Workstations and
mainframe computers
working together

The history and design philosophy of a research
project that produced a prototype software package
are described. The package provides cooperation
between large-scale mainframe computing systems
and personal desktop workstations. Also discussed
are the features of PC/VM Bond, the product that
grew out of the research project.

In recent years, the number of intelligent work-
stations in use throughout the world has grown
at an ever-increasing rate. This fact is also true at
the Thomas J. Watson Research Center, a major
research facility of 1BM. For many years, the Wat-
son Research Center has been at the leading edge
in the use of interactive computer systems {(con-
taining a very large computing facility and actually
having more terminals than people). Recently, the
population of terminals has shifted to greater and
greater numbers of intelligent workstations, espe-
cially the IBM Personal Computer. The reasons
for using workstations at the Research Center in-
stead of terminals include increased productivity,
easier personalization, and, especially in the re-
search environment, the ease and low cost of at-
taching specialized equipment.

One major problem in migrating from “dumb”
terminals to intelligent workstations is that many

1 1 6 KRAVITZ ET AL.

by J. K. Kravitz
D. Lieber
F. H. Robbins
J. M. Palermo

tasks are best performed on, or require the use of],
a mainframe computer system. Mainframe com-
puters offer capabilities and resources that are of-
ten unavailable on personal computers, such as
high-speed computation and extremely large-scale
storage for both computing use and archiving pur-
poses. Mainframe computers also have an advan-
tage in that they can access wide-area networking
(including electronic mail facilities), shared data
bases, and specialized devices, such as phototype-
setting equipment that is much too costly to be
provided on a personal system.

The Watson Research Center wanted to add the
capabilities of a large mainframe system to the
personal computer. One solution to this problem
was a prototype project that eventually became a
product named PC/vM Bond.

This paper discusses the factors that influenced
the design decisions of PC/VM Bond, tells what
those design decisions were, and then briefly de-
scribes the end product.

©Copyright 1986 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright are included on the first page. The title and abstract,

- but no other portions, of this paper may be copied or distributed

royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Design goals and assumptions for the prototype

Before design of the prototype began, goals for
the prototype were clearly defined. After the per-
sonal computer user’s needs had been studied, the
goals were established and were to provide the
following:

1. A method of extending personal computer data
storage using mainframe-based disk storage fa-
cilities. The method should be easy (or possibly
transparent) for the personal computer user to
access and should provide for sharing of these
data using the sharing capabilities of the
mainframe operating system.

2. Access to data created by or processed by host-
based programs from a personal-computer-based
program. The user should not have to modify
his personal-computer-based program to access
these host data.

3. Access to the communications network of the
host. This access should allow personal com-
puter users to communicate with one another
without greatly impacting personal computer
usage.

4. A mechanism for a personal-computer-based pro-
gram to communicate easily with a host-based
program, in a way familiar to personal computer
application programmers.

Just as important as the goals of the prototype
were the assumptions. Assumptions about hard-
ware and software requirements of the personal
computer, the host system, and the intended au-
dience of the prototype were given much thought.

The research group at the Watson Research Center
assumed that the most widely used personal com-
puter within IBM, the IBM Personal Computer
(called 1BM PC in this paper), would be the system
from which to start. Other systems could be added
to the list later. And, because the IBM Personal
Computer Disk Operating System (PC DOS) is the
most widely used software environment on the
IBM PC, the prototype had to run concurrently
with PC DOS. An added restriction required that
the research group make no modifications to PC
DOS, since the source code for PC DOS was not
available.

The Virtual Machine/System Product (called vm
in this paper) would be the operating system used
for the mainframe computer. VM is very widely
used, both inside and outside 1BM, and, perhaps

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

most important, is the most heavily used
mainframe operating system at the Research Cen-
ter.

VM also provided all of the functions needed to

meet the goals set for the prototype. An attempt
was made, however, during the design of the pro-

Just as important as the
goals of the prototype were
the assumptions.

totype, to restrict the dependency on VM where
possible to allow future migration to other
mainframe environments.

With assumptions made about the personal com-
puter and the host system, the research group fo-
cused its attention on the intended user. Because
the goal of the prototype was to enhance the 1BM
PC, it was assumed that users would be familiar
with their IBM PCs and PC DOS, but might be un-
familiar with the host system, vM. This made the
goal of creating an invisible environment a primary
task. Thus, the main focus of the prototype was to
give IBM PC users access to some of the services
provided by vM without forcing users to leave the
PC DOS environment.

End-user functions of the prototype

Once the goals and assumptions were determined,
it became possible to look at the problem at the
end-user level. The research group decided the
user should be able to

® Log on to the host from the PC DOS environment
without having to learn how to use the host.
The end user should only need to know the user
identification and password for a host, and an
automatic log-on procedure would do the rest.
® Create and use virtual disks from PC DOS. Al-
though the virtual disk would actually be a fiic

kravirz et aL 117

on the host, to the user the virtual disk would
be used just as any other disk on the IBM PC.

® Convert host-formatted files to files contained
in a PC DOs-formatted virtual disk (on the host)
and vice versa.

® Send a message to another prototype (or host)
user from the PC DOS prompt.

® Receive a message on PC DOS from another pro-
totype (or host) user. The message should not
disrupt the IBM PC session; the prototype user
should be able to display the message when it
is convenient. Displaying the message should
not destroy data on the IBM PC screen, and the
prototype should restore the screen to the state
it was in before the message was displayed.

® Send commands to the host from the PC DOS
environment and receive the results from the
host back on PC DOS.

e Easily switch from PC DOS to using the IBM PC
as a terminal on the host and, just as easily,
switch back to a PC DOS environment.

Deslign considerations

After some preliminary design discussions and
some experiments, the prototype design began to
take form. This design required a number of com-
ponents: a terminal emulator, a communications
layer, device drivers, host-resident software, sup-
port utilities, and an automatic log-on facility.

Figure 1 shows the actual components of the pro-
totype and how they relate to one another.

The terminal emulator. When discussion about the
prototype began, the main concern was how the
IBM PC should connect to and communicate with
the mainframe computer. At the time, the most
prevalent communications connection was a co-
axial cable for the 1BM 3270 display terminal.
There were also experimental adapter cards avail-
able that could connect an IBM PC to a coaxial
cable. Therefore, with the appropriate software,
it was possible for the IBM PC to emulate a terminal
using this connection. It was decided to make use
of this terminal emulation capability by providing
3277 terminal emulation software as the commu-
nication mechanism for the prototype.

This mechanism had several advantages. When-
ever a potential user wanted to convert to using
an intelligent workstation, the existing IBM 3277

118 «kravitzeraL

terminal could be disconnected and an IBM PC
connected in its place. And, because the mainframe
computer could recognize the IBM PC as a 3277
terminal, the operating system of the mainframe
computer needed no reprogramming.

As an early version of the prototype was being
completed, a hardware problem surfaced with the
connection to the mainframe computer. The mar-
ketplace was shifting to 1BM 3278 and other types
of terminal emulation, so the adapter card was
only produced in small quantities. It was also
experimental and not destined to become a prod-
uct. Fortunately, at that time, the 3278/79 Emu-
lation Adapter Card for the IBM PC was announced
as a product. This solved the hardware problem,
but created a new problem. The 3277 terminal
emulation software that was being used had be-
come inadequate because it only worked with the
obsolete adapter card.

The decision was made to write a new 3278 ter-
minal emulator program providing additional fea-
tures that were not available in some of its pre-
decessors and tailoring it specifically to the needs
of the prototype. Some of the features that were
provided by the new terminal emulator were im-
portant, either because they provided improved
human factors to the users of the emulator or
because they provided capabilities needed by the
rest of the prototype.

One important feature was a user-reconfigurable
keyboard. There are many differences between the
IBM PC keyboard and a 3278 keyboard. The IBM
PC has fewer keys and a different keyboard layout.
Experience with earlier emulators showed that user
preferences for key mappings of IBM PC keys to
3278 functions varied widely. To meet the prefer-
ences of each user, the author of the terminal em-
ulator found that he spent a significant amount of
time creating “custom” patches for different users.
It became obvious that a user-configurable key-
board mapping of IBM PC keys to 3278 functions
would be ideal.

Another important feature of the new terminal
emulator was a data-transport communications
protocol. Other major portions of the system
needed to move large blocks of data between IBM
PC memory and mainframe memory. Because the
terminal emulator already interfaced with the

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 1 The design of the prototype

1BM PC SOFTWARE ¥ suppoRT S CATION
UTILITIES PROGRAMS | MessacE | |
HANDLER
"HOSTRAW HOST BLOCK
DEVICE DEVICE DEVICE
DRIVER DRIVER
TERMINAL
EMULATOR
VMSOFTWARE

MESSAGE

TRAP

COMMAND
EXECUTOR

CMS FILE
SYSTEM

3278/79 emulation adapter hardware, the emulator
was the ideal place to provide the data communi-
cations protocol software to link to the mainframe
computer.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

The research group decided early that another de-
sirable feature of the prototype would be the au-
tomatic log-on procedure to connect the user to
the mainframe system from PC DOS. This feature

KRAVITZ ET AL

119

required a way for the prototype to simulate key-
strokes to the mainframe computer and then to
read responses from it. This was different from
the data transport protocol, which assumed that
a cooperative software package was already run-
ning on the mainframe computer. Again, since
the emulator program was already providing the
interface to the communications hardware, the
software that simulated typing of keystrokes and
reading of the screen was already available.

Finally, it was well known that many applications
the user might perform were best done as a “na-
tive” mainframe computer user, that is, directly
on the mainframe system. Therefore, the user
might also want to use the workstation as if it
were a 3278 display terminal. The emulator pro-
vided this capability.

Previous studies done at the Watson Research
Center' showed that terminal response time has
an enormous impact on productivity, so much so
that specific goals are set for response time on the
large computing systems. The terminal emulator
had to provide suitable performance so that these
response-time goals would still be attainable. This
was a stringent requirement, because the goals
were set when the most prevalent terminal in use
was a 3277 display terminal. And, due to the
dedicated hardware of the 3277, it operated at a
very high speed.

The communications layer. A layered communica-
tions system provided the communication path
between the IBM PC and vM. It was developed
conceptually congruent to the International Or-
ganization for Standardization/Open Systems In-
terconnection (150/08I) model.? To work efficiently,
the communications layer was designed to satisfy
several objectives:

1. The prototype would contain several sub-
functions whose data had to be multiplexed
over a single mainframe link. Ideally the
subfunctions should have separate and distinct
“streams” of information flow.

2. The prototype had originally been designed to
use the experimental adapter card that was be-
ing phased out; therefore, the communications
system had to isolate the rest of the prototype
from the details of the specific hardware used
for communication.

120 «rAvITZ ET AL

3. The communications devices used were not ca-
pable of transmitting binary data, but were lim-
ited to certain printable character sets. The
communications system had to encode and de-
code the binary data passed to it from the rest
of the system and allow direct communication
of binary information.

4. Because future versions of the prototype might
not be based on the 3270 coaxial cable connec-
tion, the research group tried to isolate the
communications layer from the peculiarities of
the 3270 architecture as well as the particular
terminal emulator.

5. Although performance was not a prime consid-
eration, especially since there were many factors
involved, the group felt it reasonable to strive
for a speed close to IBM PC diskette speed when
accessing storage on the mainframe computer.
If this goal could not be achieved, the research
group had to ensure that the prototype software
was not the bottleneck.

Some of the more traditional features of commu-
nications protocols were not needed by the com-
munications system.

The prototype assumed the existence of a point-
to-point logical connection between the IBM PC
and the mainframe computer. This connection
could be provided in a number of different ways;
for example, the 1BM PC could be connected to a
control unit which was locally attached to the
mainframe computer; the control unit could also
be connected to the mainframe computer through
Systems Network Architecture (SNA). The type of
connection was not important to the prototype.

Because the underlying communications hardware
could take care of the recoverable errors, there
was little need for sophisticated error detection
and recovery mechanisms. And, since almost all
data traffic consisted of a single request followed
by a single response, there was no need for more
than an elementary flow control mechanism.

The device drivers and message handler. Very early
in the design process, the group decided that the
prototype should communicate with PC DOS
through the device driver interfaces defined and
published for PC DOS Version 2.0° and later ver-
sions. To PC DOS, the prototype would appear as
a set of device drivers.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

This design was chosen because it minimized the
potential impact on user application programs and
did not require any modifications to PC DOS. One
of the ramifications of this design choice was that

The unit of storage on VM
would be the virtual disk.

the unit of storage on VM would be the virtual
disk (actually a Conversational Monitor System,
or cMs,* formatted file).

Before implementing the prototype, programmers
at the Watson Research Center discussed the mer-
its of storing workstation data on the host either
as virtual disk images or directly, as host-format
files. Virtual disks had the advantages of easy
implementation and very high transparency to IBM
pC-based application programs. Host-format files
had the advantage of easy migration between host-
and IBM PC-based applications.

Because PC DOS already had an interface defined
for device drivers and because almost all applica-
tion programs used the PC DOS file system to access
disk files, the virtual disk approach was compatible
with most IBM PC-based software. The file-storage
methods, on the other hand, required that the pro-
totype convert VM file formats and character sets
to 1BM PC file formats and character sets dynam-
ically when the 1/0 operations were requested from
the IBM PC software. IBM PC file formats are quite
different from those used on CMS. The cMs file
system 1is record-oriented, with no delimiter char-
acters between records, and it uses the EBCDIC
(Extended Binary Coded Decimal Interchange
Code) character set. PC DOS treats files as streams
of characters, with no record structure imposed
by the file system, and it uses the ASCII (American
Standard Code for Information Interchange) char-
acter set.

Sequential reading and writing of files containing
readable text is relatively easy using a file-oriented

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

storage method. But files that deal with random
access or that contain a mixture of text and binary
data (like many of the spreadsheet programs used
on the IBM PC) are extremely difficult to read and
write correctly.

Another problem with the file-oriented approach
was that the defined PC DOS driver interface was
at a low level: It only dealt with sectors on a disk,
not file opens and closes. To obtain the necessary
information from the application program to map
the DOS 1/0 requests to the appropriate operations
on the host system, it would be necessary either
to modify PC DOS or to trap all PC DOS calls and
filter out and redirect those that were destined for
host-based files.

Ultimately, the virtual disk strategy was chosen,
primarily because it was possible to implement it
using the PC DOS device driver interface without
extensive modifications to, or completely bypass-
ing, PC DOS. The decision has proved to be a good
one since most PC applications can use virtual
disks provided by the prototype in the same way
as they use the real diskettes and fixed disks on
the PC itself.

Once the research group decided to use the PC
DOS device driver interfaces, the need arose for
three separate drivers. One device driver, called
HOSTRAW, is used during automatic log-on to sim-
ulate an operator at a 3278 Model 2 terminal. It
is unique among the three device drivers in that it
does not require any corresponding communica-
tions software to be running at the host.

After the log-on procedure is completed and the
host-resident software of the prototype is running
on the mainframe computer, a second device
driver, called HOST, sends commands to VM and
receives the results of these commands back on
the user’s IBM PC. HOST uses the communications
layer to communicate with software in VM that
executes the commands. The output of the com-
mands is then redirected through the communica-
tions layer back to the IBM PC.

PC DOs calls the third device driver, the block de-
vice driver, whenever a user application program
(or PC DOS command) requests a PC DOS operation
on one of the virtual disks. The block device
driver communicates through the communications
layer with the host-resident software on VM. (The

kravitz eT AL 121

host-resident software is a part of the prototype
that resides within vM. It performs disk functions
on the virtual disks and sends the results back
through the communications layer to the PC.)

The message window handler is the only remaining
major function of the prototype not handled by a
device driver. The message window handler dis-
plays message windows on the PC screen. It is an
interrupt-handling routine that is invoked period-
ically by a timer interrupt. When invoked, it
checks to see if any messages are waiting to be
displayed, and if so, displays them when the ap-
propriate keys are pressed. It restores to the dis-
play screen its previous contents when the same
keys are pressed again.

Host-resident software. The prototype needed
many functions that could not be performed from
PC DOS. The functions had to be performed within
VM.

From vM, the host-resident part of the prototype
had to trap all Control Program (CP)’ messages
from CP and redirect them to the appropriate part
of the 1BM PC software. Fortunately, vM/sSP Release
3.0 provided a new feature, the Virtual Machine
Communications Facility (VMCF), which allowed
messages and command output to be trapped and
processed by the host-resident software.®

Another function required that the host-resident
part of the prototype accept requests from the 1BM
PC to perform VM commands and direct the console
output from these commands back to the IBM PC.

Because cMs does not support multitasking, the
most difficult problem in providing this function
was running CMS (or CP) commands under the
direction of the prototype host-resident software
so that the output could be directed back to the
IBM PC. Essentially, the prototype host-resident
software had to become part of cMS itself, out of
the way of executing programs, and yet still be
able to trap the console output and direct it to the
IBM PC.

CMS and CP mechanisms allowed this. CMS pro-
vided the NUCXLOAD feature enabling a program
to become a resident extension of the CMS nucleus.
Thus, the prototype host-resident software no
longer occupied the dynamically allocated memory
area into which other programs would be loaded.

122 «kRaviTZ ET AL

cMSs considered the host-resident software an ex-
tension of the nucleus.

Finally, the prototype had to simulate all of the
functions of a diskette (or fixed disk) controller
for an image of an IBM PC disk. The simulation
of a real device had to be at the level of detail
appropriate for the PC DOS driver interface, not
necessarily at the level of a real disk controller.

One of the problems encountered later in the de-
velopment and testing of the prototype was the
way CMS handled updates to a virtual disk file.
Whenever an IBM PC program changed a sector
on a virtual disk, CMS was requested to rewrite a
512-byte sector image in the virtual disk file. CMs
could allocate a completely new block on its disk
to contain the new sector image, discarding the
old block only when the file was closed. Thus, an
IBM PC program that updated a large number of
disk sectors could run out of disk space on the
CMS minidisk, even though no new information
was being added and the size of the virtual disk
remained constant. Fortunately, Release 3.0 of
VM included a new “update in place” feature in
CMS, eliminating the problem.

Support utilities. The prototype utilities were cre-
ated to provide additional PC DOS “commands.”
These commands had to perform the special func-
tions for the prototype: create a virtual disk, ac-
tivate a virtual disk, control the display of VM
messages, and a few others that will be discussed
in greater detail next. The utilities accept param-
eters on the command line (not via a menu), and
the utilities and their parameters can be integrated
into PC DOS batch files. With this, the user can
build superset commands based on the fundamen-
tal prototype commands.

Sending commands to VM for processing. One util-
ity was the VM command. Using this command,
the user could send line-mode commands to VM
and receive back line-mode responses without leav-
ing the PC DOSs environment. (VM line-mode com-
mands are those commands that produce output
a line at a time; that is, line-mode commands do
not produce any full-screen data or screens.) The
user could elect to have the responses queued for
later review. With this option, the user could per-
form a long-running task on VM while PC DOS was
free to perform another task concurrently.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Transferring files from virtual disks to VM. After
the decision was made to store the virtual disk in
absolute PC DOS disk image format, the need arose
for a means to allow host applications to access
files on the virtual disk. This included the desire
to support the hierarchical file structure of the

A utility called PCDISK was
created to run within VM.

virtual disk and to insert host files into the virtual
disk and extract files from it as host files.

A utility called PCDISK was created to run within
VM. Using PCDISK, the directory structure and file
allocation tables of the virtual disk could be ex-
amined or modified to perform the desired extract-
ing or inserting.

Because the record-oriented file system of CMS
differs from the byte-oriented file system of PC
DOS, mapping takes place during the insertion and
extraction processes, depending on whether the
file is text or binary data. The text mapping re-
quires that PC DOS carriage return characters be
interpreted as end-of-record and that PC DOS end-
of-file characters be interpreted as end-of-file. A
print mapping was provided in which PC DOS files
could be extracted with carriage control informa-
tion placed in column 1 of the output file.

Automatic log-on procedure. One of the design
objectives was for the IBM PC-resident software to
establish a connection to the host-resident software
in a manner that would be invisible to the user.
This objective implied some sort of automatic log-
on program that could simulate typing the neces-
sary keys to log on to a host user’s identification
and start up the host-resident software.

The research group realized early that a hard-coded
program would be too inflexible to accommodate
the anticipated variety of host connection proce-
dures. Therefore, the group decided to write a

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

simple interpreter that could follow a site-specific
script to perform a log-on sequence. Software was
provided to send keystrokes to the host and then
inspect the resulting screen image. The flow of
control could then be altered on the basis of the
observed screen image.

By the time enough capabilities had been placed
in the interpreter so that a log-on script could be
written, a complete but entirely nonstandard lan-
guage had been designed.

Since a widely used interpreted language called
Restructured Extended Executor (REXX)’ was
available on the host (but not on the IBM PC), the
group decided to set the other language aside and
write an IBM PC version of REXX that could per-
form the automatic log-on procedure. This pro-
gramming language became known as REXX/PC.
This version had several benefits. The need to
define “yet another language” was avoided, pro-
viding a portable version of a langunage heretofore
available only on VM. The REXX/PC language ex-
tended the PC DOS batch facility, and a common
language for tying together user-written host- and
IBM PC-based programs was made available.

The resulting product

PC/VM Bond, the resulting product, was created
cooperatively by groups within the IBM Endicott
Laboratory and the Thomas J. Watson Research
Center. PC/VM Bond contains two separate prod-
ucts, vM Bond and pC Bond. vM Bond runs on
the IBM Personal Computer and PC Bond (referred
to earlier as the host-resident software) runs on
the host. With PC/VM Bond, users of the IBM Per-
sonal Computer, Personal Computer XT, and Per-
sonal Computer XT/370 can

® Use disk storage on VM from PC DOS.

® Send messages to and receive them from other
PC users using PC/VM Bond or other VM users.

e Emulate a 3278 Model 2 terminal connected to
VM.

¢ Issue commands to VM from within PC DOS.

& Write programs in the REXX/PC language on PC
DOS similar to the REXX language on VM.

® Develop cooperative applications that make use
of both VM and PC DOS.

Using host storage from PC DOS. Using PC/VM
Bond functions, users create virtual disks from PC

kravitz eTAaL 123

DOS that are actually files within the users’ CMS
disk space. When active, these virtual disks act as
fully functional disk storage drives: The PC treats
virtual disks like active diskette drives or fixed
disk drives.

Users can create any number of virtual disks de-
pending on the amount of CMS storage that each
user has available. Up to eight virtual disks can
be active at any time. The size of each virtual

PC/VM Bond contains two
separate products.

disk, set when the disk is created, ranges from a
practical limit of 2 kilobytes to over 30 megabytes.

Besides the vast storage available from virtual
disks on an IBM PC, users can share virtual disks
with other PC/VM Bond users. And users familiar
with VM can insert CMS files into virtual disks and
extract files from virtual disks as cMS files. This
procedure allows users to upload and download
files between VM and the IBM PC without worrying
about converting the files to the appropriate host
or IBM PC format.

This file manipulation is a powerful function that
can be used for a number of purposes:

® Taking VvM-generated data and processing those
data using IBM PC-based programs and vice
versa.

® Printing 1BM PC-based programs and data on
high-speed, high-quality, vM-based printing de-
vices.

® Developing cooperative applications between PC
DOS and VM. An example of a cooperative ap-
plication is shown later in this paper under the
subheading “Using the REXX/PC Language.”

Sending and receiving messages. By using a PC/VM
Bond command, PC DOS users can send messages
to other pc/vM Bond users or other VM users,

124 «RavITZ ET AL

either on the same VM system or on a different
VM system connected by a network.

The pCc/vM Bond function sends a CMS TELL com-
mand (not to be confused with the VM note facility)
to VM for processing. PC/VM Bond users can com-
municate with one another as well as with “regular”
VM users without leaving the PC DOS environment.

Messages sent to a PC/VM Bond user are held
within the user’s VM system until PC/VM Bond can
accept them on the IBM PC. Once a message is
transferred from VM to the IBM PC, a three-tone
beep alerts the user that at least one message is
waiting to be displayed. To display a message, the
user presses a set of keys that causes a message
window to appear displaying the message. To
clear the screen of the message, the user presses
the same set of keys once again.

Emulating a terminal. PC/VM Bond users can use
vM fully by having their IBM PCs emulate 3278
Model 2 terminals. Users simply press two keys
simultaneously to switch from PC DOS to terminal
emulation and the same two keys again to switch
back.

PC/VM Bond supplies a program that allows users
to modify the distributed keyboard and color as-
signments. Users can reassign any of the 3278
functions and characters to other keys on the IBM
PC keyboard. They can also reassign the way that
color is displayed for each possible 3278 field at-
tribute.

Issuing VM commands from PC DOS. Users can
enter a certain subset of VM commands (those that
do not produce full screen output) from PC DOS
and receive the results back on PC DOsS either di-
rectly from the PC DOS prompt or from within a
program. If a VM command is entered from the
PC DOS prompt, a user can also request that the
results of the VM command not be returned im-
mediately, thus allowing the 1BM PC and the
mainframe computer to perform user tasks con-
currently. In this case, the results are held until
the user asks for the results to be displayed.

For example, from PC DOS, a user could send a
command to VM asking for the current time, which
would be displayed on the PC DOS screen. From
PC DOS, a user could also ask VM to compile a
program and then continue to work on PC DOS.

{BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Later, when VM had finished processing the com-
mand, the user could ask vM for the results of the
compile.

Within the discussion of REXX/PC which follows is
an illustration of how a user can send commands
from a program running on PC DOS to VM (through
the HOST device driver). Another language such
as BASIC, C, or Pascal could have been used, but
for purposes of illustration REXX/PC was chosen.

Using the REXX/PC language. REXX/PC, a pro-
gramming language for the IBM PC, closely resem-
bles the REXX language available on VM. REXX/PC
can be used to supplement or to replace the batch
command executor of the IBM PC. It provides a
language common to both PC DOS and VM for
creating new applications from existing host or
IBM PC programs.

REXX/PC is primarily intended to be an exec lan-
guage. Its data and control structures are designed
to allow convenient argument processing, program
execution, and return code analysis. Thus REXX/PC
is often used to replace several small programs
with a larger application.

The REXX/PC language is somewhat different from
many other languages because it is string-oriented
and typeless. The designation “typeless” means
that data objects need not be declared before use,
and, for most operations, no distinction is made
between numeric and textual data. This means
that there are few fundamental concepts to learn
and also makes possible some interesting opera-
tions that would be difficult to do in a typed lan-
guage.

The treatment of data objects is designed to make
string manipulation and command execution es-
pecially easy. The rules for data objects are as
follows:

® Until an object is assigned a value, its value is
its name.

® The value of anything in quotes is the text be-
tween the quotes.

® The value of an expression formed by placing
names and quoted strings adjacent to one an-
other on a line is the concatenation of the values
of those names and quoted strings.

® A line that does not begin with a keyword is
evaluated according to the preceding rules and

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

passed to the operating system for execution as
if it had been typed by the user at the command
line.

In addition to the standard arithmetic operators
(addition, subtraction, multiplication, integer di-
vision, and remainder division), the language sup-
plies a powerful string-parsing operator for dis-
secting strings into words (delimited by blanks) or
fields (delimited by substrings, column numbers,
or a combination). Then new variables can be
created from the pieces.

Finally, a naming convention in the language al-
lows more complicated objects such as trees, dic-
tionaries, and arrays to be built from simple ob-
jects. This naming convention employs the use of
“subscript” names to distinguish members of a
group, all of which share a common “stem” name.
The subscripts need not be numeric (any string or
expression can be used). When a name contains
subscripts, REXX/PC automatically evaluates the
subscripts and then looks up the value of the re-
sulting name.

In addition to the string-oriented aspects just men-
tioned, REXX/PC provides the control structures
common to most programming languages:

e if then

o if then else

® subroutine calls

e function calls

® do ... end

® do forever ... end

® do count ... end

¢ do i=start to stop by step ... end

As with most programming languages, functions
and subroutines can receive arguments, manipulate
private variables, and access the variables of each
caller. In addition, functions return a value to
their caller.

One aspect of a function or subroutine call that
is unique to REXX/PC is that a function or subrou-
tine can call a routine located elsewhere in the
system, for example, on another disk or path. If
the named routine is not in the current program,
REXX/PC searches the disk for a REXX/PC program
whose name is the same as the routine, then loads
and executes it. Control returns to the caller when

kravitz et aL. 12D

Figure 2 Example of a REXX/PC program

R; T=0.01/0.01 th4:27:13

ook % e ok Sk N

&
w /

call write 'host', 'CP QUERY TIME', 'eol’

parse value read('host') with . . time .

do 2
call read 'host'
end

'date’ date
‘time' time

/* Display the results */
say Today is' day date
say 'The time is' time

/:‘: ___ ‘7’5
= A REXX/PC program to synchronlze the PC's ”

clock/calendar with that of the host :":/
/¥ Issue a host command to display the date and time.

It will be returned in the following format:

TIME 1S 14:27:13 EST THURSDAY 02/28/85
CONNECT= 05:27:43 VIRTCPU= 000:05.95 TOTCPU= 000:10.35

/* Read back 1ist I;ne of response, extract the desired words */
day date .

/* Read back (and throw away) remaining two lines of response */

/* Issue PC commands to set the date and time */

the routine exits. This allows complicated execs
to be built from separately tested components.

To aid debugging, REXX/PC can print an execution
trace with indentation to match the subroutine
nesting level. Arguments and return values can be
displayed when entering or returning from a pro-
cedure. A pattern can be set to step through a
program during the execution of a trace. The cur-
rent values of all private and global program vari-
ables can be displayed at any point.

The interpreter requires about 30K of storage and
up to 64K (default = 24K) for data. REXX/PC
explicitly creates and destroys objects as needed.
To perform arithmetic, REXX/PC converts strings
into numeric format, performs the arithmetic op-
eration, and then converts the result back into a
string.

126 «ravITZET AL

The interpreter operates in two phases. In the first
phase the source program is tokenized. The to-
kenized program is converted into an intermediate
form in which keywords are represented by integers
and literals are collected into a common area (com-
pressing out duplicates). In the second phase the
tokenized program is executed.

The results of the first phase can be saved to disk
if the user so requests. This allows the program
to load faster the next time it is executed. The
tokens are conveniently saved by appending them
to the end of the original source file, after the
end-of-file mark. Since most programs ignore file
characters following an end-of-file mark, the to-
kenized portion is invisible to most programs, but
unlike other languages, REXX/PC can still find it.
Furthermore, the program automatically becomes
“detokenized” the next time it is edited.

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 2 shows an example of a REXX/PC program
that interacts with vM and PC DOS. The program
sets the date and time on the IBM PC to the date
and time of the host VM system.

Although the fundamentals of REXX/PC can be
learned in a few hours, the language is rich enough
to create functions that would be difficult or time-
consuming to code and test using compiled lan-
guages. In addition, REXX/PC introduces program-
mers to the CMS command interpreter and can
help them tailor IBM PC and VM environments
without their having to learn about the system
compilers, assemblers, linkers, and debuggers.

In the future

A number of interesting possibilities are being dis-
cussed at the Research Center for possible future
application using the tools provided by the proto-
type. These include

® An editor that consists of a highly interactive
front end on the IBM PC, cooperating with a
data-storage and editing “engine” on the host

® Automatic mail systems that direct network mail
and messages directly to the user’s IBM PC

e Knowledge-based systems that attempt sophis-
ticated error recovery and retry operations in
controlling the operation of a large-scale com-
puting center

Summary

The prototype and some of its components, such
as the terminal emulator and REXX/PC, have be-
come widely used within the Watson Research
Center and throughout IBM.

A number of 1BM locations are using the prototype
or PC/VM Bond to perform a wide variety of func-
tions which include

e Turning an IBM PC into a user-friendly front
end to VM including a menu-driven interface,
pop-up message windows, and access to VM
spool files

e Using an IBM PC to generate and display high-
resolution graphics images, and using the host
to perform computation-intensive calculations
on the graphics data; the graphics data are then
displayed on the IBM PC

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

e Using an IBM PC to control laboratory instru-
ments and pass the results to a host program
for data analysis

® Gathering statistics about VM system response
time performance using an IBM PC to simulate
user interaction with a host

¢ Controlling a large-scale mainframe computer
center automatically, using an IBM PC to inter-
cept operator console messages, filter out un-
necessary information, and respond to certain
messages automatically

® Sharing and updating a workbench of internally
developed user tools and data among other IBM
PC users

® Backing up IBM PC data and programs on a
host system

Acknowledgments

The authors wish to acknowledge the contributions
of Matthew Zekauskas, Dave Chess, and Dave
Levine, whose work was instrumental in complet-
ing the prototype, as well as Mark Giampapa,
whose applications made use of the prototype.
Others to be thanked are the entire Endicott team,
who turned a prototype into a product; Gerry
Waldbaum, who managed the prototype project;
Harry Benas, who was the product manager for
PC/VM Bond; and Dick Kerr, whose literary exper-
tise was of great help in completing this paper.

Cited references and notes

1. W. J. Doherty and R. P. Kelisky, “Managing VM/CMS
systems for user effectiveness,” IBM Systems Journal 18,
No. 1, 143163 (1979).

2. Data Processing—Open Systems Interconnection—Basic Ref-
erence Model, Draft Proposal ISO/DP 7498, International
Organization for Standardization, Geneva (February 1982).

3. IBM Personal Computer Disk Operating System Technical
Reference, IBM Corporation; available through IBM branch
offices and authorized IBM Personal Computer dealers.

4. The Conversational Monitor System (CMS) is the part of
VM that manages its users and their file systems, etc. Details
are in VM/370: CMS User's Guide, GC20-1819, IBM Cor-
poration; available through IBM branch offices.

5. The Control Program (CP) is the part of VM that intercedes
between CMS and the hardware system.

6. Virtual Machine/System Product System Programmer’s
Guide, SC19-6203, IBM Corporation; available through
IBM branch offices.

7. M. F. Cowlishaw, “The design of the REXX language,”
IBM Systems Journal 23, No. 4, 326 - 335 (1984).

kravitzeraL 127

General references documentation. Ms. Palermo is currently an associate infor-

mation developer working on PC/VM Bond. She has a B.A.
PC/VM Bond User’s Guide, No. 6317007, IBM Corporation; in mathematics from the State University of New York at
available through I1BM branch offices. Potsdam.

PC|VM Bond Programmer’s Guide, SH24-5097, IBM Corpora-
tion; available through IBM branch offices.

PC Bond (the host-resident product), No. 564-298; available Reprint Order No. G321-5266. A
through IBM branch offices.

VM Bond (the product that runs on the IBM PC), No. 6467022;
available through IBM branch offices.

IBM Personal Computer Disk Operating System, IBM Corpo-
ration; available through IBM branch offices and authorized
IBM Personal Computer dealers.

Virtual Machine/System Product Introduction, GC19-6200, IBM
Corporation; available through IBM branch offices.

Introduction to the IBM 3270 Information Display System,
GA27-2739, IBM Corporation; available through IBM branch
offices.

Jett K. Kravitz /BM Research Division, P.O. Box 218, Yorktown
Heights, New York 10598. Before joining IBM, Mr. Kravitz
worked for a number of years for several companies as a de-
signer and implementer of operating systems. Upon joining the
IBM Research Division in 1983, he became the technical project
leader of the prototype of the PC/VM Bond system. He was
responsible for much of the overall design of the prototype and
the implementation of the terminal emulator and the commu-
nications layer. He is currently working in the area of gateways
between large computer systems and local area networks. Mr.
Kravitz obtained his bachelor’s degree in mathematics from
Queens College of the City University of New York.

Derek Lieber IBM Research Division, P.O. Box 218, Yorktown
Heights, New York 10598. Mr. Lieber joined IBM in 1983 and
currently works in the Advanced Workstation Projects group.
He is a 1975 graduate of Lebanon Valley College with a B.S.
in physics; his interests are interpreted languages and interactive
user interfaces.

Frederick H. Robbins IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Mr. Robbins, a staff pro-
grammer, has been with IBM since graduating with a B.S. in
electrical engineering from Clemson University in 1968. After
serving in the U.S. Army, he worked at IBM Poughkeepsie
until 1981 on a variety of assignments, including microcode,
applications programming, and consulting on the 3080 and
3090 processor development projects. For the last four years,
Mr. Robbins has been at the Thomas J. Watson Research Cen-
ter, first in Signature Verification and then with Advanced
Workstation Projects, where he was a major contributor to the
prototype, developing the PC-based code for the virtual disk
emulation. He is now a PC consultant at Yorktown, while
continuing to develop workstation applications.

Julie M. Palermo IBM Systems Technology Division, P.O. Box
6, Endicott, New York 13760. Ms. Palermo joined IBM in 1982.
She has been involved in Information Development, working
on IBM Personal Computer (and VM/SP-related) products and

128 «raviTZ ET AL IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

