The IBM 3090 system:
An overview

The first part of this paper places the IBM 3090
system in historical perspective with respect to its
predecessors. Treated briefly are the technology
and the design process, both of which were critical
to the development of the 3090. Presented in detail
is the 3090 system itself, with emphasis on its
features that differ from those of prior systems.

Historical perspective

The 1BM 3090 system has roots in the 1BM 3033
and 308X systems while at the same time possessing
features unique to it. The 1BM 3033 was a highly
pipelined machine. For example, it had an instruc-
tion element to prefetch instructions; it allowed
conditional fetching down alternate paths on
branching instructions; it did operand prefetching;
and it had a four-element queue for instructions
ready for execution. The execution element was
independent and ran overlapped with the instruc-
tion processor. It had a 64-bit data path for binary
operations and a one-byte-wide data path for dec-
imal and byte operations. The cache was of a
store-through design; that is, every store went di-
rectly to central storage as well as to the cache.
The 3033 system was built in a relatively easily
changed card-on-board technology with a fixed set
of chips. The cycle time was 57 nanoseconds, and
the system was first shipped in 1978.!

The 308X system took a major step forward in
both packaging and level of integration. The logic
chips, with a maximum of 704 transistor-
transistor-logic (TTL) circuits, were surface-
soldered on ceramic modules, with sites for 100
chips. (There were 118, and later even 133, chip
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sites for some arrays.) The modules in turn were
plugged on either 6-module or 9-module multilayer
boards. The effect of the packaging and integra-
tion technique was a great improvement in circuit
density and associated cycle time. These improve-
ments were balanced by an increase in the time
required to make changes. To manage the reduced
changeability, the 308X used a simple, straightfor-
ward machine organization. There was little pipe-
lining, and microcode was used extensively to pro-
vide changeability. At the same time, the 308X
introduced a store-in cache, in which data stored
to the cache are not immediately also stored in
the central storage. As part of the development
process, there was a higher level of simulation and
design verification done prior to building hardware
models.? The 308X, which was first shipped in
1981, had a cycle time of 26 nanoseconds. The
cycie time was reduced to 24 nanoseconds in later
models. The 308X introduced the System/370-XA
architecture, which added 31-bit addressing and a
channel subsystem that included path manage-
ment.

The 3090 system uses an extension of the 308X
technology. It has a faster, more powerful circuit
family and a more extensive array menu, and the
power and cooling enhancements required to sup-
port them. This not only allows a cycle-time re-
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duction from the 24 nanoseconds of the 308X to
18.5 nanoseconds, but also allows more levels of
logic in a cycle. The store-in cache design of the
308X is used, but with an improved management
scheme. The basic design process introduced in
the 308X has been improved for use in the 3090
design. The success of the 308X design verification
and the expected improvements allow the choice
of a more complex, overlapped machine organiza-
tion. Thus the instruction-processing and
execution-element structure is based on that of the
3033, with many additions to improve the
instruction-per-cycle rate, especially on engineer-
ing and scientific workloads. The system control

The major technology change
is inside the chip.

element, which interconnects the processors and
the channel subsystem to the storage system, is a
substantially new design, as is the channel subsys-
tem, which implements the System/370-XA 1/0 ar-
chitecture.

The 3090 introduces two new features, the ex-
panded storage and the Vector Facility. The ex-
panded storage is a synchronous block-transfer
storage implemented in semiconductor technology
that is managed by the operating system as a
pageable extension of central storage. The Vector
Facility introduces an extension to the System/370
architecture and is intended primarily for engineer-
ing and scientific applications.® This facility adds
a set of vector registers and extends the System/370
instruction set by adding 171 new instructions for
vector processing.

Technology and design process

To the casual observer, the 3090 technology and
design process appear very much like those of the
308X. The 3090 uses the 100-chip modules
mounted on six- or nine-module boards, and the
design process is based on cycle simulation, Bool-
ean comparison, and physical design verification.
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On closer examination, however, it is apparent
that very substantial changes have been made.

The major technology change is inside the chip.
The 3090 logic chips use current-switch, emitter-
coupled logic (ECL). The current-switch circuits
are substantially faster than those of the 308X,
and they also provide both phases on the output
of each circuit. This eliminates the many stages
of logic that had been previously required for
phase inversion in the 308X TTL circuits. The 3090
logic chips also have the advantage of having all
the terminator circuits contained on the logic
chips, whereas the 308X required separate termi-
nator chips. The result is not only that the 3090
logic is faster, but it also offers roughly a
twenty-five percent improvement in logic density
at the module level. The effect on the cycle time
is to leave the wire delay time about the same as
that of the 308X, while cutting the circuit delay
time roughly in half. The 3090 also takes advan-
tage of a more extensive and more tailored menu
of arrays for such uses as working stores, directo-
ries, and control stores.

These improvements at the chip level required cor-
responding improvements in the power and cooling
system. For example, the current that had to be
supplied to a board increased from 600 amperes
to over 1000 amperes, and the power that must
be removed from a module to keep it cool increased
from 300 to 500 watts. To put that into perspective,
the module dissipates about the same power as
one side of a toaster.

Significant improvements were also required to
support the design of a more complex system or-
ganization. The design process starts with simu-
lation called cycle simulation® that was used in the
308X design. Cycle simulation takes a logical de-
scription of the design and simulates it on a cycle-
by-cycle, bit-by-bit basis. Models of a central
processor, cache, and system control element rep-
resenting over three hundred thousand circuits are
run through many millions of System/370 instruc-
tions before hardware is built. The physical design
is done in parallel with cycle simulation. A Boolean
comparison program, also first introduced in the
308X design, is used to prove the logical equiva-
lence of the physical design and the simulation
model. Comparisons are now done on full modules
of logic, often exceeding thirty thousand circuits.
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Figure 1 3090 System Model 400
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To minimize cycle time, three separate timing anal-
ysis programs are used at various phases of the
design. An early program allows an engineer to
specify a proposed path that is suspected of being
long and calculate the delay and its statistical vari-
ance. Later in the design, a program that exhaus-
tively checks all the paths is used. This program
does not require a complete design as input, but
is written to provide estimates of physical infor-
mation that is not available, such as actual wire
routing or pin assignments. At this step, in the
interest of speed, the program does only a rudi-
mentary statistical analysis of the circuit and wire
delays to ensure that they meet specified cycle
times. Finally, before hardware is built, a full
statistical analysis of a complete physical design
is done. The design is also supported by a host of
checking programs that verify such things as wiring
rules, crosstalk minimums, simultaneous switching
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limits, chip testability, and chip junction temper-
atures.

As a result of the extensive verification process,
the initial hardware typically is able to run the
majority of programs and diagnostics. Timing
bugs found during hardware test are rare. When
problems are found in the hardware, the preferred
technique is to reproduce the problem in the sim-
ulator and debug it there, because it is easier to
see what is wrong in the simulator than in the
actual hardware.

The IBM 3090 system structure

Figure 1 is an overall diagram of the 3090 System
Model 400, which is a multiprocessor system. Es-
sentially the Model 400 consists of two Model 200
dyadic systems, interconnected by paths between
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their system control elements and expanded stor-
ages. A system control element serves to connect
two central processors (with Vector Facilities), the
channel subsystem, the other side of a Model 400
system, and the central and expanded storages.
The dashed line shows which part of the system
is implemented using the 100-chip thermal con-
duction modules (TCMs) and which is implemented
in card-on-board logic. Board boundaries are in-
dicated by the shading. The two Vector Facilities
share a board. Each central processor, each system
control element, and the TCM portion of each
channel subsystem occupy a TCM board.

The central processor. The central processor illus-
trated in Figure 2 consists of an instruction pre-
processor element (I) and an execution element
(E). The central processor is connected to a cache.
The I and E element design incorporates pipelining
and overlap features, many of which were intro-
duced on the 1BM 3033 or even earlier. The I
element prefetches instruction double words into
one of three four-double-word instruction buffers.
From there instructions are moved into an instruc-
tion register where they are decoded. Decoding
and address generation are accomplished concur-
rently, and the address is sent to the cache as an
operand fetch all in one cycle. Decoded instruc-
tions with a starting control-store address are put
into a four-element queue of instructions ready
for the E element to execute. The queue acts as a
speed-matching buffer between the I and E ele-
ments. If there are few delays in the I element, it
may advance a few instructions ahead of the E
element. Thus, when the I element is delayed—for
example, due to waiting for an instruction fetch
to return after a branch—the E element may be
able to continue executing instructions out of the
queue. On a branch instruction, the I element can
continue fetching instructions in the main line and
also start another instruction stream fetching down
the branch path into another instruction buffer.
Thus, whether or not the branch is taken, it has
the correct instruction already fetched and can
switch decoding to that stream. The I element can
fetch one double word per cycle. Three instruction
streams and the operand fetching compete for pri-
ority. The I element contains the necessary logic
to ensure that actions taken which are not in the
strict architectural one-at-a-time instruction se-
quence are valid. For example, there is address
generation interlock logic to ensure that the I el-
ement never uses a general register value for ad-
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Figure 2 3090 central processor and cache
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dress generation when there is an instruction in
the instruction queue that is about to modify that
general register. Similarly, there is logic to ensure,
for example, that no subsequent store instruction
attempts to modify an instruction that has already
been prefetched. If there has been a modification,
the instruction must be refetched to reflect the
updated value after the store.

The E element contains an operand buffer to hold
double words that have been fetched by the I el-
ement and returned from the cache to the E ele-
ment. Whenever there is a valid instruction in the
queue (and the operand, if required, is in the op-
erand buffer), the instruction can be executed and
removed from the queue. For simple instructions,
the E element can do this at a rate of one instruc-
tion per cycle. Both the I and E elements have
copies of the general registers. The E element has
the floating-point registers and the control regis-
ters.

The E element is a horizontal microcode-controlled
engine. Horizontal microcode is written with long
microwords—in this case, words over 100 bits in
length—containing many fields, each controlling a
separate part of the data path, or microcode
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branching. Thus, during a single cycle, it is possible
to use simultaneously the parallel adder, shifter,
and serial adder, to read and write general registers
and, at the same time, to update counters. The
microcode resides in a mostly read-only control
store, but one that also has a writable portion to
assist in updating, changing, and debugging the
system.

This all results in a pipelined organization that
can have many instructions in various stages of
processing at a given instant of time. For example,
there could be several prefetched instructions in
the instruction buffers, one being decoded from
the instruction register, several operand fetches
outstanding, up to three instructions waiting in
the queue, and one in the queue being executed.
Thus there might be a total of seven or more par-
tially processed instructions.

Performance. There are many aspects to perfor-
mance in a computer system. Cycle time has been
mentioned, but it is far from the whole story. Rel-
ative to a 3081KX, the cycle time improvement
contributes about 30 percent of the 3090’s perfor-
mance improvement, whereas the performance
overall is improved from about 70 to 90 percent
and up to 200 percent for some scientific work-
loads. Another aspect of performance has to do
with the instruction-per-cycle rate obtainable if
there were no cache misses. This is often referred
to as the infinite cache rate, which is determined
by the central processor organization.

In designing the 3090, performance simulators
were used to evaluate the effect of many possible
enhancements. These simulators operated at a
higher level than did the circuit-level simulator
that was used for logic design verification. Nev-
ertheless, the performance simulators were detailed
enough to show cycle-by-cycle performance on se-
lected job streams containing many millions of
instructions. As a result of this work, many design
enhancements that were found to offer good cost/
performance trade-offs were included in the central
processor. Some of the more significant ones are
discussed here.

A study of workloads indicated that in certain
applications decimal instructions were heavily
used. Thus the I element was changed to prefetch
decimal operands and overlap decimal execution.
Decimal muitiply and divide were made much
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faster by handling decimal multipliers and divisors
in paraliel.

Half-word instructions on the 3033 execute in two
cycles, one to propagate the sign into the left-half
16 bits and a second to execute as if the instruction
were a full-word operation. These instructions
have been improved on the IBM 3090 to allow
one-cycle execution.

LOAD ADDRESS is an instruction that adds the
contents of two general registers to a displacement
field from the instruction and puts the result into
a general register. That instruction is frequently
followed by an instruction that uses the result as
an address. LOAD ADDRESS used to be placed in
the queue to await E element execution in turn.
In the 3090 it is pre-executed. Thus, a subsequent
instruction that needs the result of the LOAD AD-
DRESS for address generation can proceed without
delay.

Of particular importance in the engineering and
scientific workloads are loop-closing branches
[BXLE, BXH, and BCT(R)]. BXLE and BXH are in-
structions that increment a general register, com-
pare the result to a limit, and branch if the limit
has not been reached. These instructions are heav-
ily used as the last instruction in critical DO-loops.
In the 3033, they had been guessed as successful
in the I element and then awaited their turn in the
queue for execution in the E element. In the 3090,
these instructions are pre-executed in the I element
at decode time. When this has been done, the
outcome of the branch has been determined and
need not be guessed. Also, the result of the incre-
menting operation is saved, and it is very likely
that one of the next few instructions to be decoded
will use that result for generating an address.
Again, as in the LOAD ADDRESS case, the saved
result can be used immediately instead of waiting
for the BXLE to be executed in the E element. The
BRANCH ON COUNT instructions benefit from sim-
ilar pre-execution, which eliminates guessing the
way branches will go.

Branches on the condition code have always been
disruptive in pipelined machines, because the re-
sults of previous instructions in the pipeline await-
ing execution are required before the branch di-
rection can be determined. Three techniques are
used to alleviate this situation.
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A very simple one is to keep track of all the in-
structions in the queue. If none of them is a
condition-code-setting instruction, the current
value of the condition code can be used with as-
surance that it is correct. With this enhancement
and loop-closing branches taken care of, the only

Additional improvements
were made to the multiply
and floating-point add
operations.

branches left that need to be guessed are branch-
on-condition-code instructions that actually do
have a condition-code-setting operation ahead of
them in the pipeline. For them, a decode-
history-table scheme is used, in which a table keeps
the history of branches. Just as past references are
used to predict the data that should be kept in a
cache, so past branching results can be used to
predict future branch behavior. The location of
the branch is used to reference the table, and, if
the table indicates that the last branch was suc-
cessful, the current branch is predicted to be suc-
cessful. Finally, the instruction LOAD AND TEST
REGISTER, COMPARE LOGICAL IMMEDIATE, or
TEST UNDER MASK followed by a BRANCH ON
CONDITION is recognized and given special treat-
ment. If the branch is incorrectly predicted, the
alternate stream instruction can be decoded on the
same cycle in which the condition code is set,
rather than on the following cycle.

Additional improvements were made to the mul-
tiply and floating-point add operations. All fixed-
and floating-point multiply instructions were built
using a half cycle (9.25-nanosecond clock) and a
highly parallel carry-save adder design. This makes
possible a MULTIPLY LONG product generation in
three cycles, not including the final add and nor-
malization cycles. Multiply by zero is also detected
and treated as a trivial fast case. Furthermore,
floating-point add instructions have been improved
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by a technique that eliminates most unnecessary
recompiement and normalization cycles.

The storage system. The central storage system of
the 3090 includes a cache for each central proces-
sor, a system control element (SCE) (or one for
each side of a Model 400), the central storage
arrays, and the expanded storage feature.

The cache. Every large 1BM system since the Sys-
tem/360 Model 85 has had a cache.*® A cache is
a relatively small storage with a fast access time
that is used to hold portions of central storage
that have been referenced most recently. In the
case of the 3090, the cache is a 64K-byte buffer
with pipelined, two-cycle access.

An aspect of performance that must be considered
in the design of a large system is the penalty added
to the infinite cache performance by the cache
design. The relatively simple cache organization,
called store-through, is one in which every store
goes not only to the cache, but also to the central
storage array. In this organization, the central
storage array always holds the latest copy of the
store. However, as new methods and circuits re-
duce the cycle time of the processor with respect
to the central storage cycle time, the penalty of
storing through on every store action becomes rel-
atively larger. Thus, on the 3090 as on the IBM
308X, a store-in-cache design is used. In a store-
in~cache design, a store operand goes into the
cache of the processor doing the store operation,
but it is not sent to the central storage immediately.
A cache line (i.e., the unit of transfer between the
cache and the central storage) is kept solely in the
cache until another processor requests that line or
until the cache location is required for a different
line. This adds the complication to the system
control element that, on any storage request, it
must determine where the latest copy of a line of
storage resides; it could be in the central storage
arrays or in any one of the caches.

The access time requirements prohibit the luxury
of using the address to look up the location of a
double word in cache and then accessing the dou-
ble word.® Instead, the cache is divided into four
sets of 2K double words each. A given double
word, as determined by the low-order bits of its
address, can reside in one particular double-word
location of any one of the four sets. The directory
containing the addresses of the lines in the cache
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is similarly divided into the same four sets, one of
which (or none on a miss) indicates that the word
is in that set. On an access, four directory entries
and four cache double words are read out at the
same time. The directory entries are used to de-
termine which, if any, of the four cache double
words to select. To minimize the critical access
time, the directory chip was custom designed with
built-in logic in addition to the directory array.

An interesting complexity in cache design that has
been given special treatment in the 3090 cache has
to do with synonyms. Virtual storage in System/
370-XA architecture allows relocation of 4K-byte
pages. This means that the low-order 12 address
bits that address a byte within a page are the same
for both a virtual and a real address. Architecture,
however, allows different virtual addresses to map
to the same real address. Thus the cache is man-
aged by real addresses, despite the fact that it is
accessed by virtual address. Since it takes 16 bits
to address a 64K-byte cache and there are only
12 real bits available, we lack four bits. There are
thus 16 places in the cache where an operand
might reside. Four of these locations are read out
of the cache simultaneously on the initial cache
read operation. The directory, however, is built
to read out all 16 entries simultaneously. Thus, if
there is a miss on all of the primary four locations
but a hit on one of the other 12, the cache can be
read correctly with a minimum delay.

The cache can be accessed in the following four
modes:

® Processor fetches

® Processor stores

® Cache line transfers from the system control
element (SCE)

® Cache line transfers to the SCE

In all of these modes, the transfers can be done
at a rate of one double word (8 bytes) per cycle.
The cache, however, is built to read or write one
quad-word (16 bytes) per cycle, thus providing it
with double the bandwidth. As a result, it becomes
possible to interleave the various cache access
types. For example, if a cache line is being trans-
ferred from cache to central storage, every other
cache cycle is free for a processor access, which
prevents the processor from being locked out for
the duration of a cache line transfer.
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many aspects of earlier systems. The

diagram traces the roots of the IBM 3090
system. The first IBM machines were built using
relays as active logic and control elements, as
exemplified by the IBM Automatic Sequence
Controlled Calculator, also known as the Har-
vard Mark | Machine, built in 1943. In the early
1950s, electronic stored program machines
used electron tubes, one of the first of which
was the IBM Type 650 Magnetic Drum Calcula-
tor. By the late 1950s, the electron tubes had
been replaced by transistor technology.

A computer system design is influenced by

The architecture of a machine is a statement of
what the machine does, its data formats, and its
instruction set. On the basis of their architec-
ture, the IBM systems of the fifties and early
sixties can be grouped into several lines, among
which are the following:

* The 701 line (701,704, 709, 7090, 7094, and
7094-11) primarily for scientific applications

& The 702 (702, 705, and 7080) and the 7070
(7070 and 7074) lines primarily for large
commercial use

o The 1401 line (1401, 1410, and 7010) primarily
for smaller commercial use

» The 7030 (Stretch) a scientific “supercom-
puter” in its day

In 1964, IBM anhounced the System/360 series,
which was unique in that it provided a line of
machines with widely varying performance and
storage sizes, alt with a common architecture.
The initial System/360 machines shipped were
the Models 30, 40, 50, 65, and 75. They ranged
in organization from the Model 30, which was a
one-byte-wide, microprogrammed machine, to
the Model 75, an eight-byte-wide hardware-
controlled machine. The 3090 processor organ-
ization can be traced back to the Model 65,
which was an eight-byte-wide, microprogram-
controlled machine. ‘

Solid Logic Technology (SLT) was introduced
with System/360. Previous technology had
used transistors individually sealed in small
cans. With SLT, transistor chips were directly
mounted on half-inch-square ceramic modules
that contained one or two circuits each.
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The heritage of the IBM 3090 system

A series of processors followed the Modgl 65,
each using more advanced technology .and
increasingly pipelined machine organizations.
The Model 85 was the first to incorporate the
cache concept, in which a small, fast storage
was used to hold recently referenced portions of
the central store. Integrated circuits were intro-
duced to the line with Monolithic System Tech-
nology (MST). Here, several entire circuits were
built on a single chip. The number of circuits per
chip continued to increase, reaching as high as
40 by the time of the Model 3033.

New architecture was also introduced. The -
Model 67, a derivative of the Model 65, had
dynamic address translation (DAT), a feature
key to supporting virtual storage. The Model

67 was used in time-sharing applications and
was first shipped in 1966. A modification of

the Model 67 DAT architecture was later

added to the System/370 architecture and =~
implemented in the Model 168 and later models.
Architecture allowing addressing up to 64 mega-
bytes of real storage was introduced on later
models of the 3033 and the early 308X

models.

The thermal conduction module (TCM), another
major step in technology, was introduced with
the 308X series. The logic chips have cells for
over 700 circuits and mount on ceramic mod-
ules that have sites for 100.chips, thus greatly
improving the circuit density. The 3090 uses an
enhanced version of the TCM technology with
faster circuits. Another aspect of the 308X that
strongly influenced the 3090 storage structure
is the store-in cache design of the 308X,
Enhancements to the architecture continued
with the introduction of the 370-XA architec-
ture and its implementation on 308X models . OVER16MB
and the 3090. The 370-XA architecture ; PEAL
provides the ability to address two gigabytes v ‘ SRREN
of both virtual and real storage, and provides : ‘

new IO facilities.

The 3090 storage system has the new
expanded storage feature, which allows elec-
tronic block transfers to and from the central = ! ! 123
storage. The Vector Facility, and implementation - L oo
of the System/370 vector extension architecture, . :

was also introduced on the 3090.

Stuart G.Tucker
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The system control element. Physically, the system
control element (SCE) serves to connect the central
processors, the channel subsystem, and the other
side of a Model 400 system to the central storage
arrays. Logically, it provides access to central
storage for the central processors and the channel
subsystems. However, with store-in caches, any
lines in a cache that have been stored into become
part of the central storage system. Thus the latest
copy may be in the central storage arrays, or it
may be in either cache attached to the local SCE,
or in either cache attached to the SCE on the re-
mote side of a Model 400 system. Thus the SCE
must ensure that there is always a known single
latest copy of any line and must be able to find it
and transfer it to any of the requestors.

Another component of system performance is the
degree to which the SCE can do this for increasing
aggregate processor rates and 1/0 rates without
introducing delays greater than those that would
be encountered in a single-requestor system.

The requestors to a 3090 SCE are the two central
processors, the channel subsystem, and the remote
SCE. The SCE has two request registers for each
requestor, one for fetches and one for store re-
quests. These registers are connected by indepen-
dent request and address buses, and thus can be
set by a requestor on any cycle in which they are
free. The requests can be for the transfer of from
one double word up to a full cache line. On each
cycle, the SCE can examine all eight request regis-
ters and select one on a priority basis.

The 308X shared the address and data buses and
generally allowed data to be transmitted in only
one direction at a time. The 3090 SCE not only
has independent address buses, but it also allows
double words to be transmitted both to and from
the central processors and to and from the central
storage arrays on any given cycle. The data por-
tion of the SCE can be viewed as three independent
double-word, cross-point switches, each of which
can transfer a double word from any input data
bus to any output data bus.

To further increase the efficiency of the SCE, the
cross-point switches are assigned only for the ac-
tual duration of the data transfer, rather than be-
ing assigned for the entire time required to process
a request. Consider, for example, a processor re-
quest to fetch a line. During the early part of the
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command the other caches must be tested to ensure
that they do not have the latest copy, and the
address must be sent to the central storage array
and the line read out of the array. During this
time, no cross-point switch is tied up by the op-
eration. The assignment is delayed until the trans-

An interesting feature of the
storage structure is the fast
path.

fer from the storage array to the requesting central
processor is ready to start. This minimizes con-
tention for cross points.

Building the cross points to connect any input bus
to any output bus supports the implementation of
many transfer modes other than simply requestor
to or from the central storage arrays. One of these
is direct cache-to-cache transfer. In a store-
in-cache system, it is possible to find that the de-
sired line is in another cache. One approach is to
force the line to be transferred to the central stor-
age array and then reprocess the request. Another,
used in the 3090, is to set up the SCE cross points
to provide a cache-to-cache transfer without ever
sending the line to the central storage arrays. This
can be done even when the cache that has the line
is on the far side of a Model 400 system. Both
SCEs participate in the transfer. The remote SCE
does a cache-to-inter-SCE-bus transfer while the
local SCE is transferring the double words from
the inter-SCE bus to the requesting processor’s
cache. The structure is also useful when the line
is found to be in a central storage array serviced
by the remote-side SCE. The transfer can be set
up just as previously mentioned, except that the
remote SCE takes its input from the storage array
bus instead of the bus from the cache. Similar
techniques permit direct transfers from any cache
to either channel subsystem.

A feature that provides a surprising speed advan-
tage is the special handling of the pad characters
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on the MOVE CHARACTERS LONG (MVCL) instruc-
tion. The architecture of the MVCL instruction
states that if the result operand is longer than that
of the source, the rest of the result field is to be
filled with pad bytes taken from a general register.
A common application of the instruction is to use
a zero-length source and a zero pad to clear large
blocks of central storage. The special treatment
was designed to provide an SCE command to fill
a line with pad bytes. A double word full of the

Technology has contributed
to a cycle-time improvement
of about thirty percent.

pad bytes is sent to the SCE, which forwards it to
the central storage where it is replicated as a full
line of pad bytes. Thus a full-line transfer is
effected at the cost of a double-word transfer.

Another interesting feature of the storage structure
is known as the fast path. Here, one of the two
processors of a Model 200 (or one processor on
each side of a Model 400) has a direct, line-fetch,
request bus to the central storage arrays and a
corresponding double-word, data-return bus. A
request is sent in parallel to the SCE and to the
storage array. If the SCE determines that the re-
quested line is in fact in the array, it simply lets
the independent fetch path proceed. If not, the
SCE cancels the independent fetch and handles the
request routinely. This saves a few cycles in the
normal case.

Thus far we have discussed several contributions
to the 3090 performance. Technology has contrib-
uted to a cycle-time improvement of about thirty
percent. The increased pipelining and overlap in
the I and E elements contribute to the infinite-cache
rate. The cache and SCE bandwidths and parallel-
ism contribute further by reducing the cache-miss
penalties. The net of these contributions adds an-
other thirty to fifty percent, yielding an overall
improvement of 1.7 to 1.9 in the internal through-
put rate over the 3081KX in commercial environ-
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ments. The improvements are even greater in the
engineering and scientific environment due to the
looping and floating-point improvements.

The expanded storage. The expanded storage fea-
ture is a new storage designed for electronic block
transfers of 4096-byte pages. It is not, however,
attached in the asynchronous manner of an 1/0
device, nor is it simply additional central storage.
It is a separate storage that allows block transfers
of 4K pages between itself and central storage,
under control of the operating system. The ex-
panded storage feature runs synchronously with
respect to the central processor that requests the
transfer. The decision to design this storage feature
for synchronous transfer was based on a study
comparing the central processor times required for
synchronous and asynchronous operation. In the
synchronous mode, the time starting with the pro-
cessor’s requesting a block transfer and ending
when the transfer is complete is lost to the pro-
cessor; the processor can only wait for the transfer
to complete. In the asynchronous mode, after the
block transfer has been initiated, the operating
system must do a task switch, and incur the asso-
ciated save and restore overhead, if it is to utilize
the processor for something else while the transfer
is in process. Transfer completion would then
cause an interrupt that the operating system would
handle, after which it would dispatch another task.
The path length through this processing was stud-
ied and found to take substantially longer than
the time required for the actual transfer. The
added complexity of building an asynchronous
transfer results in a net loss of useful central pro-
cessor time; thus the synchronous design was cho-
sen.

The block-data transfer is done directly between
the expanded storage and central storage, with
little interference to the rest of the storage system.
The expanded storage arrays can be accessed at a
peak rate of a quad-word every four cycles. Ac-
cesses to the central storage arrays are interleaved
by line so as not to tie them up for the duration
of a block transfer. The SCE need be involved only
enough to ensure that the most recent copy of a
line is in fact in the central storage array. If this
is the case, the SCE need have no further involve-
ment in the transfer. Even if the expanded storage
and the central storage arrays are on opposite
sides of a Model 400, the transfer is done over a
separate bus, so that there is no SCE involvement
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in the data transfer or the associated interference.
The result is the ability to achieve a complete page
transfer operation, including the operating system
code, in about 75 microseconds, with relatively
little interference to the rest of the system.

There are other advantages to not designing the
expanded storage as an additional central storage:

® The expanded storage is designed for high band-
width without requiring fast access to it on cen-
tral processor requests. This offers the critical
advantage of not having to make the expanded
storage accessible through the caches. Unless a
line has its latest copy in one of the caches, a
transfer to or from the expanded storage has no
effect on the caches.

® From an addressing viewpoint, the expanded
storage offers the advantage of providing a
larger address space for future use. Whereas
each central storage address designates one byte,
each expanded storage address points to a 4K-
byte block.

® Protection functions are handled directly by the
operating system, which controls all transfers.
This eliminates the need for storage keys in the
expanded storage and the costs of implementing
and managing the associated protection, refer-
ence, and change bits.

Reliability features of the storage system. The 3090
storage system has many enhancements relative to
its predecessors that improve its fault-tolerance
and serviceability.

Both the central and expanded storages have error-
correcting codes. The central storage has a single-
error-correcting, double-error-detecting code on
each double word of data. The code is designed
to detect all four-bit errors on a single card. The
correcting code is passed to the caches on a fetch
operation so that it can cover transmission errors
as well as storage-array errors. The expanded stor-
age is even more fault-tolerant. Each quad-word
of the expanded storage has a double-error-cor-
recting, triple-error-detecting code. Again, a four-
bit error is always detected if caused by a single-
card-level failure.

Both the central storage and the expanded storage
have provisions for the correction of some multiple
errors that exceed the limit of the error-correcting
code. The technique is based on a concept called
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complement/recomplement or double comple-
ment.””® To see how double complement works,
consider the errors in storage to be of two classes,
hard errors and soft errors. Hard errors are those
that would persist even if the correct data were to
be restored; these are termed “stuck” bits. Soft
errors are those for which the storage would work
correctly if the correct data were to be written
again and reread. A soft error might be caused,
for example, if an alpha particle were to disturb
the charge in an array cell, thus causing the cell
state to be lost.!° Double complement can be used
to correct hard errors, leaving fewer soft errors
for correction by the error-correcting code. Con-
sider a stored word that has one hard failure and
one soft failure, which when read out has a double
error that is not correctable in the central storage.
The word is then complemented and written back
into the same cell, reread, and complemented again
as follows:

a. Correct word 101001

b. Failure mode ——HS—

¢. Read out 100101 Double-bit error
d. Complemented 011010

e. Write and reread 010010

f. Complement 101101 Single-bit error

remains
g. After error 101001

correction

Note: A comparison of steps ¢ and e for equality
gives 001000, which locates the hard-failing bit for
service purposes.

The effect of the double-complement action is to
give a corrected value for any bits that are stuck
in the wrong state. Soft errors (or bits that are
stuck in the right state) come out wrong. Of
course, the underlying hard errors remain, and the
page should be deallocated by software and/or the
offending storage scheduled for replacement. The
central storage implementation allows for the cor-
rection of up to two errors, as long as only one is
soft. Expanded storage can correct all double er-
rors 1al\nd triple errors that are not all hard or all
soft.

To further reduce the probability of accumulating
multiple soft errors, the expanded storage imple-
ments a technique known as scrubbing. By this
technique, double lines are read from the expanded
storage array periodically, run through error cor-
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rection, and rewritten if corrected. Thus soft errors
are periodically removed. The scrubbing rate is
set low enough so that interference with normal
operation is negligible.

The channel subsystem. Over the last several gen-
erations of large systems, the fastest 1/0 device rate
has remained the same, while processor speeds
have continued to increase. To support the corre-
spondingly higher 1/0 demands, the number of
channels has been increased accordingly. This has
led to 1/0 workloads that, at times, have stressed
the shared-channel engine designs of the 3033 and
the 308X. Therefore, the designers of the 3090
adopted a channel subsystem design that incorpo-
rates individual engines for each of up to 96 chan-
nels on a Model 400.

The 3090 channel subsystem is shown in Figure 3
and consists of the following components:

® 1/0 Processor (10P)

® Channels (CHANs)

® Primary data stager (PDS)

® One or two secondary data stagers (SDS)

Each side of a Model 400 system has a channel
subsystem.

The 3090 system implements the System/370-XA
architecture that was first introduced on the 308X
system. The System/370-XA 1/0 architecture can
be viewed as being made up of two parts: a non-
time-critical part, dealing with path management,
and a time-critical part, dealing with channel com-
mand processing and interface control. The I/0
processor (10P) performs the non-time-critical por-
tions of an 1/0 operation while leaving the central
processor free to proceed. It is a separate engine
that executes pageable vertical microcode and uses
a reduced instruction set computer (RISC) archi-
tecture, which is well suited to this function. It is
built in TCM technology. The IOP communicates
with the central processors, receiving 1/0 instruc-
tions from them and posting interruptions to them,
and handles the path-management functions of
the System/370-XA architecture.

The channels are individual microprocessors built
in card-on-board technology and controlled by
horizontal microcode from a writable control
store. Different microcode loads are used for
different combinations of block- or byte-multiplex
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Figure 3 3090 channel subsystem

SYSTEM
CONTROL
ELEMENT
(SCE)
PRIMARY
DATA 1o
STAGER
PROCESSOR
(PDS) — (IOP)
SECONDARY SECONDARY
DATA DATA
STAGER STAGER
(SDS) (SDS)
] ] ] ]
4 4 Z -4
g [N ] 4 g see E
X
o g (5] [&]

channels and System/370 or System/370-XA
modes. The channels perform the time-critical
part of the 1/0 operations. These are essentially
the same functions as were done by the System/360
and System/370 channels, i.e., channel control
word (CCW) processing and chaining, and 1/0 in-
terface control and protocol management.

The primary and secondary data stagers (PDS and
SDS) act as speed-matching buffers and as funnels
to concentrate up to 48 channels down to a single
SCE port for access to the central storage.

The increased SCE capacity has reduced data over-
runs, and the provision of individual rather than
shared engines to perform the channel function
has the following effects:

® Virtually eliminates command overruns

® Increases byte-multiplexing channel perfor-
mance (Therefore, byte-channel-configuration
performance analysis is no longer done at in-
stallation time.)
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e Enables the off-loading of all but essential work
from the IOP, thereby increasing the channel
subsystem I/0-operations-per-second capability

The Vector Facility. The Vector Facility provides
for the addition of a pipelined arithmetic unit to
each central processor in a 3090 system and thereby
provides a substantial performance improvement

When the number of
elements becomes large, the
average time per element
approaches one cycle.

for many engineering and scientific applications.
The performance of the Vector Facility is discussed
more fully in this issue by Gibson et al.’?> and by
Clark and Wilson.!?

The Vector Facility has roots in an 1BM study in
the early 1970s."4!1> At that time two types of vec-
tor facilities were being considered. One possibility
considered was a vector arithmetic unit integrated
with the host processor; the other was a stand-alone
unit sharing central storage with the host processor.
Implementations that accessed all operands di-
rectly from central storage were considered but
rejected in favor of an architecture based on a set
of vector registers. The vector registers provide
the bandwidth that is critical to supporting the
high vector-processing rates while minimizing the
additional load on the central storage. The vector
registers can also be tailored to a carefully matched
architecture so as to provide multiple, conflict-free
accesses on each cycle.

The 3090 Vector Facility is integrated in that the
System/370-XA Vector Architecture® provides 171
new vector instructions that can appear in the in-
struction stream of any central processor with a
Vector Facility. It is separate in the sense that it
is implemented using a set of vector registers and
a pipelined arithmetic unit packaged on a separate
board. The board can hold two Vector Facilities,
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one for each central processor in a Model 200.
This arrangement allows the Vector Facility to be
offered as a field upgrade.

The vector instructions allow a single instruction
to specify that the same arithmetic operation be
performed on corresponding elements of the vector
operands. For example, the addition of vectors
Ay, A, Ay, -, A, and B, B,, B,, -, B, implies
formation of the sums 4, + B, 4, + B,, A, + B,,
-, A, + B,. The pipeline is arranged so that in-
dividual element pairs flow through it advancing
a stage every cycle. Typical stages are vector reg-
ister (VR) read out, add preshift, add, normaliza-
tion, and VR write. A new pair of elements can
be sent into the pipeline on every cycle. After a
pipeline-fill delay, a result can be produced on
every cycle.

The vector registers (VRs) consist of 16 registers,
each with 128 elements of 32 bits each. The VRs
can also be coupled to form eight registers, each
with 128 64-bit elements. The number of elements
per register is a model-dependent tradeoff for the
machine designer. The time needed to do a vector
operation consists essentially of the overhead for
pipeline starting and filling plus one cycle per vec-
tor element. Thus, using a large number of ele-
ments allows allocating the startup time over many
elements. When the number of elements becomes
large, the average time per element approaches
one cycle. However, this efficiency must be bal-
anced against the added time required for saving
and restoring VRs on a task switch and the practical
cost and space limits. This consideration led to
the choice of 128 elements per vector register for
the 3090 Vector Facility. The interleaving and
organization of the VRs have been designed to al-
low two elements to be read out and one element
written in on every cycle. Pipeline lengths are ar-
ranged for every instruction to ensure that the two
reads and the write do not cause a conflict.

Multiply was considered to be sufficiently impor-
tant in engineering and scientific applications to
set an objective of doing multiplies at a one-
per-cycle rate as well as adds. Several rather
elaborate and lengthy pipeline schemes were in-
vestigated before the following relatively simple
approach was adopted. The base 3090 multiplier
requires three cycles, if stripped of its final add
and normalization, which are easily pipelined. To
allow a one-cycle rate, the vector element has three
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base 3090 multipliers. Operand pairs are dealt
into them, one to 4, one to B, and one to C. By
the fourth cycle, the first result is out of 4, and 4
is ready to receive the fourth pair. The three mul-
tipliers behave just as though they were a three-
cycle multiply pipeline.

Since the multiply pipeline is essentially indepen-
dent of the add pipeline, it is possible to configure
the two pipelines as one long pipeline that can do
MULTIPLY and ADD instructions. The compound
instructions then allow both a multiply and an
add to proceed at a one-cycle rate.

A Vector Facility is attached to the instruction
and execution elements of a central processor and
has no direct connection to the storage system.
The instruction element fetches and decodes all
the instructions including any vector instructions
that are in the instruction stream. The instruction
and execution elements access storage, much as
they do in System/370 operations, and then transfer
the operands to or from the Vector Facility. The
cache is used in the normal manner, except for
two special modes that optimize for the case in
which storage operands are stored with stride one
(for elements that are contiguous in storage) or
stride two (for every other element in storage).
For contiguous double-word elements, a line-fetch
mode is used. If there is a cache miss, a line must
be brought into the cache. In line-fetch mode, the
double words are passed on to the Vector Facility
at the same time they are being put into the cache.
If need be, the next line is automatically started.
All this is done in the attempt to come as close as
possible to providing a stream of double words to
the Vector Facility at a one-per-cycle rate. This
method works for stride-two single-word vectors
too. However, for contiguous single-word opera-
tions, elements show up at the rate of two per
cycle and would flood the pipeline, which runs at
a one-cycle rate. For this case a cache-fill mode
is used. In this mode lines are fetched ahead into
the cache, but the forwarding to the Vector Facility
is not done. For larger strides and irregularly
spaced vectors, only the normal cache mechanism
is used.

The System/370 architecture requires the reporting
of precise interrupts. Prior to virtual storage, ex-
ceptions were considered relatively rare events as-
sociated with arithmetic anomalies as overflows.
Thus, imprecise interrupts were tolerated in the
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Model 91 line of processors. With the advent of
virtual storage systems, paging interrupts have be-
come normal, and precise interrupts required. In
the vector architecture, precise interrupts require
locating both the instruction and the offending
element. After considerable grappling with the
management of precise interrupts in a pipeline en-
vironment, the notion of an exception pipeline
emerged. A separate pipeline has been built to
flow exception indications through exactly the
same stages as the actual operands. If an exception
is encountered at any stage of access or arithmetic,
it follows that element to the final write-in stage
and inhibits the write-in. All prior elements are
completed normally. The interrupt is then taken,
and provisions are made in the architecture to
resume from that element after a fix-up.

The Vector Facility provides significant perfor-
mance improvements at very reasonable cost for
vectorizable routines. It offers the convenience of
appearing as an addition to the System/370 in-
struction set.?

The processor controller. A description of the 3090
system structure is not complete without mention
of the processor controller. There are a host of
functions, other than the running of the instruc-
tions, that are an important part of a large com-
puter. Many of these functions are done by the
processor controller on the 3090 system.

The processor controller is actually two identical
engines so arranged that if one fails the other can
take over, in most cases, with little or no disruption.
This is accomplished by having one engine run as
the active controller while the other acts as a
standby. The active controller leaves enough in-
formation about its state that the standby can pick
it up and continue. A switch-over can be done if
the active controller fails.

The processor controller has direct hardware con-
nections to the 3090, and can read or write many
internal control states while the clocks are running.
With the normal clocks stopped, the processor
controller can read or write any trigger or bit in
the machine.

The services performed by the processor controller
are the following:
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® Manual controls provide an operator the ability
to use a keyboard and console display to do
things such as alter, display, reset, initial micro-
code load, 1PL, start/stop clocks, and set various
service modes.

e Power/Thermal control activates power on/off;
regulates voltages; monitors currents, voltages,
and temperatures (and automatically shuts down
the system if they exceed limits); and controls
marginal testing.

® 54D, the systems activity display, uses the pro-
cessor controller to collect and display data.

e Configuration changes are made possible by an
interface with the control program that performs
physical configuration changes and stores and
provides 1/0 configurations as requested.

® Recovery provides the capability of recovering
from many of the errors that can occur in the
3090 and the capability for the processor con-
troller to re-establish the state that existed prior
to the error and invoke a retry.

® Diagnostic control is performed by the processor
controller through the use of two types of diag-
nostic functions. The processor controller can
run a variety of diagnostic tests for either func-
tional or gate-level testing. It also has a set of
analysis routines that attempt to record and
subsequently analyze any error triggers that
come on and attempt to identify the unit that
needs to be replaced. To the extent that the
analysis of the first-error capture data is suc-
cessful, there is no need to take machine time
to attempt to recreate the failure with the diag-
nostic tests.

® Remote service interface provides the 3090, as
it did the 308X, the ability to dial out to a
remote service support center. What is new with
the 3090 is the ability to auto-dial. In the 308X,
the dial-out was made, with customer author-
ization, only after the customer engineer arrived.
In the 3090 system, the processor can dial out,
again only with customer authorization, but at
the time of error analysis. Thus the parts-
required information can be available at the
time of the initial error analysis.

Concluding remarks

The 18BM 3090 unites an extension of the thermal
conduction module (TCM) technology, first intro-
duced with the 1BM 308X series, with a state-of-the
art pipelined and overlapped machine organization
to provide a powerful computing facility. The
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3090 Model 400 has an advanced system control
element (SCE) design that allows four central pro-
cessors and two channel subsystems to access the
common central storage with minimal loss due to
contention. The new expanded storage effectively
expands the size of the central storage without
affecting the normal access times to the central
storage. A third dimension to the 3090 perfor-
mance is the addition of an optional Vector Fa-
cility that offers improved performance at low cost
for applications that are suitable for vector pro-
cessing.
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