YES/MVS and the
automation of operations
for large computer
complexes

The Yorktown Expert System/MVS Manager (known as
YES/MVS) is an experimental expert system that as-
sists with the operation of a large computer complex.
The first version of YES/MVS (called YES/MVS I) was
used regularly in the computing center of IBM’s
Thomas J. Watson Research Center for most of a year.
Based on the experience gained in developing and us-
ing YES/MVS |, a second version (YES/MVS Ii) is being
developed for further experimentation. This paper dis-
cusses characteristics of the domain of large comput-
ing system operation that have been illuminated by the
YES/MVS | experience, and it describes the modifica-
tions in the design of YES/MVS Il that are an outgrowth
of the YES/MVS | experience.

An expert system is a computer application that
uses explicitly represented knowledge and com-
putational inference techniques to achieve a level of
performance comparable to that of a human expert
in some application area or domain. Expert systems
have been developed for a variety of domains, such
as diagnosing blood diseases,’ oil drilling,? geological
exploration,* and determining chemical structures.?

The domain of the expert systems that are the subject
of this paper is the operation of large computing
systems, or more specifically, the operation of one
or a cluster of IBM mainframe computers, each con-
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trolled by the 1BM Virtual Storage 2 Multiple Virtual
Storage Operating System (0s/vs2 MvS, or simply
MVS).> We refer to the computing system or cluster
being operated as the target system. The target sys-
tems considered to date have all provided computing
services to interactive users via the Time Sharing
Option (1s0) of Mvs and to a group of submitted
jobs under the control of JEs3 (the Job Entry Subsys-
tem 3 of Mvs).%’

A cluster of systems typically has several operator
consoles, for example, consoles for operation from a
central point, in the tape library, near tape drives or
printers, or in the offices of operations supervisors
and systems programmers. Nevertheless, Mvs and
JES3 cooperate in a cluster so that most of the com-
plex aspects of system operation can be performed
for the entire cluster from just one JES3 console.

The Yorktown Expert System/Mvs Manager (YES/
MVS) is an experimental expert system for the do-
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main of MVS/JES3 operation. It addresses the problem
of the operation of a cluster of MVS/JES3 systems
through one JES3 console and provides advice on
manual intervention needed to solve operational
problems. A first version, called YES/MVS I, was reg-
ularly used in the computing center of 1BM’s Thomas
J. Watson Research Center for most of a year. YES/
MvVs I assisted with the operation of a single MVS/
JES3 system running on an 1BM Model 3081K proc-
essor. From the experience gained with YES/MVS1, a
decision was made to develop a second version, YES/
MVS 11, that would significantly improve on the
breadth and depth of function provided by YES/MVS
1. More technical detail on YES/MvS1 can be obtained
from three papers by Ennis et al.®'°

It is the intent of this paper to review the function,
organization, development process, and experience
gained in the use of YES/MVS 1 as a basis for discussing
the lessons that have been learned from that effort.
We shall concentrate on lessons that appear to be
important for ongoing attempts to automate large
system operations.

The first section of this paper introduces the opera-
tion of an MVS/JES3 system, the function and orga-
nization of YES/MVS I, and the expert-systems lan-
guage opss (used in the development of YES/MVS I).
The second section provides insights into pertinent
YES/MVS I experiences, such as the nature of an
operator’s knowledge, the value of using rules for
developing expert systems, and the need for main-
taining a status model of the target system.

The third section discusses the ongoing work on YES/
MVS II. Much of the work is guided by the following
observation: An expert operator at one center would
probably not immediately be an expert at another
but would require a period of training to become
knowledgeable about the characteristics of opera-
tions that are unique to the second center. This
situation is due to the necessary and inevitable vari-
ation among centers, variation due to differences in
hardware configuration, installed software, work-
load, and operational policy. An expert system that
assists with the automation of operations encounters
the same variation; customization for individual
sites, then, is a major challenge of automated oper-
ations. This section includes a discussion of the
design features of YES/MVS 1I intended to facilitate
customization—specifically, better representation of
operational knowledge, automatic maintenance of a
status model of the target system, generally applica-
ble knowledge of operational problems, techniques
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for testing an operational knowledge base, and ap-
proaches to knowledge acquisition.

Motivation for an expert-systems approach to
automated operations

Operation of an operating system. During the last
twenty years, facilities have been developed to con-
trol most of the resource allocation that is done on

Total computing power is growing
rapidly.

a routine basis in large computing systems. There
exist subsystems that prioritize, schedule, assign re-
sources to work, etc., and operators increasingly are
not required to perform these functions. While Mvs
and other operating systems have a growing number
of built-in problem-handling and recovery mecha-
nisms, the court of last resort continues to be the
operator.

Basically, operators have remained necessary (for
tasks other than the merely manual ones) because of
a wide variety of complex system problems that can
occur and that, in turn, depend for resolution on
data or knowledge not normally available to the
operating system: e.g., what work is to take prece-
dence in certain problem situations, which system
resources are critical to the services being provided
by the system, and whether any of the operators
currently in the center are trained to perform some
manual task. Solving the more serious problems
requires that the operator (a) monitor the system
and maintain a mental model of its state, (b) recog-
nize symptoms of problems, (c¢) obtain additional
data on the cause of symptoms, (d) diagnose genuine
problems, and (e) take appropriate steps to solve
problems. To be done well, the process requires
considerable knowledge and training.

In addition, the operator’s job is becoming more
challenging: First, total computing power is growing
rapidly at many computing centers. This growth
brings a corresponding increase in console message
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rates (number of messages per second an operator
must handle), which for some large clusters are al-
ready uncomfortably high. Second, since the growth
rate in total computing power at many centers is
exceeding the increase in uniprocessor speeds, large
computing centers have installed clusters of proces-
sors; this distribution of the resources has made the
systems more complex in all respects. Third, as the
importance of system availability has grown, so has
the need for fast and accurate operator actions in
response to system problems that threaten system
availability. In short, the operation of large systems
is complicated by several features: high message
rates, multiplicity of consoles, the complexity inher-
ent in providing problem diagnosis and response,
the requirement for fast and accurate response to
problems, the variation in hardware, software, work-
loads, and policy among computing centers, and the
evolving nature of computer systems.

Because of this complexity, training a skillful oper-
ator requires significant time, and expert operators
are certainly not plentiful. An obvious response is to
move toward automated operations. If successful,
automated operations should provide increases in
labor productivity, system availability, and manage-
ment control.

To date, several projects have made progress in
automating operations, e.g., cCOp (the Centralized
Computer Operation Project).!! Goals have included
simply filtering out unwanted messages, centraliza-
tion of operations, and active response to particular
messages generated by the target system. Generally,
projects not based on expert systems have used many
loosely organized modules of procedural code to
respond to individual messages. The weaknesses with
procedural approaches, and, in turn, the motivation
for the use of expert-systems techniques, are due to
(a) the basic complexity of the problem domain and
(b) the requirement for flexible software to meet the
needs for reasonably easy customization at installa-
tion time and for ongoing maintenance of any facil-
ity that assists with the knowledge-intensive parts of
an operator’s responsibilities.

The function and organization of YES/MVS 1. YES/
MVSsl1 is a research prototype developed to investigate
the feasibility of automating the complex portions of
the job currently performed by human operators for
MVS computer systems. In particular, the goal of YES/
MVS I was to obtain high-quality results in selected,
challenging areas of operator activity but not to
construct a comprehensive system that would auto-
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mate all Mvs operations. The areas selected were
ones that were known to be challenging and were of
practical interest in the computing center at the
Watson Research Center.

To MVS, YES/MVS appears to be a very fast human
operator in that YES/MVS submits commands to and
receives messages from mvs. The organization of
YES/MVS 1s shown in Figure 1. YES/MVS runs in a
separate computer from the target system. This sep-
aration has primarily been made to avoid having
YES/MVS dependent on the target for computing
resources, especially when the target is not fully
operational. The interface between YES/MVS and MVS
is a JES3 console which appears to Mvs as a standard
operator’s console. However, the console can be
“read” and “typed on” by YES/MVS. YES/MVS I runs
in three concurrent virtual machines under the Vir-
tual Machine/System Product (VM/SP) operating sys-
tem. !

1. The Expert virtual machine. The heart of YES/
MVS is the Expert virtual machine. The Expert
runs a program based on (developed from) the
knowledge of expert human operators. The pro-
gram is written in an extended version of the
expert-systems language Opss which, in turn, runs
under LISP/VM.'? (The next section contains more
details on OPss.) The Expert virtual machine con-
tains all of the crucial data needed by YES/MVS,
for example, all data required to model the state
of the target system. The Expert communicates
with the target through the virtual machine MCCF
and, with the operator, through Display Control.

A subdomain is a related, largely separable area
of operator activity such as monitoring channel-
to-channel links, batch job scheduling, or man-
aging JES queue space. All the rules for different
subdomains of the operator’s actions coexist in
one knowledge base. Running expertise from
multiple subdomains allows sharing of status in-
formation, and gives the expert system control
over the scheduling of actions in different sub-
domains, rather than leaving such scheduling to
the underlying vM operating system.

2. The MVS Communications Control Facility vir-
tual machine. A second virtual machine runs the
Mvs Communications Control Facility (MCCF),
which is written in the REXX language'* and in
assembly language. MCCF controls the receipt of
messages from Mvs and the formatting of com-
mands specified by the expert system. MCCF re-
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Figure 1  Organization of YES/MVS |

VIRTUAL MACHINES OF YES/MVS |

DISPLAY
CONTROL

YES/MVS
OPERATOR
CONSOLE

EXPERT
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ceives messages and submits commands through
the ccop facility.!! Thus, the expert system is
effectively insulated from the format of mvs and
JES messages/commands, and the equivalent in-
formation is passed to/received from the Expert.

MCCF provides a table-driven match and translate
capability. The desired messages are described in
tables, the fields containing variable parameters
are specified, and a description of the desired
output data structure is included. When a desired
message arrives, it is identified and translated,
and the corresponding data structure is sent on
to the Expert virtual machine. Arriving messages
that are of no interest are discarded. MCCF also
builds and submits commands to MVS upon re-
ceipt of a command name and associated param-
eters from the Expert.

. The Display Control virtual machine. A third
virtual machine, Display Control, also controlled
by software written in opss, provides the com-
munications interface between the human oper-
ator and YES/MVS. The display provides a hier-
archically structured interface to the operator. At
the highest level, operators are alerted to problems
and notified of their severity. When a specific
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problem is encountered, the operator may select
a lower level to obtain more detail on the prob-
lem. Explanations are available on the nature and
severity of a problem, as are precise descriptions
of suggested actions. The display also presents
current values of various system parameters, €.g.,
the number of batch initiators. To change a pa-
rameter value, the operator merely overwrites it;
YES/MVS senses the change and automatically
submits the command necessary to effect the
change.

We found the use of separate virtual machines to be
extremely useful since the functions of the three
machines are naturally asynchronous. Indeed, YES/
MVS 11 employs a similar design.

The principal subdomains automated in the Expert
component of YES/MVS I are as follows:

« Scheduling large batch jobs off prime shift: This
scheduling must be done in a manner that ap-
propriately considers user satisfaction, system
throughput, and installation priorities.

¢ Managing JES queue space: Before, during, and
after execution, all jobs processed under Mvs are
staged from a central spool file called the JES queue
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space. Operators must carefully monitor JES queue
space since JES cannot recover if this space is
exhausted.

¢ Problems in channel-to-channel links: Often com-
puters are interconnected via channel-to-channel
links. Failure to maintain these links in an active
status not only delays data traffic but also can
contribute to the exhaustion of JES queue space.

e Hardware errors: When Mvs is unable to recover
from a hardware error, the operator is notified. A
timely response (e.g., reconfiguration) is often re-
quired to avoid a total system failure.

¢ SMF management: The System Measurement Fa-
cility (SMF) is an MvS subsystem that provides
access to information on resource utilizations.
There are several routine actions that must be
taken to manage SMF data.

¢ Quiesce and Initial Program Load (irL): Before a
planned shutdown (e.g., to install new hardware),
the target system must be quiesced. The quiesce
operation typically takes 30 minutes and involves
many operator actions. Since YES/MVS 1 does not
have access to the system console (only a JES3
console), it cannot trigger an actual 1pL. However,
YES/MVS I does give advice on IPLs, and once the
JES console becomes operational, YES/MVS1is able
to take over.

YES/MVS I operates in two modes: advisory and ac-
tive. In advisory mode, YES/MVS obtains from the
target system all information necessary to perform
an activity. However, instead of actually submitting
a command that would change the state of the target
(e.g., vary a device off line), YES/MVS displays the
command it recommends submitting along with an
explanation. If the operator agrees with the recom-
mendation, YES/MVS submits the command. The
advisory mode is extremely useful for debugging.
Once operators trust YES/MVS, active mode is nor-
mally used. In active mode, YES/MVS automatically
takes action without consulting the operator, al-
though explanatory information is still made avail-
able to the operator.

An introduction to production systems and OPSS. In
YES/MVS, the knowledge to control operations is
written in a LisP-based version of the production
system language, opss.'>!® This section briefly dis-
cusses production systems in general and OPS5 in
particular.

Productions or rules are if-then statements. The if-

portion or /efi-hand side (LHS) describes a situation;
the then-portion or right-hand side (RHS) specifies
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actions to take when the LHS situation arises. A data-
driven (or forward chaining) production system op-
erates by finding rules whose if-portions are satisfied
and then executing the then-portion of one such
rule. When an RHS is executed, the rule is said to
have fired. The sequence of rule firings is controlled
by a special run-time package called the inference
engine which is responsible for determining which
rules have their LHS satisfied as well as selecting a
rule to fire. Thus, by using rules, the programmer is
relieved of many flow-control issues, which can be
extremely troublesome in conventional program-
ming languages. English-language examples of typi-
cal rules appear in the later subsection on the value
of the rule-based approach and in the one on gener-
ally written knowledge.

OPS5 1s a data-driven production language. An expert
system written in OPS5 has three components: work-
ing memory, in which temporary data are stored, the
rule base or rule memory (consisting of all the pro-
ductions), and the inference engine. Working mem-
ory is partitioned into classes of working-memory
elements; all elements in a given class have the same
data format. A working-memory element (WME)
consists of several fields or attributes. The data for-
mat for a class is defined by the /iteralize construct.
For example,

(literalize printer-status ;  Name of working-memory class
status-current? i Is the status current?
status) ; Status of printer

The second component of an OPS5 expert system,
the rule base, contains the production rules. In Opss,
a situation or LHS is expressed as a query on working
memory. A query may reference several WMEs, each
of which is called a condition element. The following
is a sample OPSs rule.

; Name of rule
;. Reply from mvs to query
about printer status

(p jm:printer-status-update
{ (message) (printer-status-reply
1 address (printer-address)
1 status (new-status))}
{ (printer) (printer-status
1 address (printer-address))}
-
(remove (message))
(modify (printer)
1 status (new-status)
1 status-current? yes))

;  Status wMe for printer
with same address as reply

.  Remove the reply

;  Update the printer status:
-set new status
-status now current

This rule detects when Mvs has sent a reply to a
command that inquires about printer status. On the
basis of the reply, the rule updates the wWME that
models printer status. The LHS consists of two con-
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dition elements: one of class “printer-status-reply,”
and one of class “printer-status.” The condition ele-
ments appear above the right-pointing arrow. These
conditions must be satisfied; that is, particular in-
stances of the two WMEs must be in working memory
for the rule to be considered eligible by the inference
engine. Furthermore, the “printer-status-reply” WME
and the “printer-status” WME have mutual condi-
tions that must be satisfied in that the value of their
respective “address” attributes must be the same.

If the inference engine selects a rule, the actions on
the RHS of the rule are executed. Typically, these
actions involve changing working memory by cre-
ating new WMEs with the MAKE function, modifying
existing WMEs with the MODIFY function, or removing
an existing WME with the REMOVE function; LISP
functions may also be used. In the case of the rule
“ym:printer-status-update,” there is both a modify
and a remove. The REMOVE eliminates the “printer-
status-reply” WME used to satisfy the first condition
element; the MODIFY refers to the “printer-status”
WME used to satisfy the second condition element.

The opss inference engine has three phases: recog-
nize, conflict resolution, and act. In the recognize
phase, the LHSs of all rules in the knowledge base are
compared with the contents of working memory to
determine which rules have their condition elements
satisfied. A rule may have its LHS satisfied by more
than one set of working-memory elements. Each
combination of a rule and a set of matching working-
memory elements is called an instantiation. The set
of all instantiations is called the conflict set. If the
conflict set contains more than one instantiation, the
inference engine selects one; this selection process is
referred to as conflict resolution. Since comparing all
condition elements (in the recognize phase) against
working memory can be computationally expensive,
OPSs uses a special algorithm called the RETE match-
ing process'” which improves performance by
(among other things) incrementally maintaining a
list of all instantiations in the conflict set as each rule
is fired.

To develop YES/MVS 1, some extensions to OPS5 were
necessary. We give a brief overview here. For more
details, consult Ennis et al.’® First, timed reminders
are needed to perform operations such as periodic
queries of the target system and to check for nonre-
sponses. A special kind of MAKE, called TIMED_
MAKE, was developed. TIMED_MAKE creates a WME
at a future time. Thus, checking for a nonresponse
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requires (1) doing a TIMED_MAKE for a predeter-
mined class (say X) at the desired time and (2)
writing a rule whose LHS is satisfied when a WME of
class X is created and whose RHS determines whether
a response has arrived.

A second facility required for YES/MVS is communi-
cation among virtual machines, since the Expert,
Display Control, and MCCF components all reside in
different virtual machines. This requirement is met
by providing another type of MAKE called REMOTE_
MAKE, which creates a WME on another virtual ma-
chine. Thus, message passing is quite simple: (1) The
sender does a REMOTE_MAKE of a WME for a prede-
termined class (say Y) and provides the destination
address. (2) The recipient typically has a rule whose
LHS 1s satisfied when a wME of class Y is created.

Lessons learned from YES/MVS |

In comparison with previous efforts to automate
operations, the principal new factor in YES/MVS is
the use of expert-systems software technology. Using
rule-based software, the YES/MVS effort has concen-
trated on automating the more complex aspects of
the operator’s job: resource allocation and schedul-
ing, and especially problem detection, diagnosis, and
containment or recovery. The fundamental lesson
from the YES/MvVS 1 effort is that this approach
worked. The YES/MVS I knowledge base was devel-
oped by a reasonably small group of people over a
period of less than two years. With that knowledge
base, the facility was successful at automating a
variety of complex tasks performed by operators at
the computing center of 1BM’s Thomas J. Watson
Research Center.

During the development and use of YES/MVS I, a
number of other lessons have been learned. (See also
Ennis et al.'® and Schor.'®) The rest of this section
outlines facets of the operator’s job and of opera-
tional knowledge that must be considered during the
automation of operation. Also, we review some key
features of YES/MVS1 in light of the characteristics of
large-systems operations.

An operator’s knowledge. Typically, operators sit
at a console; they submit queries; and they watch
for responses to their queries as well as for sys-
tem-generated messages. When an action is required,
they submit the appropriate command(s). Most sys-
tem-volunteered information is in single messages.
Responses to queries are frequently in the form of
multiline messages, in which case there is a sequence
of lines on the operator’s screen taken up by a
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response to one query. Sometimes the lines are sim-
ilarly structured but have varying fields. This is the
normal case when, for example, one inquires about
all the jobs in the system satisfying certain criteria.
Each line contains information about one particular
job that satisfies the conditions of the query. For
other multiline messages, there is more information
than can fit in one line, or the information is orga-
nized so that it is best conveyed on multiple lines.

Most of an operator’s actions can be
divided into three categories.

When looking at the screen of an operator’s console,
it is fairly easy to keep track of the various pieces.
Visually, the multiline messages are similar enough
so that one naturally groups them together. Also, the
order in which active commands are submitted is
the order in which responses are received, and the
order in which queries are submitted is the order in
which responses are received. Thus, if an operator
waits for one response before submitting another
command that could give a similar response, there
is no difficulty in deciding what response goes with
what query. These things are easy for humans, but
they are rather difficult for computer programs be-
cause each line on the console cannot be taken as an
individual entity. It must be taken and understood
in the context of the nearby messages and com-
mands. The program must contain logic to provide
the visual decomposition of the screen and the tem-
poral relationships that are fairly naturally provided
by an experienced human.

Most of an operator’s actions can be divided into
three categories: monitoring, resource allocation,
and problem handling. The monitoring portion of
the operator’s job consists predominantly of gather-
ing information (e.g., submitting queries to get the
current level of JES queue space), identifying and
following trends, and detecting problems either by
comparing values against thresholds or by more
complex means when historical information must
be considered. Note that effectively monitoring the
system requires having a conceptual model of system
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services and resources, such as the rate at which
status of a resource can change, and how critical a
resource is to the system and the services being
provided. In addition, an operator must know what
queries to submit to obtain system status informa-
tion, what other status information is available, and
how one identifies symptoms and detects problems
from the available status information.

The dominant activities classified as resource allo-
cation or management are work scheduling and
manually providing resources for input and output
(1/0) devices (tape mounting, supplying paper for
printers, etc.), though timed and workload-triggered
preventive maintenance and tuning are also com-
mon. The amount of responsibility that operators
have over scheduling of work varies widely with the
policy of the computing center. Work scheduling
normally involves maintaining prioritized queues of
jobs to be done. Again, the operator must have an
understanding of the workload, priorities, deadlines,
required resources, available resources, queries and
available information, active commands, and un-
usual circumstances. In complex situations, the op-
erator is required to prioritize multiple, conflicting
considerations (resource utilization, response time,
age, total wait time, priority of users and classes of
work); he must plan ahead to match expected de-
mands with resources; he must monitor and dynam-
ically adjust to changes in workload, available re-
sources, and unusual circumstances.

For some types of problems, the correct or best
response is obvious once diagnosis is successfully
made, and most corrective actions taken at a console
involve only one or a short sequence of commands.
Physical intervention may be required to turn power
on to devices, load microcode into devices from a
floppy disk, remove printer jams, or the like. Fre-
quently, increased monitoring is indicated after the
corrective commands to ensure that the problem is
corrected and does not recur. For example, if a
noncritical subsystem fails, the typical action after
diagnosing the situation is to restart the subsystem
and then monitor it carefully to determine whether
the problem will repeat.

For other problems, the response may involve

1. A sequence of actions interspersed with decisions
or monitoring, e.g., when restarting (by IPL) an
entire system or cluster.

2. Selecting one or several actions from a collection
of responses, each of which will help.
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3. A trial-and-error approach because of insufficient
knowledge about the situation, with possible cor-
rective actions selected from a “bag of tricks.”

However, under most circumstances, there is pres-
sure on operators to diagnose and respond to a
problem quickly—before things get worse. This pres-
sure combined with the complexity and the con-
stantly changing nature of system status makes prob-
lem handling an error-prone process. Typing errors
alone can be significant. Operator errors can and
occasionally do make problems worse,

Illustrative example: JES queue space management.
In this subsection we shall outline the strategy en-
coded in YES/MVS for handling a particular type of
operational problem—IJES queue space depletion.
Later in the paper, we will use specific characteristics
of this example to provide concrete illustration of
certain more general and abstract points that are
important in the paper.

JES queue space is a common resource (disk storage)
in MVS/JES3 systems for the staging of computer jobs
before, during, and after execution. Jobs are nor-
mally deleted from the queue space once output has
been completed to a printer, a communication link,
or other output medium. JES queue space is also used
by JEs itself as a scratch area for executing its func-
tions. In addition, JES maintains batch job output
for on-line viewing (via TSO) in the JES queue.

Operators are concerned with monitoring the re-
maining available queue space because its exhaus-
tion requires restarting the system and inconveni-
encing all system users. The operator may take sev-
eral protective and corrective actions when queue
space begins to diminish, and these may be described
in terms of three general goals:

~ Protect remaining queue space: The operator must
protect the space that remains when it has become
dangerously low (e.g., less than five percent re-
mains available).

~ Free queue space: The operator can manipulate
various devices, operating-system parameters, or
jobs in the work stream to free queue space.

» Diagnose and eliminate the cause(s) of queue
space depletion.

The JES queue space problem-handling component
of YES/MVS is responsible for monitoring JES queue
space, detecting when a problem occurs, diagnosing
its cause, and assisting the operator in solving queue
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space problems. Monitoring involves querying the
target system for the remaining queue space at reg-
ular intervals, e.g., every five minutes. YES/MVS de-
tects a JES queue space problem if the remaining
space falls below a threshold. Several thresholds are
used; a lower threshold indicates a more severe prob-
lem.

The JES queue space expert retains in working mem-
ory the response to its most recent query of JES queue
space. If queue space begins to drop, the rate of
periodic monitoring is increased. If the remaining
space continues to go down, additional monitoring
is initiated to maintain current status information
on all the entities (e.g., printers) affecting the remain-
ing level of JES queue space. When the problem is
resolved and queue space returns to normal levels,
the additional monitoring is terminated.

There are four general causes of JES queue space
problems:

1. Lack of capacity (e.g., insufficient queue space,
printer capacity, or communications network ca-
pacity to handle—in a long-term, steady-state
sense—the amount of data being placed in the
queue).

2. Failures in devices or subsystems that temporarily
reduce the available capacity.

3. Suboptimal queue space utilization because of
resource allocation policy (e.g., work of a partic-
ular print class, requiring a change of forms,
might be saved until a fixed time each day to
maximize productivity of operators).

4. An extraordinarily large amount of work or data
in the queue because of unusual circumstances
(e.g., a failing subsystem or job is in a loop and
dumping data onto the queue, or a number of
large dumps have been mistakenly left on the
queue).

In a real problem situation, an implicit assumption
is made that the steady-state capacity is not the
problem. (However, repeated problems without rea-
sonable solutions should be recognized as a symptom
of insufficient capacity.) Problems rooted in combi-
nations of the other three causes listed are still rich
in variety, and problem diagnosis and recovery are
frequently not straightforward.

If YES/MVS knows of actions involving better utili-
zation of existing resources that would help with a
queue space problem, those actions are attempted.
Under the right circumstances, jobs will be rerouted
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from overutilized to underutilized printers; line lim-
its will be changed on printers, enabling large jobs
to print that would normally have been held until
another time of day; a change of printer forms will
be suggested to operators; the printing of material
with special security requirements will be suggested;
or communication links will be restarted to allow
material on the queue to be sent to its destination.
Sometimes nonoperative devices and subsystems can
be restarted, but frequently outside help must be
sought for component repair.

It is always valuable to seek out and, where possible,
to eliminate ongoing causes of queue space deple-
tion. For example, runaway subsystems or jobs need
to be found, as prompt corrective action is impor-
tant. JES has its own mechanisms for catching and
terminating runaway jobs, but runaway subsystems
can happen, and such situations must be carefully
diagnosed. If a subsystem is writing to a data file that
has not been closed, then JES will report the space
lost when the total space remaining is queried, but
JES may not report the data file when queried about
the contents of the queue.

Sometimes action is required which may not actually
solve the queue space problem but is needed just to
preserve the remaining queue space until the under-
lying cause is found. If the problem becomes mod-
erately severe, YES/MVS assists the operator in mov-
ing queue entries to tape. YES/MVS selects the entries
to move, and by using a special job (commonly
called the Dy job), dumps entries to tape. Once the
problem has been solved, queue entries can be re-
stored. If the problem becomes critical, more drastic
action may be needed to preserve queue space, such
as varying the processor off line to JES until queue
space returns to an acceptable level.

The rules in YES/MVS 1 that are dedicated to the
management of JES queue space can be classified by
function, as below. A similar classification holds for
most subdomains of YES/MVS 1.

o System Initialization and Control: These rules cre-
ate and initialize the pertinent portion of the target
system status model and otherwise initialize JES
queue space management.

* Periodic Query Submission and Timeout Han-
dling: This group controls the periodic querying
of target system resources.

o Information Collection and Data Reduction: These
rules collect target system messages and update
the target system status model accordingly.
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* Miscellaneous Cleanup: This rule group deletes
target system responses and expert-systems-gen-
erated goals from working memory.

* Knowledge-Based Action: All rules in the above-
described groups exist to support the Knowledge-
Based Action Rules, which encode policy and
expertise for managing JES queue space.

The control of problem diagnosis and resolution
resides in the knowledge-based action group of JES
queue space management rules. The best description
of the approach to problem resolution is that it is
“opportunistic.” By this we mean that (as described
above) there are a variety of actions that may help
resolve a situation if their set of special prerequisites
are met. Rule-based techniques support the writing
of a number of separate rules, each with its LHS
describing a list of special prerequisites for the action
initiated by its RHS to be of value in resolving a
situation. Hence, we can say that each rule acts like
a demon, that is, a program component so-called
because it “awakens” when conditions (problem se-
verity, target system status, status of the goals and
internal computations of YES/MVS) indicate that its
action would be of value. Certain actions or changes
in status enable other actions, but there is no global
planning of a unified approach to a particular prob-
lem.

Among the knowledge-based action rules for man-
aging JES queue space, a majority reflect local policy
to some degree and might be unacceptable at another
computing center unless modified. Essentially all the
rules in YES/MVS that, during a queue space problem,
redistribute work or handle very large data files are
statements of resource allocation policy. The man-
agement of JES queue space in YES/MVS I is unique
in the large policy component of the encoded knowl-
edge and because of the appropriateness of its “op-
portunistic” approach to problem resolution.

Additional characteristics of operational knowledge.
The preceding subsections have attempted to provide
insight into the nature and inherent complexity of
the operator’s job and into the way YES/MVS attempts
to imitate the actions of an expert operator. During
the development and use of YES/MVS, a number of
other lessons were learned or found to be important
about the operator’s job, about the knowledge re-
quired to operate large computing systems, and
about the implications of these facts with respect to
the development of facilities that would automate
large-systems operation. In this subsection, we out-
line some of these insights, especially those that are
pertinent later in the paper.
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As mentioned in the introduction, an expert operator
at one computing center would typically require a

Procedure books outline how
systems are to be operated.

significant period of training to become expert at
another computing center because of significant var-
iations in

1. Installed equipment and its interconnection and
physical layout, including types of consoles.

2. Installed operating system, features, and subsys-
tems.

. Installed monitoring packages and their parame-

terization and intended use.

Message content, routing, and filtering.

. Appropriate commands, keyboards, and keys

with dedicated meanings.

Workload types—transaction processing, batch,

development and test, and process control.

Resource allocation policy: dedicated and shared

components, priorities.

. Problem-handling techniques and problem-re-

sponse policies.

Organization and management of operations

staff, especially the subdivision of responsibilities.

w

o

© o N o

Most large computing centers maintain procedure
books that outline how the systems are to be operated
in both standard and problem situations. Because of
the ongoing evolution of systems, maintenance of
such a document is frequently a very time-consum-
ing task. The procedure book must be studied care-
fully by any new operator, even one with experience
from another computing center. In some sense, it is
the goal of operator automation facilities to provide
a natural and reasonably simple means for com-
pletely and precisely stating the contents of a proce-
dure book, and then for the knowledge in that pro-
cedure book to be used to control the system auto-
matically in real time.

To reduce the difficulty in writing and maintaining
such an “executable procedure book” for automatic
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operation, uniformity in approaches to operation
must be sought and variations in operational ap-
proaches understood and minimized. There are sev-
eral identifiable kinds of variation among large com-
puting centers in operational approaches to resource
allocation and problem handling. We shall use the
discussion in the previous section on JES queue space
problems to illustrate.

1. There are variations that are parameterizations of
a common approach in the same way that an
operating system is parameterized during system
generation or initialization to reflect the particu-
lar hardware configuration on which it will run.
The underlying strategies are uniform, but the
environment to which they are to be applied is
variable. In the JES queue space example, param-
eterizations are possible for the space dedicated
to the JES queue, the detection thresholds, and
identification of printers that can be used to re-
lieve queue space.

2. There are variations in the strategies for doing
things (allocating resources or handling problems)
that reflect deep variations in purpose and intent.
In the queue space example, the dedication of a
particular printer to printing a particular kind of
job might be crucial to the service being supplied
by a computing center. Under essentially no cir-
cumstances would this printer be available for
other kinds of work. At another center, printers
might be a common resource, each providing
similar services. In the latter computing center,
any job could be routed to the least utilized
printer. Rerouting of jobs to alleviate JES queue
space problems may be customary at one site and
totally unacceptable at another.

3. There are more shallow variations in strategies
reflecting changes in approaches that may have
evolved over time but that do not have inherently
opposed goals. Large dumps and data files left on
the JES queue can cause queue space problems.
One computing center might have their operators
check each day for material over a specific age.
The policy might be to destroy the data and free
the space after warning the owner and allowing
him time to save the data elsewhere. At another
site, the adopted policy might be to dump such
data files immediately to tape whenever a queue
space problem is encountered. Although there
might be deep-seated motivations for the varia-
tion in policy, it is more likely that personnel at
each center have evolved their own mechanism
for addressing the problem and that an automatic
facility could be developed to satisfy each.
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The difference between the second and third cate-
gories (above) is essentially a matter of degree, so
there is no clear delineation between the two. Rather,
there is a spectrum of possibilities. At one end the
selected policy is critical; at the other, no one has
strong preferences, so long as it gets the job done.

Variations in operational policy of type 1 and type
3 in the above list appear amenable to the develop-
ment of one general-purpose facility that would au-
tomate most operations in an acceptable way. How-

Experts cannot provide a complete
description of their knowledge
without an iterative process of

probing.

ever, policy variations of type 2 are widespread and
establish the requirement that a facility that auto-
mates operations must be able to be readily custom-
ized to reflect local operational policy when it is
installed.

It is also instructive to note that the operator is the
“court of last resort” for keeping systems in working
order. When a subsystem has software that detects
an extremely complex situation or a situation re-
quiring knowledge of management policy for reso-
lution, the developers have had little choice other
than to put in code to send a message to the operator
(via the wTto, or Write To Operator, facility). As
resource allocation mechanisms and recovery man-
agement schemes have grown increasingly sophisti-
cated during recent decades, operators are left with
the situations that developers were unable to han-
dle—usually because they involved policy, extreme
complexity, or both.

The fact that the operator is left with the most
unusual problems was reflected during YES/MVS de-
velopment by the variety of software that had to be
written to automate operator actions. The scheduling
done by YES/MVS required the maintenance of
queues of control blocks representing pieces of work.

1BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

The monitoring was more characteristic of other
real-time, process control applications. The diagnosis
involved heuristically directed search techniques.
The problem resolution frequently had a significant
planning component.

At this point, it should be obvious that operators do
not take significant actions based solely on a single
message or timed interrupt. Instead, operators retain
extensive information about the historical and recent
status of the target system, and they only make
decisions in the context of that status information.
There are several identifiable kinds of status infor-
mation that operators retain and use in making
decisions:

1. Visual and temporal placement and association
of messages on an operator’s console.

2. System status, e.g., current system parameteriza-
tion, workload, status of 1/0 devices.

3. Age and reliability of their own status model—
Operators should know when their information
is old and should be refreshed.

4. Status of resolution of a problem or of the task at
hand—An operator knows what has been learned
in diagnosing a problem, what actions have been
taken, whether those actions worked, etc.

As has been reported in other expert-systems proj-
ects, we observed in the development of YES/MVS 1
that experts (especially where the expertise involves
solving problems that are complex and may occur
infrequently) cannot provide a complete description
of their knowledge without an iterative process of
probing. Indeed, it is often difficult for experts to
organize their knowledge. We repeatedly encoun-
tered the following scenario: The knowledge engineer
(programmer of the knowledge base) asks the prob-
lem-handling expert how he handles a situation.

Over a period of hours or a few days the expert
provides a response. The knowledge engineer goes
off to write the software that captures that knowl-
edge; he finds holes and comes back with more
questions. These questions trigger the recognition of
additional patterns in the expert’s memory, and the
expert describes answers to the immediate questions
and frequently provides additional important mate-
rial. The above is iterated until it appears to the
knowledge engineer that the encoded knowledge is
ready for testing. Testing proceeds, problems are
found, and the knowledge engineer returns to the
expert, who quickly recognizes that he has omitted
additional points. Thereafter the testing/additional
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knowledge loop is iterated until the tests are run
successfully and the facility is reasonably stable.

The value of the rule-based approach. In the course
of developing YES/MVS I, we discovered that opera-
tors typically describe their knowledge in terms of
situations and responses. A typical example might
be

If there is a JES queue space problem,
and there is a dump of more than 100 000 lines on
the queue
that is more than 24 hours old,
Then | send the owner mail asking whether we can
get rid of it.

This observation suggests that rule-based program-
ming is a very natural vehicle for capturing opera-
tional knowledge. The condition-action rules match
the “given a situation, take an action” flavor in which
an operator typically describes his knowledge.

To elaborate, consider the three major areas of re-
sponsibility for operators: monitoring, resource al-
location, and problem handling. Monitoring knowl-
edge can be conveniently expressed in the form of
condition-action rules; the left-hand side specifies
the circumstances under which a query is required,
and the right-hand side indicates the actions neces-
sary to perform the query. Resource allocation is
also natural to express in terms of rules. Here, the
left-hand side indicates when an allocation change
should occur, and the right-hand side states the
actions necessary to effect that change. For example,

if system load is not too heavy
then allocate more batch initiators

Lastly, problem handling nicely fits the situation-
response paradigm where the situation consists of
conditions about current status and past history, and
the response consists of actions to improve the sys-
tem. For example,

if JES queue space is now at an acceptable level
and the processor was previously varied off line
to save JES queue space
then vary the processor back on line

Our experience with YES/MVS I indicated that the
benefits of rules go well beyond their being a good
representation for operational knowledge. Rules en-
courage modularity since each rule contains in its
LHS a complete description of prerequisites for RHS
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invocation and so is a self-contained “chunk” of
knowledge. Developers normally seek to minimize
rule interdependence and to make dependencies ex-
plicit where they are required. During the YES/MVS
development process, different people have been able
to work independently on different subdomains of
operations partly because of the modularity of rule-
based techniques.

As previously mentioned, knowledge engineering is
an iterative process in which changes are repeatedly
made to better conform with the expert’s expecta-
tions. Thus, it is essential that during this process
software techniques are used that support an “addi-
tive” process of encoding the knowledge; i.e., more
knowledge can be added with minimal disruption of
the previously encoded knowledge. If major reorgan-
ization of the software is required for each addition,
the task will become intractable. The modularity of
rules made it easy not only to add needed “chunks”
of knowledge but also to delete unneeded or change
incorrect ones.

Another perspective of rule-based programming is
that the inference engine provides a mechanism for
dispatching based on context. Recall that much of
operations appears to be context-driven. For exam-
ple, the LHS of the previous example looks at the
current level of JES queue space, the status of the
processor, and the motivation for varying the proc-
essor off line, if it is off line. An operator’s actions
most frequently consist of short bursts of activity
(most commonly command submission and physical
intervention) interleaved with pauses while awaiting
messages generated by the target system or responses
to commands. During pauses there usually is an
enormous variety of messages or responses that could
occur next.

Had we used a procedural language to automate
operations, a special-purpose dispatcher would have
been needed to dispatch the varied, short bursts of
activity. Much of the software would consist of logic
to control the context-driven selection of what to
dispatch next. By using rule-based software tech-
niques, we have a built-in facility for context-driven
dispatching. Production rules provide a language for
expressing complex contextual situations (in the LHSs
of rules) associated with the short tasks that are
appropriate in that context.

Model management. It was previously mentioned

that operators maintain a conceptual model of the
computing complex. Like a human operator, YES/
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MVS must maintain a model of the target system,
including information such as the status of devices,
the age of the status information, and the current

Automating MVS operations is not a
matter of building a single expert
system.

status of solutions to particular problems. In addi-
tion, since YES/MVS interacts with human operators,
a model must be kept of the operators themselves,
including items such as what requests have been sent
to the operator and what responses the operator has
made.

Since operational knowledge is encoded as rules and
rules rely on working memory to establish a context,
models of the target system and the operator must
be maintained in working memory. Obtaining status
information involves issuing a command (e.g., a JES
inquiry), interpreting the resulting reply, and han-
dling nonresponses. In YES/MVS I each subdomain
independently solicited and maintained its own sta-
tus information. Often this led to duplication of
effort. For example, both the JES queue space and
the hardware error experts are concerned with the
operational status of printers. Even if a piece of status
information is not shared among subdomains, it is
still worthwhile to provide a common service for
model management so that functions such as han-
dling nonresponses are treated in a consistent man-
ner.

Building on the YES/MVS | experience

An important lesson we learned from YES/MVS 1 is
that automating Mvs operations is not a matter of
building a single expert system. Rather, due to the
wide variations among computing centers and the
different, ongoing changes which occur even within
a single computing center, it will be necessary to
provide a family of related expert systems. Thus, the
focus of YES/MvS 11 is to provide an expert-systems
shell which is the basis for automating operations in
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a family of expert systems. Our intent is that the
shell (1) incorporate the knowledge and services
common to expert-systems automating operations
as well as (2) facilitate customizing an expert system
for a particular computing center. Such an approach
may greatly improve the economic feasibility of au-
tomating operations.

Knowledge representation. Qur experience with YES/
Mvs indicates that operators most frequently express
their knowledge in terms of situation-response state-
ments. Thus, a good knowledge representation en-
sures that each operator situation-response statement
can be represented by a single rule in the knowledge
base, with the operator’s situation corresponding to
the left-hand side of the rule and the operator’s
response corresponding to the right-hand side of the
rule. By so doing, operations experts and knowledge
engineers can more easily write, understand, and
modify encoded knowledge because the necessity to
analyze the interaction between rules is minimized.

During the development of YES/MVS 1 in OPS5, we
were often unable to achieve the goal of a one-rule-
per-operator situation-response statement. Indeed,
this failure was a major motivation for developing a
new language for building expert systems, the York-
town Expert Systems/Language One (YES/L1).!® YES/
L1 is a data-driven rule-based language which in-
cludes PL/1 as a subset. Although YES/L1 is not dis-
cussed in detail here, we do point out some of its
key features.

Foremost, we discovered that the expert-systems de-
velopment language should support powerful con-
structs on the left-hand side. For example, the JES
queue space expert maintains a symbolic variable
that indicates the current severity of any JES queue
space problem. This variable can take on any of five
values, and the current value is called the severity
mode of the current problem (when there is a prob-
lem). To avoid repeated switching between modes
during borderline problems, the conditions for entry
into and exit from a mode are slightly more compli-
cated than a simple numerical threshold. Rules are
needed to maintain the correct severity mode and to
start/stop additional status information querying as
may be needed when the mode becomes more/less
severe. Using OPS5, several approaches are possible
for writing these rules, but all require a number of
rules. (The YES/MVs 1 version employed thirteen
rules.) If more complex conditions could be stated
in rules, for instance, comparisons involving arith-
metic computations or subfunctions, this function
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could be nicely written in a few rules. (Two rules
seems best in YES/L1.)

The real-time nature of YES/MVS also creates special
needs for expressing operator-defined situations.
Specifically, a major component of YES/MVS is the
maintenance of information about the target system.
In YES/MVS we were forced to include on the left-
hand side any WME referenced on the right-hand side
(due to opss), which meant that the left-hand side of
a rule no longer corresponded to the operator’s state-
ment of a situation. YES/L1 provides a built-in func-
tion for selecting particular wMEs on the right-hand
side of a rule; thus, WMEs that are not related to an
operator-defined situation can be referenced on the
right-hand side without including them on the left-
hand side.

Another problem related to the ongoing mainte-
nance of information is when to re-instantiate a
previously fired rule that references a WME with an
attribute whose value has changed. In OpS5, a WME
is considered new (and hence can re-instantiate a
rule) if any of its attributes are changed. For example,
every time the status attribute of a printer WME is
changed, the old wME is destroyed and a replacement
with the new value for the attribute is created. This
has undesirable side effects for a rule which is only
interested in the list of all 1BM 3211 printers and so
only refers to the type attribute of the printer wMEs;
every time a change is made to the status attribute
of a 3211 printer, a new printer WME is created which
in turn could cause the “list-3211-printers” rule to
fire. This is neither obvious nor desirable. YES/L1
avoids this difficulty by providing an attribute-level
granularity for changes to wMgs. Thus, an instantia-
tion re-enters the conflict set only if there is a change
to an attribute referenced by the rule.

We have found that adequately representing the
action portion of operational knowledge requires
expressing procedural behavior such as iteration and
if-then-else constructs. For example, when the JES
queue space expert analyzes the printer queues, it
iterates over all printers, and for each printer it
iterates over the set of jobs waiting so as to compute
the number of lines waiting to print. Such actions
cannot be expressed on the right-hand side of a single
oPss rule, since only sequential code is permitted.
However, in YES/L1 the right-hand side can employ
any pL/1 procedural constructs.

We also found that the actions themselves may be
embodied in sets of rules. For example, the JES queue
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space expert has a hierarchy of rules consisting of (1)
determining the problem severity mode (e.g., if JES
queue space is very low, consider panic-mode ac-
tions), (2) heuristics to try once the severity is known
(e.g., if a shared printer is not reserved by the target
system, reserve that printer), and (3) steps within
each heuristic (e.g., if the printer status is unknown,
query the target system). In OPSs, rule hierarchies are
not easy to implement, but they can be concocted

Appropriate action in some problem
situations should depend on the
availability and convenience of the
operator.

using a variety of flag attributes. YES/L1 will provide
rule hierarchies through a rule subroutine construct
that permits invoking a set of rules from the right-
hand side of another rule.

Model manager. In retrospect, we recognize that
managing status models of the external environment
is a key component of a YES/MVS expert. The YES/
MVS expert must have current status information at
all times in order to perform monitoring, resource
allocation, and problem handling. The absence of a
built-in model manager in YES/MVS I led to several
problems:

1. Separate queries were issued by each YES/MVS
expert for possibly the same information, and
each expert was separately responsible for han-
dling nonresponses.

2. It was difficult to share information among ex-
perts since the information was in different classes
of working memory. Hence, information was du-
plicated, which could cause inconsistencies.

3. There was no central point of control over query
policies, such as how frequently the target should
be prompted.

4. In complex problem situations it can be useful to
prioritize queries to be issued either to the target
system or to the operator. When queries are dif-
fused throughout several subdomain experts,
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there is no easy mechanism for establishing rela-
tive priorities.

To alleviate these problems, we have included model
management as a system-supplied service in YES/MVS
1. The YES/Mvs model manager is a rule-based pro-
gram with responsibility for maintaining in working
memory information about the state of the target
system and of interactions with the operator. The
central points concerning the model manager are as
follows:

1. The model manager defines and provides a stan-
dard representation for status information. When
designed with care and foresight, the format of
this information can remain largely unchanged
across sites and changes in Mvs and JES.

2. So far as is reasonable, the model manager auzo-
matically maintains the needed, current status
information.

By depending on a standard and current model of
the target system, the code of the expert can enjoy a
cleaner view of the target system, a view at a higher
logical level that is free from the details of query and
response formats, message and command timings,
and message variations. The model manager has
built-in facilities for automatically querying the tar-
get system. Responses of the target system to these
queries are processed by the model manager and are
stored in standard wMEs. These wWMEs are then ref-
erenced in the LHSs of rules that control knowledge-
based actions.

In order to eliminate unnecessary overhead in main-
taining the status model of the target system, expert
code for each interested subdomain may express its
requirement for or noninterest in a particular class
of status information. If no subdomain cares, regular
queries may be suspended for that information. Ex-
pert code may also make special requests asking that
particular status information be refreshed or may
mark particular status items as “old” and in need of
being refreshed.

Query blocks (blocks of information about each type
of query and its response) standardize and control
the services provided by the target system model
manager. This approach is intended to reduce the
work required to customize and maintain the target
system model. General strategies are also employed
for identifying and responding to nonresponses and
unusual circumstances in communicating with the
target system.
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There are also benefits that accrue from the existence
of a standard and current model of interactions with
the operator. Software to control the presentation of
information becomes more uniform and thus easier
to read and write. Also, care must be taken not to
flood the operator with requests. The appropriate
action in some problem situations should depend on
the availability and convenience of the operator.
With a standard, generally available model of the
operator, honoring such considerations becomes rea-
sonable.

Generally written knowledge. For some types of op-
erational problems, there are generally applicable
strategies for problem handling. These strategies
could be uniformly applied at almost all computing
centers. As part of the effort to develop the base for
a family of related expert systems, each reflecting
local operational policy, such general strategies
should be encoded once and then parameterized to
be specific to each computing center. The required
parameterization may be extensive, including a de-
scription of the configuration, specification of thresh-
olds, etc., but it appears that for some problem
domains the approach is quite reasonable. Here, we
consider the response to certain hardware failures in
a system as a specific example.

If a hardware channel detects and reports to MVS a
hardware failure (a Channel-Detected Error, or CDE)
while trying to execute a read or write operation to
a device, e.g., to a Direct Access Storage Device
(DASD), the error-recovery mechanism in Mvs auto-
matically retries the operation. If the error persists,
Mvs notifies the operator. Once notified, the operator
assumes (at least in an Mvs Extended Architecture
system) that the error is not transient. Thus, some-
thing should be amputated from the system to reduce
the likelihood of the problem cascading and bringing
down the entire system. Explicit information is not
normally known about the exact source of the prob-
lem, and decisions must be made with the informa-
tion available.

When operators were interviewed about how they
handle hardware errors, they responded in terms of
specific actions they perform for specific situations.
Only with substantial thought and comments from
multiple human experts did we develop the general
strategies listed below:

1. Consider amputation only for nonessential com-
ponents.

2. Maintain open paths to devices whenever possi-
ble.
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Figure 2 Decision tree for strategy for handling first
channel-detected error

CLOSE PATHTO DEVICE

T

FIND AND OPEN
ALTERNATE PATH TO DEVICE

3. When faced with an error on a path, assume that
the least critical component on the path is the
failing component.

4. When faced with multiple failing paths, assume
that the failing component is at the least critical
point of intersection of all the failing paths.

These general strategies can be recast into general-
purpose productions that can control the response
to hardware errors provided that they have available
information on the following points:

1. All hardware devices in the configuration.

2. All possible paths to devices.

3. What devices are essential to keep the system
operational.

4. What paths are currently open in the system.

Lists of all devices and all possible paths are specified
to the Mvs operating system at system generation
time. These items are provided to YES/MVS at initial-
ization. A list of the essential devices must frequently
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be made especially for this purpose. Information on
what paths are currently open may be obtained by
submitting queries to the operating system or can be
continuously maintained by keeping track of all path
status changes reported by the operating system.

The general strategy (slightly simplified) for diagnos-
ing and responding to channel-detected errors can
then be described in the following productions:

if a device is associated with a channel-detected
error
then if the device is essential to the system
then assume there is a path problem
between the device and control
unit
else (nonessential device) conclude the device
is failing

if there are muitiple errors on a device
involving different control units
then conclude that the device is failing

if there are multiple errors on a device
involving just one control unit
then if device is essential
then assume the control unit is failing
else (nonessential device) conclude the device
is failing

if there are errors on different devices attached
to the same control unit
then conclude that the control unit is failing

if a device is failing
then vary the device off line

if there is a path problem between a device and a
control unit
then close the path, and

if an alternate path can be found

then open an alternate path to the device

if there is a failing control unit

then close all paths through the control unit, and
for each affected device (if possible) open an
alternate path

The above productions, in fact, encode the general
strategy used in treating a significant number of
hardware errors. The first four productions diagnose
the cause of a hardware problem. The last three
productions can be generalized to apply a standard
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Figure 3 Decision tree for strategy for handling recurrent channel-detected error

RESPONSE TO RECURRENT
CHANNEL-DETECTED
ERROR FOR ONE DEVICE

SINGLE CONTROL UNIT INVOLVED? |

IS DEVICE ESSENTIAL?

VARY DEVICE
OFF LINE

QUIESCE

VARY DEVICE

CLOSE ALL PATHS
OFF LINE THROUGH CONTROL
UNIT AND OPEN

ALTERNATE PATHS

treatment that varies with the type of problem and
the failing component. The productions use config-
uration information to determine whether alternate
paths are available and to locate the intersection of
multiple errors. The classification of devices as essen-
tial or nonessential is used to focus the diagnosis on
treatable problems.

The problem-solving principles in this domain can
be succinctly stated and can be represented in other
forms besides productions. For example, decision
trees can be used to state clearly what actions are to
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be taken under what circumstances. Decision trees
for handling CDEs appear in Figures 2 and 3. Most
people find the decision trees the simplest format for
quickly gaining insight into the diagnosis and han-
dling of cpEs. It should be emphasized, however, that
knowledge engineers only arrived at the decision-
tree format after carefully analyzing the knowledge
approved by experts on the handling of hardware
errors. Decision-tree representations of the appropri-
ate response to problems were found for other prob-
lem areas also after substantial analysis by the knowl-
edge engineer.
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Testing techniques. Since YES/MVS actually controls
portions of a computing complex, it is imperative
that YES/MVS operate with minimal errors. Doing so
requires thorough and effective testing. Testing is
needed not only for the standard portions of YES/
MVS, but also for customization done at individual
sites.

One approach to testing is to have YES/MVS actually
operate an Mvs system. Although this form of testing
must always be done, by itself it has severe shortcom-
ings. First, if testing is done on a dedicated test
system, a meaningful workload will not be present.
Alternatively, YES/Mvs (running in advisory mode)
can be tested on a system in production use. YES/
MVS II is organized to allow multiple experts to tap
into the message stream of the system. This arrange-
ment permits on-line testing (in advisory mode) of
changes to the operational knowledge base. How-
ever, it is still difficult to provide thorough testing,
since on a real production cluster, the problems with
which YES/Mvs deals are (hopefully) rare.

Another approach to testing YES/MVS is based on a
library of scripts that could be replayed to test that
YES/MVS is responding correctly to previously en-
countered problem situations. The replaying of
scripts would be used primarily to test advisory-
mode actions of YES/MVS, as the script would simu-
late changes over time in the target system but would
not contain sufficient complexity to reflect responses
to active commands. The messages and responses
would be extracted (with timing information) from
logs of previously encountered, real situations. When
replayed, a script would simulate the generation of
asynchronous messages. Simulated responses to
queries for status information would be based on
special time events manually inserted into a script.
Each time event would control, on the basis of
timing, the response of the script to a specific oper-
ator query. There should be a library of standard
responses that could be inserted. The expected ad-
visory output from YES/MVS would be associated with
the script and would be compared with the actual
output. When errors in YES/Mvs 11 were found and
repaired, a script would be created to test for the
correct response. Over time, a library of scripts
should be available to provide a reasonably compre-
hensive test of the advisory-mode function of YES/
MVS..

Testing of YES/MVS active-mode function requires a
more sophisticated simulation of the response of a
target system to active commands. In YES/MVS 1, the
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scheduler of large batch jobs was tested extensively
in this manner. Such simulators would simulate
nearly all the externally visible states of the target
but relatively few of the internal states, and would

Effective testing is crucial to the
success of YES/MVS.

accurately simulate the target state transitions caused
by active expert commands but only crudely simu-
late the target state transitions caused by the produc-
tion workload.

Simulation tests will be able to stress YES/MVS in ways
that are difficult or impossible with a real system,
such as inducing rare hardware failures and creating
very high message rates. A shortcoming of this ap-
proach is that one tests only how one thinks the
target system behaves; many errors result from the
target system deviating from our expectations.

In conclusion, effective testing is crucial to the suc-
cess of YES/Mvs, but no single testing technique is
all-encompassing. We anticipate that all of the afore-
mentioned techniques will be used in testing YES/
MVS 11

Knowledge acquisition for automating operations.
Each computing center needs to have its own expert
system for operations because of the variations in
operational policy that exist among computing cen-
ters. The strategy employed by YES/MVS II is to sim-
plify the development of such expert systems by
providing a standard knowledge base which can be
easily customized to reflect the unique characteristics
of individual computer centers. Tools to aid in this
customization process would be of significant value.

General-purpose knowledge-acquisition tools have
proven difficult to develop because knowledge ac-
quisition itself is an activity requiring large amounts
of knowledge. However, developing valuable special-
purpose knowledge-acquisition tools should be much
easier. Knowledge of the domain can be built into
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the tool; outlines of typical statements of domain
knowledge can be included for each of the various
kinds of knowledge that can be anticipated; reason-
ableness checking can be provided; tools to assist
with testing can be included; and standard libraries
of cases can be developed to facilitate testing stan-
dard features. The authors are enthusiastic about the
potential value of knowledge-acquisition tools that
assist with the process of customizing a standard
knowledge base to reflect the unique policy of a
computing center, and work has begun on the de-
velopment of such a facility. We outline here some
of the observations that have been guideposts in our
design efforts.

Remember that when the knowledge-acquisition
process was begun for YES/MVS, the available opera-
tional knowledge was predominantly in the form of
situation-response statements. The rule-based para-
digm proved to be a natural knowledge representa-
tion. Decision trees would be another organization
for representing the knowledge of diagnosing and
resolving operational problems. Decision trees may
or may not be a friendly representation, but in a
theoretical sense, decision trees must exist. After
knowledge engineers had worked on the various
system operation problems for a period of time,
decision trees and general principles for handling
particular problems began to appear. Examples were
described in the subsection on generally written
knowledge for operator response to hardware fail-
ures.

Decision trees provide a hierarchical decomposition
of problems, but other, more flexible, decomposi-
tions seem more easily applied to the broad class of
system operation problems. Consider a hierarchical
decomposition of a problem state into increasingly
specific substates where each substate has the follow-
ing items associated with it:

1. A plan for how to extricate the system from this

particular state—The plan could include primi-

tive corrective actions from a library of actions,

and the enabling and disabling of entry into sub-

states.

Conditions for entry into the state.

Conditions for exit from the state either because

of resolution of the problem condition or because

a change in status makes this substate inappro-

priate.

4. Description of the status information needed to
be able to determine entry into and exit from this
state.

w
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These hierarchical decompositions differ from deci-
sion trees in several material ways. First, control can
be simultaneously passed to multiple substates of a
particular state; i.e., substates need not be mutually
exclusive. Second, entry into a substate is not based
solely on a simple decision but can be controlled by
the plan associated with a state for extrication from
the state.

Our preliminary experience indicates that when
such a decomposition for an operational problem is
known, first, the decomposition is fairly easy to
understand and second, identifying and making
needed modifications to the problem solution strat-
egy are simpler than they would be with other knowl-
edge representations we have considered. We intend
to develop a compiler that would generate YES/L1
code from the hierarchical decomposition represen-
tation of the problem-solving strategy. The potential
advantages of this representation are as follows:

1. With the use of graphics and the ability to zoom
in on nodes (substates) in the hierarchical decom-
position, it appears that it will be easy to convey
an overview of the strategy for handling the as-
sociated problem.

2. Having an overview of the strategy should reduce
the difficulty of determining the global impact of
local software changes.

3. Problems are outlined as though all needed status
information were available and current. Thus,
issues of the (non)availability of status informa-
tion and the suspension of execution while await-
ing responses to queries and active commands
are compartmentalized and hidden in an over-
view of the problem-handling strategy.

4. The knowledge engineer will be able to focus on
the strategy for problem resolution, and the com-
piler will introduce dependencies (on the built-in
model manager) for collection of status informa-
tion.

5. The compiler could supply reasonableness check-
ing where possible.

It should be emphasized that the facility would be
intended primarily for use in customizing rather than
in developing an operational knowledge base. The
user of the knowledge-acquisition facility would start
with descriptions of standard (and hopefully com-
prehensive) responses to most operational problems.
The user would prune, reparameterize, and make
(hopefully minor) modifications to represent the spe-
cial characteristics of the policy of one computing
center.
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Conclusions

Operators have different responsibilities in different
computing centers, but a few generalities seem to be
valid. Twenty years ago, operators provided both
problem-handling expertise and control over the
normal allocation of computing resources. Since that
time, the allocation of computing resources has
largely been automated, but the problem-handling
abilities of large-systems operators have been only
partially automated. This is because of (1) the com-
plexity of detecting, diagnosing, and responding to
the range of unusual but possible system problems
and (2) the variation in operational policy among
computing centers that make it difficult to select a
single “correct” scheme for responding to opera-
tional problems.

Several software techniques came out of the YEs/
Mvs I effort. But for those interested in automating
large-systems operations, the most important lesson
learned from our experience with YES/MVS 1 was that
it is feasible to automate the complex decision-mak-
ing processes operators use to detect, diagnose, and
respond to problems in large computing complexes.
The effort to develop YES/MVS 1 involved many tasks
besides knowledge engineering. Still, the problem-
handling rules in YES/MVS I required a number of
man-years of effort and even then were certainly not
complete. Thus the expense would be very high if
every large computing center had to develop its own
problem-handling rule base.

Although YEs/Mvs 1 established that large-systems
problem handling could be automated, the economic
viability of automated problem handling remained
unproven, This is the reason why the design of YES/
MVS II puts such great emphasis on software tech-
niques that will ease the customization of the facility
when it is installed at a new computing center and
that will ease ongoing maintenance to reflect changes
in configuration, workload, and operational policy.

This paper has concentrated on those aspects of our
experience with YES/MVS I that appear to be signifi-
cant if a knowledge base for large-systems operation
is to be made relatively easy to customize and main-
tain. On the basis of this experience, it appears that
leverage can be obtained from the following:

1. The characteristics that are common to most
operational problems.

2. For each type of problem, the characteristics that
are common to almost all solutions of that prob-
lem.
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These considerations have led us to consider several
different approaches to the customization and main-
tenance problems. Among them are the following:

1. Enhancing the development environment (lan-
guages, debugging, and testing tools) available for
encoding and refining a knowledge base for large-
systems operation.

2. Attempting to increase uniformity in approaches
to problem handling so that greater portions of
the problem-handling knowledge can be orga-
nized as “system-supplied” services.

3. Seeking the most general approaches to specific
types of problems, so that only parameterization
or minimal customization is required to reflect
the unique characteristics of a particular comput-
ing center.

4. Exploiting uniformity across types of operational
problems to develop a knowledge-acquisition tool
intended to assist the user in customizing the
knowledge of how to respond to a particular type
of operational problem.

Though our experience with customizing YES/MVS II
for installation at a new computing center remains
limited, we are optimistic about the prospects for
making the customization process manageable. Ul-
timately, we hope that the staff of a large computing
center could, with reasonable effort, encode those
aspects of their operational policy that are unique
and could thereafter enjoy fast, consistent, and hope-
fully expert response to operational problems. This
should, in turn, provide improved availability and
performance to the users of the computing resource.
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