Improving availability
of software
subsystems through
on-line error detection

A VMI370 program called Auditor detects faults in
the operation of computer software subsystems and
attempts to restore service as quickly as possible.
Through a series of periodic tests, Auditor
diagnoses whether these subsystems are operating
properly. When faults are detected, service
restoration procedures are automatically called,
and the persons responsible for the subsystems are
notified. The various types of faults are recorded
for subsequent analysis.

In large centralized or distributed computing en-
vironments, there are many interacting subsys-
tems that provide services, either directly or indi-
rectly, to the users of the systems. Direct services
are programs, such as text editors, that interact
directly with the user. Indirect services include
subsystems to perform functions that are transpar-
ent to the user. Such subsystems include computer
networking, printing, batch processing, and data
archiving. Frequently, these subsystem services
are provided unbeknown to the user. To maintain
a smooth and efficient operation, a large computing
environment must ensure that these subsystems
are available and operating when needed.

If for any reason any subsystem fails, many persons
may be adversely affected. For example, while
waiting for the completion of a batch job or the
printing of a document, the users may be totally
unaware that the subsystem processing a job has

{BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

by L. Koved
G. Waldbaum

stopped working. Since many persons who use the
computing systems are neither programmers nor
persons intimately familiar with the details of how
the services are performed, they may be unable to
find the reason for the delay. It is often assumed
that the executives, secretaries, researchers, and
others who use the system will learn how to diag-
nose the subsystem failures. Otherwise, they must
depend upon an expert, such as the computer op-
erator, who is trained to diagnose and correct fail-
ures. Itis preferable for failures to be automatically
detected and services quickly restored, with mini-
mal inconvenience to the users.

The detection of failures in computer software
subsystems has been largely a manual procedure,
requiring detailed knowledge of how each subsys-
tem works. Failures frequently go unnoticed for
long periods of time before users complain to the
computer operator. The operator must then de-
termine whether the software is indeed malfunc-
tioning; if it is, the operator must then decide how
to correct the problem. If a failure remains unde-

©Copyright 1986 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

kovep anp waLosaum 108

tected, the service remains unavailable until the
responsible programmer or computer operator no-
tices the problem and corrects it. A problem can
last for hours, days, or even months before it is
noticed.

Purpose of the Auditor faclility

The purpose of the auditing system, known as
Auditor, discussed in this paper is to automate

A complex computing
environment may have many
subsystems performing
operating-system or end-user
services.

and extend the procedures performed by the com-
puter operator. Auditor periodically verifies that
each subsystem is

® Present in the system, i.e., has not terminated
® Processing service requests
® Not exhibiting anomalous behavior

Since Auditor is an automated set of procedures,
it can rapidly detect problems, take actions to re-
store service, and notify the proper personnel.

Another purpose of Auditor is to collect data on
failures and their manifestations. These statistics
may be analyzed to make better, economically
justified decisions for future improvements of soft-
ware and services. Without Auditor, the frequency
of software failures and their manifestations would
be unknown.

Typical operating environment

Most subsystems are intended to provide services
to the users whenever the computing facilities are
available, and an objective of a computing center
is to maintain high availability of these services.
A complex computing environment may be com-

106 KkoVED AND WALDBAUM

posed of many subsystems, each performing
operating-system or end-user services. In the IBM
VM/370 Operating System,! subsystems are fre-
quently written as separate software systems run-
ning in different user IDs or virtual machines.

Services fall into three distinct categories:

® Provided by IBM
® Provided by the computing center
® Provided by the user

IBM-provided subsystems are IBM program prod-
ucts or program offerings that are sold and serviced
by IBM. These include computer networking,*
consulting/conferencing,* and performance moni-
toring and control.’

Computing center services include those developed
and maintained by the local computing center,
including file system backup, archiving, system re-
source monitors, and text-processing services. The
functions provided by the computing center may
vary from site to site.

User-provided services are those developed by the
users of the systems and may be designated for
use by specific groups. At the IBM Thomas J.
Watson Research Center, such services include
special printer services, classroom reservations,
and laboratory automation. User-provided ser-
vices are usually available at the user’s own risk,
because the owners are responsible for maintaining
these services.

Manual operator procedures

In such a computing environment, it is not simple
to determine whether a subsystem is operating
properly, because of the variety of causes of failure.
Failures range from not being present on the sys-
tem to giving erroneous results. The computer
operator has a set of procedures that describe how
to detect particular subsystem failures or bottle-
necks. If there is a failure, the persons responsible
for maintaining the faulty subsystem are located
and informed. There may be an involved proce-
dure for locating the responsible person, particu-
larly if there are many subsystems each with a
different owner or maintainer. If the proper per-
sons are not found, the operator’s orders indicate
whether a subsystem is to be restarted. For some

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

faults, a subsystem should not be restarted without
expert assistance.

When the operator detects a failure or restarts a
subsystem, the owner or maintainer is informed
via electronic mail. Once informed of the problem,
the owner or maintainer may determine the specific
cause of the failure and correct it.

The use of subsystems in virtual machines has
complicated the problem of determining when er-

When a new subsystem is
added, tests are selected
that best match its desired
operating characteristics.

rors or failures have occurred. Most subsystems
available in VM/370 systems have evolved indepen-
dently of one another, and each subsystem has
different operating characteristics. In such a com-
plex environment, manual procedures are subject
to operator errors, wrong test procedures, and
outdated operation manuals. An objective of Au-
ditor is to automate the operations procedures by
maintaining the procedures and lists appropriate
to each subsystem monitored.

The characteristics of subsystems have been cate-
gorized, and tests have been developed to monitor
each of the operational characteristics of interest.
When a new subsystem is added to the list of those
monitored by Auditor, tests are selected that best
match its desired operating characteristics. Testing
can be divided into two categories: general tests
and subsystem-specific tests.

Automatic detection of subsystem failures
Two general tests are applicable to all subsystems:

1. Is the subsystem running on the system? The
presence of the subsystem can be verified by

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

testing whether the user ID is logged on to the
system.

2. Is the subsystem in a “hung” state due to a
software or operating system failure? Subsys-
tems on VM/370 typically operate without a ter-
minal attached. Suppose a subsystem attempts
to read data from a terminal, and a person
does not log on to the user ID to respond to
the read request. The system then logs off the
user ID after fifteen minutes. During this fifteen-
minute period, the subsystem is unable to per-
form any processing due to the waiting terminal-
read request. A hung subsystem is detected by
testing status information maintained by the
operating system about the user ID.

The two general tests by themselves are inadequate
measures of whether a subsystem is properly and
promptly processing service requests. Therefore,
it is necessary to test other subsystem characteris-
tics. The tests performed for each subsystem check
for one or more of the following:

® Periodic processing. A variety of subsystems
have been designed to perform their functions
on a fixed periodic basis. Auditor checks to see
whether these subsystems have done any pro-
cessing during the past » minutes. This test
serves as a rough indicator of whether a subsys-
tem has stopped running.

® Demand processing. Some subsystems begin
processing whenever there is a queued work re-
quest. Auditor sends a work request to the sub-
system via a message (interprocess communica-
tion) and spool files. After 10 to 30 seconds,
the subsystem is checked to see whether it has
begun processing the request. If not, the sub-
system may have stopped running due to an
error in processing the current or prior requests.

® Handshaking. Other subsystems are able to
shake hands. Auditor sends a work request to
a subsystem and waits for a reply. The reply
may be in the form of a message, spool files, or
data written to a disk file. Optionally, once a
reply is received, Auditor may analyze it to ver-
ify that the result is correct. There is a time-out
mechanism for use when a subsystem does not
reply or is delayed a long time. The absence of
a response typically indicates a subsystem fail-
ure. A delayed response may indicate a heavily
loaded subsystem or a degraded system due to
anomalous conditions or partial failure. Al-
though handshaking uses more computer re-

koveo ano watoeaum 107

sources than periodic or demand processing, it
provides a better indication of potential prob-
lems. Some subsystems that run periodically
may process requests for service yet not complete
any or all of their work. Auditor uses hand-
shaking to check for this.

Demand processing and handshaking can be com-
bined to form a hybrid testing method. By the
hybrid test, handshaking is attempted first. If there
is a time-out before a reply is received, there is a
test of whether the subsystem has done processing

General and specific tests
are performed periodically
for all subsystems.

since the handshaking request was issued. The
subsystem may be processing other requests and
therefore be unable to respond to a handshake
request. That is the case for a first-come, first-
served batch processor. If a subsystem has not
done any processing recently, the problem is prob-
ably in the subsystem.

A variant of the hybrid method is to test the sub-
system to see whether it has done any processing
during the past five to ten seconds. If it has, the
subsystem is probably busy processing another re-
quest. Then handshaking is not necessary, espe-
cially for a subsystem such as a batch processor
that requires a substantial amount of time to pro-
cess an average service request. Otherwise, hand-
shaking is performed.

Another subsystem-specific test is to check that
files are updated at the proper intervals. Still an-
other such test is to execute locally defined system
commands. If these tests fail, a subsystem has
probably stopped working.

Automatic subsystem recovery procedures

All of the subsystem-specific tests are implemented
as short programs, each performing a requested

1“8 KOVED AND WALDBAUM

test. In most cases, the programs are predefined,
and Auditor simply passes parameters that describe
the expected subsystem behavior. The program
returns with an indicator of whether the subsystem
appears to be functioning properly. General and
specific tests are performed periodically for all
subsystems. The intervals between tests are sub-
system dependent. The usual testing period for
most subsystems is ten minutes. For several ser-
vices that are critical to the performance and in-
tegrity of the system, the testing periods range
from one to five minutes.

Whenever a problem is detected, people must be
contacted, preferably via computer messages. The
Auditor developed at the IBM Research Center
automatically informs the responsible program-
mers and computer operator of problems. For
each subsystem, there is a list of primary and al-
ternate persons to be notified of an error or failure.
If a problem persists, notification is escalated. The
original persons are notified as well as others. This
escalation procedure continues until either the
problem is resolved or Auditor is ordered to stop
monitoring the subsystem. The interval between
the time a message is sent and the time at which
the problem is escalated is usually ten minutes.
This interval may be longer or shorter, depending
upon the nature of the subsystem. If people are
not available to receive error messages {e.g., not
logged on), the messages are automatically sent to
the computer operator.

When Auditor restores a service by restarting a
subsystem, it sends messages and electronic mail
to the persons on the subsystem notification list.
If the subsystem is behaving properly during its
next testing period, messages are sent to the same
persons informing them of the current status. If,
however, the subsystem continues malfunctioning,
the error messages resume. If appropriate, the
subsystem is restarted. Problems and corrective
actions are summarized in Appendix A.

One of Auditor’s objectives is to assist in main-
taining high availability of subsystem services. To
achieve this goal, it may be necessary to take ac-
tions to restart subsystems that have stopped run-
ning. For example, when the user ID running a
subsystem is found not logged on to the system,
Auditor issues a command to automatically log
on that ID. Subsystems that are hung can usually
be restarted by several operating system com-

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

mands. The user ID running the subsystem is
logged off and then automatically logged on to
the system again.

Once the user ID has been automatically logged
on to the system, the subsystem is restarted. These
procedures, which are automatically performed by
Auditor, are the same as the actions usually taken
by a computer operator when such problems arise.
In all cases, Auditor sends electronic mail to the
owners or maintainers. A sampling of messages
to owners, maintainers, and operators is given in
Appendix B.

Special detection and recovery procedures

Subsystem-specific procedures to restore services
for other types of failures can be added to the
coliection of programs that perform the subsystem-
specific tests. For example, a batch processing
subsystem may be delayed because the job is
blocked for lack of sufficient disk space. The
subsystem-specific testing program detects blocked
jobs and issues commands to cancel a current job
and allow the next job to initiate.

Where it is not appropriate to automatically restore
a subsystem that has stopped working, an expert
may have to restore service. In this case, Auditor
sends messages to the owners or maintainers, as
just described. Then the subsystem may be at-
tached to special or dedicated hardware, and the
hardware needs to be reset manually by the expert.

Auditor performs only one restart per subsystem
per day. If a subsystem fails twice during the same
day, it may require expert intervention to restart
it. Repeated attempts by Auditor to restart a fail-
ing subsystem are unproductive. Auditor notifies
the proper personnel of the problem and indicates
that it will not try again to restart the subsystem.

Benefits

Auditor records in journals the subsystem failures
and its attempts to restore service. (Summaries of
such journals are given in Appendix A.) The
Night columns of these journals indicate that there
are a significant number of actions taken by Au-
ditor to restore services during the night. Many
of these actions were performed on weekends, al-
though they are not shown separately. If there
were no Auditor, many of these services would

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

not be available during these times, or they would
be delayed. Thus it is reasonable to conclude that
Auditor is performing useful services, as shown by
the large number of actions it has taken.

Auditor provides these services with minimal re-
source consumption. Measurements of CPU utili-

The subsystem-specific
testing program detects
blocked jobs, cancels a
current job, and initiates the
next job.

zation for accounting purposes for the six-month
period from September 10, 1983, through March
10, 1984, show that the average CPU time consumed
by Auditor per day during the prime shift (week-
days from 9 a.m. to 5 p.m.) for the three IBM
Research Center systems combined was 2.8 min-
utes of 3081 cPU time. This translates roughly to
1.3 cpPU seconds per subsystem per day for each
of over 130 subsystems monitored.

Additional auditing functions

Auditor has been successful because it has im-
proved the availability of services. However, it
could be further improved in the following ways.

The computer operator or a user should be able
to ask Auditor to test a subsystem when the person
becomes concerned that the subsystem may not
be working properly. Auditor could make the de-
termination and reply to the person concerned. A
prototype has been constructed that demonstrates
the feasibility of testing subsystems on demand.
A command called UP? can be executed by a user
to determine whether the network subsystems, the
batch processing subsystem, and several locally
defined services are functioning.

Auditor should also recognize that subsystems
may have particular schedules. Some subsystems

KOVED AND WALDBAUM 1 09

operate during particular hours of the day, whereas
others operate only on particular days of the week
or on holidays. The current method of handling

Monitoring software
subsystems is just one
aspect of improving
subsystem availability.

schedules is to modify a subsystem so that it
notifies Auditor when it wants monitoring to begin
and end.

Auditor could monitor resource consumption as a
way of determining the health of a subsystem. It
is a simple procedure to monitor CPU usage and
1/0 or spooling activity. Resource consumption
monitoring works best with subsystems that have
known characteristics and predictable minimum
or maximum consumption rates. This procedure
is done in a primitive manner by the Resource
Limiter.’

Auditor could place a telephone call to the proper
party on detecting a problem. Such messages
could be stored in a microcomputer or in the IBM
Audio Distribution System.® This method of
notification is desirable when those who are re-
sponsible for the subsystems are away from their
terminals.

Once a subsystem has been restarted, Auditor
should perform specific tests to ensure that the
subsystem has restarted successfully. Additional
automatic logons to restore a service can be done
per day per subsystem according to specified cri-
teria. Such criteria might include tests that sub-
systems have been running for more than specified
periods of time since the last automatic logon or
that subsystems pass functional tests.

Auditor should determine whether a subsystem
has stopped working due to insufficiency of disk
space or of other resources. Auditor could inform

110 «ovED AND WALDBAUM

the proper persons or make the additional re-
sources available automatically.

It would be better if subsystems could perform
self-diagnostics and report their findings to Audi-
tor. A subsystem is better able to determine
whether all of its components are functioning prop-
erly than is a general-purpose Auditor. A subsys-
tem has access to all of its internal tables and
program interfaces, which are inaccessible from
the outside. The diagnostic results returned to
Auditor could then be coordinated with the results
from other subsystems. Auditor would thus deter-
mine possible corrective actions in the case of mul-
tiple or interrelated failures.

Other forms of auditing

Monitoring software subsystems is just one aspect
of improving subsystem availability by on-line er-
ror detection. The principles outlined in this paper
can be applied to other computing elements (i.e.,
processors, memory, 1/O devices, etc.), although
the methods used to correct the problems or restore
services may be quite different.

At the 1BM Research Center, the Auditor principles
have been applied to the VM/370 I/O subsystem.
There is a problem when an 1/0 device does not
complete an 1/0 operation. Users who are waiting
for 1/0 operations to be completed are unable to
continue their work.

When hardware or software for a file migration
subsystem’ fails, users who are trying to access the
files are unable to do anything on their user IDs.
Since file migration may take up to several minutes,
the users are not immediately aware of the prob-
lem. A prototype auditing procedure detects the
failure and reports the problem. The 1/0 monitor
is also useful when terminals, disks, and tape units
have hardware failures.

The ability to monitor teleprocessing communica-
tion lines, printer status, and queues appears to
be in great demand by both computing center per-
sonnel and end users. An auditor could watch
communication line 10 counts, 1/0 rates, and error
rates for each line. While the number of line errors
is usually recorded by the teleprocessing programs,
they usually report neither excessive error rates
nor lines that have stopped transmission. The sta-
tus of a communication line may be critical for

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

heavily used routes in a communication network.
The failure or degradation of any of these 1/0 de-
vices should be brought to the attention of the
computing center staff so that they can remedy
the situation. If available, automatic corrective
actions are taken.

Printer operation is sometimes troublesome. A
user who wants to print a document usually
chooses a convenient printer and expects to see
the results after a reasonable period of time. Prob-
lems arise when there is a large queue for the
printer, when the communication link to the
printer has failed, or when the printer is not work-
ing. Once users realize that the printer is busy or
unavailable, they may not know how to reroute
the document to a printer that either is working
or has a shorter queue. An auditing procedure
can detect these problems before the document is
sent to the printer and can suggest alternatives.
The suggestion can make both the user and the
computing resources more productive.

At the operating-system level, auditing can im-
prove the availability and reliability of the system
by periodically checking system integrity.® Audit-
ing can check for consistency of control blocks
and data structures. It can ensure that hardware
is operating properly without excessive errors. It
can also look for system performance bottlenecks.
If a problem is found, appropriate personnel can
be notified and corrective actions taken.

Data base systems can also benefit from auditing
because their integrity is critical. Auditing is es-
pecially important for distributed data base sys-
tems.” An auditor can determine whether these
data bases are synchronized, and it can ensure the
integrity of the data. Ensuring the availability of
the communication links between data base sys-
tems is a major function of an auditor within the
data base network.

Auditing is valuable in a distributed computing
environment, such as a local area network that
contains dedicated server machines. Within
VM/370, an auditor is a virtual machine, but in a
network an auditor can be implemented as a real
machine that communicates with and tests the
servers via the communication medium. When an
error occurs, the proper persons can be contacted
via messages similarly to the way in which they
are notified on vM/370.

{BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Some of the auditing objectives mentioned have
been achieved in other systems. For example, the
No. 1 Ess' is an electronic telephone switching
system that contains a subsystem that performs
audit-like functions. Auditing enables the No. 1
ESS to maintain high availability in spite of hard-
ware or software failures. The No. 1 ESS auditing
functions are tailored to the specific needs of a
dedicated telephone switching system. Another
specialized auditor has been created for improving
the availability of a distributed data base system.’
In yet another case, YES/MVS,!! a real-time expert

Expert systems appear to be
an interesting approach to
improving the availability of
subsystems.

system, assists the computer operator of an IBM
MVS operating system. YES/MVS monitors job
queue space, performance, communication links
between computing systems, job scheduling, and
hardware and software errors. Expert systems ap-
pear to be a new and interesting approach to im-
proving the availability of subsystems and assisting
computer operations. Both of these specialized
auditors and the Auditor described in this paper
are similar in that they have the common basic
objective of improving availability. They differ
from one another in the goals and objectives of
their respective target systems.

Concluding remarks

Auditor has been used successfully at the IBM Re-
search Center, where it has detected thousands of
problems since it was implemented in July 1981.
The result has been improved availability of com-
puter subsystems. Usage at other IBM sites has
confirmed our findings. If subsystem problems are
quickly detected, services can be swiftly restored.
On average, Auditor can detect problems much
faster than a person using manual techniques. If
services are restored before users are aware of mal-

kovep anp watoeaum 111

Table 1 Monthly averages for System A averaged over eight months in 1982, twelve months in 1983, and two months in 1984

© Yes Logged-Off ~ Fallure ~ Stopped Restore2 Restorel Attempted Night
‘ ¥ 453 181 17.9 10.3 11 228
14.6 140 2.0 o228

19.5° 170 50 285

Table2 Monthly averages for System B averaged over eleven months in 1982, twelve months in 1983, and two months in 1984

- - F‘a,iluyre‘ ' 8topped , " Restore2 Restorel Attempted Night
315 285 154 120 08 55
385 361 213 78 48 30.9
550 4ls 320 365 Lo 475

Table 3 Monthly averages for System C averaged over one month in 1982, twelve months in 1983, and two months in 1984

Attempted -

‘Failure - Stopped Restore2 Restore1 " Night
570 430 260 490 1.0 1980
o382 16.3 322 . 0.6 320

o 800 22.5) 55.0) 0.0 50.0

functions, our goal of greater availability has been
achieved. Reliability may be improved by quickly
notifying responsible programmers of problems.
Since a programmer can see a problem more
clearly before rather than after a subsystem has
failed completely, there is a greater opportunity
for determining the cause of failure and correcting
the software. Once failure detection procedures
are automated, programmers spend less time mon-
itoring their subsystems. If a failure occurs, Au-
ditor detects the malfunction and alerts the pro-
grammers. Thus programmers can use their time
more efficiently.

With the information about subsystem failures
supplied by auditing, proper management deci-
sions are made as to which services need to be
improved and how to improve them. The infor-
mation leads to more cost-effective software de-
velopment and maintenance and to improved com-
puting center operation.

Acknowledgments

Many individuals have contributed in a variety of
ways to Auditor and to this paper. We thank

112 KOVED AND WALDBAUM

members of the Computing Systems Department,
who assisted with information about the operation
of vM/370 and the behavior of subsystems. Matt
Zekauskas implemented a second version of the
1/0 subsystem monitor that is used on the IBM
Research Center systems. Kevin McCallum wrote
a printer monitor that informs the operator when
a printer has stopped. Similar line monitors have
been implemented by persons elsewhere in IBM.
We thank Nancy B. Raisman for reading and ed-
iting the revisions of this paper and Judd Rogers
for his suggestions for improving its clarity.

Appendix A: Data from Auditor journals

Tables 1, 2, and 3 are three-year summaries of the
numbers of problems and corrective actions on
three IBM 3081 systems (A, B, and C) running
VM/370 at the 1BM Research Center. The meanings
of the columns are as follows:

® Logged-Off—Subsystem user IDs were found not
logged on. Auditor took no action to restore
service.

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Table4 Sampie preformatted messages from Auditor with description of actions taken

XYZ is not logged on, and automatic logging on is not to be done.

MSG FROM AUDITOR: XYZ is not logged on.

MSG FROM AUDITOR: AUDITOR will not autolog XYZ.
MSG FROM AUDITOR: Please take corrective action.

MSG FROM AUDITOR: Type AUDITOR ? for info on

MSG FROM AUDITOR: how to communicate with AUDITOR.

Auditor issues the command (AUTOLOG]) to automatically log on XYZ.
MSG FROM AUDITOR: XYZ is not logged on.
MSG FROM AUDITOR: AUDITOR will autolog XYZ at 09:14.
MSG FROM AUDITOR: Type AUDITOR STATE XYZ OFF to prevent
MSG FROM AUDITOR: the autolog.

When a user prevents an automatic logon (i.e., the user types AUDITOR STATE XYZ OFF), Auditor informs all concerned persons
that XYZ has been logged off.

MSG FROM AUDITOR: KOVED stopped AUDITOR from autologging
MSG FROM AUDITOR: XYZ.

Auditor performs an automatic logon.

MSG FROM AUDITOR: XYZ was not logged on so AUDITOR
MSG FROM AUDITOR: autologged it.

Mail is sent to the persons responsible for XYZ, informing them that an automatic logon was performed.

To: KOVED
From: AUDITOR 82/02/24 16:14:37

AUDITOR just autologged XYZ
XYZ has hung with a terminal read request waiting; Auditor will not attempt to restore service.
MSG FROM AUDITOR: XYZ is idle.
MSG FROM AUDITOR: XYZ will be forced off by VM
MSG FROM AUDITOR: in less than 15 minutes.
MSG FROM AUDITOR: Please take corrective action.

XYZ was hung; Auditor took actions to restore service—logged off and automatically logged on XYZ.

MSG FROM AUDITOR: XYZ was idle.
MSG FROM AUDITOR: AUDITOR forced it off and autologged it.

Mail is also sent to the persons responsible for XYZ, informing them that Auditor logged off and automatically logged on XYZ.

To: KOVED
From: AUDITOR 82/02/24 16:23:33

AUDITOR just forced off XYZ because it was idle.
AUDITOR then autologged XYZ.

A message is sent to responsible personnel when XYZ is logged on the system after it was logged off or hung.

MSG FROM AUDITOR: XYZ is now logged on.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1966 kovep AND waLoBaum 113

® Failure—Subsystem failures may have occurred,
but the subsystem did not log off nor was it
hung. Auditor took no action to restore service.
This condition is determined through the use of
subsystem-specific test programs.

® Hung—A subsystem was hung with a terminal
read request waiting. The subsystem was auto-
matically logged off within 15 minutes of wait-
ing. Auditor took no action to restore service.

® Restorel—Auditor successfully and automati-
cally logged on a subsystem user ID that was
found not logged on. This count is separate
from the Restore2 count.

® Restore2—Auditor terminated the user ID (pro-
cess) running a subsystem and automatically
logged it back on to the system to restore service.

® Night—These are Restorel and Restore2 action
data, taking into account actions after 5 p.m.
and before 9 a.m.

® Attempted—Auditor was unsuccessful in auto-
matically logging on to the system the subsystem
user IDs found not logged on. If Auditor had
been successful, the action would have been re-
corded either as Restorel or Restore2.

The events Logged-Off, Failure, and Hung are
mutually exclusive events, as are Restorel, Re-
store2, and Attempted.

Appendix B: Messages from Auditor

Table 4 gives samples of preformatted messages
sent to responsible owners, maintainers, or oper-
ators if problems or failures are detected. On
VM/370, the information is sent as multiple-line
messages in English, rather than programming jar-
gon, to convey the severity of the problem and
the Auditor commands. XYZ is the name of the
subsystem in the examples of Table 4. There is
an AUDITOR command for use in communicating
with Auditor from one’s user ID. AUTOLOG is the
VM/370 command to automatically log on a user
ID. FORCE is the command to terminate the run-
ning of a user ID.

Cited references

1. Virtual Machine|System Product General Information, Re-
lease 3, GC20-1838-3, IBM Corporation (June 1983); avail-
able through IBM branch offices.

2. Virtual Machine/System Product Remote Spooling Subsys-
tem Networking Program Reference and Operations Manual,
SH24-5005, IBM Corporation; available through IBM
branch offices.

114 KOVED AND WALDBAUM

3. N. Mendelsohn, M. H. Linehan, and W. J. Anzick,
“Reflections on VM/Pass-Through: A facility for interac-
tive networking,” IBM Systems Journal 22, Nos. 1/2,
63 —79 (1983).

4. Cooperative Viewing Facility ~General Information,
SC34-2151, IBM Corporation; available through IBM
branch offices.

5. D. M. Chess and G. Waldbaum, “The VM/370 Resource
Limiter,” IBM Systems Journal 20, No. 4, 424 —437 (1981).

6. J. D. Gould and S. J. Boies, “Speech filing—An office
system for principals,” IBM Systems Journal 23, No. 1,
65—81 (1984).

7. IBM 3850 Mass Storage System (MSS) Principles of Op-
eration: Theory, GA32-0035, IBM Corporation; available
through IBM branch offices.

8. G. Waldbaum, Audit Programs—A Proposal for Improving
System Availability, Research Report RC-2811, IBM
Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598.

9. W. Kim, Auditor: A Framework for High Availability of
DBIDC Systems, Research Report RJ-3512, IBM Thomas
J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598.

10. R. W. Downing, J. S. Nowak, and L. S. Tuomenoksa,
“No. 1 ESS maintenance plan,” The Bell System Technical
Journal XLIII, No. 5, Part 1, 1961 — 2019 (September 1964).

11. J. H. Griesmer et al., YES/MVS: A Continuous Real Time
Expert System, Research Report RC-10461, IBM Thomas
J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598.

Lawrence Koved IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Since 1982, Lawrence Koved has been a member of the
Computing Systems Department at the IBM Research Center.
Mr. Koved is the designer and developer of several prototype
interactive conferencing systems that have become the Cooper-
ative Viewing (CVIEW) facility. He is also one of the major
contributors to the design and development of the IBM PC
XT/370 computer that runs VM/PC and communicates with a
VM/370 host. For each of these projects, Mr. Koved has re-
ceived Outstanding Technical Achievement Awards. He is cur-
rently a Ph.D. candidate in the Computer Science Department
at the University of Maryland, College Park. Mr. Koved re-
ceived his B.S. in computer science from Union College,
Schenectady, New York, in 1981, and his M.S. from the Uni-
versity of Maryland in 1985.

Gerald Waldbaum IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Dr. Waldbaum is a senior manager responsible for ad-
vanced workstation projects and services. His development or-
ganization prototyped and helped develop several products,
including PC/VM Bond, the Cooperative Viewing (CVIEW)
facility, and the VM/370 Resource Limiter (RESLIM). His
organization assisted in the development of VM/PC for the
XT/370. His service organization provides consulting, internal
PC hardware and software sales, and assembly and repair ser-
vices to workstation users at the Research Center. Dr.
Waldbaum also helps manage a company-wide disk and
conferencing facility for sharing IBM personal computer infor-
mation and internally developed software. From 1959 until
1966, when he joined the IBM Research Division, he was a

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

member of the technical staff at Bell Telephone Laboratories.
There he worked on the design and development of the No. 1
Electronic Switching System. Dr. Waldbaum has taught com-
puter science at Iona College Graduate School of Business; he
is coauthor of the book Electronic Switching Theory and Circuits.
He received his B.A. and B.S.E.E. degrees from Columbia Uni-
versity and his M.S.E.E. and Ph.D. in operations research from
New York University.

Reprint Order No. G321-5265.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986 kovep ano warbsaum 115

