
The IBM 3090 system: 
An overview 

_ _ _ _ _ ~ ~ ~ ~ ~  

by S. G.  Tucker 

The  first  part of this  paper  places  the  IBM 3090 
system  in  historical  perspective  with  respect  to its 
predecessors.  Treated  briefly  are  the  technology 
and  the  design  process, both of which were  critical 
to  the  development of the 3090. Presented  in  detail 
is the 3090 system  itself,  with  emphasis  on its 
features  that  differ  from  those of prior  systems. 

Historical perspective 

The IBM 3090  system has roots in the IBM 3033 
and 308X  systems  while at the same time possessing 
features unique to  it. The IBM 3033  was a highly 
pipelined machine. For example, it had an instruc- 
tion element to prefetch instructions; it allowed 
conditional fetching down alternate  paths on 
branching instructions; it did operand prefetching; 
and  it had a four-element queue for instructions 
ready for execution. The execution element was 
independent and ran overlapped with the instruc- 
tion processor. It had a 64-bit data  path  for binary 
operations  and a one-byte-wide data  path for dec- 
imal and byte operations. The cache was  of a 
store-through design; that is, every store went di- 
rectly to central storage as well as to the cache. 
The 3033  system  was built in a relatively  easily 
changed card-on-board technology with a fixed  set 
of chips. The cycle  time  was  57 nanoseconds, and 
the system  was  first shipped in 1978.' 

The 308X  system took a major step forward in 
both packaging and level  of integration. The logic 
chips, with a maximum of 704 transistor- 
transistor-logic (TTL) circuits, were surface- 
soldered on ceramic modules, with sites for 100 
chips. (There were  118, and  later even  133, chip 
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sites for some arrays.) The modules in  turn were 
plugged on either 6-module or 9-module multilayer 
boards. The effect  of the packaging and integra- 
tion technique was a great improvement in circuit 
density and associated cycle  time. These improve- 
ments were balanced by an increase in the time 
required to make changes. To manage the reduced 
changeability, the 308X  used a simple, straightfor- 
ward machine organization. There was little pipe- 
lining, and microcode was  used  extensively to  pro- 
vide changeability. At the same time, the 308X 
introduced a store-in  cache, in which data stored 
to the cache are  not immediately also stored in 
the central storage. As part of the development 
process, there was a higher level  of simulation and 
design verification done prior to building hardware 
models.' The 308X,  which  was  first shipped in 
1981, had a cycle  time  of  26 nanoseconds. The 
cycle time was  reduced to 24 nanoseconds in  later 
models. The 308X introduced the System/370-XA 
architecture, which added 31-bit addressing and a 
channel subsystem that included path manage- 
ment. 

The 3090  system  uses an extension of the 308X 
technology. It has a faster, more powerful circuit 
family and a more extensive array menu, and the 
power and cooling enhancements required to sup- 
port them. This not only allows a cycle-time re- 
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duction from the 24 nanoseconds of the 308X to 
18.5 nanoseconds, but also allows more levels  of 
logic in a cycle. The store-in cache design of the 
308X is used, but with an improved management 
scheme. The basic  design  process introduced in 
the 308X has been improved for use in the 3090 
design. The success  of the 308X  design verification 
and the expected improvements allow the choice 
of a more complex, overlapped machine organiza- 
tion. Thus the instruction-processing and 
execution-element structure is based on that of the 
3033, with many additions to improve the 
instruction-per-cycle rate, especially on engineer- 
ing and scientific workloads. The system control 

The major technology change 
is inside the chip. 

element, which interconnects the processors and 
the channel subsystem to the storage system,  is a 
substantially new  design, as is the channel subsys- 
tem, which implements the System/370-XA 1/0 ar- 
chitecture. 

The 3090 introduces two new features, the ex- 
panded  storage and the Vector Facility. The ex- 
panded storage is a synchronous block-transfer 
storage implemented in semiconductor technology 
that is managed by the operating system as a 
pageable extension of central storage. The Vector 
Facility introduces an extension to the System/370 
architecture and is intended primarily for engineer- 
ing and scientific  application^.^ This facility adds 
a set of vector registers and extends the System/370 
instruction set by adding 171  new instructions for 
vector processing. 

Technology  and  design  process 

To the casual observer, the 3090 technology and 
design process appear very much like those of the 
308X. The 3090  uses the 100-chip modules 
mounted on six- or nine-module boards, and the 
design process is  based on cycle simulation, Bool- 
ean comparison, and physical  design verification. 
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On closer examination, however, it is apparent 
that very substantial changes have  been made. 

The major technology change is inside the chip. 
The 3090  logic chips use current-switch, emitter- 
coupled logic (ECL). The current-switch circuits 
are substantially faster than those of the 308X, 
and they also provide both phases on the output 
of each circuit. This eliminates the many stages 
of  logic that  had been  previously required for 
phase inversion in the 308X TTL circuits. The 3090 
logic chips also have the advantage of having all 
the terminator circuits contained on the logic 
chips, whereas the 308X required separate termi- 
nator chips. The result is not only that the 3090 
logic is faster, but  it also offers roughly a 
twenty-five percent improvement in logic density 
at the module level. The effect on the cycle time 
is to leave the wire delay time about the same as 
that of the 308X,  while cutting the circuit delay 
time roughly in half. The 3090 also takes advan- 
tage of a more extensive and more tailored menu 
of arrays for such uses as working stores, directo- 
ries, and  control stores. 

These improvements at the chip level required cor- 
responding improvements in the power and cooling 
system. For example, the current  that had to be 
supplied to a board increased from 600 amperes 
to over 1000 amperes, and the power that must 
be  removed from a module to keep it cool increased 
from 300 to 500 watts. To put  that  into perspective, 
the module dissipates about the same power as 
one side  of a toaster. 

Significant improvements were also required to 
support the design  of a more complex  system or- 
ganization. The design  process starts with simu- 
lation called cycle simulation’ that was  used in the 
308X  design.  Cycle simulation takes a logical de- 
scription of the design and simulates it on a cycle- 
by-cycle, bit-by-bit basis. Models of a central 
processor, cache, and system control element rep- 
resenting over three hundred thousand circuits are 
run  through many millions of  System/370 instruc- 
tions before hardware is built. The physical  design 
is done in parallel with  cycle simulation. A Boolean 
comparison program, also first introduced in the 
308X  design, is used to prove the logical equiva- 
lence  of the physical  design and  the simulation 
model. Comparisons are now done on full modules 
of logic, often exceeding thirty thousand circuits. 



Figure 1 3090 System Model 400 
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To minimize  cycle time, three separate timing anal- 
ysis programs are used at various phases  of the 
design.  An early program allows an engineer to 
specify a proposed path  that is  suspected  of  being 
long and calculate the delay and  its statistical vari- 
ance. Later in the design, a program that exhaus- 
tively  checks all the paths is used. This program 
does not require a complete design as input, but 
is written to provide estimates of  physical infor- 
mation  that is not available, such as actual wire 
routing or pin assignments. At this step, in the 
interest of  speed, the program does only a rudi- 
mentary statistical analysis of the circuit and wire 
delays to ensure that they  meet  specified  cycle 
times. Finally, before hardware is built, a full 
statistical analysis of a complete physical  design 
is done. The design  is also supported by a host of 
checking programs that verify such things as wiring 
rules, crosstalk minimums, simultaneous switching 

limits, chip testability, and chip junction temper- 
atures. 

As a result of the extensive  verification  process, 
the initial hardware typically is able to run the 
majority of programs and diagnostics. Timing 
bugs found during hardware test are rare. When 
problems are found in the hardware, the preferred 
technique is to reproduce the problem in the sim- 
ulator  and debug it there, because it is easier to 
see what is wrong in the simulator than in the 
actual hardware. 

The IBM 3090 system  structure 

Figure 1 is an overall diagram of the 3090 System 
Model 400, which is a multiprocessor system. Es- 
sentially the Model 400 consists  of two Model 200 
dyadic systems, interconnected by paths between 
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their system control elements and expanded stor- 
ages. A system control element  serves to connect 
two central processors  (with  Vector  Facilities), the 
channel subsystem, the other side  of a Model 400 
system, and the central and expanded storages. 
The dashed line  shows  which part of the system 
is implemented  using the 100-chip thermal con- 
duction modules  (TCMS) and which  is  implemented 
in card-on-board logic. Board boundaries are in- 
dicated by the shading. The two Vector Facilities 
share a board. Each central processor, each system 
control element, and the TCM portion of each 
channel subsystem  occupy a TCM board. 

The  central  processor. The central processor  illus- 
trated in Figure 2 consists of an instruction pre- 
processor element (I) and  an execution element 
(E). The central processor is connected to a cache. 
The I and E element  design incorporates pipelining 
and overlap features, many  of  which  were intro- 
duced on the IBM 3033 or even earlier. The I 
element  prefetches instruction double words into 
one of three four-double-word instruction buffers. 
From there instructions are moved into  an instruc- 
tion register  where  they are decoded. Decoding 
and address generation are accomplished concur- 
rently, and the address is sent to the cache as  an 
operand fetch all in one cycle. Decoded instruc- 
tions with a starting control-store address are  put 
into a four-element queue of instructions ready 
for the E element to execute. The queue acts as a 
speed-matching buffer  between the I and E ele- 
ments.  If there are few delays in the I element, it 
may advance a few instructions ahead of the E 
element. Thus, when  the I element  is  delayed-for 
example, due to waiting for an instruction fetch 
to return after a branch-the E element  may  be 
able to continue executing instructions out of the 
queue. On a branch instruction, the I element can 
continue fetching instructions in the main line and 
also start  another instruction stream fetching  down 
the branch path  into  another instruction buffer. 
Thus, whether or  not the branch is taken, it has 
the correct instruction already fetched and  can 
switch decoding to  that stream. The I element can 
fetch one double word  per  cycle. Three instruction 
streams and the operand fetching compete for pri- 
ority. The I element contains the necessary  logic 
to ensure that actions taken which are not in the 
strict architectural one-at-a-time instruction se- 
quence are valid. For example, there is address 
generation interlock logic to ensure that the I el- 
ement never  uses a general register  value for ad- 
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Figure 2 3090 central  processor  and  cache 
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dress generation when there is an instruction in 
the instruction queue that is about  to modify that 
general  register.  Similarly, there is logic to ensure, 
for example, that no subsequent store instruction 
attempts to modify an instruction that has already 
been  prefetched. If there has been a modification, 
the instruction must be refetched to reflect  the 
updated value after the store. 

The E element contains an operand buffer to hold 
double words that have  been  fetched by the I el- 
ement and returned from the cache to the E ele- 
ment. Whenever there is a valid instruction in the 
queue (and the operand, if required, is in the op- 
erand buffer), the instruction can be executed and 
removed from the queue. For simple instructions, 
the E element can do this at a rate of  one instruc- 
tion per cycle. Both the I and E elements  have 
copies  of the general registers. The E element has 
the floating-point registers and the control regis- 
ters. 

The E element  is a horizontal microcode-controlled 
engine. Horizontal microcode is written with long 
microwords-in this case, words over  100 bits in 
length-containing many  fields, each controlling a 
separate part of the data  path,  or microcode 



branching. Thus, during a single  cycle, it is possible 
to use simultaneously the parallel adder, shifter, 
and serial adder,  to read and write general registers 
and, at the same  time, to update counters. The 
microcode resides in a mostly read-only control 
store, but one that also has a writable portion to 
assist in updating, changing, and debugging  the 
system. 

This all  results  in a pipelined organization that 
can have  many instructions in various stages  of 
processing at a given instant of  time. For example, 
there could be several  prefetched instructions in 
the instruction buffers, one being  decoded from 
the instruction register,  several operand fetches 
outstanding, up to three instructions waiting in 
the queue, and one in the queue being  executed. 
Thus there might be a total of  seven or more par- 
tially  processed instructions. 

Performance. There are many aspects to perfor- 
mance in a computer system.  Cycle  time has been 
mentioned, but it is far from the whole story. Rel- 
ative to a 3081KX, the cycle  time improvement 
contributes about 30 percent of the 3090’s perfor- 
mance improvement, whereas the performance 
overall is improved from about 70 to 90 percent 
and  up  to 200 percent for some  scientific work- 
loads. Another aspect of performance has to do 
with the instruction-per-cycle rate obtainable if 
there were no cache  misses. This is often referred 
to  as the infinite  cache rate, which is determined 
by the central processor organization. 

In designing the 3090, performance simulators 
were  used to evaluate the effect  of many possible 
enhancements. These simulators operated at a 
higher  level than did the circuit-level simulator 
that was  used for logic  design  verification.  Nev- 
ertheless, the performance simulators were detailed 
enough to show  cycle-by-cycle performance on se- 
lected job streams containing many  millions  of 
instructions. As a result  of this work, many  design 
enhancements that were found to offer good cost/ 
performance trade-offs  were included in the central 
processor. Some  of the more significant ones are 
discussed  here. 

A study of workloads indicated that in certain 
applications decimal instructions were  heavily 
used. Thus the I element  was changed to prefetch 
decimal operands and overlap decimal  execution. 
Decimal multiply and divide  were made much 
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faster by handling decimal multipliers and divisors 
in parallel. 

Half-word instructions on the 3033 execute in two 
cycles,  one to propagate the sign into the left-half 
16 bits and a second to execute as if the instruction 
were a full-word operation. These instructions 
have  been improved on the IBM 3090 to allow 
one-cycle  execution. 

LOAD ADDRESS is an instruction that  adds the 
contents of two general registers to a displacement 
field from the instruction and puts the result into 
a general register. That instruction is frequently 
followed by an instruction that uses the result as 
an address. LOAD ADDRESS used to be placed in 
the queue to await E element execution in turn. 
In the 3090 it is pre-executed. Thus, a subsequent 
instruction that needs the result of the LOAD AD- 
DRESS for address generation can proceed without 
delay. 

Of particular importance in  the  engineering and 
scientific workloads are loop-closing branches 

structions that increment a general register, com- 
pare the result to a limit, and branch if the limit 
has not been  reached.  These instructions are heav- 
ily  used as the last instruction in critical DO-loops. 
In the 3033, they had been  guessed as successful 
in the I element and then awaited their turn in the 
queue for execution in the E element. In the 3090, 
these instructions are pre-executed in the I element 
at decode  time. When this has been done, the 
outcome of the branch has been determined and 
need not be guessed.  Also, the result  of the incre- 
menting operation is saved, and it is  very  likely 
that one  of the next few instructions to be decoded 
will  use that result for generating an address. 
Again, as in the LOAD ADDRESS case, the saved 
result can be  used  immediately instead of  waiting 
for the BXLE to be executed in the E element. The 
BRANCH ON COUNT instructions benefit from sim- 
ilar pre-execution, which eliminates guessing the 
way branches will go. 

Branches on the condition code have  always  been 
disruptive in pipelined  machines,  because the re- 
sults of previous instructions in the pipeline await- 
ing execution are required before the branch di- 
rection can be determined. Three techniques are 
used to alleviate this situation. 

[BXLE, BXH, and BCT(R)]. BXLE and BXH are in- 
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A very  simple  one  is to keep track of all the in- 
structions in the queue. If none of  them is a 
condition-code-setting instruction, the current 
value  of the condition code can be  used  with as- 
surance that  it is correct. With this enhancement 
and loop-closing branches taken care of,  the  only 

Additional  improvements 
were made to  the  multiply 

and  floating-point  add 
operations. 

branches left that need to be  guessed are branch- 
on-condition-code instructions that actually do 
have a condition-code-setting operation ahead of 
them in the pipeline. For them, a decode- 
history-table scheme  is  used,  in  which a table keeps 
the history of  branches. Just  as past references are 
used to predict the data  that should be kept in a 
cache, so past branching results can be  used to 
predict future branch behavior. The location of 
the branch is  used to reference the table, and, if 
the table indicates that the last branch was  suc- 
cessful, the current branch is predicted to be suc- 
cessful. Finally, the instruction LOAD AND TEST 
REGISTER, COMPARE LOGICAL IMMEDIATE, or 
TEST UNDER MASK followed by a BRANCH ON 
CONDITION is recognized and given  special treat- 
ment. If the branch is incorrectly predicted, the 
alternate stream instruction can be decoded on the 
same  cycle in which the condition code is set, 
rather than on the  following  cycle. 

Additional improvements were made to the mul- 
tiply and floating-point add operations. All  fixed- 
and floating-point multiply instructions were built 
using a half  cycle  (9.25-nanosecond clock) and a 
highly parallel carry-save adder design. This makes 
possible a MULTIPLY  LONG product generation in 
three cycles, not including the final add  and nor- 
malization cycles. Multiply by zero is also detected 
and treated as a trivial fast case. Furthermore, 
floating-point add instructions have  been improved 
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by a technique that eliminates most unnecessary 
recomplement and normalization cycles. 

The storage  system. The central storage system  of 
the 3090  includes a cache for each central proces- 
sor, a system control element (SCE) (or one for 
each side  of a Model 400), the central storage 
arrays, and the expanded storage feature. 

The  cache. Every large IBM system  since the Sys- 
tem/360 Model 85 has had a ~ a c h e . ~ , ~  A cache is 
a relatively  small storage with a fast access  time 
that is  used to hold portions of central storage 
that have  been  referenced most recently. In the 
case  of the 3090, the cache is a 64K-byte buffer 
with  pipelined,  two-cycle  access. 

An aspect of performance that must be considered 
in the design  of a large system  is the penalty added 
to the infinite  cache performance by the cache 
design. The relatively  simple cache organization, 
called store-through, is one in  which  every store 
goes not only to the cache, but also to the central 
storage array. In this organization, the central 
storage array always holds the latest copy of the 
store. However, as new methods and circuits re- 
duce the cycle  time  of the processor with  respect 
to the central storage cycle time, the penalty of 
storing through on every store action becomes  rel- 
atively larger. Thus, on the 3090 as on the IBM 
308X, a store-in-cache design is used. In a store- 
in-cache  design, a store operand goes into the 
cache  of the processor doing the store operation, 
but  it is not sent to the central storage immediately. 
A cache line (i.e., the unit of transfer between the 
cache and the central storage) is kept solely in the 
cache until another processor requests that line or 
until the cache location is required for a different 
line. This adds the complication to the system 
control element that, on any storage request, it 
must determine where the latest copy of a line of 
storage resides; it could be in the central storage 
arrays or in any one of the caches. 

The access  time requirements prohibit the luxury 
of  using the address to look up the location of a 
double word in cache and then accessing the dou- 
ble word.6 Instead, the cache is  divided into four 
sets  of 2K double words each. A given double 
word, as determined by the low-order bits  of its 
address, can reside in one particular double-word 
location of any one  of the four sets. The directory 
containing the addresses of the lines in the cache 



is similarly  divided into the same four sets, one of 
which (or none on a miss) indicates that the word 
is in that set. On an access, four directory entries 
and four cache double words are read out at the 
same time. The directory entries are used to de- 
termine which,  if any, of the four cache double 
words to select. To minimize the critical access 
time,  the directory chip was custom designed  with 
built-in logic in addition to the directory array. 

An interesting complexity in cache design that has 
been  given  special treatment in the 3090 cache has 
to  do with  synonyms. Virtual storage in System/ 
370-XA architecture allows relocation of 4K-byte 
pages. This means that the low-order 12 address 
bits that address a byte within a page are the same 
for both a virtual and a real address. Architecture, 
however,  allows different virtual addresses to map 
to the same real address. Thus the cache is man- 
aged by real addresses, despite the fact that  it is 
accessed by virtual address. Since it takes 16  bits 
to address a 64K-byte cache and there are only 
12 real bits available, we lack four bits. There are 
thus 16 places in the cache where an operand 
might reside. Four of  these locations are read out 
of the cache simultaneously on the initial cache 
read operation. The directory, however, is built 
to read out all 16 entries simultaneously. Thus, if 
there is a m i s s  on all of the primary four locations 
but a hit on one of the other 12, the cache can be 
read correctly with a minimum delay. 

The cache can be  accessed in the following four 
modes: 

Processor fetches 
Processor stores 
Cache line transfers from the system control 
element (SCE) 
Cache line transfers to the SCE 

In all of  these  modes, the transfers can be done 
at a rate of one double word (8 bytes)  per  cycle. 
The cache, however, is built to read or write  one 
quad-word (16  bytes) per cycle, thus providing it 
with double the bandwidth. As a result, it becomes 
possible to interleave the various cache  access 
types. For example, if a cache line  is  being trans- 
ferred from cache to central storage, every other 
cache cycle  is  free for a processor access,  which 
prevents the processor from being  locked out for 
the duration of a cache line transfer. 
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A computer  system  design is  influenced  by 
many  aspects  of  earlier  systems.  The 
diagram  traces  the  roots  of  the  IBM  3090 

system.  The  first  IBM  machines  were  built  using 
relays  as  active  logic  and  control  elements,  as 
exemplified  by  the  IBM  Automatic  Sequence 
Controlled  Calculator,  also  known  as  the  Har- 
vard  Mark I Machine,  built  in  1943. In the  early 
195Os,  electronic  stored  program  machines 
used  electron  tubes,  one  of  the  first  of  which 
was  the IBM Type  650  Magnetic  Drum  Calcula- 
tor.  By  the  late  1950s,  the  electron  tubes  had 
been  replaced  by  transistor  technology. 

The  architecture  of  a  machine is  a statement  of 
what  the  machine  does,  its  data  formats,  and  its 
instruction  set.  On  the  basis  of  their  architec- 
ture,  the  IBM  systems  of  the  fifties  and  early 
sixties  can be grouped  into  several  lines,  among 
which  are  the  following: 

0 The  701  line  (701,704,709,7090,7094,  and 
7094-11)  primarily  for  scientific  applications 
The  702  (702,705,  and  7080)  and  the  7070 
(7070  and  7074)  lines  primarily  for  large 
commercial  use 

for  smaller  commercial  use 

puter” in its day 

The  1401  line  (1401,1410,  and  7010)  primarily 

0 The  7030  (Stretch)  a  scientific  “supercom- 

In  1964,  IBM annwnced the  System/360  series, 
which  was  unique in that it provided  a  line  of 
machines  with  widely  varying  performance  and 
storage  sizes,  all  with  a  common  architecture. 
The  initial  Systeml360  machines  shipped  were 
the  Models  30,40,50,65,  and  75.  They  ranged 
in  organization  from  the  Model  30,  which  was  a 
one-byte-wide,  microprogrammed  machine, to 
the  Model  75,  an  eight-byte-wide  hardware- 
controlled  machine.  The  3090  processor  organ- 
ization  can be traced  back  to  the  Model 65, 
which  was  an  eight-byte-wide,  microprogram- 
controlled  machine. 

Solid  Logic  Technology (SLT) was  introduced 
with  System/360.  Previous  technology  had 
used  transistors  individually  sealed  in  small 
cans.  With SLT, transistor  chips  were  directly 
mounted  on  half-inch-square  ceramic  modules 
that  contained  one  or two circuits  each. 
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The  heritage of the IBM 3090 system 

A series  of  processors  followed  the  Model  65, 
each  using  more  advanced  technology  and 
increasingly  pipelined  machine  organizations. 
The  Model  85  was  the  first  to  incorporate  the 
cache  concept,  in  which  a  small,  fast  storage 
was  used  to  hold  recently  referenced  portions  of 
the  central  store.  Integrated  circuits  were  intro- 
duced  to  the  line  with  Monolithic  System  Tech- 
nology (MST). Here,  several  entire  circuits  were 
built  on  a  single  chip.  The  number  of  circuits  per 
chip  continued  to  increase,  reaching  as  high as 
40 by  the  time  of  the  Model  3033. 

New  architecture  was  also  introduced.  The 
Model  67,  a  derivative  of  the  Model  65,  had 
dynamic  address  translation (DAT), a  feature 
key  to  supporting  virtual  storage.  The  Model 
67  was  used  in  time-sharing  applications  and 
was  first  shipped  in  1966. A modification of 
the  Model  67 DAT architecture  was  later 
added  to  the  System/370  architecture  and 
implemented  in  the  Model  168  and  later  models. 
Architecture  allowing  addressing  up  to 64 mega- 
bytes  of  real  storage  was  introduced  on  later 
models  of  the  3033  and  the  early  308X 
models. 

The  thermal  conduction  module (TCM), another 
major  step in technology,  was  introduced  with 
the  308X  series.  The  logic  chips  have  cells for 
over  700  circuits  and  mount  on  ceramic  mod- 
ules  that  have  sites  for 100 chips,  thus  greatly 
improving  the  circuit  density.  The  3090  uses  an 
enhanced  version  of  the TCM technology  with 
faster  circuits.  Another  aspect  of  the  308X  that 
strongly  influenced  the  3090  storage  structure 
is  the  store-in  cache  design  of  the  308X. 
Enhancements  to  the  architecture  continued 
with  the  introduction  of  the  370”  architec- 
ture  and  its  implementation  on  308X  models 
and  the  3090.  The  370”  architecture 
provides  the  ability  to  address two gigabytes 
of both  virtual  and  real  storage,  and  provides 
new I/O facilities. 

The  3090  storage  system  has  the  new 
expanded  storage  feature,  which  allows  elec- 
tronic  block  transfers  to  and  from  the  central 
storage.  The  Vector  Facility,  and  implementation 
of  the  System/370  vector  extension  architecture, 
was  also  introduced  on  the  3090. 

Stuart G.Tucker 

ROOTS OF THE 3090 
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The system control element. Physically, the system 
control element (SCE) serves to connect the central 
processors, the channel subsystem, and the other 
side  of a Model 400 system to the central storage 
arrays. Logically, it provides access to central 
storage for the central processors and the channel 
subsystems.  However, with store-in caches, any 
lines in a cache that have  been stored into become 
part of the central storage system. Thus the latest 
copy  may be in the central storage arrays, or  it 
may  be in either cache attached to the local SCE, 
or in either cache attached to the SCE on the re- 
mote side  of a Model 400 system. Thus the SCE 
must ensure that there is  always a known single 
latest copy  of any line and must be able to find it 
and transfer it  to any of the requestors. 

Another component of system performance is the 
degree to which the SCE can do this for increasing 
aggregate processor rates and I/O rates without 
introducing delays greater than those that would 
be encountered in a single-requestor system. 

The requestors to a 3090 SCE are the two central 
processors, the channel subsystem, and the remote 
SCE. The SCE has two request registers for each 
requestor, one for fetches and one for store re- 
quests. These  registers are connected by indepen- 
dent request and address buses, and thus can be 
set by a requestor on any cycle in which  they are 
free. The requests can be for the transfer of from 
one double word up  to a full cache line. On each 
cycle, the SCE can examine all eight request regis- 
ters and select one on a priority basis. 

The 308X shared the address and  data buses and 
generally  allowed data  to be transmitted in only 
one direction at a time. The 3090 SCE not only 
has independent address buses, but it also allows 
double words to be transmitted both to and from 
the central processors and  to  and from the central 
storage arrays on any given  cycle. The data por- 
tion of the SCE can be  viewed as three independent 
double-word, cross-point switches, each of  which 
can transfer a double word from any input  data 
bus to any output  data bus. 

To further increase the efficiency  of the SCE, the 
cross-point switches are assigned  only for the ac- 
tual duration of the data transfer, rather  than be- 
ing  assigned for the entire time required to process 
a request. Consider, for example, a processor re- 
quest to fetch a line. During the early part of the 
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command the other caches must be  tested to ensure 
that they do not have the latest copy, and the 
address must be sent to the central storage array 
and the  line read out of the array. During this 
time, no cross-point switch is tied up by the op- 
eration. The assignment is delayed until the trans- 

An interesting feature of the 
storage structure  is  the fast 

path. 

fer from the storage array to the requesting central 
processor is ready to start. This minimizes con- 
tention for cross points. 

Building the cross points to connect any input bus 
to any output bus supports the implementation of 
many transfer modes other than simply requestor 
to or from the central storage arrays. One  of  these 
is direct cache-to-cache transfer. In a store- 
in-cache  system, it is possible to find that the de- 
sired  line is in another cache.  One approach is to 
force  the  line to be transferred to the central stor- 
age array  and then reprocess the request. Another, 
used  in the 3090, is to set up the SCE cross points 
to provide a cache-to-cache transfer without ever 
sending the line to the central storage arrays. This 
can be done even  when the cache that has the line 
is on the far side  of a Model 400 system. Both 
SCEs participate in the transfer. The remote SCE 
does a cache-to-inter-SCE-bus transfer while the 
local SCE is transferring the double words from 
the inter-SCE bus to the requesting processor's 
cache. The structure is also useful  when the line 
is found to be in a central storage array serviced 
by the  remote-side SCE. The transfer can be set 
up just as previously mentioned, except that the 
remote SCE takes its  input from the storage array 
bus instead of the bus from the cache. Similar 
techniques permit direct transfers from any cache 
to either channel subsystem. 

A feature that provides a surprising speed advan- 
tage is the special handling of the pad characters 
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on the MOVE CHARACTERS  LONG (MVCL) inStrUC- 
tion.  The architecture of the MVCL instruction 
states that if the result operand is longer than  that 
of the source, the rest of the result field is to be 
filled with pad bytes taken from a general register. 
A common application of the instruction is to use 
a zero-length source and a zero pad to clear large 
blocks of central storage. The special treatment 
was  designed to provide an SCE command to fill 
a line with pad bytes. A double word full of the 

Technology has contributed 
to a cycle-time  improvement 

of about  thirty percent. 

pad bytes  is sent to the SCE, which forwards it  to 
the central storage where it is replicated as a full 
line of pad bytes. Thus a full-line transfer is 
effected at the cost of a double-word transfer. 

Another interesting feature of the storage structure 
is known as  the fast  path. Here, one of the two 
processors of a Model 200 (or one processor on 
each side of a Model 400) has a direct, line-fetch, 
request bus to the central storage arrays  and a 
corresponding double-word, data-return bus. A 
request is sent in parallel to the SCE and  to the 
storage array. If the SCE determines that the re- 
quested line is in fact in the array,  it simply lets 
the independent fetch path proceed. If not, the 
SCE cancels the independent fetch and handles the 
request routinely. This saves a few  cycles in the 
normal case. 

Thus  far we have  discussed  several contributions 
to the 3090 performance. Technology has contrib- 
uted to a cycle-time improvement of about thirty 
percent. The increased pipelining and overlap in 
the I and E elements contribute to the infinite-cache 
rate. The cache and SCE bandwidths and parallel- 
ism contribute  further by reducing the cache-miss 
penalties. The net of  these contributions  adds  an- 
other thirty to fifty percent, yielding an overall 
improvement of 1.7 to 1.9 in the internal through- 
put  rate over the 3081KX in commercial environ- 
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ments. The improvements are even greater in the 
engineering and scientific environment due to the 
looping and floating-point improvements. 

The expanded storage. The expanded storage fea- 
ture is a new storage designed for electronic block 
transfers of 4096-byte  pages. It is not, however, 
attached  in the asynchronous manner of an I/O 
device, nor is it simply additional central storage. 
It is a separate storage that allows block transfers 
of 4K pages between  itself and central storage, 
under control of the operating system. The ex- 
panded storage feature runs synchronously with 
respect to the central processor that requests the 
transfer. The decision to design this storage feature 
for synchronous transfer was  based on a study 
comparing the central processor times required for 
synchronous and asynchronous operation. In the 
synchronous mode, the time starting with the pro- 
cessor’s requesting a block transfer and ending 
when the transfer is complete is lost to the pro- 
cessor; the processor can only wait for the transfer 
to complete. In the asynchronous mode, after the 
block transfer has been initiated, the operating 
system must do a task switch, and incur the asso- 
ciated save and restore overhead, if it is to utilize 
the processor for something else  while the transfer 
is in process. Transfer completion would then 
cause an interrupt that the operating system would 
handle, after which it would dispatch another task. 
The path length through this processing  was stud- 
ied and found to take substantially longer than 
the time required for the actual transfer. The 
added complexity of building an asynchronous 
transfer results in a net loss  of  useful central pro- 
cessor time; thus the synchronous design  was cho- 
sen. 

The block-data transfer is done directly between 
the expanded storage and central storage, with 
little interference to the rest of the storage system. 
The expanded storage arrays can be  accessed at a 
peak rate of a quad-word every four cycles.  Ac- 
cesses to the central storage arrays  are interleaved 
by line so as  not  to tie  them up  for the duration 
of a block transfer. The SCE need  be  involved only 
enough to ensure that the most recent copy of a 
line  is in fact in the central storage array. If this 
is the case, the SCE need  have no further involve- 
ment in the transfer. Even  if the expanded storage 
and the central storage arrays  are on opposite 
sides  of a Model 400, the transfer is done over a 
separate bus, so that there is no SCE involvement 



in  the data transfer or the  associated  interference. 
The  result  is  the  ability to achieve a complete  page 
transfer operation, including  the  operating  system 
code,  in about 75 microseconds,  with  relatively 
little  interference to the  rest of the  system. 

There are other advantages to not designing  the 
expanded  storage as an additional central  storage: 

The  expanded  storage  is  designed for high  band- 
width  without  requiring  fast  access to it on  cen- 
tral processor  requests.  This  offers  the  critical 
advantage of not having to make  the  expanded 
storage  accessible through the  caches.  Unless a 
line  has its latest  copy in one  of  the  caches, a 
transfer to or from  the  expanded  storage  has no 
effect on the  caches. 
From an addressing  viewpoint,  the  expanded 
storage  offers  the  advantage of providing a 
larger  address  space for future use.  Whereas 
each  central  storage  address  designates  one  byte, 
each  expanded  storage  address  points to a 4K- 
byte  block. 
Protection  functions are handled  directly by the 
operating  system, which controls  all  transfers. 
This  eliminates  the  need for storage keys in the 
expanded  storage and the  costs of implementing 
and managing  the  associated  protection,  refer- 
ence, and change  bits. 

Reliability  features of the storage  system. The 3090 
storage  system  has  many  enhancements  relative to 
its  predecessors that improve its fault-tolerance 
and serviceability. 

Both  the  central and expanded  storages  have error- 
correcting  codes.  The  central  storage  has a single- 
error-correcting,  double-error-detecting  code on 
each  double  word of data. The  code  is  designed 
to detect  all four-bit errors on a single card. The 
correcting  code is  passed to the  caches on a fetch 
operation so that  it can  cover  transmission errors 
as well as  storage-array errors. The  expanded stor- 
age  is  even  more fault-tolerant. Each  quad-word 
of  the  expanded  storage  has a double-error-cor- 
recting,  triple-error-detecting  code.  Again, a four- 
bit error is  always  detected  if  caused  by a single- 
card-level  failure. 

Both  the  central  storage and the  expanded  storage 
have  provisions for the  correction of  some  multiple 
errors that exceed the  limit of the  error-correcting 
code.  The  technique  is  based on a concept  called 
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complementlrecomplement or double comple- 
ment.”9 To see  how double  complement  works, 
consider  the errors in  storage to be  of two  classes, 
hard errors and soft errors. Hard errors are  those 
that would  persist  even  if  the  correct data were to 
be restored;  these  are  termed  “stuck”  bits. Soft 
errors are those for which  the  storage  would  work 
correctly if the  correct data were to be written 
again and reread. A soft error might be caused, 
for example, if an alpha particle were to disturb 
the  charge  in an array cell,  thus  causing  the  cell 
state to be lost.”  Double  complement  can be  used 
to correct hard errors, leaving  fewer  soft errors 
for correction by the  error-correcting  code.  Con- 
sider a stored  word that has  one hard failure and 
one  soft  failure,  which when  read out has a double 
error that is not correctable in the central storage. 
The  word  is  then  complemented and written  back 
into the  same  cell,  reread, and complemented  again 
as  follows: 

a. Correct  word 1 0 1 00 1 
b. Failure  mode --HS-- 
c. Read out 1 0 0 1 0 1 Double-bit error 
d.  Complemented 0 1 10 1 0 
e.  Write and reread 0 1 00 1 0 
f.  Complement 1 0 1 10 1 Single-bit error 

g. After error 1 0 1 0 0 1  
remains 

correction 

Note: A comparison of steps c and e for equality 
gives 001000, which  locates  the  hard-failing  bit for 
service  purposes. 

The effect  of the  double-complement  action  is to 
give a corrected  value for any  bits that are stuck 
in  the  wrong  state.  Soft errors (or bits that are 
stuck  in  the  right state) come out wrong. Of 
course,  the  underlying hard errors remain, and the 
page  should be deallocated by software and/or the 
offending  storage  scheduled for replacement.  The 
central  storage  implementation  allows for the cor- 
rection  of up to two errors, as long  as  only  one  is 
soft.  Expanded  storage  can  correct  all  double  er- 
rors and triple errors that are not all hard or  all 
soft.” 

To further reduce  the  probability  of  accumulating 
multiple  soft errors, the  expanded  storage  imple- 
ments a technique  known as scrubbing. By this 
technique,  double  lines are read  from  the  expanded 
storage array periodically, run through error cor- 
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rection, and rewritten if corrected. Thus soft errors 
are periodically  removed.  The  scrubbing rate is 
set  low  enough so that interference  with  normal 
operation is  negligible. 

The channel subsystem. Over  the last several  gen- 
erations of  large  systems,  the  fastest I/O device rate 
has remained the same,  while  processor  speeds 
have continued to increase. To support the corre- 
spondingly  higher I/O demands,  the  number of 
channels has been  increased  accordingly.  This  has 
led to I/O workloads that, at times,  have  stressed 
the  shared-channel  engine  designs of the 3033 and 
the  308X.  Therefore,  the  designers of the 3090 
adopted a channel  subsystem  design that incorpo- 
rates individual  engines for each of up to 96 chan- 
nels on a Model 400. 

The 3090 channel  subsystem  is  shown in Figure 3 
and consists of the  following  components: 

I/O Processor (IOP) 
Channels (CHANS) 

0 Primary data stager (PDS) 
One or two  secondary data stagers (SDS) 

Each side  of a Model 400  system has a channel 
subsystem. 

The 3090  system  implements  the  System/370-XA 
architecture that was fist introduced on the 308X 
system.  The  System/370-XA I/O architecture can 
be  viewed as being  made up of two  parts: a non- 
time-critical part, dealing  with path management, 
and a time-critical part, dealing  with  channel  com- 
mand  processing and interface control. The I/O 
processor (IOP) performs  the  non-time-critical por- 
tions of an I/O operation while  leaving  the central 
processor  free to proceed. It is a separate engine 
that executes  pageable  vertical  microcode and uses 
a reduced instruction set computer (RISC) archi- 
tecture,  which  is well suited to this  function. It is 
built in TCM technology.  The IOP communicates 
with  the central processors,  receiving I/O instruc- 
tions from  them and posting interruptions to them, 
and handles  the  path-management  functions  of 
the  System/370-XA  architecture. 

The  channels are individual  microprocessors  built 
in card-on-board technology and controlled by 
horizontal microcode  from a writable control 
store.  Different  microcode loads are used for 
different combinations of block- or byte-multiplex 
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Figure 3 3090 channel  subsystem 
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channels and System/370 or System/370-XA 
modes.  The  channels  perform  the  time-critical 
part of the I/O operations. These are essentially 
the  same functions as were done by the System/360 
and System/370  channels,  i.e.,  channel control 
word (ccw) processing and chaining, and I/O in- 
terface control and protocol management. 

The  primary and secondary data stagers (PDS and 
SDS) act as speed-matching  buffers and as funnels 
to concentrate up to 48 channels  down to a single 
SCE port for access to the central storage. 

The  increased SCE capacity has reduced data over- 
runs, and the  provision of individual rather than 
shared  engines to perform  the  channel  function 
has  the  following  effects: 

Virtually  eliminates  command  overruns 
0 Increases  byte-multiplexing  channel  perfor- 

mance  (Therefore,  byte-channel-configuration 
performance  analysis  is no longer done at in- 
stallation time.) 



Enables the off-loading  of all but essential work 
from the IOP, thereby increasing the channel 
subsystem Ipoperations-per-second capability 

The Vector Facility. The Vector Facility provides 
for the addition of a pipelined arithmetic unit to 
each central processor in a 3090  system and thereby 
provides a substantial performance improvement 

When  the number of 
elements becomes large,  the 

average time per element 
approaches one cycle. 

for many  engineering and scientific applications. 
The performance of the Vector Facility is discussed 
more fully in this issue  by Gibson et al.” and by 
Clark and Wi1s0n.l~ 

The Vector Facility has roots in an IBM study in 
the early 1970~.’~*’~ At that time  two  types  of  vec- 
tor facilities  were  being considered. One possibility 
considered was a vector arithmetic unit integrated 
with the host processor; the other was a stand-alone 
unit sharing central storage with the host processor. 
Implementations that accessed all operands di- 
rectly from central storage were considered but 
rejected in favor of an architecture based on a set 
of vector registers. The vector registers provide 
the bandwidth that is critical to supporting the 
high  vector-processing rates while  minimizing the 
additional load on the central storage. The vector 
registers can also be tailored to a carefully matched 
architecture so as  to provide multiple, conflict-free 
accesses on each cycle. 

The 3090  Vector Facility is integrated in that the 
System/370-XA  Vector Architecture3 provides  171 
new vector instructions that  can appear in the in- 
struction stream of any central processor with a 
Vector Facility. It is separate in the sense that  it 
is implemented  using a set  of vector registers and 
a pipelined arithmetic unit packaged on a separate 
board. The board can hold two Vector Facilities, 

16 TUCKER 

one for each central processor in a Model 200. 
This arrangement allows the Vector Facility to be 
offered as a field upgrade. 

The vector instructions allow a single instruction 
to specify that the same arithmetic operation be 
performed on corresponding elements  of the vector 
operands. For example, the addition of vectors 
A,,  A,,  A,, - 9 ,  A,  and B,, B,, B,, -., B, implies 
formation of the sums A ,  + B,, A ,  + B,, A,  + B,, 

. e . ,  A ,  + B,. The pipeline is arranged so that in- 
dividual element pairs flow through it advancing 
a stage  every  cycle. Typical stages are vector reg- 
ister (VR) read out,  add preshift, add, normaliza- 
tion, and VR write. A new pair of elements can 
be sent into the pipeline on every  cycle. After a 
pipeline-fill delay, a result can be produced on 
every  cycle. 

The vector registers (VRS) consist of  16 registers, 
each with  128  elements  of  32  bits each. The VRS 
can also be coupled to form eight registers, each 
with  128 64-bit elements. The number of  elements 
per register is a model-dependent tradeoff for the 
machine  designer. The time  needed to  do a vector 
operation consists essentially  of the overhead for 
pipeline starting and filling  plus  one  cycle per vec- 
tor element. Thus, using a large number of  ele- 
ments allows allocating the startup time over many 
elements.  When the number of elements becomes 
large, the average  time per element approaches 
one  cycle.  However, this efficiency must be bal- 
anced against the added time required for saving 
and restoring VRS on a task switch and the practical 
cost and space limits. This consideration led to 
the  choice  of  128  elements per vector register for 
the  3090  Vector Facility. The interleaving and 
organization of the VRS have  been  designed to al- 
low  two  elements to be read out  and one element 
written in on every  cycle.  Pipeline lengths are ar- 
ranged for every instruction to ensure that the two 
reads and the write do not cause a conflict. 

Multiply was considered to be sufficiently impor- 
tant in engineering and scientific applications to 
set an objective  of doing multiplies at a one- 
per-cycle rate  as well as adds. Several rather 
elaborate and lengthy  pipeline  schemes  were in- 
vestigated  before the following  relatively  simple 
approach was adopted. The base  3090 multiplier 
requires three cycles,  if stripped of its final add 
and normalization, which are easily  pipelined. To 
allow a one-cycle rate, the vector element has three 
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base  3090 multipliers. Operand pairs are dealt 
into them, one to A ,  one to B, and one to C. By 
the fourth cycle,  the  first result is out of A,  and A 
is ready to receive the fourth pair. The three mul- 
tipliers behave just as though they  were a three- 
cycle multiply pipeline. 

Since the multiply  pipeline  is  essentially indepen- 
dent of the add pipeline, it is possible to configure 
the two  pipelines as one long pipeline that can do 
MULTIPLY and ADD instructions. The compound 
instructions then allow both a multiply and an 
add to proceed at a one-cycle rate. 

A Vector  Facility is attached to the instruction 
and execution elements  of a central processor and 
has no direct connection to the storage system. 
The instruction element  fetches and decodes all 
the instructions including any vector instructions 
that are in the instruction stream. The instruction 
and execution  elements  access storage, much as 
they do in System/370 operations, and then transfer 
the operands to or from the Vector Facility. The 
cache is used in the normal manner, except for 
two special  modes that optimize for the case in 
which storage operands are stored with stride one 
(for elements that  are contiguous in storage) or 
stride two (for every other element in storage). 
For contiguous double-word elements, a line-fetch 
mode is used. If there is a cache  miss, a line must 
be brought into the  cache. In line-fetch  mode, the 
double words are passed on to the Vector Facility 
at the same time  they are being put  into the cache. 
If  need  be, the next  line  is automatically started. 
All this is done in the attempt  to come as close as 
possible to providing a stream of double words to 
the Vector Facility at a one-per-cycle rate. This 
method works for stride-two single-word vectors 
too. However,  for contiguous single-word opera- 
tions, elements  show up at the rate of  two per 
cycle and would  flood the pipeline,  which runs at 
a one-cycle rate. For this case a cache-fill mode 
is used. In this mode  lines are fetched ahead into 
the cache, but the forwarding to the Vector Facility 
is not done. For larger strides and irregularly 
spaced  vectors,  only the normal cache mechanism 
is  used. 

The System/370 architecture requires the reporting 
of  precise interrupts. Prior to virtual storage, ex- 
ceptions were considered relatively rare events as- 
sociated with arithmetic anomalies as overflows. 
Thus, imprecise interrupts were tolerated in the 
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Model 91  line  of  processors. With the advent of 
virtual storage systems,  paging interrupts have  be- 
come normal, and precise interrupts required. In 
the vector architecture, precise interrupts require 
locating both the instruction and the offending 
element. After considerable grappling with the 
management of  precise interrupts in a pipeline en- 
vironment, the notion of an exception pipeline 
emerged. A separate pipeline has been built to 
flow exception indications through exactly the 
same stages as the actual operands. If an exception 
is encountered at any stage of  access or arithmetic, 
it follows that element to the final  write-in stage 
and inhibits the write-in.  All prior elements are 
completed normally. The interrupt is then taken, 
and provisions are made in the architecture to 
resume from that element after a fix-up. 

The Vector Facility provides  significant perfor- 
mance improvements at very reasonable cost for 
vectorizable routines. It offers the convenience  of 
appearing as an addition to the System/370 in- 
struction set.3 

The  processor  controller. A description of the 3090 
system structure is not complete without mention 
of the processor controller. There are a host of 
functions, other than the running of the instruc- 
tions, that  are  an important  part of a large com- 
puter. Many of  these functions are done by the 
processor controller on the 3090  system. 

The processor controller is actually two identical 
engines so arranged that if one fails the other can 
take over, in most cases,  with little or no disruption. 
This is  accomplished  by  having one engine run  as 
the active controller while the other acts as a 
standby. The active controller leaves enough in- 
formation about  its  state  that the standby can pick 
it up and continue. A switch-over can be done if 
the active controller fails. 

The processor controller has direct hardware con- 
nections to the 3090, and can read or write many 
internal control states while the clocks are running. 
With the normal clocks stopped, the processor 
controller can read or write any trigger or bit in 
the  machine. 

The services performed by the processor controller 
are the following: 



Manual controls provide an  operator the ability 
to use a keyboard and console  display to  do 
things such as alter, display, reset, initial micro- 
code load, IPL, start/stop clocks, and set various 
service  modes. 
Power/Thermal control activates power on/off; 
regulates  voltages; monitors currents, voltages, 
and temperatures (and automatically shuts down 
the system  if  they  exceed limits); and controls 
marginal testing. 
SAD, the systems  activity display, uses the pro- 
cessor controller to collect and display data. 
Configuration changes are made possible by an 
interface with the control program that performs 
physical configuration changes and stores and 
provides I/O configurations as requested. 
Recovery  provides the capability of  recovering 
from many of the errors  that can occur in the 
3090 and the capability for the processor con- 
troller to re-establish the state  that existed prior 
to the error  and invoke a retry. 
Diagnostic control is performed by the processor 
controller through the  use  of two types  of diag- 
nostic functions. The processor controller can 
run a variety of diagnostic tests for either func- 
tional or gate-level testing. It also has a set of 
analysis routines that  attempt  to record and 
subsequently analyze any error triggers that 
come on and  attempt to identify the unit that 
needs to be replaced. To the extent that the 
analysis of the kst-error capture data is suc- 
cessful, there is no need to take machine time 
to attempt to recreate the failure with the diag- 
nostic tests. 
Remote service interface provides the 3090, as 
it did the 308X, the ability to dial out to a 
remote service support center. What is new  with 
the 3090  is the ability to auto-dial. In the 308X, 
the dial-out was  made,  with customer author- 
ization, only after the customer engineer arrived. 
In the 3090  system, the processor can dial out, 
again only  with customer authorization, but at 
the time  of error analysis. Thus the parts- 
required information can be available at the 
time  of the initial error analysis. 

Concluding remarks 

The IBM 3090 unites an extension of the thermal 
conduction module (TCM) technology,  first intro- 
duced  with the IBM 308X  series,  with a state-of-the 
art pipelined and overlapped machine organization 
to provide a powerful computing facility. The 
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3090 Model 400 has an advanced system control 
element (SCE) design that allows four central pro- 
cessors and two channel subsystems to access the 
common central storage with minimal loss due to 
contention. The new expanded storage effectively 
expands the size  of the central storage without 
affecting the normal access  times to the central 
storage. A third dimension to the 3090 perfor- 
mance  is the addition of an optional Vector Fa- 
cility that offers improved performance at low cost 
for applications that  are suitable for vector pro- 
cessing. 
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