminated  by the 
YESIMVS I experience,  and it describes  the  modifica- 
tions  in the design of YESIMVS I1 that are  an outgrowth 
of the YESIMVS I experience. 

A n expert system is  a computer application that 
uses  explicitly  represented  knowledge and com- 

putational inference techniques to achieve  a  level of 
performance comparable to  that of a human expert 
in some application area or domain. Expert  systems 
have  been  developed  for  a  variety  of domains, such 
as diagnosing  blood  diseases,’  oil drilling:  geological 
e~ploration,~ and determining chemical structure~.~ 

The domain of the expert  systems that are the subject 
of this  paper  is the operation of  large computing 
systems, or more specifically, the operation of one. 
or a  cluster  of IBM mainframe computers, each  con- 
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trolled by the IBM Virtual  Storage 2 Multiple  Virtual 
Storage  Operating  System  (os/vsz  MVS, or simply 
MVS).’ We refer to the computing system or cluster 
being  operated  as the target system. The target  sys- 
tems considered to date have  all  provided computing 
services to interactive  users via the Time Sharing 
Option (TSO) of MVS and to a group of submitted 
jobs under the control of J E S ~  (the Job Entry  Subsys- 
tem 3 of MVS).~,’ 

A cluster of  systems  typically  has  several operator 
consoles,  for  example,  consoles  for operation from  a 
central point, in the tape  library,  near  tape  drives or 
printers, or in the offices  of operations supervisors 
and systems  programmers.  Nevertheless, MVS and 
J E S ~  cooperate in a  cluster so that most of the com- 
plex aspects of  system operation can be performed 
for the entire cluster  from just one J E S ~  console. 

The Yorktown  Expert  System/Mvs  Manager (YES/ 
MVS) is an experimental  expert  system  for the do- 
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main of MvS/JES~ operation. It  addresses the problem 
of the operation of a cluster of MVS/JES3 systems 
through one J E S ~  console and provides  advice on 
manual intervention needed to solve operational 
problems. A first  version,  called YES/MVS I, was  reg- 
ularly used in the computing center of IBM’S Thomas 
J. Watson  Research Center for  most of a year. YES/ 
MVS I assisted  with the operation of a single MVS/ 
J E S ~  system running on an IBM Model 308 1 K proc- 
essor. From the experience  gained  with YES/MVS I, a 
decision was made to develop a second  version, YES/ 
MVS 11, that would  significantly improve on the 
breadth and depth of function provided by YES/MVS 
I. More technical detail on YESIMVS I can be obtained 
from three papers by Ennis et a1.8”0 

It is the intent of this paper to review the function, 
organization, development process, and experience 
gained in the use  of YES/Mvs I as a basis  for  discussing 
the lessons that have  been learned from that effort. 
We shall concentrate on lessons that appear to be 
important for  ongoing attempts to automate large 
system operations. 

The first  section  of this paper introduces the opera- 
tion of an MVS/JES3 system, the function and Orga- 
nization of YES/MVS I, and the expert-systems  Ian- 
guage O P S ~  (used in the development of YES/MVS I). 
The second  section  provides  insights into pertinent 
YES/MVS I experiences,  such as the nature of an 
operator’s  knowledge, the value of  using rules for 
developing expert systems, and the need  for main- 
taining a status model of the target  system. 

The third section  discusses the ongoing  work on YES/ 
MVS 11. Much of the work  is  guided by the following 
observation: An expert operator at one center would 
probably not immediately be an expert at another 
but would require a period of training to become 
knowledgeable about the characteristics of opera- 
tions that  are unique to the second center. This 
situation is due to the necessary and inevitable  vari- 
ation among centers, variation due  to differences in 
hardware configuration, installed  software,  work- 
load, and operational policy.  An  expert  system that 
assists  with the automation of operations encounters 
the same variation; customization for individual 
sites, then, is a major challenge of automated oper- 
ations. This section includes a discussion of the 
design features of YES/MVS 11 intended to facilitate 
customization-specifically, better representation of 
operational knowledge, automatic maintenance of a 
status model  of the target  system,  generally applica- 
ble  knowledge  of operational problems, techniques 
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for  testing an operational knowledge  base, and ap- 
proaches to knowledge acquisition. 

Motivation  for  an  expert-systems  approach  to 
automated  operations 

Operation of an  operating system. During the last 
twenty  years,  facilities  have  been  developed to con- 
trol most of the resource allocation that is done on 

Total computing  power is growing 
rapidly. 

a routine basis in large computing systems. There 
exist  subsystems that prioritize,  schedule, assign  re- 
sources to work,  etc., and operators increasingly are 
not required to perform  these functions. While MVS 
and other operating systems  have a growing number 
of built-in problem-handling and recovery  mecha- 
nisms, the court of last  resort continues to be the 
operator. 

Basically, operators have remained necessary (for 
tasks other than the merely manual ones)  because  of 
a wide variety of complex  system  problems that can 
occur and that, in turn, depend for  resolution on 
data or knowledge not normally  available to the 
operating system:  e.g.,  what  work  is to take prece- 
dence in certain problem situations, which  system 
resources are critical to the services  being  provided 
by the system, and whether any of the operators 
currently in the center are trained to perform some 
manual task. Solving the more serious  problems 
requires that the operator (a) monitor the system 
and maintain a mental model of its state, (b) recog- 
nize symptoms of problems, (c) obtain additional 
data on the cause of symptoms, (d) diagnose genuine 
problems, and (e) take appropriate steps to solve 
problems. To be done well, the process requires 
considerable  knowledge and training. 

In addition, the operator’s job is  becoming more 
challenging:  First, total computing power  is  growing 
rapidly at many computing centers. This growth 
brings a corresponding  increase in console message 
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rates (number of  messages per second an operator 
must handle), which for some large clusters are al- 
ready uncomfortably high. Second, since the growth 
rate in total  computing power at  many centers is 
exceeding the increase in uniprocessor speeds,  large 
computing centers have installed clusters of proces- 
sors; this distribution of the resources has made the 
systems more complex in all  respects. Third, as the 
importance of  system availability has grown, so has 
the need for fast and accurate operator actions in 
response to system problems that threaten system 
availability. In short, the operation of  large  systems 
is complicated by several  features:  high  message 
rates, multiplicity of consoles, the complexity inher- 
ent in providing problem diagnosis and response, 
the requirement for fast and accurate response to 
problems, the variation in hardware, software, work- 
loads, and policy among  computing centers, and  the 
evolving nature of computer systems. 

Because  of this complexity, training a skillful oper- 
ator requires significant time, and expert operators 
are certainly not plentiful. An obvious response is to 
move toward automated operations. If successful, 
automated operations should provide increases in 
labor productivity, system availability, and manage- 
ment control. 

To date, several projects have made progress in 
automating operations, e.g., CCOP (the Centralized 
Computer Operation Project). I ’  Goals have included 
simply filtering out unwanted messages, centraliza- 
tion of operations, and active response to particular 
messages generated by the target system. Generally, 
projects not based on expert systems have  used many 
loosely organized modules of procedural code to 
respond to individual messages. The weaknesses  with 
procedural approaches, and, in turn,  the motivation 
for the use  of expert-systems techniques, are  due  to 
(a)  the basic complexity of the problem domain and 
(b)  the requirement for flexible software to meet the 
needs for reasonably easy customization at installa- 
tion  time and for ongoing maintenance of any facil- 
ity that assists with the knowledge-intensive parts of 
an operator’s responsibilities. 

The function  and  organization  of YES/MVS I. YES/ 
MVS I is a research prototype developed to investigate 
the feasibility of automating  the complex portions of 
the  job currently performed by human operators for 
MVS computer systems.  In particular, the goal of YES/ 
MVS I was to obtain high-quality results in selected, 
challenging areas of operator activity but  not to 
construct a comprehensive system that would auto- 

IBM SYSTEMS JOURNAL, VOL 25. NO 2, 1986 

mate all MVS operations. The areas selected  were 
ones that were known to be challenging and were  of 
practical interest in the computing center at  the 
Watson Research Center. 

To MVS, YES/MVS appears to be a very  fast human 
operator in  that YES/MVS submits  commands  to  and 
receives  messages from MVS.  The organization of 
YES/MVS is  shown in Figure 1. YES/MVS runs  in a 
separate computer from the target system. This sep- 
aration has primarily been made to avoid having 
YES/MVS dependent on  the target for computing 
resources,  especially  when the target is not fully 
operational. The interface between YES/MVS and MVS 
is a J E S ~  console which appears to MVS as a standard 
operator’s console. However, the console can be 
“read”  and “typed on” by YES/MVS. YES/MVS I runs 
in three concurrent virtual machines under  the Vir- 
tual Machine/System Product (VM/SP) operating sys- 
tem.” 

1. The Expert virtual machine. The heart of YES/ 
MVS is the Expert virtual machine. The Expert 
runs a program based on (developed from) the 
knowledge of expert human operators. The pro- 
gram is written in an extended version  of the 
expert-systems language OPS5 which, in  turn,  runs 
under LISP/VM.’~ (The next section contains more 
details on OPSS.) The Expert virtual machine con- 
tains all of the crucial data needed by YES/MVS, 
for example, all data required to model the state 
of the target system. The Expert communicates 
with the target through the virtual machine MCCF 
and, with the operator, through Display Control. 

A subdomain is a related, largely separable area 
of operator activity such as monitoring channel- 
to-channel links, batch job scheduling, or man- 
aging JES queue space. All the rules for different 
subdomains of the operator’s actions coexist in 
one knowledge  base. Running expertise from 
multiple subdomains allows sharing of status in- 
formation, and gives the expert system control 
over the scheduling of actions in different sub- 
domains, rather than leaving such scheduling to 
the underlying VM operating system. 

2. The MVS Communications Control Facility vir- 
tual machine. A second virtual machine runs  the 
MVS Communications Control Facility (MCCF), 
which  is written in the REXX language14 and  in 
assembly  language. MCCF controls the receipt  of 
messages from MVS and  the formatting of com- 
mands specified by the expert system. MCCF re- 
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Figure 1 Organization of YESiMVS I 

ceives  messages and submits commands through 
the CCOP facility." Thus, the expert  system  is 
effectively insulated from the format of MVS and 
JES messages/commands, and the equivalent in- 
formation is  passed  to/received  from the Expert. 

MCCF provides a table-driven match and translate 
capability. The desired messages are described in 
tables, the fields containing variable parameters 
are  specified, and a description of the desired 
output  data structure is included. When a desired 
message arrives, it is  identified and translated, 
and the corresponding data structure is sent on 
to the Expert virtual machine. Amving messages 
that are of no interest are discarded. MCCF also 
builds and submits commands to MVS upon re- 
ceipt of a command name and associated param- 
eters from the Expert. 

3. The  Display Control virtual machine. A third 
virtual machine, Display Control, also controlled 
by software  written in OPs5, provides the com- 
munications interface between the human oper- 
ator and YESIMVS. The display  provides a hier- 
archically structured interface to the operator. At 
the highest  level, operators are alerted to problems 
and notified of their severity.  When a specific 

problem is encountered, the operator may  select 
a lower  level to obtain more detail on the prob- 
lem. Explanations are available on the nature and 
severity  of a problem, as  are  precise descriptions 
of  suggested actions. The display  also  presents 
current values  of  various  system parameters, e.g., 
the number of batch initiators. To change a pa- 
rameter value, the operator merely  overwrites it; 
YES/MVS senses the change and automatically 
submits the command necessary to effect the 
change. 

We found the use of separate virtual machines to be 
extremely  useful  since the functions of the three 
machines are naturally asynchronous. Indeed, YES/ 
MVS II employs a similar design. 

The principal subdomains automated in the Expert 
component of YES/MVS I are as follows: 

Scheduling  large  batch jobs off prime shift: This 
scheduling  must  be done in a manner that ap- 
propriately  considers  user  satisfaction,  system 
throughput, and installation priorities. 
Managing JES queue space:  Before, during, and 
after  execution,  all jobs processed under MVS are 
staged  from a central spool file called the JES queue 
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space. Operators must carefully monitor JES queue 
space since JES cannot recover  if this space  is 
exhausted. 
Problems in channel-to-channel links: Often com- 
puters are interconnected via channel-to-channel 
links. Failure to maintain these links in an active 
status not only delays data traffic but also can 
contribute  to  the exhaustion of JES queue space. 
Hardware errors: When MVS is unable to recover 
from a hardware error, the  operator is notified. A 
timely response (e.g., reconfiguration) is often re- 
quired to avoid a total system failure. 
SMF management: The System Measurement Fa- 
cility (SMF) is an MVS subsystem that provides 
access to information on resource utilizations. 
There are several routine actions that  must be 
taken to manage SMF data. 
Quiesce and Initial Program Load (IPL): Before a 
planned shutdown (e.g., to install new hardware), 
the target system must be guiesced. The quiesce 
operation typically takes 30 minutes and involves 
many operator actions. Since YES/MVS I does not 
have  access to  the system console (only a J E S ~  
console), it cannot trigger an actual IPL. However, 
YES/MVS I does give advice on IPLS, and once the 
JES console becomes operational, YES/MVS I is able 
to take over. 

YES/MVS I operates in two modes: advisory and ac- 
tive. In advisory mode, YES/MVS obtains from the 
target system all information necessary to perform 
an activity. However, instead of actually submitting 
a command  that would change the state of the target 
(e.g.,  vary a device off line), YES/MVS displays the 
command it recommends submitting along with an 
explanation. If the  operator agrees  with the recom- 
mendation, YES/MVS submits  the  command.  The 
advisory mode is extremely useful for debugging. 
Once operators trust YES/MVS, active mode is nor- 
mally  used. In active mode, YES/MVS automatically 
takes action without consulting the operator, al- 
though explanatory information is  still made avail- 
able to  the operator. 

An introduction to production systems and OpS5. In 
YES/MVS, the knowledge to control operations is 
written in a LISP-based version  of the production 
system language, O P S ~ . ~ ~ ’ ~ ~  This section briefly  dis- 
cusses production systems in general and OPs5 in 
particular. 

Productions or rules are if-then statements. The if- 
portion or left-hand side (LHS) describes a situation; 
the then-portion or right-hand side (RHS) specifies 
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actions to take when the LHS situation arises. A data- 
driven (or forward chaining) production system o p  
erates by finding rules whose if-portions are satisfied 
and  then executing the  then-portion of one such 
rule. When an RHS is executed, the rule is said to 
havejred. The sequence of rule firings  is controlled 
by a special run-time package  called the inference 
engine which  is responsible for determining which 
rules  have their LHS satisfied as well as selecting a 
rule to fire. Thus, by using  rules, the programmer is 
relieved of many flow-control  issues,  which can be 
extremely troublesome in conventional program- 
ming languages.  English-language examples of typi- 
cal rules appear in the later subsection on the value 
of the rule-based approach  and  in  the  one on gener- 
ally written knowledge. 

O P S ~  is a data-driven production language.  An expert 
system written in OPSS has three components: work- 
ing memory, in which temporary data  are stored, the 
rule base or rule memory (consisting of  all the pro- 
ductions), and the inference engine. Working mem- 
ory is partitioned into classes  of working-memory 
elements; all elements in a given  class have the same 
data  format. A working-memory element (WME) 
consists of  several  fields or attributes. The  data for- 
mat for a class  is defined by the literalize construct. 
For example, 

(literalize  printer-status ; Name of working-memory  class 
statuscurrent? ; Is the  status  current? 
status) ; Status of printer 

The second component of an O P S ~  expert system, 
the rule base, contains  the production rules. In O P S ~ ,  
a situation or LHS is  expressed  as a query on working 
memory. A query may reference  several WMES, each 
of  which  is  called a condition element. The following 
is a sample OPSS rule. 

(p jm:printer-status-update 
{ (message) (printer-status-reply ; Reply  from MVS to query 
t address  (printer-address) ; about  printer  status 

{ (printer) (printer-status 
t status (new-status)) 1 

; Status WME foc printer 
t address (printer-address)) 1 ; with  same  address  as  reply 

(remove (message)) 
(modify (printer) 

; Remove  the  reply 
; Update  the  printer  status: 

7 status (new-status) ; -set new  status 
7 statuscurrent? yes)) ; -status now  current 

; Name of rule 

+ 

This rule detects when MVS has sent a reply to a 
command  that inquires about  printer status. On the 
basis of the reply, the rule updates the WME that 
models printer status. The LHS consists of two con- 
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dition elements: one of  class “printer-status-reply,” 
and one of class “printer-status.’’ The condition ele- 
ments  appear above the right-pointing arrow. These 
conditions  must be  satisfied; that is, particular in- 
stances of the two WMES must be in working memory 
for the rule to be considered eligible  by the inference 
engine. Furthermore,  the “printer-status-reply’’ WME 
and  the “printer-status’’ WME have mutual condi- 
tions  that  must be satisfied in that  the value of their 
respective “address” attributes must be the same. 

If the inference engine selects a rule, the actions on 
the RHS of the rule are executed. Typically, these 
actions involve changing working memory by cre- 
ating new WMES with the MAKE function, modifying 
existing WMES with the MODIFY function, or removing 
an existing WME with the REMOVE function; LISP 
functions may also be used. In the case of the rule 
“jm:printer-status-update,” there is both a modify 
and a remove. The REMOVE eliminates the “printer- 
status-reply’’ WME used to satisfy the first condition 
element; the MODIFY refers to the “printer-status’’ 
WME used to satisfy the second condition element. 

The O P S ~  inference engine has three phases: recog- 
nize, conflict resolution, and act. In the recognize 
phase, the LHSS of  all rules in  the knowledge  base are 
compared with the  contents of working memory to 
determine which rules have their condition elements 
satisfied. A rule may have its LHS satisfied by more 
than  one set  of working-memory elements. Each 
combination of a rule and a set of matching worlung- 
memory elements is  called an instantiation. The set 
of all instantiations is  called the conflict set. If the 
conflict set contains more than  one  instantiation,  the 
inference engine selects one; this selection process is 
referred to as conflict resolution. Since comparing all 
condition  elements  (in  the recognize phase) against 
working memory can be computationally expensive, 
O P S ~  uses a special algorithm called the RETE match- 
ing process1’  which improves performance by 
(among other things) incrementally maintaining a 
list  of  all instantiations  in  the conflict set as each rule 
is fired. 

To develop YES/MVS I,  some extensions to O P S ~  were 
necessary. We  give a brief overview here. For more 
details, consult Ennis et a1.” First, timed reminders 
are needed to perform operations such as periodic 
queries of the target system and  to check for nonre- 
sponses. A special kind of MAKE, called TIMED- 
MAKE, was developed. TIMED-MAKE creates a WME 
at a future time. Thus, checking for a nonresponse 
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requires (1) doing a TIMED-MAKE for a predeter- 
mined class  (say X) at  the desired time  and (2) 
writing a rule whose LHS is  satisfied  when a WME of 
class X is created and whose RHS determines whether 
a response has arrived. 

A second facility required for YES/MVS is communi- 
cation among virtual machines, since the Expert, 
Display Control, and MCCF components all  reside in 
different virtual machines. This requirement is met 
by providing another type of MAKE called REMOTE- 
MAKE, which creates a WME on  another virtual ma- 
chine. Thus, message  passing  is quite simple: (1) The 
sender does a REMOTE-MAKE of a WME for a prede- 
termined class  (say Y) and provides the destination 
address. (2) The recipient typically has a rule whose 
LHS is  satisfied  when a WME of class Y is created. 

Lessons learned from YES/MVS I 

In comparison with previous efforts to  automate 
operations, the principal new factor in YES/MVS is 
the use of expert-systems software technology. Using 
rule-based  software, the YES/MVS effort has concen- 
trated on  automating  the more complex aspects of 
the operator’s job: resource allocation and schedul- 
ing, and especially problem detection, diagnosis, and 
containment or recovery. The  fundamental lesson 
from the YES/MVS I effort  is that this approach 
worked. The YESIMVS I knowledge  base was devel- 
oped by a reasonably small group of  people over a 
period of  less than two years. With that knowledge 
base, the facility was successful at  automating a 
variety of complex tasks performed by operators at 
the  computing center of IBM’S Thomas J. Watson 
Research Center. 

During the development and use of YES/MVS I, a 
number of other lessons have been learned. (See also 
Ennis et al.” and Schor.18) The rest of this section 
outlines facets of the operator’s job  and of opera- 
tional knowledge that  must be considered during the 
automation of operation. Also, we review some key 
features Of YES/MVS I in light of the characteristics of 
large-systems operations. 

An operator’s knowledge. Typically, operators sit 
at a console; they submit queries; and they watch 
for responses to their queries as well as for sys- 
tem-generated messages. When an action is required, 
they submit  the  appropriate command(s). Most sys- 
tem-volunteered information is in single  messages. 
Responses to queries are frequently in  the form of 
multiline messages, in which  case there is a sequence 
of lines on  the operator’s screen taken up by a 
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response to  one query. Sometimes the lines are sim- 
ilarly structured but have  varying  fields. This is the 
normal case when, for example, one inquires about 
all the  jobs in the system  satisfying certain criteria. 
Each line contains information about  one particular 
job  that satisfies the  conditions of the query. For 
other multiline messages, there is more information 
than can fit in one line, or  the information is  orga- 
nized so that it is  best conveyed on multiple lines. 

Most of an  operator’s  actions  can be 
divided  into  three  categories. 

When looking at  the screen  of an operator’s console, 
it is  fairly  easy to keep track of the various pieces. 
Visually, the multiline messages are similar enough 
so that  one naturally groups them together. Also, the 
order in which active commands  are submitted is 
the order in which responses are received, and  the 
order in which queries are submitted is the order in 
which responses are received. Thus, if an operator 
waits for one response before submitting another 
command  that could give a similar response, there 
is no difficulty in deciding what response goes  with 
what query. These things are easy for humans,  but 
they are rather difficult for computer programs be- 
cause each line on the console cannot be taken as an 
individual entity. It must be taken and understood 
in the  context of the nearby messages and com- 
mands.  The program must contain logic to provide 
the visual decomposition of the screen and  the  tem- 
poral relationships that  are fairly naturally provided 
by an experienced human. 

Most of an operator’s actions can be divided into 
three categories: monitoring, resource allocation, 
and problem handling. The monitoring portion of 
the operator’s job consists predominantly of gather- 
ing information (e.g., submitting queries to get the 
current level  of JES queue space), identifying and 
following trends, and detecting problems either by 
comparing values against thresholds or by more 
complex means when historical information must 
be considered. Note that effectively monitoring the 
system requires having a conceptual model of  system 
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services and resources, such as the rate at which 
status of a resource can change, and how critical a 
resource is to  the system and  the services being 
provided. In addition, an operator must know what 
queries to submit to obtain system status informa- 
tion, what other  status information is available, and 
how one identifies symptoms and detects problems 
from the available status  information. 

The  dominant activities classified as resource allo- 
cation or management are work scheduling and 
manually providing resources for input  and  output 
(I/o) devices (tape mounting, supplying paper for 
printers, etc.), though timed and workload-triggered 
preventive maintenance and  tuning  are also com- 
mon.  The  amount of responsibility that operators 
have over scheduling of work  varies  widely  with the 
policy  of the  computing center. Work scheduling 
normally involves maintaining prioritized queues of 
jobs  to be done. Again, the operator must have an 
understanding of the workload, priorities, deadlines, 
required resources, available resources, queries and 
available information, active commands, and un- 
usual circumstances. In complex situations, the op- 
erator is required to prioritize multiple, conflicting 
considerations (resource utilization, response time, 
age, total wait time, priority of users and classes  of 
work); he must plan ahead to match expected de- 
mands with  resources; he must  monitor  and  dynam- 
ically adjust to changes in workload, available re- 
sources, and unusual circumstances. 

For some types of problems, the correct or best 
response  is obvious once diagnosis is successfully 
made, and most corrective actions taken at a console 
involve only one or a short sequence of commands. 
Physical intervention may  be required to  turn power 
on to devices, load microcode into devices from a 
floppy disk, remove printer  jams, or the like. Fre- 
quently, increased monitoring is indicated after the 
corrective commands  to ensure that  the problem is 
corrected and does not recur. For example, if a 
noncritical subsystem fails, the typical action after 
diagnosing the situation is to restart the subsystem 
and  then  monitor it carefully to determine whether 
the problem will repeat. 

For other problems, the response may involve 

1. A sequence of actions interspersed with decisions 
or monitoring, e.g.,  when restarting (by IPL) an 
entire system or cluster. 

2. Selecting one or several actions from a collection 
of responses, each of  which will help. 



3. A trial-and-error approach because of insufficient 
knowledge about the situation, with  possible  cor- 
rective actions selected  from a “bag of tricks.” 

However, under most circumstances, there is  pres- 
sure on operators to diagnose and respond to a 
problem  quickly-before things get  worse. This pres- 
sure combined with the complexity and the con- 
stantly changing nature of  system status makes prob- 
lem handling an error-prone process.  Typing errors 
alone can be  significant. Operator errors can and 
occasionally do make problems worse. 

Illustrative example: JES queue space management. 
In this subsection we shall outline the strategy en- 
coded  in YES/MVS for handling a particular type of 
operational problem-JEs queue space depletion. 
Later in the paper, we  will  use specific  characteristics 
of this example to provide concrete illustration of 
certain more general and abstract points that are 
important in the paper. 

JES queue space is a common resource  (disk  storage) 
in MvSIJES~ systems  for the staging of computer jobs 
before, during, and after execution. Jobs are nor- 
mally  deleted from the queue space  once output has 
been completed to a printer, a communication link, 
or other output medium. JES queue space is also used 
by JES itself as a scratch area for  executing its func- 
tions. In addition, JES maintains batch job output 
for on-line viewing  (via TSO) in the JES queue. 

Operators are concerned with monitoring the re- 
maining available queue space  because its exhaus- 
tion requires  restarting the system and inconveni- 
encing all  system  users. The operator may take sev- 
eral  protective and corrective actions when queue 
space  begins to diminish, and these  may  be  described 
in terms of three general  goals: 

Protect remaining queue space: The operator must 
protect the space that remains when it has  become 
dangerously low  (e.g.,  less than five percent re- 
mains available). 
Free queue space: The operator can manipulate 
various  devices,  operating-system parameters, or 
jobs in the work stream to free queue space. 
Diagnose and eliminate the cause(s) of queue 
space depletion. 

space  problems. Monitoring involves  querying the 
target  system  for the remaining queue space at reg- 
ular  intervals, e.g., every  five minutes. YES/MVS de- 
tects a JES queue space  problem if the remaining 
space  falls  below a threshold.  Several thresholds are 
used; a lower  threshold indicates a more severe  prob- 
lem. 

The JES queue space  expert retains in working  mem- 
ory the response to its most  recent query of JES queue 
space. If queue space  begins to drop, the rate of 
periodic monitoring is increased. If the remaining 
space continues to go down, additional monitoring 
is initiated to maintain current status information 
on all the entities (e.g., printers) affecting the remain- 
ing  level  of JES queue space.  When the problem is 
resolved and queue space returns to normal levels, 
the additional monitoring is terminated. 

There are four general  causes of JES queue space 
problems: 

1. Lack  of  capacity  (e.g.,  insufficient queue space, 
printer capacity, or communications network  ca- 
pacity to handle-in a long-term,  steady-state 
sense-the amount of data being  placed in the 
queue). 

2. Failures in devices or subsystems that temporarily 
reduce the available  capacity. 

3. Suboptimal queue space utilization because  of 
resource allocation policy  (e.g.,  work  of a partic- 
ular print class, requiring a change of forms, 
might  be  saved until a fixed time each  day to 
maximize productivity of operators). 

4. An extraordinarily large amount of  work or data 
in the queue because  of unusual circumstances 
(e.g., a failing  subsystem or job is in a loop and 
dumping data onto the queue, or a number of 
large dumps have  been  mistakenly  left on the 
queue). 

In a real  problem situation, an implicit assumption 
is made that the steady-state capacity is not the 
problem.  (However,  repeated  problems without rea- 
sonable solutions should be recognized as a symptom 
of insufficient  capacity.) Problems rooted  in combi- 
nations of the other three causes  listed are still  rich 
in variety, and problem  diagnosis and recovery are 
frequently not straightforward. 

The JES queue space problem-handling component If YES/MVS knows  of actions involving better utili- 
of YES/MVS is responsible  for monitoring JES queue zation of  existing  resources that would  help  with a 
space,  detecting  when a problem occurs,  diagnosing queue space  problem,  those actions are attempted. 
its cause, and assisting the operator in solving queue Under the right  circumstances, jobs will be rerouted 
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from  overutilized to underutilized printers; line lim- 
its will be changed on printers, enabling large jobs 
to print that would  normally  have  been  held until 
another time of day; a change of printer forms will 
be suggested to operators; the printing of material 
with  special  security requirements will  be  suggested; 
or communication links will  be restarted to allow 
material on the queue to be sent to its destination. 
Sometimes nonoperative devices and subsystems can 
be restarted, but frequently outside help must be 
sought  for component repair. 

It is  always  valuable to seek out  and, where  possible, 
to eliminate ongoing  causes of queue space  deple- 
tion. For example,  runaway  subsystems or jobs need 
to be found, as prompt corrective action is impor- 
tant. JES has its own mechanisms for  catching and 
terminating runaway jobs, but runaway  subsystems 
can happen, and such situations must be  carefully 
diagnosed. If a subsystem is writing to a data file that 
has not been  closed, then JES will report the space 
lost  when the total space remaining is queried, but 
JES may not report the data file  when queried about 
the contents of the queue. 

Sometimes action is required which  may not actually 
solve the queue space  problem but is  needed just to 
preserve the remaining queue space until the under- 
lying  cause  is found. If the problem  becomes mod- 
erately  severe, YES/MVS assists the operator in  mov- 
ing queue entries to tape. YES/MVS selects the entries 
to move, and by using a special job (commonly 
called the DJ job),  dumps entries to tape. Once the 
problem has  been  solved, queue entries can be  re- 
stored. If the problem  becomes  critical, more drastic 
action may  be  needed to preserve queue space,  such 
as varying the processor off line to JES until queue 
space returns to an acceptable level. 

The rules in YES/MVS I that are dedicated to the 
management of JES queue space can be  classified  by 
function, as below. A similar classification holds for 
most subdomains of YES/MVS I.  

System Initialization and Control: These  rules  cre- 
ate and initialize the pertinent portion of the target 
system status model and otherwise  initialize JES 
queue space management. 
Periodic Query Submission and Timeout  Han- 
dling: This group controls the periodic  querying 
of target  system  resources. 
Information Collection and Data Reduction: These 
rules  collect  target  system  messages and update 
the target  system status model  accordingly. 
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9 Miscellaneous Cleanup: This rule group deletes 
target  system  responses and expert-systems-gen- 
erated goals  from  working  memory. 
Knowledge-Based Action: All rules  in the above- 
described groups exist to support the Knowledge- 
Based Action  Rules, which encode policy and 
expertise  for  managing JES queue space. 

The control of problem  diagnosis and resolution 
resides in the knowledge-based action group of JES 
queue space management rules.  The  best  description 
of the approach to problem  resolution is that it is 
“opportunistic.” By this we mean that (as  described 
above) there are a variety of actions that may  help 
resolve a situation if their set  of  special  prerequisites 
are  met.  Rule-based techniques support the writing 
of a number of separate rules,  each  with its LHS 
describing a list of special  prerequisites  for the action 
initiated by its RHS to be of  value in resolving a 
situation. Hence, we can say that each  rule acts like 
a demon, that is, a program component so-called 
because it “awakens”  when conditions (problem se- 
verity,  target  system status, status of the goals and 
internal computations of YES/MVS) indicate that its 
action would  be  of  value.  Certain actions or changes 
in status enable other actions, but there is no global 
planning of a unified approach to a particular prob- 
lem. 

Among the knowledge-based action rules  for man- 
aging JES queue space, a majority  reflect  local  policy 
to some  degree and might  be  unacceptable at another 
computing center unless  modified.  Essentially  all the 
rules  in YESIMVS that, during a queue space problem, 
redistribute work or handle very  large data files are 
statements of resource allocation policy. The man- 
agement of JES queue space  in YES/MVS I is unique 
in the large  policy component of the encoded knowl- 
edge and because of the appropriateness of its “op- 
portunistic” approach to problem  resolution. 

Additional  characteristics of operational  knowledge. 
The preceding  subsections  have attempted to provide 
insight into the nature and inherent complexity of 
the  operator’s job and into the way  YES/MVS attempts 
to imitate the actions of an expert operator. During 
the development and use  of YES/MVS, a number of 
other lessons  were  learned  or found to be important 
about the operator’s job, about the knowledge  re- 
quired to operate large computing systems, and 
about the implications of these  facts with  respect to 
the development of  facilities that would automate 
large-systems operation. In this subsection, we out- 
line some of these  insights,  especially  those that are 
pertinent later in the paper. 
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As mentioned in the introduction, an expert operator 
at one computing center would  typically require a 

Procedure  books  outline how 
systems  are to be operated. 

significant  period  of training to become  expert at 
another computing center because of significant  var- 
iations in 

1. Installed equipment and its interconnection and 

2. Installed operating system,  features, and subsys- 

3. Installed monitoring packages and their parame- 

4. Message content, routing, and filtering. 
5 .  Appropriate commands, keyboards, and keys 

with dedicated meanings. 
6. Workload  types-transaction  processing, batch, 

development and test, and process control. 
7. Resource allocation policy:  dedicated and shared 

components, priorities. 
8. Problem-handling techniques and problem-re- 

sponse  policies. 
9. Organization and management of operations 

staff,  especially the subdivision of responsibilities. 

Most  large computing centers maintain procedure 
books that outline how the systems are to be operated 
in both standard and problem situations. Because  of 
the ongoing evolution of  systems, maintenance of 
such a document is frequently a very time-consum- 
ing  task. The procedure book  must  be  studied  care- 
fully by any new operator, even one with  experience 
from another computing center. In some  sense, it is 
the goal of operator automation facilities to provide 
a natural and reasonably  simple means for com- 
pletely and precisely stating the contents of a proce- 
dure book, and then for the knowledge  in that pro- 
cedure book to be  used to control the system auto- 
matically  in  real time. 

To reduce the difficulty in writing and maintaining 
such an “executable procedure book” for automatic 

physical layout, including types of  consoles. 

tems. 

terization and intended use. 
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operation, uniformity in approaches to operation 
must be sought and variations in operational ap- 
proaches understood and minimized. There are sev- 
eral  identifiable  kinds of variation among large com- 
puting centers in operational approaches to resource 
allocation and problem  handling. We shall use the 
discussion  in the previous  section on JES queue space 
problems to illustrate. 

1. There are variations that are parameterizations of 
a common approach in the same way that an 
operating  system is parameterized during system 
generation or initialization to reflect the particu- 
lar  hardware  configuration on which it will run. 
The underlying  strategies  are uniform, but the 
environment to which  they are to be  applied is 
variable. In the JES queue space  example,  para,m- 
eterizations are possible  for the space dedicated 
to the JES queue, the detection thresholds, and 
identification of printers that can be  used to re- 
lieve queue space. 

2. There are variations in the strategies  for doing 
things (allocating resources or handling problems) 
that reflect deep variations in purpose and intent. 
In the queue space  example, the dedication of a 
particular printer to printing a particular kind of 
job might be crucial to the service  being  supplied 
by a computing center. Under essentially no cir- 
cumstances would this printer be available  for 
other kinds of  work.  At another center, printers 
might  be a common resource,  each  providing 
similar  services. In the latter computing center, 
any job could  be routed to the least  utilized 
printer. Rerouting of jobs to alleviate JES queue 
space  problems  may  be customary at one site and 
totally unacceptable at another. 

3. There are more shallow variations in  strategies 
reflecting  changes  in approaches that may  have 
evolved  over time but that do not have inherently 
opposed  goals. Large dumps and data files  left on 
the JES queue can  cause queue space  problems. 
One computing center might  have their operators 
check  each  day  for material over a specific  age. 
The  policy  might  be to destroy the data and free 
the  space after warning the owner and allowing 
him time  to save the data elsewhere. At another 
site, the adopted policy  might be to  dump such 
data files immediately to tape whenever a queue 
space problem is encountered. Although there 
might  be  deep-seated motivations for the varia- 
tion in  policy, it is more likely that personnel at 
each center have  evolved their own  mechanism 
for  addressing the problem and that an automatic 
facility could be developed to satisfy  each. 

IBM SYSTEMS JOURNAL,  VOL 25, NO  2, 1986 



The difference  between the second and  third cate- 
gories (above) is  essentially a  matter of  degree, so 
there is no clear delineation between the two. Rather, 
there is a spectrum of possibilities.  At one  end  the 
selected  policy  is critical; at  the  other,  no  one has 
strong preferences, so long as it gets the  job done. 

Variations in operational policy  of type 1 and type 
3 in the above list appear amenable to  the develop- 
ment of one general-purpose facility that would au- 
tomate most operations in an acceptable way.  How- 

Experts  cannot  provide  a  complete 
description of their  knowledge 
without  an  iterative  process of 

probing. 

ever,  policy variations of type 2 are widespread and 
establish the requirement that  a facility that  auto- 
mates operations must be able to be readily custom- 
ized to reflect  local operational policy  when it is 
installed. 

It is also instructive to  note  that  the operator is the 
“court of last resort” for keeping systems in working 
order. When a subsystem has software that detects 
an extremely complex situation or a situation re- 
quiring knowledge  of management policy  for  reso- 
lution, the developers have had little choice other 
than to put in code to send a message to  the  operator 
(via the WTO, or Write To Operator, facility). As 
resource allocation mechanisms and recovery man- 
agement schemes have  grown  increasingly sophisti- 
cated during recent decades, operators are left with 
the situations that developers were unable to han- 
dle-usually  because they involved policy, extreme 
complexity, or  both. 

The fact that  the  operator is  left  with the most 
unusual problems was  reflected during YES/MVS de- 
velopment by the variety  of software that had to be 
written to  automate operator actions. The scheduling 
done by YES/MVS required the maintenance of 
queues of control blocks representing pieces of work. 

The monitoring was more characteristic of other 
real-time, process control applications. The diagnosis 
involved heuristically directed search techniques. 
The problem resolution frequently had a significant 
planning component. 

At this point, it should be obvious that operators do 
not take significant actions based  solely on  a single 
message or timed interrupt. Instead, operators retain 
extensive information about  the historical and recent 
status of the target system, and they only make 
decisions in the context of that  status information. 
There are several identifiable kinds of status infor- 
mation that operators retain and use  in making 
decisions: 

1. Visual and temporal placement and association 
of  messages on  an operator’s console. 

2. System status, e.g., current system parameteriza- 
tion, workload, status of I/O devices. 

3. Age and reliability of their own status model- 
Operators should know  when their information 
is old and should be  refreshed. 

4. Status of resolution of a problem or of the task at 
hand-An operator knows what has been learned 
in diagnosing a problem, what actions have been 
taken, whether those actions worked, etc. 

As has been reported in other expert-systems proj- 
ects, we observed in the development of YES/MVS I 
that experts (especially  where the expertise involves 
solving problems that are complex and may occur 
infrequently) cannot provide a complete description 
of their knowledge without an iterative process  of 
probing. Indeed, it is often difficult for experts to 
organize their knowledge. We repeatedly encoun- 
tered the following scenario: The knowledge engineer 
(programmer of the knowledge base) asks the prob- 
lem-handling expert how he handles a situation. 

Over a period of hours  or  a few days the expert 
provides a response. The knowledge engineer goes 
off to write the software that captures that knowl- 
edge;  he  finds  holes and comes back  with more 
questions. These questions trigger the recognition of 
additional patterns in the expert’s memory, and  the 
expert describes answers to  the immediate questions 
and frequently provides additional important mate- 
rial. The above is iterated until it appears to  the 
knowledge engineer that  the encoded knowledge is 
ready for testing. Testing proceeds, problems are 
found, and  the knowledge engineer returns to the 
expert, who quickly recognizes that he has omitted 
additional points. Thereafter the testing/additional 
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knowledge loop is iterated until the tests are run 
successfully and the facility  is  reasonably  stable. 

The value of the  rule-based  approach. In the course 
of developing YES/MVS I, we discovered that opera- 
tors typically  describe their knowledge in terms of 
situations and responses. A typical example might 
be 

If  there  is  a JES queue  space  problem, 
and  there  is  a  dump of more  than 100 000 lines  on 
the queue 

that  is  more  than 24 hours  old, 
Then I send  the  owner  mail  asking  whether  we  can 

get rid of it. 

This observation suggests that rule-based  program- 
ming is a very natural vehicle  for capturing opera- 
tional knowledge. The condition-action rules match 
the “given a situation, take an action” flavor  in  which 
an operator typically  describes  his  knowledge. 

To elaborate, consider the three major areas of  re- 
sponsibility  for  operators: monitoring, resource  al- 
location, and problem handling. Monitoring knowl- 
edge can be conveniently expressed  in the form of 
condition-action rules; the left-hand side  specifies 
the circumstances under which a query is  required, 
and the right-hand side indicates the actions neces- 
sary to perform the query.  Resource allocation is 
also natural to express in terms of rules.  Here, the 
left-hand side indicates when an allocation change 
should occur, and the right-hand side states the 
actions necessary to effect that change. For example, 

if  system  load is not  too heavy 
then  allocate  more  batch  initiators 

Lastly, problem handling nicely  fits the situation- 
response  paradigm  where the situation consists of 
conditions about current status and past  history, and 
the response  consists of actions to improve the sys- 
tem. For example, 

if JES queue  space is  now  at an  acceptable  level 
and  the  processor  was  previously  varied off line 

to save JES queue  space 
then  vary  the  processor  back  on  line 

Our experience  with YES/MVS I indicated that the 
benefits of rules  go well beyond their being a good 
representation for operational knowledge.  Rules en- 
courage modularity since  each  rule contains in its 
LHS a complete description of prerequisites  for RHS 
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invocation and so is a self-contained “chunk” of 
knowledge.  Developers  normally  seek to minimize 
rule interdependence and to make  dependencies ex- 
plicit  where  they are required. During the YES/MVS 
development process,  different  people  have  been  able 
to work independently on different subdomains of 
operations partly  because  of the modularity of rule- 
based techniques. 

As previously mentioned, knowledge  engineering  is 
an iterative process in which  changes are repeatedly 
made to better conform with the expert’s  expecta- 
tions. Thus, it is essential that during this process 
software techniques are used that support an “addi- 
tive”  process  of encoding the knowledge;  i.e., more 
knowledge can be added with minimal disruption of 
the previously  encoded  knowledge. If major reorgan- 
ization of the software  is  required  for  each addition, 
the task will become intractable. The modularity of 
rules made it easy not only to add needed “chunks” 
of knowledge but also to delete unneeded or change 
incorrect  ones. 

Another perspective of  rule-based programming is 
that the inference  engine  provides a mechanism  for 
dispatching  based on context. Recall that much of 
operations appears to be context-driven. For exam- 
ple, the LHS of the previous example looks at the 
current level  of JES queue space, the status of the 
processor, and the motivation for  varying the proc- 
essor off line, if it is off line. An operator’s actions 
most frequently consist of short bursts of activity 
(most commonly command submission and physical 
intervention) interleaved  with  pauses  while  awaiting 
messages generated by the target  system or responses 
to commands. During pauses there usually  is an 
enormous variety of  messages or responses that could 
occur  next. 

Had we  used a procedural  language to automate 
operations, a special-purpose dispatcher would  have 
been  needed to dispatch the varied, short bursts of 
activity.  Much of the software  would  consist of  logic 
to control the context-driven selection of what to 
dispatch next. By using  rule-based  software  tech- 
niques, we have a built-in facility  for  context-driven 
dispatching. Production rules  provide a language  for 
expressing  complex contextual situations (in the LHSS 
of rules)  associated  with the short tasks that are 
appropriate in that context. 

Model  management. It was  previously mentioned 
that operators maintain a conceptual model of the 
computing complex.  Like a human operator, YES/ 
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MVS must maintain a model of the target  system, 
including information such  as the status of devices, 
the age  of the status information, and the current 

Automating MVS operations  is  not  a 
matter of building  a  single  expert 

system. 

status of solutions to particular problems. In addi- 
tion, since YES/MvS interacts with human operators, 
a model  must  be  kept of the operators themselves, 
including items such as what  requests  have  been sent 
to the operator and what  responses the operator has 
made. 

Since operational knowledge  is  encoded as rules and 
rules rely on working memory to establish a context, 
models of the target  system and the operator must 
be maintained in working  memory. Obtaining status 
information involves  issuing a command (e.g., a JES 
inquiry), interpreting the resulting  reply, and han- 
dling  nonresponses. In YES/MVS I each subdomain 
independently solicited and maintained its own  sta- 
tus information. Often this led to duplication of 
effort. For example, both the JES queue space and 
the hardware error experts are concerned with the 
operational status of printers. Even  if a piece of status 
information is not  shared among subdomains, it is 
still  worthwhile to provide a common service  for 
model management so that functions such  as han- 
dling  nonresponses are treated in a consistent man- 
ner. 

Building  on  the YES/MVS I experience 

An important lesson  we learned  from YESIMVS I is 
that automating MVS operations is not a matter of 
building a single  expert  system. Rather, due to the 
wide variations among computing centers and the 
different,  ongoing  changes  which occur even  within 
a single computing center, it will  be  necessary to 
provide a family of related  expert  systems. Thus, the 
focus  of YESIMVS 11 is to provide an expert-systems 
shelf which  is the basis  for automating operations in 
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a family  of  expert  systems. Our intent is that the 
shell (1) incorporate the knowledge and services 
common to expert-systems automating operations 
as  well as (2) facilitate customizing an expert  system 
for a particular computing center. Such an approach 
may  greatly improve the economic feasibility  of au- 
tomating operations. 

Knowledge  representation. Our experience  with YES/ 
MVS indicates that operators most frequently express 
their knowledge  in terms of situation-response state- 
ments. Thus, a good  knowledge representation en- 
sures that each operator situation-response statement 
can  be  represented by a single  rule in the knowledge 
base,  with the operator's situation corresponding to 
the left-hand  side of the rule and the operator's 
response  corresponding to the right-hand side of the 
rule. By so doing, operations experts and knowledge 
engineers can more easily  write, understand, and 
modify  encoded  knowledge  because the necessity to 
analyze the interaction between  rules  is minimized. 

During the development of YES/MVS I in oPS5, we 
were often unable to achieve the goal  of a one-rule- 
per-operator situation-response statement. Indeed, 
this  failure was a major motivation for  developing a 
new language  for  building  expert  systems, the York- 
town  Expert  Systems/Language One (YESILI) . '~  YES/ 
L I  is a data-driven rule-based  language  which in- 
cludes PL/I as a subset.  Although YES/LI is not dis- 
cussed in detail  here, we do point out some of its 
key features. 

Foremost, we discovered that the expert-systems  de- 
velopment  language should support powerful con- 
structs on the left-hand side. For example, the JES 
queue space  expert maintains a symbolic  variable 
that indicates the current severity  of any JES queue 
space problem. This variable can take on any of  five 
values, and the current value is called the severity 
mode of the current problem  (when there is a prob- 
lem). To avoid  repeated  switching  between  modes 
during borderline problems, the conditions for entry 
into and exit  from a mode are  slightly  more compli- 
cated than a simple numerical threshold. Rules are 
needed to maintain the correct  severity  mode and to 
start/stop additional status information querying as 
may  be  needed  when the mode  becomes  more/less 
severe.  Using O P S ~ ,  several approaches are possible 
for  writing  these  rules, but all require a number of 
rules. (The YES/MVS I version  employed thirteen 
rules.) If more complex conditions could  be stated 
in  rules,  for instance, comparisons involving arith- 
metic computations or subfunctions, this function 



could be nicely written in a few rules. (Two rules 
seems best in YESILl.) 

The real-time nature of YESIMVS also creates special 
needs for expressing operator-defined situations. 
Specifically, a major component of YES/MVS is the 
maintenance of information about  the target system. 
In YESIMVS we were  forced to include on  the left- 
hand side any WME referenced on the right-hand side 
(due to O P S ~ ) ,  which meant  that  the left-hand side of 
a rule no longer corresponded to  the operator’s state- 
ment of a situation. YES/Li provides a built-in func- 
tion for selecting particular WMES on  the right-hand 
side of a rule; thus, WMES that  are not related to  an 
operator-defined situation can be referenced on the 
right-hand side without including them  on  the left- 
hand side. 

Another problem related to  the ongoing mainte- 
nance of information is  when to re-instantiate a 
previously  fired rule that references a WME with an 
attribute whose value has changed. In O P S ~ ,  a WME 
is considered new (and hence can re-instantiate a 
rule) if any of its attributes  are changed. For example, 
every time the  status  attribute of a printer WME is 
changed, the old WME is destroyed and a replacement 
with the new value for the  attribute is created. This 
has undesirable side effects for a rule which  is only 
interested in  the list of all IBM 32 1 1 printers and so 
only refers to  the type attribute of the printer WMES; 
every time a change is made to the  status  attribute 
of a 32 1 1 printer, a new printer WME is created which 
in turn could cause the “list-32 1 1-printers’’ rule to 
fire. This is neither obvious nor desirable. YES/L1 
avoids this difficulty by providing an attribute-level 
granularity for changes to WMES. Thus,  an instantia- 
tion re-enters the conflict set only if there is a change 
to  an  attribute referenced by the rule. 

We have found  that adequately representing the 
action portion of operational knowledge requires 
expressing procedural behavior such as iteration and 
if-then-else constructs. For example, when the JES 
queue space expert analyzes the printer queues, it 
iterates over all printers, and for each printer it 
iterates over the set  of jobs waiting so as to compute 
the  number of lines waiting to print. Such actions 
cannot be  expressed on the right-hand side  of a single 
OPs5 rule, since only sequential code is permitted. 
However, in YES/LI the right-hand side can employ 
any PL/I procedural constructs. 

We also found  that  the actions themselves may be 
embodied in sets of  rules. For example, the JES queue 
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space expert has a hierarchy of rules consisting of (1) 
determining the problem severity mode (e.g.,  if JES 
queue space is very low, consider panic-mode ac- 
tions), (2) heuristics to try once the severity  is known 
(e.g.,  if a shared printer is not reserved by the target 
system,  reserve that printer), and  (3) steps within 
each heuristic (e.g., if the printer status is unknown, 
query the target system). In OPs5, rule hierarchies are 
not easy to implement, but they can be concocted 

Appropriate  action  in  some  problem 
situations  should  depend  on  the 

availability  and  convenience of the 
operator. 

using a variety  of flag attributes. YEs/Li will provide 
rule hierarchies through a rule subroutine construct 
that permits invoking a set of rules from the right- 
hand side of another rule. 

Model manager. In retrospect, we recognize that 
managing status models of the external environment 
is a key component of a YES/MVS expert. The YES/ 
MVS expert must have current status information at 
all times in order to perform monitoring, resource 
allocation, and problem handling. The absence of a 
built-in model manager in YES/MVS I led to several 
problems: 

1. Separate queries wkre issued by each YESIMVS 
expert for possibly the same information, and 
each expert was separately responsible for han- 
dling nonresponses. 

2. It was  difficult to share information among ex- 
perts since the information was in different classes 
of working memory. Hence, information was du- 
plicated, which could cause inconsistencies. 

3. There was no central point of control over query 
policies, such as how frequently the target should 
be prompted. 

4. In complex problem situations it can be  useful to 
prioritize queries to be issued either to the target 
system or  to  the operator. When queries are dif- 
fused throughout several subdomain experts, 
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there is no easy mechanism for establishing rela- 
tive priorities. 

To alleviate these problems, we have included model 
management as a system-supplied service in YES/MVS 
11. The YESIMVS model manager is a rule-based pro- 
gram with responsibility for maintaining in working 
memory information about  the state of the target 
system and of interactions with the operator. The 
central points concerning the model manager are as 
follows: 

1. The model manager defines and provides a stun- 
d u d  representation for status  information. When 
designed  with care and foresight, the format of 
this information  can remain largely unchanged 
across sites and changes in MVS and JES. 

2. So far as is reasonable, the model manager auto- 
matically maintains  the needed, current status 
information. 

By depending on a standard  and  current model of 
the target system, the code of the expert can enjoy a 
cleaner view of the target system, a view at a higher 
logical  level that is  free from the details of query and 
response formats, message and  command timings, 
and message variations. The model manager has 
built-in facilities  for automatically querying the tar- 
get system. Responses of the target system to these 
queries are processed by the model manager and  are 
stored in standard WMEs. These WMES are  then ref- 
erenced in  the LHSS of rules that control knowledge- 
based actions. 

In order to eliminate unnecessary overhead in main- 
taining the  status model of the target system, expert 
code for each interested subdomain may express its 
requirement for or noninterest in a particular class 
of status  information. If no subdomain cares, regular 
queries may be suspended for that  information. Ex- 
pert code may also make special requests asking that 
particular status information be  refreshed or may 
mark particular status items as “old”  and in need  of 
being refreshed. 

Query blocks (blocks of information about each type 
of query and its response) standardize and control 
the services provided by the target system model 
manager. This approach is intended to reduce the 
work required to customize and  maintain  the target 
system model. General strategies are also employed 
for identifying and responding to nonresponses and 
unusual circumstances in communicating with the 
target system. 
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There are also benefits that accrue from the existence 
of a standard  and  current model of interactions with 
the operator. Software to control the presentation of 
information becomes more uniform and  thus easier 
to read and write.  Also, care must be taken not to 
flood the operator with requests. The appropriate 
action in some problem situations should depend on 
the availability and convenience of the operator. 
With a standard, generally available model of the 
operator, honoring such considerations becomes rea- 
sonable. 

Generally written knowledge. For  some types of op- 
erational problems, there are generally applicable 
strategies for problem handling. These strategies 
could be uniformly applied at almost all computing 
centers. As part of the effort to develop the base for 
a family  of  related expert systems, each reflecting 
local operational policy, such general strategies 
should be encoded once and  then parameterized to 
be  specific to each computing center. The required 
parameterization may be  extensive, including a de- 
scription of the configuration, specification of thresh- 
olds, etc., but it appears that for some problem 
domains  the approach is quite reasonable. Here, we 
consider the response to certain hardware failures in 
a system as a specific example. 

If a hardware channel detects and reports to MVS a 
hardware failure (a Channel-Detected Error, or CDE) 
while trying to execute a read or write operation to 
a device,  e.g., to a Direct Access Storage Device 
(DASD), the error-recovery mechanism in MVS auto- 
matically retries the operation. If the error persists, 
MVS notifies the operator. Once notified, the operator 
assumes (at least in an MVS Extended Architecture 
system) that  the error is not transient. Thus, some- 
thing should be amputated from the system to reduce 
the likelihood of the problem cascading and bringing 
down the entire system. Explicit information is not 
normally known about  the exact source of the prob- 
lem, and decisions must be made with the informa- 
tion available. 

When operators were interviewed about how they 
handle hardware errors, they responded in terms of 
specific actions they perform for specific situations. 
Only with substantial thought and  comments from 
multiple human experts did we develop the general 
strategies  listed  below: 

1. Consider amputation only for nonessential com- 

2. Maintain open paths to devices whenever possi- 
ponents. 

ble. 
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Figure 2 Decision  tree  for  strategy  for  handling  first 
channel-detected  error 

3. When  faced  with an error on a path, assume that 
the least critical component on the path is the 
failing component. 

4. When  faced  with multiple failing paths, assume 
that the failing component is at the least  critical 
point of intersection of  all the failing  paths. 

These  general  strategies can be  recast into general- 
purpose productions that can control the response 
to hardware errors provided that they  have  available 
information on the following  points: 

1. All hardware  devices  in the configuration. 
2. All possible paths to devices. 
3. What devices are essential to keep the system 

4. What paths are currently open in the system. 
operational. 

Lists of all  devices and all possible paths are specified 
to the MVS operating system at system generation 
time. These items are provided to YESIMVS at initial- 
ization. A list  of the essential  devices must frequently 
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be made  especially  for this purpose. Information on 
what paths are currently open may  be obtained by 
submitting queries to the operating system  or  can  be 
continuously maintained by keeping track of all path 
status changes  reported by the operating system. 

The general  strategy  (slightly  simplified)  for  diagnos- 
ing and responding to channel-detected errors can 
then be described  in the following productions: 

if a device  is  associated  with  a  channel-detected 
error 
then if the  device  is  essential to the  system 

then  assume  there  is  a  path  problem 
between  the  device  and  control 
unit 

else  (nonessential  device)  conclude  the  device 
is  failing 

if  there  are  multiple  errors  on  a  device 

then  conclude  that  the  device  is  failing 

if  there  are  multiple  errors  on  a  device 

then if device  is  essential 

involving  different  control  units 

involving  just  one  control  unit 

then  assume  the  control  unit  is  failing 
else  (nonessential  device)  conclude  the  device 
is  failing 

if there  are  errors  on  different  devices  attached 

then  conclude  that  the  control  unit  is  failing 

if a  device  is  failing 
then  vary  the  device off line 

if  there  is  a  path  problem  between  a  device  and  a 
control  unit 
then  close  the  path,  and 

to the  same control  unit 

if  an  alternate  path  can  be  found 
then  open  an  alternate  path to the  device 

if  there is a  failing  control  unit 
then  close  all  paths  through  the  control  unit,  and 

for  each  affected  device  (if  possible)  open  an 
alternate  path 

The above productions, in fact, encode the general 
strategy  used  in treating a significant number of 
hardware errors. The first four productions diagnose 
the cause of a hardware problem. The last three 
productions can be  generalized to apply a standard 
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Figure 3 Decision  tree  for  strategy  for  handling  recurrent  channeldetected  error 

W E  CONTROL UNIT INVOLVED? 

treatment  that  vanes with the type of problem and 
the failing component.  The productions use  config- 
uration information  to  determine whether alternate 
paths are available and  to locate the intersection of 
multiple errors. The classification  of  devices as essen- 
tial or nonessential is  used to focus the diagnosis on 
treatable problems. 

The problem-solving principles in this domain  can 
be succinctly stated and  can be represented in other 
forms besides productions. For example, decision 
trees can be used to state clearly what actions are to 

be taken under what circumstances. Decision trees 
for handling CDES appear in Figures 2 and 3. Most 
people  find the decision trees the simplest format for 
quickly gaining insight into  the diagnosis and  han- 
dling of ems. It should be emphasized, however, that 
knowledge engineers only amved  at  the decision- 
tree format after carefully analyzing the knowledge 
approved by experts on  the handling of hardware 
errors. Decision-tree representations of the appropri- 
ate response to problems were found for other prob- 
lem areas also after substantial analysis by the knowl- 
edge engineer. 
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Testing techniques. Since YESIMVS actually controls 
portions of a computing complex, it is imperative 
that YESIMVS operate with minimal errors. Doing so 
requires thorough and effective testing. Testing is 
needed not only for the  standard portions of YES/ 
MVS, but also for customization done  at individual 
sites. 

One  approach to testing is to have YESIMVS actually 
operate an MVS system. Although this form of testing 
must always be done, by itself it has severe shortcom- 
ings. First, if testing is done  on a dedicated test 
system, a meaningful workload will not be present. 
Alternatively, YESIMVS (running  in advisory mode) 
can be tested on a system in production use. YES1 
MVS II is organized to allow multiple experts to  tap 
into  the message stream of the system. This arrange- 
ment permits on-line testing (in advisory mode) of 
changes to  the operational knowledge  base.  How- 
ever, it is still  difficult to provide thorough testing, 
since on a real production cluster, the problems with 
which YES/MVS deals are (hopefully) rare. 

Another  approach  to testing YESIMvS is  based on a 
library of scripts that could be  replayed to test that 
YEsIMvs is responding correctly to previously en- 
countered problem situations. The replaying of 
scripts would be used primarily to test advisory- 
mode  actions of YESIMVS, as the script would simu- 
late changes over time in the target system but would 
not  contain sufficient complexity to reflect  responses 
to active commands.  The messages and responses 
would be extracted (with timing information) from 
logs  of  previously encountered, real situations. When 
replayed, a script would simulate the generation of 
asynchronous messages. Simulated responses to 
queries for status information would  be  based on 
special time events manually inserted into a script. 
Each time event would control, on  the basis  of 
timing, the response of the script to a specific oper- 
ator query. There should be a library of standard 
responses that could be inserted. The expected ad- 
visory output from YESIMVS would be associated with 
the script and would be compared with the actual 
output. When errors in YESIMVS 11 were found  and 
repaired, a script would  be created to test for the 
correct response. Over time, a library of scripts 
should be available to provide a reasonably compre- 
hensive  test  of the advisory-mode function of YES/ 
MVS. 

Testing of YEs/Mvs active-mode function requires a 
more sophisticated simulation of the response of a 
target system to active commands. In YESIMVS I, the 
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scheduler of  large batch jobs was tested extensively 
in this manner. Such simulators would simulate 
nearly all the externally visible states of the target 
but relatively few  of the internal states, and would 

Effective  testing is crucial  to  the 
success of YES/MVS. 

accurately simulate the target state transitions caused 
by active expert commands  but only crudely simu- 
late the target state transitions caused by the produc- 
tion workload. 

Simulation tests will be able to stress YES/MVS in ways 
that are difficult or impossible with a real  system, 
such as inducing rare hardware failures and creating 
very  high  message rates. A shortcoming of this ap- 
proach is that  one tests only how one thinks the 
target system  behaves; many errors result from the 
target  system deviating from our expectations. 

In conclusion, effective testing is crucial to the suc- 
cess of YES/MVS,  but no single testing technique is 
all-encompassing. We anticipate that all of the afore- 
mentioned techniques will be used in testing YES/ 
MVS 11. 

Knowledge  acquisition for automating  operations. 
Each computing center needs to have its own expert 
system for operations because  of the variations in 
operational policy that exist among  computing ten- 
ters. The strategy employed by YESIMVS 11 is to sim- 
plify the development of such expert systems by 
providing a standard knowledge  base  which can be 
easily customized to reflect the unique characteristics 
of individual computer centers. Tools to aid in this 
customization process  would  be  of  significant  value. 

General-purpose knowledge-acquisition tools have 
proven difficult to develop because  knowledge  ac- 
quisition itself  is an activity requiring large amounts 
of knowledge.  However, developing valuable special- 
purpose knowledge-acquisition tools should be much 
easier.  Knowledge  of the  domain  can be built into 
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the tool; outlines of typical statements of domain 
knowledge can be included  for  each of the various 
kinds of knowledge that can be anticipated; reason- 
ableness  checking  can be provided; tools to assist 
with  testing can be included; and standard libraries 
of  cases  can  be  developed to facilitate  testing stan- 
dard features. The authors are enthusiastic about the 
potential value of knowledge-acquisition  tools that 
assist  with the process  of customizing a standard 
knowledge  base to reflect the unique policy  of a 
computing center, and work  has  begun on the de- 
velopment of such a facility. We outline here some 
of the observations that have  been  guideposts  in our 
design  efforts. 

Remember that when the knowledge-acquisition 
process  was  begun  for YES/MVS, the available opera- 
tional knowledge  was predominantly in the form of 
situation-response statements. The rule-based para- 
digm  proved to be a natural knowledge  representa- 
tion. Decision  trees  would  be another organization 
for  representing the knowledge  of  diagnosing and 
resolving operational problems.  Decision  trees  may 
or may not be a friendly representation, but in a 
theoretical sense,  decision  trees must exist.  After 
knowledge  engineers had worked on the various 
system operation problems  for a period of time, 
decision  trees and general  principles  for handling 
particular problems began to appear. Examples were 
described  in the subsection on generally  written 
knowledge  for operator response to hardware  fail- 
ures. 

Decision  trees  provide a hierarchical decomposition 
of problems, but other, more flexible, decomposi- 
tions seem more easily  applied to the broad  class  of 
system operation problems. Consider a hierarchical 
decomposition of a problem state into increasingly 
specific substates where  each substate has the follow- 
ing items associated  with  it: 

1. A plan  for how to extricate the system  from this 
particular state-The  plan could include primi- 
tive  corrective actions from a library of actions, 
and the enabling and disabling of entry into sub- 
states. 

2. Conditions for entry into the state. 
3. Conditions for  exit  from the state either because 

of resolution of the problem condition or because 
a change in status makes this substate inappro- 
priate. 

4. Description of the status information needed to 
be  able to determine entry into and exit  from this 
state. 
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These  hierarchical decompositions differ  from  deci- 
sion  trees in several material ways. First, control can 
be simultaneously passed to multiple substates of a 
particular state; i.e., substates  need not be mutually 
exclusive.  Second, entry into a substate is not based 
solely on a simple  decision but can be controlled by 
the plan  associated  with a state for extrication from 
the state. 

Our preliminary experience indicates that when 
such a decomposition for an operational problem is 
known,  first, the decomposition is  fairly  easy to 
understand and second,  identifying and making 
needed modifications to the problem solution strat- 
egy are simpler than they  would  be  with other knowl- 
edge representations we have  considered. We intend 
to develop a compiler that would  generate YES/LI 
code  from the hierarchical decomposition represen- 
tation of the problem-solving  strategy. The potential 
advantages of this representation are as follows: 

1. With the use  of graphics and the ability to zoom 
in on nodes  (substates)  in the hierarchical decom- 
position, it appears that it  will  be  easy to convey 
an overview of the strategy  for handling the as- 
sociated problem. 

2. Having an overview  of the strategy  should  reduce 
the difficulty of determining the global impact of 
local  software  changes. 

3. Problems  are outlined as though all  needed status 
information were available and current. Thus, 
issues  of the (n0n)availability of status informa- 
tion and the suspension of execution  while  await- 
ing  responses to queries and active commands 
are compartmentalized and hidden  in an over- 
view  of the problem-handling strategy. 

4. The knowledge  engineer  will  be  able to focus on 
the  strategy  for  problem  resolution, and the com- 
piler  will introduce dependencies (on the built-in 
model manager) for  collection of status informa- 
tion. 

5 .  The compiler could  supply  reasonableness  check- 
ing  where  possible. 

It  should  be  emphasized that the facility  would be 
intended primarily  for use in  customizing rather than 
in  developing an operational knowledge  base. The 
user  of the knowledge-acquisition  facility  would start 
with descriptions of standard (and hopefully com- 
prehensive)  responses to most operational problems. 
The  user  would prune, reparameterize, and make 
(hopefully minor) modifications to represent the spe- 
cial  characteristics of the policy  of one computing 
center. 
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Conclusions 

Operators have  different  responsibilities  in  different 
computing centers, but a few generalities  seem to be 
valid.  Twenty  years  ago, operators provided both 
problem-handling expertise and control over the 
normal allocation of computing resources.  Since that 
time, the allocation of computing resources  has 
largely  been automated, but the problem-handling 
abilities of  large-systems operators have  been  only 
partially automated. This is  because  of (1)  the com- 
plexity of detecting, diagnosing, and responding to 
the range of unusual but possible  system  problems 
and (2) the variation in operational policy among 
computing centers that make it difficult to select a 
single “correct” scheme  for  responding to opera- 
tional problems. 

Several  software techniques came out of the YES/ 
MVS I effort.  But  for  those interested in automating 
large-systems operations, the most important lesson 
learned from our experience  with YESIMVS I was that 
it is  feasible to  automate the complex  decision-mak- 
ing  processes operators use to detect, diagnose, and 
respond to problems in  large computing complexes. 
The effort to develop YES/MVS I involved many tasks 
besides  knowledge  engineering.  Still, the problem- 
handling rules  in YES/MVS I required a number of 
man-years  of  effort and even then were certainly not 
complete. Thus the expense  would  be very  high  if 
every  large computing center had to develop its own 
problem-handling rule base. 

Although YESIMVS I established that large-systems 
problem handling could be automated, the economic 
viability of automated problem handling remained 
unproven. This is the reason why the design  of YES/ 
MVS 11 puts such great emphasis on software  tech- 
niques that will ease the customization of the facility 
when it is installed at a new computing center and 
that will ease  ongoing maintenance to reflect  changes 
in configuration, workload, and operational policy. 

This paper  has concentrated on those  aspects of our 
experience  with YES/MVS I that appear to be  signifi- 
cant if a knowledge  base  for  large-systems operation 
is to be made relatively  easy to customize and main- 
tain. On the basis  of this experience, it appears that 
leverage can be obtained from the following: 

1. The characteristics that are common to most 
operational problems. 

2. For each  type of problem, the characteristics that 
are common to almost all solutions of that prob- 
lem. 

178 MILLIKEN ET AL. 

These considerations have  led us to consider several 
different approaches to the customization and main- 
tenance problems.  Among them are the following: 

1. Enhancing the development environment (lan- 
guages,  debugging, and testing tools) available  for 
encoding and refining a knowledge  base  for  large- 
systems operation. 

2. Attempting to increase uniformity in approaches 
to problem handling so that greater portions of 
the problem-handling knowledge can be  orga- 
nized  as  “system-supplied”  services. 

3. Seeking the most  general approaches to specific 
types  of  problems, so that only parameterization 
or minimal customization is required to reflect 
the unique characteristics of a particular comput- 
ing center. 

4. Exploiting  uniformity  across  types of operational 
problems to develop a knowledge-acquisition tool 
intended to assist the user in customizing the 
knowledge of  how to respond to a particular type 
of operational problem. 

Though our experience  with  customizing YES/MVS I1 
for installation at a new computing center remains 
limited, we are optimistic about the prospects  for 
making the customization process  manageable. U1- 
timately, we hope that the staff of a large computing 
center could, with  reasonable  effort,  encode those 
aspects of their operational policy that are unique 
and could thereafter enjoy  fast, consistent, and hope- 
fully expert  response to operational problems. This 
should, in turn, provide improved availability and 
performance to the users  of the computing resource. 
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