Introduction to IBM’s
knowledge-systems
products

The industrialization of artificial intelligence is believed
by many to be a technology that will contribute to a
new generation of “smart” computer systems. Techni-
cal managers who are users or suppliers of computer
systems are trying to understand how the technology
can help them, and they are finding it an elusive sub-
ject to grasp. This introductory paper starts with a
technology overview that aims to address this need for
understanding and provide a suitable background for
the papers that follow.

Artiﬁcial Intelligence (Al) is currently receiving a
great deal of attention as a source of technology
that may prove to be extremely useful to the com-
puter industry. This industrialization of A1 conjures
up exciting visions of new computer applications in
both commercial and government sectors. In the
commercial sector, for example, a computer that can
run a factory or make better financial decisions than
are now possible would be a valuable commercial
asset. Opportunities in defense or intelligence appli-
cations in government also hold great promise.
General managers who are users or suppliers of
information processing systems cannot ignore this
potential. In fact, they are already asking basic ques-
tions such as: “What can Al do to help my business
and what is its value?” and “When can I have a
solution, and what will it cost?”

As the technical people wrestle with these questions,
they find themselves asking equally basic questions.
“What is an Al application, and in what ways is it
similar to or different from a non-a1 application?”
As an approach to an answer, this paper contains a
brief overview of the technology. Our goal is to focus
on the essential differences between an a1 application

134 svvmonos

by A. J. Symonds

and a non-aAl application. However, this is not a
comprehensive survey of AL

Another matter discussed is how to get started on
using the possibilities of AL As a first step, this paper
briefly describes software written by 1BM that can be
used for developing Al applications.

Knowledge-systems overview

The first step is to define some terms. Artificial
Intelligence (A1) i1s a broadly defined term that en-
compasses multidisciplinary research and develop-
ment activities involved with emulating human in-
telligence on machines. Al research has commercial
potential in a number of fields—robots, artificial
limbs, speech recognition, visual recognition, to
name but a few. The subdivision of Al that we are
concerned with in this paper is known as knowledge
systems or knowledge-based systems. A knowledge
system is a form of decision-support system that has
some of the features associated with human intelli-
gence. The term knowledgeable application can also
be used to characterize computer applications that
incorporate these features.

Concepts of knowledgeable applications. A knowl-
edgeable application is a computer program that

© Copyright 1986 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




performs decision-support functions in a way that
exhibits some of the properties associated with hu-
man intelligence. Actually, the property that distin-
guishes a knowledgeable application 1s its automatic
reasoning capability. A simple example is the best
way to explain what this means. Let us suppose that
we are designing a computer program to advise
money managers. In this connection, two potential
advisory applications are those of collecting the latest
economic data, such as interest rates, and analyzing
each account to provide recommendations on ac-
tions to be taken for each or to respond to an enquiry
on what to do with a particular stock in a particular
account portfolio.

Before design can begin, the characteristics of the
application must first be analyzed. Analysis involves
consideration of the data elements relevant to a
money-management advisor, together with their re-
lationships. Data elements required may include the
following:

o Company data, which describe and classify com-
panies from the point of view of industry, size,
financial performance, and stock performance

» Economic data, which include economic factors
to be considered when making investment deci-
sions, e.g., interest rates

o Account data, which describe characteristics of
each account being managed such as the overall
investment strategy, stocks held, cash held, and
recommendations made by the money-manage-
ment advisor

Analysis also involves consideration of the interac-
tions between the computer program and its user,
which can be derived from an understanding of the
problems the program is to solve.

The results of application analysis are incorporated
into the design process. The traditional process is to
design data structures based upon the data element
definitions and programs to execute the computa-
tional logic, i.e., the sequencing of the user interac-
tions and the computations that take place among
them. Program design consists of identifying all pos-
sible execution paths for each problem to be solved
and writing code that defines each path, step by step.
Techniques such as the use of decision tables have
been devised to ease the coding burden, but the
design task of identifying all the paths still exists.

The knowledge-systems approach tries to avoid a
rigid separation of the design into program and data

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

objects with their markedly different properties. In-
stead, application design consists of a knowledge-
base specification. A knowledge base contains three
kinds of objects that use a homogeneous storage
representation. Actual data as well as descriptions of
properties and relationships are the factual compo-
nents of a knowledge base and have a superficial
resemblance to traditional data structures. The prin-
cipal difference between a knowledge base and a
traditional data structure is that the description and
relationship information has much more semantic
content. Another component of a knowledge base
includes the rules that represent computational re-
lationships among facts. An example of a rule is the
following:

RULE100:

IF a specified company’s stock fundamentals
are sound, and
interest rates are not going up,

THEN the recommended action for the stock is hold.

The 1F part of the rule is known as the premise,
which is a logical combination of functions operating
on facts. The THEN part of the rule is known as the
action, which is a sequence of functions with such
side effects as asserting a value for a fact or initiating
a user interaction.

Also included among the components of a knowl-
edge base are automatic reasoning strategies for
working out an application’s execution logic as it
goes along.

Facts and rules are designed without including all
the details of how they are combined to solve a
particular problem. The system uses the information
in the knowledge base to figure out which rules
should be selected in which order to achieve the
desired results. We can illustrate this by showing how
a knowledge system reasons to solve two example
money-management advisor problems.

The first problem is to collect such economic data
as current interest rates, to analyze each account,
and to make recommendations on actions to take
for each account. The user enters new economic
data, and values for the appropriate facts are stored.
The program then looks for all the rules whose
premises match the facts just entered and adds their
actions to an agenda. Heuristics are used to select
the agenda item to be executed first, which typically
results in a change to the stored facts. The cycle is
repeated. The program terminates when a problem
solution is found. This occurs in the example when

symonos 135




RULE100 fires, i.e., arrives at a recommendation. This
reasoning style is known as forward chaining, in
which the chain of reasoning proceeds forward in an
IF-THEN direction until a complete solution is
reached. An alternative term for this reasoning style
is data-driven reasoning, because the process is
driven toward its conclusion by the existence of a set
of initial data.

The second problem is to respond to an enquiry as
to what to do with a particular stock in a particular

Solving subgoals continues until all
the facts are obtained that allow the
initial goal to be solved.

account. The program starts with an initial goal,
which is to find a recommendation for a stock, and
it then looks for rules whose actions assert a solution
to the goal. The program then attempts to evaluate
the premises of the rules. RULE100 would therefore
be selected and the discovery made that facts about
stock fundamentals and interest rates are needed
before the premise can be evaluated. Obtaining these
facts is established as a subgoal, which the reasoning
process solves either by finding rules that assert val-
ues or by asking the user for values. The process of
successively identifying and solving subgoals contin-
ues until all the facts are obtained that allow the
initial goal to be solved. This reasoning style is
known as backward chaining. The chain of reasoning
proceeds backward in a THEN-IF direction until the
initial goal is solved. Another term for this is goal-
driven reasoning, because the process is driven to-
ward its conclusion by the existence of an initial
goal.

A knowledgeable application essentially makes up
its execution logic as it goes along, thus relieving its
designer of this responsibility. This has some inter-
esting implications. One of these is that the program
must remember the execution logic so that it can
explain its results to users who want to know why a
particular question was asked or how a particular

136 svmonps

conclusion was reached. Another implication is the
method used for development and testing, which
must necessarily be very empirical and contain a
great deal of end-user involvement. Because the ex-
ecution paths are not specified in advance, it is
impossible to define a rigorous set of test cases that
can be run by an objective third party. Development
and testing constitute, rather, an iterative process
requiring close cooperation between the developer
and the end user, where changes are subjected to
end-user evaluation in small increments.

The knowledge-systems approach is well suited to
problem areas that have the following properties:

e There are many combinations of input data to be
evaluated.

* The conclusions that can be reached vary greatly.

e It is difficult or impossible to define precise, ex-
haustive relationships among the different input
data combinations and the corresponding conclu-
sions to be reached. These relationships are more
easily defined in terms of individual rules, each of
which draws its own conclusion from a small
subset of the input data.

e There is continuous modification and enhance-
ment of the application as a result of user feedback
or changing requirements.

The knowledge-systems approach is also useful for
applications that require some degree of natural-
language understanding. A computer program with
complete natural-language understanding may be
impossible to achieve, because it requires an enor-
mous knowledge of grammar, word meaning, and
underlying ideas that are expressible in natural lan-
guage. However, if the field of expertise is appropri-
ately restricted, it is possible to construct programs
that can reason successfully using natural language
input concerning specific problems.

Increasingly, there is evidence that serious work on
applying knowledge-systems technology is taking
place. Some of the more promising application areas
are now described.

Examples of knowledgeable applications

Advisory applications. Advisory applications are, as
the name suggests, programs that offer advice on
some problem domain to a practitioner within that
domain. These programs are also known as expert
systems, but the notion of advice more accurately
reflects what they actually do.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




Here we use the example of insurance underwriting
as an advisory application. Underwriting requires
that human beings go through a complex decision-
making process; the productivity and quality of un-
derwriting decisions can be improved by a knowl-

The computer program encapsulates
human expertise, and offers advice
to people with less experience.

edge system that provides suitable advice. A system
to be used in production must be accessible from
existing terminal networks and must be able to in-
terrogate policyholder data bases.

Another advisory application user is the oil industry,
which is investing in knowledge-systems technology.
One application is in oil prospecting, in which the
computer is programmed to analyze exploration data
and advise on the likelihood of finding gas or oil, as
well as the desirability of further exploration. The
computer program encapsulates human expertise,
which is based very much upon long experience, and
offers advice to people with less experience.

Two other advisory applications are described in this
issue. Hagamen and Gardy' describe a medical di-
agnosis application, and Voelker and Ratica® show
how the knowledge-systems approach has been used
to write agreements between customers and IBM for
the movement of 1BM equipment.

Problem diagnosis applications. Problem diagnosis
is a type of advisory application in which knowledge-
systems technology has yielded good results. It is
reasonably easy to identify complex systems or pieces
of equipment for which downtime is expensive. The
process of problem determination is time-consum-
ing, and it requires expertise that might not be readily
available. There is often documentation describing
heuristics or rules of thumb to guide problem deter-
mination that can be encapsulated in a computer
program. A simple example of this is the trouble-
shooting guide in automobile handbooks.

1BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Several oil companies are using knowledge-systems
technology to analyze drilling equipment and well
problems. Also, the GTE Compass Program? assists
in the maintenance of a telephone switching system,
and the AT&T ACE program* analyzes telephone cable
records and is capable of isolating problems much
earlier than human experts.

A recurring requirement that must often be met
before such applications can be put into full produc-
tion is the ability to embed the knowledge system
into an existing computing environment and allow
it to communicate with other programs and data.

Problem diagnosis applications often combine both
forward and backward reasoning. Forward reasoning
is used to generate possible problem sources from
the initial data. Backward reasoning is then used to
explore each possibility, to collect supporting data
during the process, and to find out which is the most
likely source of the problem.

Operational decision-making. The forward-reason-
ing style has been successfully applied in a number
of operational decision-making domains. General
properties of this application are the following:

e An existing process that generates large volumes
of machine-readable information

¢ Human intervention that is required to analyze
the information and make corresponding opera-
tional decisions

¢ Decisions that must be made rapidly and under
conditions in which the quality of the decision is
sensitive to such factors of the human condition
as degree of experience and fatigue

Knowledge systems that can replace or improve
operational decision-making by human beings have
proved to be very useful in several applications.

International funds transfer’ is a banking application
that has been successfully implemented. Unformat-
ted messages arrive by Telex and must be read and
interpreted, with resultant decisions to move or not
move large sums of money. Knowledge-systems
technology has provided a computerized solution
that had previously eluded more traditional ap-
proaches. We term this a very high-leverage appli-
cation, because one day’s delay in handling a large
amount of money can translate into a substantial
loss of interest income. The application also has a
degree of natural-language understanding, in that it
analyzes an unformatted message and uses reasoning

symonos 137




techniques to match its contents with the criteria
needed to specify an international funds transfer
transaction.

YES/MVS® is another example of operational decision-
making. Current large MVs systems generate operator

The knowledge-systems approach
seems to be tailor-made for the task
of simplifying data base access.

messages at an enormous rate. As a result, the quality
and productivity of system operators’ decisions can
be improved by means of a knowledge system’s
automatically proposed actions.

As a final example, consider an application imple-
mented at the 1BM computer chip manufacturing
plant at Burlington, Vermont.” A large APL program
collects and stores data on batches of computer chips
as they pass through the manufacturing process.
Until recently, reports were generated from the data
and given to manufacturing management, who then
made decisions affecting the manufacturing process.
As chip manufacturing processes have become more
complex, reports are being generated faster than
management can act on them. An improved deci-
sion-making process is required, and a knowledge-
able application has been programmed in APL to
solve the problem.

Knowledgeable data bases. Large computerized data
bases are information resources whose value depends
on ease of access and use of the stored information.
In fact, access to data bases is difficult, because it
requires a knowledge of special computer languages
for data base access as well as knowledge of the
contents and structure of the stored information.

The knowledge-systems approach seems to be tailor-
made for the task of simplifying data base access.
Such systems exhibit an understanding of what the
user wants to know (which could be expressed via
selection from a list of topics or free-form natural-
language input). Then they use reasoning techniques

138 svmonps

to match the user’s input with knowledge about the
data base to generate a query in the data base’s native
language. Intellect®, a trademark of the Artificial
Inteltigence Corporation, is an example of an appli-
cation that is knowledgeable about data bases.?® It
accepts free-form natural-language input from users
and executes the corresponding data base queries.

Tools for data processing professionals. Many of
today’s computer applications and tools are designed
for data processing professionals, with the objective
of making them more effective at meeting their users’
needs. Knowledge-systems technology offers the po-
tential for a new generation of tools for data proc-
essing professionals.

One example is the area of application analysis,
design, and specification.’ A number of methodolo-
gies exist for defining and analyzing application re-
quirements. Examples of what has to be defined are
the following:

» Input, output, and storage of data elements
» Relationships among data elements

~ User interactions

~ Reports required

» Computation required

» Triggering events

Tools exist for editing, analyzing, and displaying a
set of application requirements. Translating require-
ments to an effective design for programs and data
bases operating in a specific computing environment
requires considerable human expertise, as well as
knowledge of existing programs and data bases with
which the new application is to communicate. Once
a design is complete, a number of specification and
prototyping tools are available for converting it to
running code. There appears to be considerable po-
tential for an application design advisor that bridges
the gap between the analysis and specification
phases. Such an advisor could be used in an off-line
mode to generate program and data specifications to
be executed elsewhere. Alternatively, it could be used
in an on-line mode, where it would actually execute
the application.

Program conversion is a common yet labor-intensive
activity. Every data processing installation needs at
times to convert programs either to a different lan-
guage or to a different operating environment. Siff
tools are available today that can perform mechani-
cal conversions and identify the parts of the program
that require manual conversion. A knowledge sys-

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




tem, using deeper reasoning, should be able to make
program conversion less labor-intensive.

The 1BM cOBOL Structuring Facility (COBOL/SF)™ is
an example of such a program conversion tool. Data
processing users are willing to make a considerable
investment in structuring existing COBOL programs
so that they can become easier to maintain. COBOL/
SF does the structuring automatically. Algorithms
exist for converting any program to a structured
form. The problem of producing a structured form
that is easy for a person to understand does not have
an algorithmic solution. Rather, it requires knowl-
edge of what constitutes a good COBOL programming
style and how existing code should be changed to
make it better. COBOL/SF uses reasoning based on
this type of knowledge to arrive at a readable struc-
tured form, and it even makes suggestions on how
the user can improve the readability.

Application development methodology

Knowledgeable application analysis and design re-
quires a new kind of data processing professional
known as a knowledge engineer. A knowledge engi-
neer must be able to understand a problem that is a
candidate for computer automation and then be able
to abstract the problem in knowledge-systems terms,
i.e., design the knowledge base. This process involves
the following steps:

Decomposing a problem into discrete subprob-
lems to the extent possible

Designing a knowledge-representation schema for
facts

Characterizing problem solutions in terms of the
knowledge-representation schema

Defining the rules that allow conclusions to be
drawn when a particular situation is recognized
Characterizing the situations and conclusions in
terms of the knowledge-representation schema
Selecting appropriate styles of reasoning to be
employed during the search for problem solutions
Specifying how user interactions should look dur-
ing the consultation

This methodology is somewhat analogous to more
traditional application analysis and design. However,
it also requires a good grasp of knowledge-systems
concepts and how to apply them in a given situation.

Once abstraction of the application in knowledge-

systems terms has taken place, the next step is trans-
lation into a program that actually runs on the

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

computer. Application programming is designed to
be exploratory in nature. An initial prototype is built
for user evaluation and is then extended and modi-

Tools specially designed for
knowledge engineers are now
commercially available.

fied as a result of discussions between the user and
the knowledge engineer. In many cases, this process
continues throughout the life of the application as
users gain new insights into how the knowledgeable
application can help them.

Tools and languages for application
development

There are essentially two ways of doing the actual
application programming: specially designed knowl-
edge-engineering tools and general-purpose pro-
gramming languages. A number of tools specially
designed for knowledge engineers are now commer-
cially available. These tools are also known as expert-
systems shells, because they provide a hollow shell
into which specific expertise is injected to create a
finished knowledgeable application. Knowledge-en-
gineering tools provide the following facilities to
support the specification, execution, and testing of a
knowledgeable application:

e Languages for specifying the various elements of
the knowledgeable application, i.e., problem de-
composition, knowledge-representation schema,
rules, reasoning style, and user interactions
Editors for viewing and modifying the application
elements that are capable of validating syntax and
semantics as the knowledge engineer enters them
Run-time interpreter or inference engine that exe-
cutes the application and drives the end-user
dialog or consultation
Services that can be invoked during the consulta-
tion, such as the following: (1) requesting expla-
nations of why a question is being asked or how a
particular conclusion has been reached; (2) view-
ing and modifying the data stored while an appli-

symonos 139




cation is running; and (3) tracing and viewing the
application-execution process, setting breakpoints,
etc.

Knowledge-engineering tools are analogous to
fourth-generation languages and their associated
generators that are available for more traditional
commercial application development. Fourth-gen-
eration languages are designed to support an explor-
atory programming environment, where changes
made to an application can be reviewed very quickly
by a user.

General-purpose programming languages can also
be used for coding knowledge systems. Comparing a
programming language to a knowledge-engineering
tool involves the same considerations as those that
apply in comparing a programming language to a
fourth-generation language. The programming lan-
guage is more difficult to use than the higher-level
tool, but the programming language offers the poten-
tial for better function and performance.

Programming a knowledge system using a general-
purpose programming language requires specialized
Al programming skills, in addition to knowledge-
engineering skills. For this reason, most commercial
application development is done using knowledge-
engineering tools. Programming languages tend to
be used for the more basic purposes of developing
the knowledge-engineering tools themselves, devel-
oping applications custom-tailored for direct delivery
to end users, and for Al research.

The complex part of programming a knowledge
system lies in the core knowledge representation and
reasoning functions. A number of languages have
been used to do this. Intellect® and coBoL/sF'° are
written in PL/I. Applications have been written in
APL."" Expert System Environment,'! an 1BM knowl-
edge-engineering tool to be discussed later, is written
in Pascal. The article by Hodil et al.'? goes into
considerable depth on how pL/1 and 1SPF (Interactive
System Productivity Facility)!* have been used to
build a prototype knowledge-engineering tool that
can be embedded in a commercial data processing
environment.

This diversity of languages reflects the fact that peo-
ple like to use languages with which they are familiar.
Because most knowledge-systems programming at
this level is still done by people with an Al research
background, the languages they use deserve special
attention.

140 svmonos

LISP and PROLOG are two languages that were origi-
nally invented by the Al research community. These
languages are particularly suitable for the program-
ming of knowledge systems. In their industrialized
form, they are actually full-scale general-purpose
languages. For that reason, they can be used for

Knowledge-systems software uses a
symbolic processing subsystem to
support its execution environment.

writing payroll applications, in addition to their hav-
ing features that, in the hands of a skilled user, make
them the most powerful general-purpose languages
available for programming knowledge systems.

LIsP (list processing language) is the most widely used
Al programming language, particularly in the U.S.A.,
and it has been used to write most of the commercial
knowledge systems available today. Lisp uses the
atom and list constructs to represent both functions
to be executed and data structures to be interpreted.
The invocation of a function is also represented in
the same way, thereby yielding two important ben-
efits. For one thing, the essential notion of a knowl-
edge base is the abolition of the distinction between
program and data objects. A programming language
that has already done this is clearly very suitable as
an underlying tool. Also, it is very natural to write
LISP programs that manipulate LISP programs. This
can be exploited to provide a very powerful and
flexible environment for creating, modifying, exe-
cuting, and debugging programs. LISP contains a vast
array of primitives for symbolic and numeric com-
putation, as well as for handling the transfer of
control within and between LISP functions. Also, LISP
compilers, which, by the way, are written in LISP,
can generate efficient machine code from LisP pro-
grams. Complete LISP programming environments
with highly integrated interpreters, compilers, edi-
tors, and debuggers are now available on a variety of
computer systems, including specialized worksta-
tions. Workstation environments usually exploit bit-
mapped graphics, windowing, and pointing devices
to make them more friendly to the LISP programmer.

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




There is evidence that CommonLisp, a standardized
version of the LISP language, is being widely adopted.
This is still another sign of the movement toward
using the language for commercial work as well as
research. The first version of YES/Mvs® was developed
using a knowledge-engineering tool written in LISP.

The other Al language that is being increasingly used
IS PROLOG (programming in logic), which was origi-
nally designed as a tool for natural-language research
and is now entering the commercial world. Like LISP,
PROLOG has a uniform representation for both pro-
grams and data, thereby yielding the same benefits
for PROLOG as for LISP. On the other hand, PROLOG
uses a different set of basic constructs for its knowl-
edge representation. The basic unit of knowledge is
a predicate, which can be used to represent a fact
that is asserted to be true or as a goal to be proved.
Knowledge can also be stored as rules. The head of
a rule is a predicate, and its body is a logical combi-
nation of predicates that defines the conditions under
which the head is true. Because predicate logic is
used as a formalism to represent knowledge, these
basic constructs provide a higher-level language for
programming knowledge systems.

PROLOG solves problems by searching for rules whose
heads match a goal. To determine whether one of
these rules is true, the predicates in the body are
evaluated by defining them as subgoals to be solved.
The process is recursive, because solving a subgoal
requires the solution to successive levels of conse-
quent subgoals. The process continues until a solu-
tion is finally found or until the search fails. The
search mechanism automatically backtracks on fail-
ure. The technique for matching goals with the heads
of rules is called unification. This technique can be
used for complex pattern matching, as well as simple
atomic comparison. PROLOG compilers, written in
PROLOG, can generate efficient machine code from
PROLOG programs. PROLOG programming environ-
ments, complete with highly integrated interpreters,
compilers, editors, and debuggers, are now available
on a variety of computer systems, including special-
ized workstations. Workstation environments usu-
ally exploit bit-mapped graphics, windowing, and
pointing devices to make them more friendly to the
PROLOG programmer.

Because many knowledge-systems building blocks
(e.g., the use of logic for knowledge representation,
pattern matching, and backtracking) are built into
the PROLOG language, experienced users of PROLOG
feel that it is very suitable for productive develop-

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

ment of high-performance knowledge systems and
natural-language applications. Wilson'* discusses in
more detail application programming in PROLOG.

Symbolic processing subsystems

We now turn to a discussion of the computer systems
that are used for knowledgeable applications and
their associated tools and languages. Knowledge-
systems software uses what we call a symbolic proc-
essing subsystem to support its execution environ-
ment. Symbolic processing is a term used by the Al
community to characterize the kind of computing
performed by a program that is doing automatic

Al workstations offer the most
productive development
environment for knowledge
engineers and programmers.

reasoning. A symbolic processing subsystem pro-
vides the underlying support that, in effect, enables
a knowledge system to make up and remember its
execution logic as it goes along. This implies dy-
namic creation of data structures and program logic,
efficient symbol lookup, flexible management of data
and control structures, and large demands on proc-
essing power and memory.

LISP and PROLOG contain their own symbolic proc-
essing subsystems, which is one of the reasons why
they are very powerful languages for building knowl-
edge systems. Knowledge systems built using tradi-
tional programming languages require their own
symbolic processing subsystem. Knowledge systems
software is available on a range of computing equip-
ment.

Al workstations offer the most productive develop-
ment environment for knowledge engineers and pro-
grammers. Their processing power is supplied by
specialized hardware and supports a high-perform-
ance symbolic processing subsystem. High-band-
width communication with a bit-mapped display

symonos 141




and pointing device gives developers the feeling of
direct control over their environment. Windows can
be opened up at will to watch the internal behavior
of programs, edit different programs or run-time
data, and continue to monitor and control the exter-
nal behavior of the application. This feeling of direct
control is due very largely to the reactivity provided
by immediate system response to user actions.

Super-micro-based engineering workstations, such as

the 1BM RT PC, are also used for knowledge-systems
work. In fact, hardware diagnostics on the RT PC are

Significant skills are required to take
a generic knowledge-engineering
tool and turn it into a production
application.

executed using the Portable Inference Engine (PIE)
described by Burns et al.'®> Engineering workstations
have characteristics that are similar to those of Al
workstations but with less power at less cost.

Personal computers do not have the power to support
high-performance symbolic processing subsystems,
but they can provide a useful environment for learn-
ing and prototyping with a highly reactive user in-
terface. They are also capable of running applications
that do not need large knowledge bases.

Mainframes with their processing power, large mem-
ory, and efficient paging can support a high-perform-
ance symbolic processing subsystem. They can also
access centralized data base facilities, giving them
the capacity to handle large problems. Because main-
frames share their resources, they are not as respon-
sive to user actions as are workstations.

Assessment

We have looked at knowledge systems from an ap-
plication and a system viewpoint. We now assess the
impact of knowledge systems on the computer in-
dustry. A knowledge-systems industry is gaining mo-
mentum. Users are successfully implementing useful

142 svmonos

applications, and vendors of products and services
are actively supplying their needs. Of course, knowl-
edge systems are still a relatively small part of the
decision support systems business, because users
must make an initial investment in scarce knowl-
edge-engineering and programming talent. For rapid
transition to high volumes to take place, more prog-
ress needs to be made in several areas.

One area is that of delivering applications to end
users without the need for highly skilled knowledge
engineers. To be useful, most knowledgeable appli-
cations must be customized for individual users or
organizations. Significant skills and effort are re-
quired to take a generic knowledge-engineering tool
or Al programming language and turn it into a
production application. Ways must be found to re-
duce the amount of skill and/or effort required. One
approach is to identify application areas for which a
starter set of application specifications can be sup-
plied together with the generic tool or language,
which is discussed in the paper on YES/Mvs.® The
knowledge engineer thus has a design to start from
and becomes productive quickly. However, there is
still a need for a knowledge-engineering data proc-
essing professional who understands Al concepts,
their application, and the use of the tool or language.
A longer-term solution is for problem-solvers who
are not data processing professionals to develop their
own knowledgeable applications. This requires de-
velopments in knowledge-acquisition and natural-
language technology. Delivering the technology in a
user-friendly form requires a high-powered symbolic
processing subsystem with fast access to an advanced
display. This implies a powerful workstation, oper-
ating either in stand-alone configuration or con-
nected to a mainframe.

Knowledge systems must be embedded in existing
computing environments, so that they can work with
existing terminal networks and data bases to com-
municate with existing programs. Once users com-
plete a successful knowledgeable-application pilot
project, they face the problem of how to deliver a
production version to existing operational environ-
ments. The pilot application runs in the environ-
ment in which it is developed and which is designed
to offer a rich, integrated set of facilities for editing
and debugging. The application knowledge-base rep-
resentation is, therefore, designed for ease of editing
and debugging, rather than run-time efficiency. For
delivery, the trade-off is made in the other direction,
because run-time efficiency is the more important
aspect.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




This suggests that, before knowledgeable applica-
tions can be widely used in production, there has to
be a translation step that converts application knowl-
edge bases into a form suitable for mass delivery.

Automatic reasoning has a strong
dynamic memory-management
requirement.

The delivery system must be able to capture trace
information and feed it back to the development
system. The development system’s translator must
be capable of sending modifications to the delivery
system.

There is general agreement within the industry that
performance improvement can be gained by trans-
lating an application knowledge base into a more
static form for mass delivery. There are differing
opinions on how much can be gained, because au-
tomatic reasoning has a strong dynamic memory-
management requirement. However, the fact re-
mains that users want to minimize the cost of the
delivery system, and a breakthrough in this area will
be a most welcome development.

Improvement in symbolic processing subsystem per-
formance is another requirement for progress.
Knowledge-systems technology offers a very power-
ful approach to problem-solving but places high
demands on the underlying computer system. Ex-
tending the technology to new problem areas and
making it easier to use creates further demands.
Improving symbolic processing subsystem perform-
ance thus has a strong effect on the penetration of
the technology. A number of research projects are
under way to exploit parallel processing as a means
to improve performance. The prevailing view today
is that inventions in both hardware and software
technology must occur before parallelism can be
effectively exploited in a symbolic processing subsys-
tem.

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

Tools and languages for System/370 systems

At present, three software products for users of 43xx
and 30xx processors have been developed by 1BM.
These products run under the control of the vm/sp'¢
operating system and are accessed by users from 327x
display terminals. There are immediate benefits from
providing knowledge systems under vM/SP. VM/SP is
a widely used interactive computing environment,
the users of which can have access to knowledge-
systems technology simply by installing additional
products in their existing environment. Also, the
processing power of 43xX and 30XX mainframes,
together with the large virtual address space capabil-
ities provided by vM/sp, support a high-performance
symbolic processing subsystem. By embedding
knowledge-systems functions in the vm/SP environ-
ment, users can communicate with existing data and
programs. Also, systems utilities can be used for
saving, restoring, moving, copying, and generally
managing knowledge bases stored on disk.

Expert Systems Environment

The Expert Systems Environment;vM product'! is a
knowledge-engineering tool that was announced in
the U.s.A. and Canada in August 1985. An mvs'’
version was announced in April 1986. The product
originated at the 1BM Palo Alto Scientific Center. For
example, it was used to build the Contract Support
Services consultant” mentioned earlier in this paper.
Expert Systems Environment;vM and MvS provide a
set of functions that one would expect to find in a
commercial knowledge-engineering tool.

Consider the language for specifying the elements of
a knowledgeable application. The language syntax is
designed for users familiar with such programming
languages as BASIC or fourth-generation languages.
Keywords have been selected so that the meaning of
a language statement is intuitively obvious to the
reader. Application elements that can be specified
are problem decomposition, knowledge-representa-
tion schema, rules, reasoning style, and user inter-
actions.

Consider problem decomposition. Application ele-
ments can be partitioned into a hierarchical struc-
ture. For example, in a systems configuration appli-
cation, the knowledge engineer might want the end
user (or client) to focus initially on the applications,
then on the Central Processing Unit, and finally on
such peripheral hardware as tape and disk drives.

swmonos 143




Partitioning an application into several hierarchi-
cally related components has advantages. It encour-
ages top-down design and specification. It also results
in more efficient execution, because facts, rules, and
reasoning styles can be localized to particular com-
ponents in the hierarchy.

The knowledge-representation schema defines
named parameters, which is how facts are stored.
Parameters can have such properties as constraints,
prompt messages, explanation messages, and an in-
dication of where the parameter value can be ob-
tained, if it is unknown.

Rules are specified as follows:

IF (condition) THEN (conclusion or action)
For example,

IF INCOME > 50000 THEN TAX_RATE IS 0.5

means “if the value of the parameter INCOME is
greater than 50000, then assert that the value of the
parameter TAX_RATE is (.5.” Parameter values can
be asserted with a certainty factor ranging from +1
(definitely true) to —1 (definitely false). A parameter
can have multiple values, each with a different cer-
tainty factor.

Regarding reasoning style, both backward and for-
ward reasoning are supported. Control strategies em-
bodying both of the two styles can be individually
specified for each component of the application spec-
ification hierarchy.

User interactions of prompting and explanation text
can be specified for each parameter. Screen designs
are automatically created for use during consulta-
tions. If desired, the knowledge engineer can inter-
actively design customized screen formats to over-
ride the automatically generated screens.

Full-screen editors are provided to assist application
specification. The editors are tailored to the appli-
cation elements being worked on and have built-in
automatic checking that can immediately detect
many of the errors that might be made. Application
elements are compiled automatically into a form
that reduces the amount of space required for their
storage and improves runtime performance.

There is an Inference Engine to drive the consulta-
tions. Among the Consultation Services, both HOW?
and WHY? explanations are supported. A client can
also ask WHAT? to receive more details on the ques-

144 svmonps

tion being asked. During the testing of an applica-
tion, the knowledge engineer can request a trace that
provides an exact roadmap through the reasoning
process. A formatted printout of a complete knowl-
edge base can also be provided for off-line checking.

Extensive on-line help facilities are
available in both the consultation
and development environments.

An entire consultation can be stored and rerun.
During the rerun, answers previously given to any
question can be changed to see the effect on the
solution. It is also possible during a consultation to
undo or change a previously entered response.

Additional important features of the product are on-
line help and access to external procedures. Extensive
on-line help facilities are available in both the con-
sultation and development environments. As for
access to external procedures, user programs written
in Pascal or some other language can be invoked
during the execution of the condition or action part
of a rule. Examples of how this has been exploited
within 1BM are the following: read/write access to
vMysP data files, writing files that can be processed
by DcF (Document Composition Facility)'® to pro-
duce professional-quality printed output, read/write
access to relations stored in SQL/Ds'® data bases, and
the use of Graphical Device Data Manager (GDDM)*°
to produce presentation graphics output.

LISP/VM

The Lisp/vM product?! is a high-performance Lisp
programming environment running under vMm/sp; it
was announced in the U.S.A. and Canada in July
1984. The original development work was done at
the 1BM Research Center at Yorktown Heights, New
York.

LISP/VM includes a full Lisp compiler that generates
machine code designed to run efficiently in the vm/
sp environment. The code can also be shared among
virtual machines. A complete development environ-

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




ment with integrated editing, compilation, and de-
bugging facilities is provided within LISP/vM. Alter-
natively, users can use standard vm/sp editing and
file management tools to prepare LISP/VM programs.

VM/Programming in Logic (VM/PROLOG)

The vM/PROLOG product? is a high-performance
PROLOG programming environment running under
vM/SP that was announced in the U.S.A. in August
1985. The original development work was done at
the 1BM Paris Scientific Center.

VM/PROLOG is a high-speed interpreter that includes
some of the features of a full PROLOG compiler. Rules

Distributed development could be
architected by combining the
symbolic processing power of the
mainframe with the reactive
workstation capability of the PC.

not modified during the course of an application can
be declared as static, thus speeding up their execu-
tion. One of the highlights of the product is its ability
to communicate with other systems facilities. For
example, cMs and CP requests can be submitted.
Also, System Product Interpreter or EXEC2 variables
can be consulted or updated. Because VM/PROLOG 1is
loaded as a cMs nucleus extension, it can commu-
nicate with concurrently loaded modules, including
the cMS EXEC processor. When needed, user-defined
predicates can be written in assembly language and
dynamically loaded. An optional link with LISP/vM
is also supported, as well as an optional link with
sQL/Ds. The latter allows users to explore the poten-
tial synergism between knowledge systems and rela-
tional data bases.

Future direction

As to the future, a number of other requirements are
the basis of continuing investigation. Today’s prod-
uct line represents an important first step in bringing

IBM SYSTEMS JOURNAL, VOL 25, NO 2, 1986

knowledge systems to IBM users in a way that exploits
the processing power of large 1BM mainframes. Like-
wise, these knowledge systems introduce the tech-
nology as an extension to existing computing facili-
ties, so that knowledgeable applications can be
viewed as extensions to existing applications.

A logical next step is to move the technology to
Mvs,!” which has already been done for the Expert
System Environment product. This provides the op-
portunity to exploit additional computing power,
such as extended addressing, and to communicate
with production applications and data bases running
under MVS,

Today’s products support user access from 327X dis-
play terminals, which is a good solution for end users
who already have these terminals in their offices.
However, the development environment presented
to knowledge engineers and Al programmers does
not have the reactivity that can be achieved on
workstations directly attached to bit-mapped dis-
plays and pointing devices. The 1BM pC family of
workstation products has the potential to improve
on this situation. Two ways to exploit the PC poten-
tial in a knowledge-systems development environ-
ment are being studied. One line of investigation is
that of stand-alone PCs, loosely coupled to the main-
frame. Knowledge-engineering tools and Al pro-
gramming languages on the pc could offer a produc-
tive environment for application specification, pro-
totyping, and initial testing. Transmitting the results
to a mainframe for final testing and production
would then be performed via an appropriate file
transfer mechanism. Another research approach is
toward distributed PpCs, tightly coupled to the main-
frame. A distributed development environment
could be architected by combining the symbolic
processing power of the mainframe with the reactive
workstation capability of the pc.

As a final comment, we need to address the major
obstacles to wide acceptance of knowledge systems
mentioned earlier in this paper. One is to find ways
of delivering application solutions to end users with-
out the use of scarce knowledge-engineering and/or
Al programming skills. Sources of starter sets of
application specifications will be investigated to ad-
dress this need. Because a longer-term solution re-
quires advances in knowledge acquisition and natu-
ral-language processing, and because both of these
technologies are in the research stage, commercial
software products embodying these technologies ap-
pear to be far away. Another approach to the wide-

symonos 145




spread use of knowledge systems is to address the
requirement for mass delivery of completed appli-
cations to existing computing environments, so that
they can work with existing terminal networks and
data bases.

Concluding remarks

Artificial Intelligence research has spun off the com-
mercially significant knowledge-systems technology.
Applications of the technology are being successfully
implemented through the use of consulting services,
knowledge-engineering tools, Al programming lan-
guages, and symbolic processing subsystems. How-
ever, progress still needs to be made in several areas
before widespread application of the technology is
likely to occur. 1BM has developed software products
that can help users to start on knowledge-systems
projects.

Cited references

1. W. D. Hagamen and M. Gardy, “The numeric representation
of knowledge and logic—Two artificial intelligence applica-
tions in medical education,” IBM Systems Journal 25, No. 2,
207-235 (1986, this issue).

2. J. A. Voelker and G. B. Ratica, “The genesis of a knowledge-
based expert system,” IBM Systems Journal 25, No. 2, 181-
189 (1986, this issue).

3. S. K. Goyal, D. S. Prerau, A. V. Lemmon, A. S. Gunderson,
and R. E. Reinke, “Compass: An expert system for telephone
switch maintenance,” Expert Systems 2, No. 3, 112-126 (July
1985).

4. P. Wilkinson, “Humanized system tracks troubles,” Telephone
Engineer and Management 89, No. 8, 86-91 (1985).

5. T. Johnson, Natural language computing: The commercial
applications, report published by Ovum Ltd., London (August
1985), pp. 258-262.

6. K. R. Milliken, A. V. Cruise, R. L. Ennis, A. L. Finkel, J. L.
Hellerstein, D. J. Loeb, D. A. Klein, M. J. Masullo, H. M.
Van Woerkom, and N. B. Waite, “YES/MVS and the auto-
mation of operations for large computer complexes,” /BM
Systems Journal 25, No. 2, 159-180 (1986, this issue).

7. K. J. Fordyce and G. A. Sullivan, report in preparation, IBM
Corporation, Neighborhood Road, Kingston, NY 12401.

8. Intellect General Information Manual, G320-9199, IBM Cor-
poration; available through IBM branch offices.

9. R. Balzer, T. E. Cheetham, Jr., and C. Green, “Software
technology in the 1990’s: Using a new paradigm,” IEEE
Computer 16, No. 11, 39-45 (1983).

10. COBOL/SF Presentation Guide, G320-9391, IBM Corpora-
tion; available through IBM branch offices.

11. Expert System Consultation Environment/VM and Expert
System Development Environment/VM General Information
Manual, GH20-9597, IBM Corporation; available through
IBM branch offices.

12. E.D. Hodil, C. W. Butler, and G. L. Richardson, “Knowledge-
based systems in the commercial environment,” IBM Systems
Journal 25, No. 2, 147-158 (1986, this issue).

13. What’s New in ISPF, GC34-2172, IBM Corporation; available
through IBM branch offices.

146 svvonos

14. W. G. Wilson, “Prolog for applications programming,” IBM
Systems Journal 25, No. 2, 190-206 (1986, this issue).

15. N. A. Burns, T. J. Ashford, C. T. Iwaskiw, R. P. Starbird, and
R. L. Flagg, “The Portable Inference Engine: Fitting significant
expertise into small systems,” IBM Systems Journal 25, No.
2, 236-243 (1986, this issue).

16. IBM Virtual Machine/System Product: Introduction, GC19-
6200, IBM Corporation; available through IBM branch offices.

17. MVS General Information Manual, GC28-1118, IBM Cor-
poration; available through IBM branch offices.

18. Document Composition Facility and Document Library Facil-
ity, General Information Manual, GH20-9158, IBM Corpo-
ration; available through IBM branch offices.

19. SQL/Data System Concepts and Facilities, GH24-5013, IBM
Corporation; available through IBM branch offices.

20. GDDM General Information Manual, GC33-0100, IBM Cor-
poration; available through IBM branch offices.

21. LISP/VM Program Description/Operations Manual, SH20-
6476, IBM Corporation; available through IBM branch offices.

22. VM/Programming in Logic Program Description/Operations
Manual, SH20-6541, IBM Corporation; available through
IBM branch offices.

Andrew J. Symonds IBM Data Systems Division, P.O. Box 390,
Poughkeepsie, New York 12602, Dr. Symonds is a senior technical
staff member at the Myers Corners Programming Laboratory in
Poughkeepsie, New York. He was educated in England, where he
graduated from Oxford University with First Class Honours in
physics in 1962; he received a D.Phil,, also in physics, from the
University of Sussex in 1965. Dr. Symonds joined IBM United
Kingdom, Ltd., in 1965 as a systems engineer, and transferred to
the United States organization in 1970, as data base research
manager at the IBM Cambridge Scientific Center. Since then he
has performed a variety of professional and managerial assign-
ments related to programming. These have included original work
on relational data base implementation techniques and manage-
ment of the MVS, VSE, and VM IPO (Installation Productivity
Option) organizations. Dr. Symonds’ most recent assignment was
that of manager of special projects in IBM Information Services
Software Development, where he was responsible for setting up
and directing the plan for IBM’s initial set of knowledge-systems
offerings.

Reprint Order No. G321-5267.

BM SYSTEMS JOURNAL, VOL 25, NO 2, 1986




