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Performance of the  Vector  Facility of the  lBM 3090 
processor is discussed.  The  paper  has  two  parts, 
the  first  presenting  factors  affecting  performance 
measurement of the Vector  Facility and the  criteria 
for its design.  In  the second part,  use of the 3090 
storage  hierarchy to support the  vector  processing 
implementation is the  main aspect of the 
discussion. 

T he introduction of the IBM 3090 Vector Fa- 
cility  system not only represents IBM’S entry 

into large-scale  vector  processing, but also 
introduces a unique approach  to the integrated 
structure of a vector  processing  system.  Significant 
factors in the  system  design  of the Vector Facility 
include the following: 

Use  of an established high-performance system, 
the IBM 3090 computer, as a base upon which 
to build a vector  processing  system 
Use  of the 3090 storage hierarchy to support 
vector  processing operations on all  models, par- 
ticularly the advantage obtained from use  of the 
cache, or high-speed  buffer,  of the 3090 storage 
hierarchy 
Support of tightly coupled multiprocessor vector 
processing, resulting from adding the Vector 
Facility as a feature to the base multiprocessor 
configurations of the 3090 Models 200 and 400 
(The ability to  support multiprocessor vector 
processing  using the 3090 storage hierarchy is 
largely a result  of  the  cache storage hierarchy 

of the 3090, with a shared main storage and a 
dedicated cache buffer storage for each Central 
Processor, or dp.) 

This paper discusses the performance of the IBM 
3090 processor  with the optional 3090 Vector Fa- 
cility.  We  focus the discussion on what we believe 
are two of the most significant aspects of the sys- 
tem  design. The first  is the use  of application 
performance criteria as the  basis for product design 
and evaluation. In  Part I of the paper, the factors 
affecting job performance are explored, which 
leads to a discussion of the metrics of vector per- 
formance measurement, specifically the use  of 
MFLOPS (millions  of floating-point operations per 
second) measures. Finally, we describe the ap- 
proach used on the 3090 Vector Facility for making 
product measurements, consistent with the evalu- 
ation framework of application performance. In 
this part of the paper, the intent is to provide 
insight into the 3090 Vector Facility product and 
a characterization of its performance. 

The second  key aspect of the system  design, on 
which we focus in Part I1 of the paper, is the use 
of the 3090 storage hierarchy to support the vector 
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Figure 1 Vectorization  terminology 
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processing implementation. This design is an ele- 
ment of the balance that follows from using ap- 
plication performance as the design and evaluation 
criteria. We discuss the factors which make it fea- 
sible and  appropriate for the 3090 to have a cache- 
based vector implementation. We  discuss the anal- 
ysis  of storage demand parameters for vector jobs, 
then discuss the analysis of vector loop perfor- 
mance on a cache system. Finally, we illustrate 
an analysis of vector loop performance with  ex- 
amples of matrix multiplication. 

Part I -Application  performance 

From the viewpoint  of  system  design implications, 
the most significant aspect of the 3090 Vector Fa- 
cility  was the objective  of providing a balanced 
system implementation. What this means,  very 
simply,  is that the Vector Facility was not intended 
to be the fastest possible vector processing hard- 
ware. Rather, the objective  was to complement 
the scalar performance of the 3090 system with a 
level  of vector processing capability justified by 
application characteristics, without limiting multi- 
processing configurations and opportunities for 
parallel processing that  are inherent in the basic 
system  design. This required that a context, or 
framework, of evaluation be established early in 
the design. It required that the analysis and eval- 
uation of the product, as it progressed through 
implementation, be conducted within that estab- 
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lished framework. For the 3090 Vector Facility 
system, this framework for evaluation was the per- 
formance obtained by computationally intensive 
application programs. 

This context was established during the product 
definition, consistent with the balanced  system ap- 
proach, and was  used in establishing product ob- 
jectives. Such a framework for evaluation implied 
that the product was not  to be designed for, nor 
evaluated by,  peak performance specification or 
loop measurements. The performance of applica- 
tion programs is  the performance of complete ap- 
plication codes, such as structural analysis, fluid 
dynamics applications, or seismic  processing, and 
solving problems of  significant  size, including not 
only the computations needed to solve the problem, 
but also the I/O, data manipulation, and other 
noncomputational data processing  typically found 
in large production applications. 

With application performance established as the 
criterion for product evaluation, it was  necessary 
to build a set  of sample engineering/scientific ap- 
plication programs for use in product measure- 
ment. Measurements on the finished product pro- 
vide a means of evaluating the product against its 
objectives, but just  as importantly, they also serve 
as a means for setting expectations for potential 
users, who may  observe a confusing terminology 
and overwhelming variation of numbers applied 
to the performance of  high-speed  engineering/ 
scientific computer systems. 
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Applkation performance  factors 

The computationally intense nature of  engineering 
and scientific application programs results from 
iterative mathematical computations on sets of 
data. These applications also contain code to man- 
age and manipulate data, perform I/O operations, 
initialize data values, and report or summarize the 
solution results. The portions of an application 
that may  be able to make use  of vector hardware 
are the iterative computations on  array  data which 
are typically found in the loops coded as FORTRAN 
DO statements. The performance improvement of 
an application on a vector  processor  derives from 
the improved speed  of performing loop computa- 
tions using the vector hardware. The proportion 
of scalar execution  time spent in such loops, com- 
pared to the full scalar execution time  of the ap- 
plication, is  called the vectorizable fraction for the 
application problem. 

The improved execution  time for the application 
problem results from the collapsing of the execu- 
tion time  of  vectorizable loops. Figure 1 illustrates 
this simple relationship and defines the terminology 
of vectorization used in this paper. The factor by 
which the execution time  of a vectorizable loop 
improves when the vector instructions and  hard- 
ware are used  is  called the loop speedup ratio, or 
the vector/scalar ratio. 

The relationship between an improvement in loop 
execution time and the overall improvement in 
application problem execution time is shown in 
Figure 2. It plots vector application performance 
(compared to the performance of a scalar version) 
as a function of vectorization percentage, for sev- 
eral vector/scalar ratios. 

Another view  of the same relationship may be 
seen in Figure 2 of the paper in this issue by Gib- 
son et al.' These  curves illustrate the relationship 
known as Amdahl's  Law,2  which states that the 
overall speedup factor S for an application is de- 
termined by the relationship 

1 S =  
(1 "f) + f l s r  

wherefis the vectorizable fraction for the appli- 
cation and sr is the loop speedup factor obtained 
by moving computation to the vector hardware. 
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Figure 2 Vector  processing job speed improvement 

This fundamental relationship is the key to all 
aspects of vector system performance analysis, 
from setting design  goals, to projecting the perfor- 
mance  of individual benchmarks, to analyzing the 
results  of  specific benchmark measurements. 

One  of the key  design considerations for the IBM 
3090 Vector Facility was the goal for a vector/ 
scalar ratio, and one of the main factors in deter- 
mining the goal was  the range of application 
vectorizability  projected for anticipated 3090 Vec- 
tor Facility applications. On the basis of applica- 
tion studies and analysis of the role  of  vector  speed 
in application performance, the design goal for 
the 3090 Vector Facility was established as a 
vector/scalar ratio in the vicinity  of four, optimiz- 
ing the design for the midrange of application 
vectorizability.' It is important to note, from a 
performance perspective, that while the design 
goal was oriented to the midrange of 
vectorizability, the resulting product has good 
price/performance for applications well into the 
high  vectorizability range. One  of the reasons for 
this is that the design goal was compatible with 
the  use  of a cache storage hierarchy for vector 
operand delivery, making it feasible to build a 
vector  system  based on the 3090 processor and its 
storage hierarchy. We  examine this aspect of the 
system  design and look at some  of the sensitivities 
it produces in Part I1 of this paper. 
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Product measurement 

3090 Vector Facility performance was measured 
in order, first, to provide validation that the system 
performs as  it was  designed to perform, and sec- 
ond, to set general expectation levels for potential 
users  of the system through publication of perfor- 
mance data at the time  of product announcement. 
The methodology was to measure application pro- 
grams similar to, or sampled from, the ones cus- 
tomers would actually run  on the system.  While 
measurement of short loops is useful in the detail 
of processor  design, it is our view that measurement 
of real application codes is the way to judge a 
system, and  that expectations for potential cus- 
tomers should be stated in terms that  can be re- 
lated to the applications they  might run. 

Two approaches may be taken to stating measured 
performance: (1) measuring results of standard  ap- 
plication problems relative to the same problems 
running on known, predecessor  systems, or (2) 
measuring results in some absolute terms of  work 
per unit of  time. IBM processor performance for 
commercial workloads, such as batch processing, 
time-sharing, or transaction processing,  is pub- 
lished today in terms of relative performance using 
standard measurement workloads. The metrics in- 
clude Internal  Throughput  Rate (ITR) ratio, a mea- 
sure of  work  accomplished per unit of processor 
time, and External Throughput  Rate (ETR) ratio, 
a measure of  work per unit of  elapsed time.334 

The use of instruction execution rate, or MIPS (mil- 
lions of instructions per second), has proven to be 
unsatisfactory for describing  processor perfor- 
mance, simply  because an instruction is not a unit 
of  work that can be correlated to the external 
function of a transaction or application. The IBM 
370/XA vector architecture offers an excellent  ex- 
ample; while the speed of solving the application 
problem improves, the number of instructions 
needed to perform a computation is significantly 
lower  using vector instructions (because one in- 
struction performs many operations). 

MFLOPS as a metric. For scientific and engineer- 
ing applications, there exists a usable, though by 
no means perfect, measure for computational 
work. This measure is the count of computational 
floating-point operations which the application 
performs, i.e., the Floating-point Operation (FLOP) 
count. Calculating the rate of floating-point op- 
eration execution yields MFLOPS, or millions  of 
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floating-point operations per second. The problem 
with MFLOPS as a metric, however, is that it can 
be, and has been, applied indistinguishably in at 
least three different contexts: 

A full application job (JOB-MFLOPS) 
0 The loop instructions or computational kernels 

The hardware design of the vector instruction 
within an application (LOOP-MFLOPS) 

execution element (PEAK-MFLOPS) 

In addition to being  used to describe the execution 
speeds  of jobs, loops, or instructions, MFLOPS is 
also used as a system rating or  as a general yard- 
stick  of  system capacity, in statements of  system 
requirements from customers. MFLOPS has gener- 
ally  been applied as a processor rating to a single 
processor; when it is used to describe the capacity 
of multiprocessor systems, additional qualification 
is needed to distinguish throughput capacity (mul- 
tiple jobs running concurrently) from single-job 
parallel execution capability, where the measure 
of concern is the elapsed time  of a single job. The 
precision  of meaning that is lacking in the use  of 
MFLOPS terminology is one of the main advantages 
of the ITR and ETR metrics. 

JOB-MFLOPS. The number of computations 
needed to solve a problem may, within  limits, be 
viewed as  an indication of  the computational size 
of the problem, or as a simple “weight” for the 
problem. In the context of a problem plus the 
mathematical approach  and solution method(s) 
used to solve it, the  essence  of arriving at a solution 
is to perform the computations; the rate at which 
computations are performed in  solving  the partic- 
ular problem can provide an expression of speed 
of  solving the problem. It is the speed at which 
an engineering/scientific problem can be solved 
that is ultimately  of concern to the owner  of  the 
problem. 

JOB-MFLOPS, however,  is a time-dependent mix- 
ture of vector loop speeds, scalar loop speeds, and 
scalar serial speed, meaningful only in the context 
of  the particular job under study. It is not a con- 
stant across all jobs,  as illustrated by the 
JOB-MFLOPS data which are presented in Table 1. 
The variability of job content is demonstrated by 
two jobs with approximately the same level of 
vectorization (Seismic  Analysis and Black-Oil  Res- 
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Table 1 SEAP application  benchmark  measurements 

3090 Single-Job  Measurements 
___~ 

SEAP Application  Percent  Vectorizabie’ ITR Ratio 
VectocScalarz 

Vector 
JOB-MFLOPS’ 

Static Structural  Analysis 

Black-Oil  Reservoir  Simulation 

82 

80 

2.03 

2.35 

14.7 

8.4 

Seismic Analysis 82 2.65 16.9 

Buckling  Analysis 60 1.57 8.5 

1 Calculated using processor times of both vector and scalar versions of each job, plus Vector Facility usage time, reported by SMF system accounting: 

T, - (T ,  - 
%V = 

where T, = scalar version total processor time, T, = vector version total processor time,  and Tu = vector usage processor time of vector version 
Ratlo of applicatlon tmes. 3090 running scalar version compared to 3090 VF running vector version. ’ For vector version, Job floating-point operatlon  count (FLOPS), in millions, divided by processor time. 

T, 
Tu) x l o o  

ervoir  Simulation)  having  significantly  different 
JOB-MFLOPS, whereas  two jobs with  dissimilar 
vectorization  (Buckling  Analysis and Black-Oil 
Reservoir  Simulation)  have  comparable 
JOB-MFLOPS values. In the  context of a particular 
job, however,  the  measure  does  represent  one  per- 
spective of what  is  sometimes  called  sustained, or 
effective, computational speed. JOB-MFLOPS can 
be calculated  from the job FLOP count and the 
processor  execution  time for the job,  as illustrated 
in the  measurement data in Table 1. While  the 
figure  is  calculable, if the FLOP content of  the job 
is  known, we have not found it  to be  useful. It 
may  be  observed  from  Table 1 that the job per- 
formance  improvement, that is, the ITR ratio in 
going  from  scalar to vector,  does not correlate to 
the JOB-MFLOPS for the applications we have  ex- 
amined. 

One of the  drawbacks of  using JOB-MFLOPS as a 
measure of job performance  comes  from the fact 
that the  floating-point operations (FLOPS) per- 
formed in a job are in general  difficult or impossible 
to count. For a simple loop, the  number of oper- 
ations can be counted by inspection or calculation, 
but for a large,  long-running application, the count 
is  often unobtainable in  environments other than 
the laboratory. Job FLOP counts were obtained in 
the lab for the jobs in our benchmark  measurement 
set, and JOB-MFLOPS for  some of  these jobs are 
shown later in this  paper. 
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Sustained JOB-MFLOPS is a function not only of 
processor  speeds but of  individual application con- 
tent and structure, and shows  wide  variability as 
a result. It is  therefore  impossible to assign a sin- 
gle MFLOPS rating to a system,  even  sustained 
JOB-MFLOPS, as a basis for comparing  the  perfor- 
mance  of  systems. 

LOOP-MFLOPS. LOOP-MFLOPS is a measure  of 
execution  speed for a subroutine loop or code  ker- 
nel. Understanding the performance of the code 
utilizing  the  vector hardware, that is,  the  vectorized 
loops,  is  crucial to understanding what the perfor- 
mance of an application will  be. Measurements 
or estimates of loop performance are useful in 
projecting  the  performance of full application pro- 
grams, if something  is  known about their 
vectorization potential. The  projection  is not a 
simple  linear  relationship,  however, as illustrated 
by the  curves  showing  Amdahl’s  Law in Figure 2. 

Analysis and measurement of loop speed are also 
useful in analyzing  the  sensitivities  of  vector  system 
performance, as long as it is  qualified that the 
observed loop speeds  will  always  be dampened in 
application measurements by the nonvectorized 
portions of the application. An  analysis of matrix 
multiplication loop speeds  is  presented in the sec- 
ond part of this  paper, for example, to illustrate 
the  effect of cache  usage and vector  register  reuse 
on loop performance.  The data are summarized 
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in LOOP-MFLOPS terms, although even here the 
use  of the MFLOPS metric is not crucial to the 
analysis of the sensitivities. 

Loop measurement is particularly difficult on the 
3090  Vector Facility, since loop measurement tech- 

Peak execution rate  is more 
a description of the product 
design than a definition of 

performance. 

niques have often removed the full data-model 
context in  which the computational logic  of a loop 
would operate in an application. Loop measure- 
ments, therefore, are subject to the cache behavior 
the loops create on small arrays of data  and usually 
do not reflect accurately the effect  of the cache 
storage hierarchy on full application performance. 

Measures of loop performance which are taken 
out of  context-out  of the context of  the application 
in which the loop is found, its vectorization per- 
centage, and its cache behavior on large data  ar- 
rays-can be misleading. Measures of loop perfor- 
mance, or similar measures of functional kernels, 
do  not provide a valid  basis for comparison of 
vector  processing  systems. Much measurement of 
loop performance has unfortunately lost the con- 
text in which it started, becoming data without a 
frame of  reference. Published reports of measured 
loop performance, often without a frame of  refer- 
ence,  may carry the implication that users’ job 
performance expectations can legitimately  be  based 
on the relationships seen in loop results.  Amdahl’s 
Law  clearly illustrates the inaccuracy of such an 
implication. 

Peak MFLOPS. The final step in  removing the 
application context from the discussion  of perfor- 
mance is to define the instantaneous maximum 
speed at which the hardware could possibly oper- 
ate, based on its design. This is called  peak MFLOPS. 
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It assumes a time during which operations match 
perfectly  with the capability of the system to over- 
lap multiple functional elements of the vector hard- 
ware and operand delivery  mechanisms. Peak 
MFLOPS is basically a value calculated using the 
system  cycle  time and a definition  of the vector 
hardware design. Peak MFLOPS bears little relation 
to sustained application performance, except that 
the former will  be significantly higher than the 
latter. In the 3090  system  with Vector Facility, 
the vector element  of each processor can perform 
two computations per system  cycle  when  executing 
a compound vector instruction (several are defined 
by the architecture), which leads to the conclusion 
that each processor has a maximum instantaneous 
execution rate of 108 MFLOPS.’ However, the peak 
execution rate is more a description of the product 
design than a definition  of performance. 

Benchmark selection and  measurement. On the ba- 
sis  of the disadvantages of  using MFLOPS termi- 
nology and the advantages of  using Internal 
Throughput  Rate (ITR) ratios, as discussed above, 
the latter method was chosen for describing the 
performance of  the  3090  Vector Facility product. 

In  order to perform product measurements, a set 
of application programs was  collected and  ana- 
lyzed for suitability as  laboratory benchmark ap- 
plications. These application programs were as- 
sembled from a variety of  sources, including 

Public domain codes 
Customer benchmark jobs 
Customer production or research applications 
obtained under special agreements 

0 Licensed application software packages, to- 
gether with customer problem data  or vendor- 
supplied benchmark data 

A large number of applications were collected, 
from which a benchmark set  was established rep- 
resenting the types  of workloads expected to be 
run  on the 3090  Vector Facility system. The se- 
lected applications became the Scientific/Engi- 
neering Application Program (sEAP) set. 

Measurements of the jobs in the SEAP application 
set  were performed in a variety  of environments, 
reflecting the diversity implied by a need to measure 
the system on the basis  of application performance. 
Measurements of scalar versions  of the programs 
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were made on both the IMM 3081 and 3090 com- 
puter systems to provide bases of comparison  for 
the vector versions. 1 hchc dlso serve as  a base for 
comparing the parallel versions of a subset of the 
jobs. Both the parallcl scalar and serial vector 
versions of the jobs serve in  turn  as the bases  of 
comparison for parallel vector measurements. In 
all cases, measurement was conducted for  appli- 
cation programs, consistent with  the overall prod- 
uct evaluation framework. Data for the full set of 
benchmarks were publihhed at the time of product 
anllouncement.6 Additioual nxasulelnent  data  are 
normally published by the ISM marketing divisions 
as the data becorlle available. 

Individual job rnea~urements were made to  estab- 
lish specific application performance levels for 
each job. Nonparallel jobs made use of only one 
processor in the Model 200 configuration for the 
initial runs; they  were later r u n  on the Model 180 
uniprocessor. Parallel jobs were run using all the 
processors in the configuratlon. Table 1 presents 
a subset of the single-job rlleasurement data  as 
published by the time of writing (December 1985). 
On the basis of the published parameters of FLOP 
counts  and processor execution time, JOB_MFLOPS 
can be calculated as job FLOP content divided by 
processor time. 

For capacity measurenlrnts, use  of multiple pro- 
cessors in the Model LUO and 400 configurations 
was acconlpllshed by running multiple copies of 
the jobs  to create multijob environments. Multiple 
processor measurement data yielded  low degrees 
of elongation experienced by vector applications 
in environments with multiple central processors, 
thus confirming the value of  the 3090 storage h- 
erarchy for multiple-processor vector processing. 

Implications of appilcatlon criteria 

In t h s  part of the paper, we have examined the 
performance of the 3090 Vector Facility product, 
with the intent of providing insight into how the 
objective of a system designed for  application per- 
formance was carried into the design, implemen- 
tation,  and  evaluation of the product.  The 
significance of using application performance cri- 
teria for design and  evaluation is  reflected in many 
of the characteristics of the product and the data 
with which i t  was introduced. These implications 
include 
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0 Publication of application performance data 
with the  product  announcement 
Vector unit speed balanced for midrange vector- 
ization 

0 Use  of a cache-based storage hierarchy to sup- 
port vector processing 
Construction of a benchmark measurement set 
of application  programs 

0 Emphasis on  total system throughput capacity 
as well as on individual job performance 
Measurement of multiple versions of many ap- 
plications, covering scalar, vector, serial, and 
parallel 

Part II - Vector  performance  with 
the 3090 cache  storage  hierarchy 

One of the most significant aspects of the 3090 
Vector Facility system design  is the use  of the 
3090 storage hierarchy to supply operands to the 
vector processing execution element in the proces- 
sor. The use  of the cache to supply operands  from 
storage to the processor may  seem obvious to one 
familiar with IBM large-system processors, for the 
use of a storage hierarchy with a cache, or high- 
speed buffer, has been well-established since the 
late 1960s.' Vector processing systems, however, 
have not been cache-based for vector operand 
data. Vector operands  are transferred directly be- 
tween the vector execution element and main stor- 
age in many other vector processing systems, even 
those which  employ a cache for scalar operands 
and/or instructions. 

The use of a high-speed cache buffer is a proven 
technique for achieving high performance in large 
computers.  The cache is a small high-speed mem- 
ory which  services most storage requests from the 
processor, in combination with a large main mem- 
ory  which takes longer to access, but which  is 
needed for only a small percentage of the processor 
storage requests.' 

The use  of the cache principle for the 3090 Vector 
Facility is based on several factors: 
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The  ability  of  the  cache to supply operands to 
the vector  processing  execution  element at  an 
adequate rate 
The operand addressing patterns of  engineering/ 
scientific  codes,  which  produce  observed  oper- 
and reuse and adjacent-data line  reuse for op- 
erands in the  cache 
The advantages that accrue  from the use  of a 
common storage hierarchy  with  the  base 3090 
system,  which  include  a  storage  hierarchy  de- 
signed to support not only  uniprocessor 
configurations, but also two-way and four-way 
multiprocessing, as well as benefits of 
configuration and migration  flexibility 

In this portion of the paper, we explore the per- 
formance  characteristics and sensitivities  of the 
IBM 3090 Vector  Facility,  with  emphasis on those 
related to its cache-based structure. In laboratory 
analysis  of application performance, it has been 
beneficial to decompose  a  complete application in- 
to vectorizable and nonvectorizable portions, and 
examine the characteristics of each  separately. 
This  examination  can be approached both analyt- 
ically and with  measurement.  Insight into the  per- 
formance  characteristics and sensitivities of the 
3090 Vector  Facility hardware can be obtained, 
using  simple  models, by analyzing  those portions 
of the applications in which  vector instructions 
are executed.  The  performance of loops from sam- 
ple applications has  been  analyzed in order to un- 
derstand performance  sensitivities of coding vari- 
ations. The  vector and scalar  execution  times for 
loops of varying  characteristics  have  been  analyzed 
in order to project the overall application speedups 
which  result  from  improved  performance in loops. 

Use of the  cache  storage  hierarchy 

The use  of the 3090 cache for vector operands is 
feasible based on the  performance  design point of 
the 3090 Vector  Facility. To achieve  a  vector/ 
scalar loop speedup  goal in the  vicinity of 4,' com- 
pared to a 3090 scalar  processor that can perform 
a  floating-point operation in three or more cycles,' 
a  vector  execution  element  capable of performing 
one to two  floating-point operations per  cycle  is 
required. In the 370 Vector  Architecture,  a  vector- 
register architecture, operations that involve stor- 
age  require  a  storage  delivery rate of one  vector 
operand per  cycle. For  data contained in the  cache 
of a  processor,  the  cache has the  ability to supply 
one 64-bit operand per  cycle to the  vector  execution 

CLARK AND WILSON 

element. Data may be stored at the  same rate 
from the vector  element into the cache. This is 
true for each  processor in the  configuration in the 
case of a  multiple  processor  complex-transfers 
between  processor  execution units and processor 
cache can go on simultaneously at the rate of an 
operand per  cycle for each  processor  in the 
configuration.  The  delivery rate of operands com- 
ing  from  main storage as a  result of a  cache  miss 

The  delivery rate of operands 
coming from  main storage is 

a key factor  in vector 
performance. 

is also a key factor in vector  performance. The 
rate of data transfer is  again  one  double-word 
operand per  cycle during data movement,  but 
main storage access  times can lower the effective 
transfer rate for data not in the  cache. To coun- 
terbalance  the  effect of such  delays,  there are, in 
the 3090  Vector  Facility  system, optimizations of 
main storage operand delivery,  which can improve 
the  effective rate at which  vector operands move 
from main storage to the central processor  vector- 
processing  execution  element. 

Optimization of storage  operand  delivery. For Sys- 
tem/370  scalar  code, instructions used in floating- 
point or binary computational code  reference at 
most  one operand from storage, and it is generally 
a  double  word  (eight  bytes) or a  word (four bytes) 
in length. In the  case  of  vector instructions, a 
much  larger amount of data is referenced by each 
instruction. The storage references  implicit in a 
single  vector instruction provide information that 
can be  used for optimization of the system  design, 
just as the  knowledge that multiple computations 
must be performed for a  vector instruction allows 
efficient implementation of pipelined  vector arith- 
metic  components.  If  required operands are in the 
cache,  they can be supplied to the vector  execution 
element as fast as they are needed.  When  required 
operands are not in the cache,  optimization  of 
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delivery  may  occur  based on the  knowledge that 
many operands are needed, a form of pipelining 
of  main storage requests. In the 3090 Vector Fa- 
cility  system,  this optimization of storage operand 
delivery has two  modes  of operation. They  apply 
to vector operations at Strides 1 and 2 when op- 
erands are not in the  cache.” It is at these  strides 
that the  most  benefit  is obtained, since data are 
transferred  between  main storage and the  processor 
in groups of contiguous operands called  cache 
lines. 

The optimization of main storage operand delivery 
has two  components.  The  first  is  prefetching, 
effectively an anticipation of  the  need for operands 
before  the  vector  element  actually  needs  them. 
Both  optimization  modes  employ  prefetching. The 
second  component  of  optimized  delivery  is  direct 
delivery of operands from  main storage to the 
vector  element as well as  to cache.  This component 
is  used  when  the rate of operand delivery  from 
main storage matches  the  one  per  cycle  needed by 
the  vector  element.  The  effect of prefetching  plus 
direct operand delivery  is to give  more  stable  vec- 
tor loop performance  over variations of data- 
in-cache and data-not-in-cache situations. For 
Stride 1 or 2 vector operations which  miss  the 
cache, and for which  the rate of operand delivery 
from  main  storage  does not match the rate of 
processing in the  vector  element, an optimization 
mode that uses  prefetching  only  is  employed. In 
these  cases,  prefetching  is initiated, but the data 
are placed in the  cache, and the  processor, on 
behalf  of  the  vector  element, obtains the operands 
from  the  cache.  The paper in this  issue by  Tucker’ 
provides  more  description of  these optimization 
modes. 

Analysis of job performance parameters 

The operand delivery  ability of the 3090 cache 
makes it feasible to use the  cache to supply  the 
vector  execution  element  with operands, and 
prefetching  reduces the delays  associated  with  miss- 
ing  the  cache.  However,  the  cache storage hierar- 
chy  concept  really  works  only if the  cache  can 
service a significant portion of the operand require- 
ments for the processor,  shielding  main storage 
and thereby  keeping  the  demand on main storage 
within the limits for which it was  designed.  The 
ability of the  system to achieve  multiprocessor 
vector  performance also results  from  the  cache 
serving as a dedicated  high-speed  memory  for 
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much of the data needs of each  processor,  allowing 
shared  main storage to serve  the  multiple  proces- 
sors  in  the  configuration. 

The support of the argument that the  cache  really 
works and is an effective  design for 3090 vector 
processing  lies  in the cache  performance parame- 
ters of the  vector  applications,  specifically in the 
cache hit ratios achieved by the  vector  benchmark 
jobs. Before  the data are examined, it is  worthwhile 
first to take a closer look at the concepts of locality 
of reference and data reuse in the context of vector 
operations. 

Locality of reference  is  the  phenomenon upon 
which  caches  work.  When a request  is  made from 
storage for operand data or instruction data, the 
probability  is  good that the  same data  or closely 
adjacent data will  be  referenced in the  near future. 
When  the  processor  needs data  that are not in the 
cache,  those data and an adjacent set of data are 
placed in the  cache on the  assumption that some 
of the data will  be  used  in a short time.  Reuse 
means that a data request  can be satisfied  from 
the  cache  because  the data were  recently  used.  If 
the data in question are instruction data, locality 
of reference and reuse are common  because  of the 
iterative loop nature of the  code. 

For operand data in vector operations, locality of 
reference  is  often  more than a probability-it  may 
be a certainty. In some  cases, the use  of adjacent 
operands may take place  within the operation of 
a single instruction. Operations at Stride 1, for 
example, use contiguous storage operands. The 
cache  does not provide  any  “locality of reference” 
advantage for a Stride 1 instruction where  oper- 
ands must be brought from  main  storage. In fact, 
in  the  previously  discussed  optimization of deliv- 
ery, operands are supplied to the  vector  execution 
element as they are brought from  main  memory. 
The operands are also put into the  cache to take 
advantage of the  reuse that may  occur  from  ref- 
erences to the same operands in subsequent in- 
structions. 

Subsequent instruction locality of reference  with 
reuse of operands in the  cache  is  the  type  where 
the  cache  provides  benefit and the  type  also  seen 
in computational code, and thereby in vectorized 
loops. It may  result  from  the load-update-store 
logic of computation upon an array, or from the 
repeated use  of one  vector  from storage in a series 
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of computations, while another vector is stepped 
through an array. Examples  of such locality  of 
reference and reuse  of operands from the cache 
are exhibited by the matrix multiplication examples 
given later in this paper. 

For vector operations at higher strides, a set  of 
adjacent data is placed in the cache (if it is not 
already there) for each operand requested by the 
vector execution element. In Stride N vector op- 
erations resulting from operating on a matrix row, 
locality of reference often comes from subsequent 
operation on adjacent rows. This type  of  reference 

there is only one operand “cache miss.” For con- 
sistency, we assume that every operand should be 
counted as a storage reference and consequently 
as a hit or a miss; therefore, the rest  of the oper- 
ands  in the storage line must be counted as “hits,” 
even though strictly speaking the operands are not 
supplied by the cache. However, the rest  of the 
operands in the cache line are available to the 
vector execution element as a result of the cache 
hierarchy storage organization of the system, so it 
is not entirely inaccurate to label them as “cache 
hits.” 

Measured cache hit  ratios 
have shown a decrease when 

running  vectorized 
applications. 

pattern is exhibited by the Stride N matrix multi- 
plication example later in this paper. 

Cache  hit  ratios. Quantification of the degree  of 
cache usage is often made in terms of cache hit or 
miss ratios. It is desirable to quantify cache  usage 
for vector applications also, but there are some 
terminology considerations that should be ad- 
dressed. The term “cache hit” has a slightly 
broader meaning than a strict interpretation as  an 
operand that is fetched from the cache. In addition, 
expectations concerning cache hit ratios need  some 
adjustment based on differences  between vector 
code and scalar code. 

Counting the number of operands furnished by 
the cache is complicated by the nature of  vector 
instructions and the locality of reference inherent 
in Stride 1 or 2 vector operations. The prior dis- 
cussion of main storage operand delivery optimi- 
zations implies that Stride 1 or 2 operands not in 
the cache at the beginning  of an instruction are in 
fact supplied to the vector  element  directly from 
main storage, and  not from the cache. For each 
cache line  of data brought from main storage, 

The “miss” count is an accurate reflection  of the 
demand placed on main memory for vector oper- 
ands. The number of cache misses that occur is a 
parameter that can be modeled, can be measured 
with laboratory monitors, and  can provide a basis 
for comparison of main storage demand rates be- 
tween applications. Miss counts may  be turned 
into miss ratios or converted to cache hit ratios 
as follows: 

Cache Miss Ratio = Miss Count 
Reference Count 

Cache Hit  Ratio = 1 - Cache Miss Ratio 

Cache hit ratios may be measured by hardware 
instrumentation devices connected to a system  ex- 
ternal interface.’* Cache hit ratios of 95 to 99 per- 
cent plus are commonly measured for workloads 
on IBM systems. Rules of thumb for cache hit 
ratios generally hold that a decreasing hit ratio 
reflects a degradation of performance, since more 
time  is  implied for transferring data from main 
storage to the cache. 

Cache hit ratios of vector  applications. With the 
IBM 3090 Vector Facility, measured cache hit ratios 
on internal test systems  have  shown a decrease 
when  vectorized applications are running, as com- 
pared to the scalar versions  of the same programs, 
although the application performance improved 
substantially. A key contributor to this change in 
a measured parameter is the significant  decrease 
in the number of instructions executed  by  the  vec- 
tor application. Requests from the processor for 
instructions are valid storage references and are 
counted as such. Instructions are fetched from the 
cache to be kept in the processor for decoding and 
execution. With substantial portions of the scalar 
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Table 2 Laboratory  measurement  data 

SEAP  Scalar  Version  Vector  Version 
Application 

Miss  Reference Hit Miss Reference Hit 
count  count ratio count  count ratio 

(X 106) (X 10') (X 10') (X 10') 

Job 1 508.2 60580 0.99  I6 492.5 27260 0.98 19 
Job 2 325.3 38500 0.99 15 344.4 24360 0.9858 
lob 3 33.83 10130 0.9967 32.28 3368 0.9904 

application execution time  being spent in loops, 
the cache hit ratio for instruction requests is high; 
stated another way, loop instruction references 
contribute little to a count of cache misses, but 
account for many references. With a single vector 
instruction potentially replacing many scalar in- 
structions, the number of instruction references  is 
sharply reduced for the vectorized portions of an 
application. With the assumption that the number 
of  cache  misses for operands does not change 
significantly, the new hit ratio is calculated on the 
basis  of a lower total number of  references. Ex- 
amples are shown  in Table 2, using  measured data 
from three of the laboratory benchmark jobs used 
for measurement of performance in the October 
1985 announcement of the 3090  Vector Facility. 
For each of the examples in the table, the number 
of  misses stayed relatively constant, whereas the 
number of  references to cache decreased dramat- 
ically,  mainly  because  of the decreasing number 
of instructions. 

Although not illustrated by  these  examples, other 
changes that affect the number of cache references 
and/or the number of  misses  may also occur when 
code is vectorized. The number of operand refer- 
ences and the order of the operand reference are 
determined for FORTRAN scalar code mainly by 
the structure of the FORTRAN statements-loops 
are not logically  switched around by the scalar 
FORTRAN compiler. For vector code, however, a 
further divergence  relative to scalar parameters 
may occur when code is  optimized to take advan- 
tage  of holding operands in  vector  registers rather 
than storing and loading intermediate results. The 
number of storage references is reduced, so the 
miss ratio increases, and the hit ratio again de- 
creases. 

The opposite effect  may occur when code is opti- 
mized, either by the compiler or within a subroutine 
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library, to achieve  high cache reuse. In this  case, 
the number of  cache  misses  decreases,  while the 
number of operand references  may stay constant, 
causing the miss ratio to decrease and the hit ratio 
to improve. 

These latter effects are examples  of  how the order 
of the operand reference  may  significantly change 
for vector operations, relative to scalar code com- 
piled from the same FORTRAN code. Of course, 
operand reference order must inherently change 
as code is vectorized. A sequence  of  vector in- 
structions usually  references up to 2 elements  of 
one array, then up  to 2 elements  of another  array, 
whereas scalar code typically alternates referencing 
of operands between arrays. (Z  is the vector reg- 
ister section size  of the system, 128 in the  case  of 
the 3090  Vector Facility.) If the inner loop  of a 
nested  set  of FORTRAN DO-100pS is  vectorized, the 
order of  reference for operands changes only 
modulo Z,  the same operands are used by both 
scalar and vector code within  the  scope  of each Z 
iterations of the scalar loop. For a nested  set  of 
DO-loops,  however, vectorization need not occur 
on the innermost loop; when an intermediate or 
outer loop is vectorized, the order of the operand 
reference can change significantly from the scalar 
to the vector code. An  example  of such vector- 
ization is shown later in the matrix multiplication 
discussion. When this occurs, the number of cache 
misses may also decrease, thereby further altering 
the hit and miss ratio parameters. 

Main  storage demand of engineeringlscientific  ap- 
plications. After much preparatory discussion, we 
come  back to the fundamental question of whether 
computationally intensive  engineering/scientific 
application programs do exhibit enough data usage 
characteristics to make a cache system structure 
advantageous. 

CLARK AND WILSON 73 



Although it is always  possible to construct counter- 
examples, laboratory analysis has shown that many 
computational programs do exhibit cache usage 
characteristics, as exemplified  by the buffer hit rate 
data shown in Table 2. Some  of the reasons for 
this locality of  reference and operand reuse are 
illustrated in the following  sections of the paper 
through the examination of matrix multiplication 
codes. 

Individual computational algorithms for particular 
solution methods, combined with coding style vari- 
ations, will obviously cause cache usage charac- 
teristics to vary. The overall demand on main 
storage seen in the laboratory benchmark set of 
programs, however, leads to the conclusion that 
use  of cache is a common factor across many ap- 
plications. 

Analysis of loop  performance 

Although the interpretation of loop performance 
measurements is difficult enough that  it ought to 
discourage reliance on such measures, measure- 
ments are inevitably made, especially for vector 
processing  systems. Though the use  of the cache 
by the 3090 Vector Facility provides substantial 
performance benefits, it also introduces further 
difficulties into the interpretation of loop perfor- 
mance measurements. 

The problem arises from the fact that loops, or 
code kernels,  generally represent the  logic  of a 
sample computation from an application, but sel- 
dom represent the full  scope  of the data  that are 
computed. Most kernels  exercise their logic against 
small data arrays. Typical measurement tech- 
niques repeat the execution of a loop many times 
in order to average out small variations that may 
occur in timings. On a cache machine, this method 
can result in all the operands being  in the cache 
for all but the first  pass through the loop. This 
result produces a best-case measurement, one very 
close to what we call “primed cache,” a condition 
where all operands required by a set of code are 
forced into the cache prior to execution. 

To overcome the advantage the cache provides, 
measurements can be made for a single iteration 
of the loop, starting with none of the required 
operands in the cache. This method is a worst-case 
measure, which we refer to as “empty cache.” No 
single interpolation between  these two points is an 
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adequate figure of merit, for it would assume a 
specific proportion of data residing  in the cache. 
Rather, the two measures must be treated as 
definitions  of the performance extremes of the 
loop logic for a cache-based vector system. Pro- 
jection of the actual performance of a loop within 
an application program context must be based on 
analysis of the cache usage characteristics of the 
loop operating on the full data arrays. 

We have  used the approach of bounding best-case 
and worst-case loop performance in analyzing loop 
performance on a cache-based  system. The matrix 
multiplication performance is presented in this 
manner in the following  sections. Although this 
model  provides insight into the effects of the cache 
and the sensitivities  of loop performance to cache 
usage, the cache is  only one of  several  key factors 
that affect vector loop performance and therefore 
the vector/scalar ratio for a given loop. Other 
factors include vector lengths, the number of stor- 
age references required in the vector code (whether 
results can be held in vector registers), and the 
number of vector instructions needed to perform 
the computation (whether compound operations 
can be utilized, for example). 

In examining the extremes  of  best-case and worst- 
case loop performance vis-d-vis the cache, the 
results are valid  only  within the context of a par- 
ticular loop logic.  Only the cache hit/miss char- 
acteristics are assumed to vary. If another variable 
changes, for example,  by  using vector registers to 
hold intermediate results of computations, loop 
performance may reach beyond the limit of pre- 
vious  best-case  code, although exactly the same 
computation is being performed. An  example is 
shown in the last matrix multiplication example 
in the  following  section  of the paper. 

Examples  using  matrix  multiplicatlon 

Several  examples  of cache usage characteristics are 
illustrated here  using matrix multiplication algo- 
rithms. There are six  basic arrangements of the 
nesting  of three FORTRAN DO-loops  needed to per- 
form a matrix mu1tiplication.l2  We concentrate 
mainly on two  of  these to illustrate the effects  of 
data reference patterns and cache data reuse.  All 
the examples that follow  were coded in FORTRAN 
and compiled  with the VS FORTRAN compiler, Ver- 
sion 2, which is the IBM vectorizing compiler. In 
some  cases, the compiler had to be forced to 
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vectorize  less  optimally than it would naturally 
have  done. In most  of  the  following  examples, we 
wanted  vectorization to occur on the  innermost 
loop to force  known  vector operand reference pat- 
terns that were  similar to the order of scalar op- 
erand references.  The  purpose  of  these  examples 
is not to provide  coding  guidelines for writing 
good  vectorizable FORTRAN programs; that type 
of advice  may be found in Dubrulle  et and 
in the VS FORTRAN Version 2 product publications. 

Matrix multiplication with Stride N method. As a 
starting point for examining  the  performance char- 
acteristics  of  matrix  multiplication, we looked at 
a simple  vector inner-product computation, which 
is at the heart of textbook  matrix  multiplication 
for the  problem A = X x Y. One  element  of a 
result  matrix A is  computed at a time by forming 
the inner product of a row  vector  from  matrix X 
and a column  vector  from  matrix Y. We picked 
dimensions for the  matrices that were not partic- 
ularly optimal for vector  register  length,  initially 
letting X be of  dimension 300 by 200, and Y be 
200 by  100. Later the inner-product dimension 
was  varied. In order to understand the  bounds of 
performance for such an operation, we looked  first 
at the inner loop, the inner-product computation, 
represented in FORTRAN as 

DO 10 K = 1,200 
10 SUM = SUM + X(1,K) * Y(K,J) 

Figure 3 shows  the  performance points of this 
loop for a single (Z,J) combination, in both scalar 
and vector form, using  assumptions of primed 
cache and empty  cache.  Primed  cache  represents 
minimal  (zero)  delays due to cache  misses, and 
empty  cache  represents  maximal  delays for this 
particular loop.  The intermediate points are inter- 
polated  linearly  versus  time, for it is  the amount 
of  delay  time that is  ultimately important, not the 
absolute number of cache  misses. In fact, in this 
example,  cache  miss  delay  time  between  the  two 
points is not linearly proportional to the  number 
of cache  misses,  for  there are both Stride 1 and 
Stride N (N = I )  misses in the  cache  empty  mea- 
surement.  Miss  delays are not constant for all 
types of cache  misses, as discussed  previously in 
the  section on optimization of operand delivery. 
Speed  (LOOP-MFLOPS)  is a computed parameter, 
inversely proportional to time, and therefore not 
linear between  the  cache-empty and the  cache- 
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primed points on the scale of proportional delay 
time. 

These  sets of curves  form  the  range of performance 
for the  following  matrix  multiplication  code,  which 
uses inner-product, or Stride N method, calcula- 
tions. 

To compute  the  matrix product A = X x Y, the 
inner-product logic  is  used to compute  each  ele- 
ment of the product matrix A. The FORTRAN code 
is  shown in Example 1 in the  Appendix. 
Vectorization  was  forced to the inner loop, the K 
variable, so that the inner product is  computed 
with  vector instructions for the  vector  test  case. 
(Vectorization on the I induction variable  would 
occur  without  this  forcing. See final FORTRAN ex- 
ample.) 

The  performance of this  loop, in both scalar and 
vector  form,  is  shown in Table 3. The loop times 
are shown, as well as the normalized  figures for 
the  processor  time  per  basic pair of  operations-a 
floating-point  multiplication and addition. Place- 
ment of these points on the  lines in Figure 3 in- 
dicates that the loop experiences a small amount 
of delay  due to cache  misses, or in other words, 
use  of data from  the  cache  is  high. 

The  next step was to generalize  the array sizes and 
measure across a range of dimensions. We wanted 
to change  only  the  vector  length of the inner- 
product operation, so that more data would  be 
pulled into the  cache by each inner-product com- 
putation. We let  the X array be  of dimension 300 
by NDZM, and the Y array be  of dimension NDZM 
by  100.  One complication  is that total loop exe- 
cution time  changes not only  from  cache  effects, 
but  because of more computations taking place 
for larger arrays. To normalize  the data across 
varying array dimensions,  time  is  expressed as 
nanoseconds (ns) per multiplication/addition pair 
in the following  examples. 

When we allow NDIM to vary  between 50 and 600, 
we  see a definite  effect from the  cache.  The  timings 
that result for both scalar and vector  code are 
shown in Figure 4, curves 1s and lV, respectively. 
Each inner-product computation references NDZM 
operands in the X array, at Stride 300, so NDZM 
cache  lines are needed for the X array operands. 
When the amount of data in NDZM cache  lines 
approaches or exceeds  the  size  of  the  cache,  the 
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Figure 3 Timing of inner-product  computation  (200-element)  Stride 300 operation 
- 1- " " ~ ... "". ~ "" " . ". .- ~- - .. . . .- .... - - " 
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cache begins to "roll" on every inner-product  com- 
putation. Cache lines fetched for the first operands 
in the X row vector are displaced by later  operand 
references for the same vector, so the next loop 
iteration  that uses the same or  an adjacent X row 
vector finds none of the required operands in the 

Table 3 Performance of FORTRAN inner product matrix 
multiplication (300,200) x (200,100) 

Subroutine Time Time p e r  
(5) Yult/Add 

(ns) 

Scalar 1.71 285 
Vector 0.70  117' 

cache. This is the rearon for the drop-off of per- 
formance beginning above N n l M  L- 350 in Figure 
4. Data usage from the cache, i.e., "hits," are low, 
as indicated by the placement of the speed results 
for N n l M  2 400 on the c~rves  nf Figure 3 .  Note 
that  both the scalar and vector codes suffer the 
same degradation, since their operand reference 
patterns  are essentially equivalent. Use of Figure 
3 indicates that the cache use of the scalar and 
vector code is basically equal for  each value of 
NDIM tested. 

Serfinning the Strid0 N mpthnd. Sectioning is a 
term used in vector architectures that  are register- 
based. It refers to the implementation of perform- 
ing a long vector operation using registers of a 
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Figure 4 Loop  timing  for  matrix  multiplication (A= X x Y) 

specific  length 2 ,  in the  case of the 3090 Vector 
Facility, Z is 128, the  number  of operands a vector 
register can contain. A long  vector operation is 
performed Z operands at a time,  with a loop that 
repeats  the 2-operand operation on successive 
“sections” of the long  vector,  until it is  complete. 
Such loop control is  referred to as sectioning logic. 
The  length  of the vector  register  is  referred to as 
the section size. The  vectorizing  compiler auto- 
matically  produces  all  the  code  required for sec- 
tioning  of  vectors  longer than Z or of length un- 
known at compilation. 

The experiment we performed  next on the  Stride 
N matrix  multiplication  was to externally  impose 
a form of sectioning on the  vectors  used  in  the 
inner-product calculation.  The  objective was to 

preserve the cache  usage that occurs at lower  val- 
ues  of NDIM. This  preservation  was done in the 
FORTRAN code, so that both scalar and vector 
codes  would  again  follow  similar operand reference 
patterns. The FORTRAN code,  with its artificial 
sectioning constructs, is  shown  in  Example 2 in 
the  Appendix.  Some additional overhead  is intro- 
duced by the addition of another loop in  the  nest- 
ing,  but  the operand reference pattern can be 
controlled.  Vectorization  again  is  forced to the 
innermost loop that performs  the inner-product 
calculation. 

The resultant code  computes partial results of each 
element A(Z,J), but effectively partitions the  large 
X and Y arrays in a manner that results in cache 
usage  similar to what  is  seen on the smaller array 
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Figure 5 Timing of vector * scalar computation  (300-element)  Stride 1 operation 
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sizes.  The  performance  results,  shown  in  Figure 4 
as curves 2s and 2V, indicate  performance that 
does not degrade.  Comparison to Figure 3 indi- 
cates that cache  usage  is  high  even for large  values 
Of NDIM. 

It should be observed that the  effects  described 
here were produced by forcing  vectorization on a 
certain loop induction  variable.  Scalar  loops  coded 
as illustrated  would  perform as in  these  experi- 
ments.  Vectolization of  these  loops  would not 
normally  result  in  the  performance we observed, 
because  vectorization  would not take  place on the 

tion  variables that force  vectorization,  the loop 
used in  this  example  would be vectorized on the 

innermost  loop. Without the INTEGER * 2 induc- 

loop having  the I induction  variable,  resulting  in 
a Stride 1 vector loop with  stable  performance 
across  values of NDZM. 

The  sensitivity of loop performance to the pattern 
of operand  reference  in both scalar and vector 
code on a cache-based  system  is  clearly  illustrated. 
Vectorization  algorithms  in  the  compiler  may  re- 
order  the  reference pattern implied by the 
FORTRAN code. In cases  where  this  is not possible, 
and the FORTRAN and scalar  code  exhibit poor 
operand  reference patterns, the  performance of the 
vector  code  will  similarly  be  suboptimal. 

Matrix multiplication with Stride 1 method. An 
alternative  method for performing  the  matrix  mul- 
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tiplication function is to access  elements in the 
arrays in a contiguous pattern,  that is, columnwise 
in FORTRAN. The philosophy  of coding for con- 
tiguous access patterns has been advocated for 
many years,  since it tends to produce stable per- 
formance characteristics over large array sizes in 
virtual storage systems and systems  with  cache 
storage hierarchies. l4 

The basic operation is a vector  times scalar mul- 
tiplication, which produces partial results  of the 
product matrix column vectors. In FORTRAN code, 
the inner loop is 

DO 10 I = 1,300 
10 A(I,J) = A(I,J) + X(I,K) * Y(K,J) 

The Kth column vector of matrix X is multiplied 
by an element from the Y matrix, Y(K,J), to pro- 
duce a partial sum of the Jth column vector of 
matrix A. The code for a matrix multiplication 
coded for a contiguous data access pattern is 
shown in Example 3 in the Appendix. 

Figure 5 shows the bounds of a single iteration of 
the inner-loop operation, which  is  now a vector 
times scalar multiplication rather than the inner 
product seen  in the Stride Nmethod. Vectorization 
occurs on the innermost loop without any unnat- 
ural forcing, since contiguous operand access is 
preferred by the vectorization analysis of the com- 
piler. The vector length is 300 and does not change 
as the NDIM dimension of the X and Y arrays 
changes. Empty-cache and primed-cache measure- 
ments form the range of performance for the fol- 
lowing  examples.  An  immediately noticeable 
difference  between Figure 5 and Figure 3 is that 
the bounds of  possible performance for the Stride 
1 inner loop are much narrower than for the Stride 
N inner loop. The performance of the Stride 1 
method should be more consistent regardless  of 
cache miss characteristics. 

Performing the matrix multiplication experiment 
for values  of NDIM ranging from 50 to 600 yielded 
the results in Figure 4, curves 3s and 3V.  As 
expected from the use  of this coding style, the 
results are stable across the varying array sizes. 

Sectioning the Stride 1 method. Although the per- 
formance of the Stride 1 method is stable and 
shows good improvement over the scalar opera- 
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tion, further improvement may  still be obtained 
by altering the sectioning  logic, as was done for 
the Stride N inner-product method. It might ap- 
pear that little advantage is to be gained since the 
bounds of performance are rather tight, as shown 
in Figure 5.  This is the basic reason this approach 
is preferred. However,  when the sectioning  logic 
is altered for the Stride 1 method, the partial re- 
sults that  are calculated are not scalar partial inner 
products but sections  of the product matrix col- 
umns which are summed to form the result matrix 
column. When this change is made for the vector 
code, the partial results can be kept in a vector 
register, and loading and storing of intermediate 
results to the result matrix can be eliminated. The 
FORTRAN code is shown in Example 4 in  the  Ap- 
pendix.I5 The inner loop in the  compiled code has 
no vector LOADS or STORES to the A matrix and 
has just one compound vector instruction perform- 
ing the multiply/add operation of a vector times 
scalar product. 

Measurement results for this vector code are shown 
in Figure 4, curve 4V. A scalar counterpart is not 
applicable, since the result was obtained by ex- 
ploiting the vector  register to hold a temporary 
vector variable. The results of this measurement 
do  not fall in the range of the loop performance 
of the original loop as shown  in Figure 5 because 
the inner-loop logic has changed. Though exactly 
the same computation has been performed, the 
ratio of storage references  per computation has 
been altered by the change to the sectioning  logic. 

Matrix multiplication  summary. The progression 
of  examples in this portion of the paper has illus- 
trated the role the cache plays in the overall per- 
formance profile  of the 3090 Vector Facility sys- 
tem. The cache storage may present some  pitfalls, 
but they  have not been introduced by the addition 
of vector processing. It also presents opportunities 
for optimization. In the Engineering/Scientific 
Subroutine Library (ESSL) software product, cod- 
ing of matrix functions has taken advantage of 
the types  of optimizations discussed in this paper 
and  further combined  them to achieve optimal 
vector length, vector  register  usage, and cache data 
reuse. The performance of the ESSL vector matrix 
multiplication function illustrates the point, as 
shown in Figure 4, curve 5V. In this measurement, 
ESSL was  called to perform the same set  of matrix 
multiplications used  in the previous  examples. 
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Table 4 Performance of vector matrix multiplication 
(300,500) x (500,100) 

LOOP-MFLOPS 

Table 4 presents the data measured during these 
investigations in the form of LOOP-MFLOPS speeds 
for the vectorized forms of matrix multiplication 
on a pair of matrices of  size (300,500) and 
(500,100). The data shown are for the two  cases 
in which the vs FORTRAN Compiler was  allowed 
to choose the method of vectorization, plus the 
ESSL measurement. In each of  these situations, the 
previous results show that performance is essen- 
tially stable over a range of dimension represented 
by the NDIM variable. 

These loop speeds represent vector/scalar ratios of 
approximately 2.5 to 8 times. The improvement 
an application would  experience is also a function 
of the vectorizability  of a particular application, 
as discussed in Part I of this paper. 

Summary  and  conclusions 

In the last section, we have  examined the perfor- 
mance of the 3090 from the perspective  of its use 
of the cache storage hierarchy for vector operand 
delivery.  We  have  discussed  how the cache storage 
hierarchy supports the delivery of operands to the 
vector processing  execution  element in each pro- 
cessor, at the rate required for vector pipeline  ex- 
ecution. In the most commonly observed  reference 
patterns, operands that  are  not in the cache are 
delivered in an optimized mode to minimize  the 
delay  effects  of main storage access. It has been 
shown that the introduction of vector instructions 
produces results in traditional “cache hit ratio” 
terms that  run contrary to rule-of-thumb expecta- 
tions. Care must be taken in applying metrics to 
an analysis of the effectiveness  of the cache hier- 
archy. 

Given these qualifications, however, both the anal- 
ysis  of cache miss ratios and resultant main storage 
demand, as well as the empirical data of application 
benchmark measurements, support the conviction 
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that the cache hierarchy does indeed provide the 
data needed by the processor to achieve the vector/ 
scalar speedup goals of the 3090 Vector Facility 
system. 

Finally, we have  examined  several matrix multi- 
plication codes in detail to illustrate the sensitivities 
that exist in a cache-based design.  These also serve 
to illustrate the opportunities that exist in such a 
system structure for effective software/hardware 
optimization, since neither the unconstrained 
FORTRAN vectorization nor the ESSL loop function 
exhibits the sensitivity illustrated. 

In its innovative approach to vector processing, 
building on the strengths associated with IBM’S 
state-of-the-art large-systems hardware and soft- 
ware products, the 3090 represents a major step 
in the maturation of  systems  designs in support of 
engineering/scientific data processing require- 
ments. 
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Appendix:  FORTRAN  code  segments  used 
in  matrix  multiplication  examples 

Example 1. This example  shows matrix multipli- 
cation using inner-product logic  (fixed array di- 
mensions). 
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DIMENSION A(300,100),  X(300,200),  Y(200,lOO) 
INTEGER 2 I,J 
DOUBLE PRECISION A,X,Y,SUM 
DO 20 J = 1,100 
DO 20 I = 1,300 
SUM = O.ODO 
DO 10 K = 1,200 

10 SUM = SUM + X(I,K) * Y(K,J) 
20 A(I,J) = SUM 

Example 2. This example depicts matrix multipli- 
cation using inner-product logic and variable array 
dimension (externally imposed sectioning logic). 

DIMENSION A(300,100), X(300,NDIM), Y(NDIM,IOO) 
INTEGER * 2 I,J 
DOUBLE PRECISION A,X,Y,SUM 
MSECSZ = 128 
DO 20 J = 1,100 

C PRODUCT  COLUMN SECTION MUST BE 
C INITIALIZED TO 0 

DO 5 I = 1,300 
5 A(I,J)= O.ODO 

C VECTOR LENGTH IS NDIM, SECTIONING ON I 
K = NDIM 
DO 20 KSECT = 0, (K - 1) /MSECSZ 

C DO LOOP INDEXED BY I INSIDE  SECTIONING 
c LOOP 

KK1= KSECT * MSECSZ + 1 
KK2 = MIN(K, ((KSECT + 1) * MSECSZ)) 
DO 20 I = 1,300 
SUM = O.ODO 
DO IO KK = KKl,KK2 

10 SUM =SUM + X(I,KK) * Y(KK,J) 
20 A(I,J) = A(I,J) + SUM 

Example 3. In this example, matrix multiplication 
uses vector * scalar logic (variable array dimen- 
sion). 

DIMENSION A(300,100), X(300,NDIM), Y(NDIM,100) 
DOUBLE PRECISION A,X,Y 
DO 10 J = 1,100 
DO 20 I = 1,300 

20 A(I,J) = O.ODO 
DO 10 K = 1,NDIM 
DO 10 I = 1,300 

I O  A(I,J) = A(1,J) + X(I,K) * Y(K,J) 

Example 4. This example illustrates matrix mul- 
tiplication with optimum vectorized performance. 
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DIMENSION A(300,100), X(300,NDIM), Y(NDIM,100) 
DOUBLE PRECISION A,X,Y,SUM 
DO 20 J = 1,100 
DO 20 I = 1,300 
SUM = O.ODO 
DO 10 K = 1,NDIM 

10 SUM=SUM + Y(K,J)  X(I,K) 
20 A(I,J) = SUM 
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