Vector system
performance

of the IBM 3090

Performance of the Vector Facility of the IBM 3090
processor is discussed. The paper has two parts,
the first presenting factors affecting performance
measurement of the Veclor Facility and the criteria
for its design. In the second part, use of the 3090
storage hierarchy to support the vector processing
implementation is the main aspect of the
discussion.

he introduction of the 1BM 3090 Vector Fa-

cility system not only represents IBM’s entry
into large-scale vector processing, but also
introduces a unique approach to the integrated
structure of a vector processing system. Significant
factors in the system design of the Vector Facility
include the following:

® Use of an established high-performance system,
the 1BM 3090 computer, as a base upon which
to build a vector processing system

® Use of the 3090 storage hierarchy to support
vector processing operations on all models, par-
ticularly the advantage obtained from use of the
cache, or high-speed buffer, of the 3090 storage
hierarchy ‘

® Support of tightly coupled multiprocessor vector
processing, resulting from adding the Vector
Facility as a feature to the base multiprocessor
configurations of the 3090 Models 200 and 400
(The ability to support multiprocessor vector
processing using the 3090 storage hierarchy is
largely a result of the cache storage hierarchy

IBM SYSTEMS JOURNAL, VOL 265, NO 1, 1986

by R. S. Clark
T. L. Wilson

of the 3090, with a shared main storage and a
dedicated cache buffer storage for each Central
Processor, or CP.)

This paper discusses the performance of the IBM
3090 processor with the optional 3090 Vector Fa-
cility. We focus the discussion on what we believe
are two of the most significant aspects of the sys-
tem design. The first is the use of application
performance criteria as the basis for product design
and evaluation. In Part I of the paper, the factors
affecting job performance are explored, which
leads to a discussion of the metrics of vector per-
formance measurement, specifically the use of
MFLOPS (millions of floating-point operations per
second) measures. Finally, we describe the ap-
proach used on the 3090 Vector Facility for making
product measurements, consistent with the evalu-
ation framework of application performance. In
this part of the paper, the intent is to provide
insight into the 3090 Vector Facility product and
a characterization of its performance.

The second key aspect of the system design, on
which we focus in Part II of the paper, is the use
of the 3090 storage hierarchy to support the vector

©Copyright 1986 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

CLARK AND wiLsoN 63

Figure 1 Vectorization terminology

APPLICATION EXECUTION TIMES
N | v |
SCALAR VERSION |]
NV | 4 i
VECTOR VERSION ' |
V = VECTORIZABLE TIME, THE SCALAR EXECUTION TIME SPENT IN _V__ = VECTORIZABLE FRACTION (f)
LOOPS THAT CAN UTILIZE THE VECTOR PROCESSING HARDWARE v+ NV
NV = NONVECTORIZABLE TIME, THE EXECUTION TIME SPENT IN CODE _V = VECTOR/SCALAR SPEED RATIO,
WHICH CANNOT UTILIZE THE VECTOR PROCESSING HARDWARE v OR LOOP SPEEDUP FACTOR (sr)
V' = VECTORIZED TIME, THE EXECUTION TIME SPENT IN LOOPS THAT
HAVE BEEN VECTORIZED

processing implementation. This design is an ele-
ment of the balance that follows from using ap-
plication performance as the design and evaluation
criteria. We discuss the factors which make it fea-
sible and appropriate for the 3090 to have a cache-
based vector implementation. We discuss the anal-
ysis of storage demand parameters for vector jobs,
then discuss the analysis of vector loop perfor-
mance on a cache system. Finally, we illustrate
an analysis of vector loop performance with ex-
amples of matrix multiplication.

Part | — Application performance

From the viewpoint of system design implications,
the most significant aspect of the 3090 Vector Fa-
cility was the objective of providing a balanced
system implementation. What this means, very
simply, is that the Vector Facility was not intended
to be the fastest possible vector processing hard-
ware. Rather, the objective was to complement
the scalar performance of the 3090 system with a
level of vector processing capability justified by
application characteristics, without limiting multi-
processing configurations and opportunities for
parallel processing that are inherent in the basic
system design. This required that a context, or
framework, of evaluation be established early in
the design. It required that the analysis and eval-
vation of the product, as it progressed through
implementation, be conducted within that estab-

64 CLARK AND WILSON

lished framework. For the 3090 Vector Facility
system, this framework for evaluation was the per-
formance obtained by computationally intensive
application programs.

This context was established during the product
definition, consistent with the balanced system ap-
proach, and was used in establishing product ob-
jectives. Such a framework for evaluation implied
that the product was not to be designed for, nor
evaluated by, peak performance specification or
loop measurements. The performance of applica-
tion programs is the performance of complete ap-
plication codes, such as structural analysis, fluid
dynamics applications, or seismic processing, and
solving problems of significant size, including not
only the computations needed to solve the problem,
but also the 1/0, data manipulation, and other
noncomputational data processing typically found
in large production applications.

With application performance established as the
criterion for product evaluation, it was necessary
to build a set of sample engineering/scientific ap-
plication programs for use in product measure-
ment. Measurements on the finished product pro-
vide a means of evaluating the product against its
objectives, but just as importantly, they also serve
as a means for setting expectations for potential
users, who may observe a confusing terminology
and overwhelming variation of numbers applied
to the performance of high-speed engineering/
scientific computer systems.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Application performance factors

The computationally intense nature of engineering
and scientific application programs results from
iterative mathematical computations on sets of
data. These applications also contain code to man-
age and manipulate data, perform I/O operations,
initialize data values, and report or summarize the
solution results. The portions of an application
that may be able to make use of vector hardware
are the iterative computations on array data which
are typically found in the loops coded as FORTRAN
DO statements. The performance improvement of
an application on a vector processor derives from
the improved speed of performing loop computa-
tions using the vector hardware. The proportion
of scalar execution time spent in such loops, com-
pared to the full scalar execution time of the ap-
plication, is called the vectorizable fraction for the
application problem.

The improved execution time for the application
problem results from the collapsing of the execu-
tion time of vectorizable loops. Figure 1 illustrates
this simple relationship and defines the terminology
of vectorization used in this paper. The factor by
which the execution time of a vectorizable loop
improves when the vector instructions and hard-
ware are used is called the loop speedup ratio, or
the vector/scalar ratio.

The relationship between an improvement in loop
execution time and the overall improvement in
application problem execution time is shown in
Figure 2. It plots vector application performance
{compared to the performance of a scalar version)
as a function of vectorization percentage, for sev-
eral vector/scalar ratios.

Another view of the same relationship may be
seen in Figure 2 of the paper in this issue by Gib-
son et al.' These curves illustrate the relationship
known as Amdahl’s Law,? which states that the
overall speedup factor S for an application is de-
termined by the relationship

_ 1
S=U=prris

where f is the vectorizable fraction for the appli-
cation and sr is the loop speedup factor obtained
by moving computation to the vector hardware.

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure2 Vector processing job speed improvement

VECTOR =

RELATIVE JOB PERFORMANCE
IMPROVEMENT RATIO

S DX SRR - §

PERCENT VEGTORIZABLE
SCALAR VIS VECTOR !
DOMINANT BALANCE DOMINANT |

This fundamental relationship is the key to all
aspects of vector system performance analysis,
from setting design goals, to projecting the perfor-
mance of individual benchmarks, to analyzing the
results of specific benchmark measurements.

One of the key design considerations for the IBM
3090 Vector Facility was the goal for a vector/
scalar ratio, and one of the main factors in deter-
mining the goal was the range of application
vectorizability projected for anticipated 3090 Vec-
tor Facility applications. On the basis of applica-
tion studies and analysis of the role of vector speed
in application performance, the design goal for
the 3090 Vector Facility was established as a
vector/scalar ratio in the vicinity of four, optimiz-
ing the design for the midrange of application
vectorizability.! It is important to note, from a
performance perspective, that while the design
goal was oriented to the midrange of
vectorizability, the resulting product has good
price/performance for applications well into the
high vectorizability range. One of the reasons for
this is that the design goal was compatible with
the use of a cache storage hierarchy for vector
operand delivery, making it feasible to build a
vector system based on the 3090 processor and its
storage hierarchy. We examine this aspect of the
system design and look at some of the sensitivities
it produces in Part II of this paper.

CLARK AND WiLson §5

Product measurement

3090 Vector Facility performance was measured
in order, first, to provide validation that the system
performs as it was designed to perform, and sec-
ond, to set general expectation levels for potential
users of the system through publication of perfor-
mance data at the time of product announcement.
The methodology was to measure application pro-
grams similar to, or sampled from, the ones cus-
tomers would actually run on the system. While
measurement of short loops is useful in the detail
of processor design, it is our view that measurement
of real application codes is the way to judge a
system, and that expectations for potential cus-
tomers should be stated in terms that can be re-
lated to the applications they might run.

Two approaches may be taken to stating measured
performance: (1) measuring results of standard ap-
plication problems relative to the same problems
running on known, predecessor systems, or (2)
measuring results in some absolute terms of work
per unit of time. IBM processor performance for
commercial workloads, such as batch processing,
time-sharing, or transaction processing, is pub-
lished today in terms of relative performance using
standard measurement workloads. The metrics in-
clude Internal Throughput Rate (ITR) ratio, a mea-
sure of work accomplished per unit of processor
time, and External Throughput Rate (ETR) ratio,
a measure of work per unit of elapsed time.**

The use of instruction execution rate, or MIPS (mil-
lions of instructions per second), has proven to be
unsatisfactory for describing processor perfor-
mance, simply because an instruction is not a unit
of work that can be correlated to the external
function of a transaction or application. The 1BM
370/XA vector architecture offers an excellent ex-
ample; while the speed of solving the application
problem improves, the number of instructions
needed to perform a computation is significantly
lower using vector instructions (because one in-
struction performs many operations).

MFLOPS as a metric. For scientific and engineer-
ing applications, there exists a usable, though by
no means perfect, measure for computational
work. This measure is the count of computational
floating-point operations which the application
performs, i.e., the Floating-Point Operation (FLOP)
count. Calculating the rate of floating-point op-
eration execution yields MFLOPS, or millions of

66 cLaRk AND WiLSON

floating-point operations per second. The problem
with MFLOPS as a metric, however, is that it can
be, and has been, applied indistinguishably in at
least three different contexts:

® A full application job (JOB_MFLOPS)

@ The loop instructions or computational kernels
within an application (LOOP_MFLOPS)

® The hardware design of the vector instruction
execution element (PEAK_MFLOPS)

In addition to being used to describe the execution
speeds of jobs, loops, or instructions, MFLOPS is
also used as a system rating or as a general yard-
stick of system capacity, in statements of system
requirements from customers. MFLOPS has gener-
ally been applied as a processor rating to a single
processor; when it is used to describe the capacity
of multiprocessor systems, additional qualification
is needed to distinguish throughput capacity (mul-
tiple jobs running concurrently) from single-job
parallel execution capability, where the measure
of concern is the elapsed time of a single job. The
precision of meaning that is lacking in the use of
MFLOPS terminology is one of the main advantages
of the ITR and ETR metrics.

JOB_MFLOPS. The number of computations
needed to solve a problem may, within limits, be
viewed as an indication of the computational size
of the problem, or as a simple “weight” for the
problem. In the context of a problem plus the
mathematical approach and solution method(s)
used to solve it, the essence of arriving at a solution
is to perform the computations; the rate at which
computations are performed in solving the partic-
ular problem can provide an expression of speed
of solving the problem. It is the speed at which
an engineering/scientific problem can be solved
that is ultimately of concern to the owner of the
problem.

JOB_MFLOPS, however, is a time-dependent mix-
ture of vector loop speeds, scalar loop speeds, and
scalar serial speed, meaningful only in the context
of the particular job under study. It is not a con-
stant across all jobs, as illustrated by the
JOB_MFLOPS data which are presented in Table 1.
The variability of job content is demonstrated by
two jobs with approximately the same level of
vectorization (Seismic Analysis and Black-Oil Res-

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Table 1 SEAP application benchmark measurements

3090 Single-Job Measurements
SEAP Application Percent Vectorizable' ITR Ratio Vector
. Vector:Scalar? JOB_MFLOPS®
Static Structural Analysis 82 2.03 14.7
Black-Qil Reservoir Simulation 80 2.35 8.4
Seismic Analysis 82 2.65 16.9
Buckling Analysis 60 1.57 85

! Calculated using processor times of both vector and scalar versions of each job, plus Vector Facility usage time, reported by SMF system accounting:

Ts_(Tv_Tu)xl

T, 0

%V =

where T, = scalar version total processor time, 7, = vector version total processor time, and 7, = vector usage processor time of vector version.
2 Ratio of application times, 3090 running scalar version compared to 3090 VF running vector version.
3 For vector version, job floating-point operation count (FLOPs), in millions, divided by processor time.

ervoir Simulation) having significantly different
JOB_MFLOPS, whereas two jobs with dissimilar
vectorization (Buckling Analysis and Black-Oil
Reservoir Simulation) have comparable
JOB_MFLOPS values. In the context of a particular
job, however, the measure does represent one per-
spective of what is sometimes called sustained, or
effective, computational speed. JOB_MFLOPS can
be calculated from the job FLOP count and the
processor execution time for the job, as illustrated
in the measurement data in Table 1. While the
figure is calculable, if the FLOP content of the job
is known, we have not found it to be useful. It
may be observed from Table 1 that the job per-
formance improvement, that is, the ITR ratio in
going from scalar to vector, does not correlate to
the JOB_MFLOPS for the applications we have ex-
amined.

One of the drawbacks of using JOB_MFLOPS as a
measure of job performance comes from the fact
that the floating-point operations (FLOPs) per-
formed in a job are in general difficult or impossible
to count. For a simple loop, the number of oper-
ations can be counted by inspection or calculation,
but for a large, long-running application, the count
is often unobtainable in environments other than
the laboratory. Job FLOP counts were obtained in
the lab for the jobs in our benchmark measurement
set, and JOB_MFLOPS for some of these jobs are
shown later in this paper.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Sustained JOB_MFLOPS is a function not only of
processor speeds but of individual application con-
tent and structure, and shows wide variability as
a result. It is therefore impossible to assign a sin-
gle MFLOPS rating to a system, even sustained
JOB_MFLOPS, as a basis for comparing the perfor-
mance of systems.

LOOP_MFLOPS. LOOP_MFLOPS is a measure of
execution speed for a subroutine loop or code ker-
nel. Understanding the performance of the code
utilizing the vector hardware, that is, the vectorized
loops, is crucial to understanding what the perfor-
mance of an application will be. Measurements
or estimates of loop performance are useful in
projecting the performance of full application pro-
grams, if something is known about their
vectorization potential. The projection is not a
simple linear relationship, however, as illustrated
by the curves showing Amdahl’s Law in Figure 2.

Analysis and measurement of loop speed are also
useful in analyzing the sensitivities of vector system
performance, as long as it is qualified that the
observed loop speeds will always be dampened in
application measurements by the nonvectorized
portions of the application. An analysis of matrix
multiplication loop speeds is presented in the sec-
ond part of this paper, for example, to illustrate
the effect of cache usage and vector register reuse
on loop performance. The data are summarized

CLARK AND wiLson 67

in LOOP_MFLOPS terms, although even here the
use of the MFLOPS metric is not crucial to the
analysis of the sensitivities.

Loop measurement is particularly difficult on the
3090 Vector Facility, since loop measurement tech-

Peak execution rate is more

a description of the product

design than a definition of
performance.

niques have often removed the full data-model
context in which the computational logic of a loop
would operate in an application. Loop measure-
ments, therefore, are subject to the cache behavior
the loops create on small arrays of data and usually
do not reflect accurately the effect of the cache
storage hierarchy on full application performance.

Measures of loop performance which are taken
out of context—out of the context of the application
in which the loop is found, its vectorization per-
centage, and its cache behavior on large data ar-
rays—can be misleading. Measures of loop perfor-
mance, or similar measures of functional kernels,
do not provide a valid basis for comparison of
vector processing systems. Much measurement of
loop performance has unfortunately lost the con-
text in which it started, becoming data without a
frame of reference. Published reports of measured
loop performance, often without a frame of refer-
ence, may carry the implication that users’ job
performance expectations can legitimately be based
on the relationships seen in loop results. Amdahl’s
Law clearly illustrates the inaccuracy of such an
implication.

Peak MFLOPS. The final step in removing the
application context from the discussion of perfor-
mance is to define the instantaneous maximum
speed at which the hardware could possibly oper-
ate, based on its design. This is called peak MFLOPS.

68 cLark AND wiLsON

It assumes a time during which operations match
perfectly with the capability of the system to over-
lap multiple functional elements of the vector hard-
ware and operand delivery mechanisms. Peak
MFLOPS is basically a value calculated using the
system cycle time and a definition of the vector
hardware design. Peak MFLOPS bears little relation
to sustained application performance, except that
the former will be significantly higher than the
latter. In the 3090 system with Vector Facility,
the vector element of each processor can perform
two computations per system cycle when executing
a compound vector instruction (several are defined
by the architecture), which leads to the conclusion
that each processor has a maximum instantaneous
execution rate of 108 MFLOPS.’ However, the peak
execution rate is more a description of the product
design than a definition of performance.

Benchmark selection and measurement. On the ba-
sis of the disadvantages of using MFLOPS termi-
nology and the advantages of using Internal
Throughput Rate (ITR) ratios, as discussed above,
the latter method was chosen for describing the
performance of the 3090 Vector Facility product.

In order to perform product measurements, a set
of application programs was collected and ana-
lyzed for suitability as laboratory benchmark ap-
plications. These application programs were as-
sembled from a variety of sources, including

® Public domain codes

® Customer benchmark jobs

® Customer production or research applications
obtained under special agreements

® Licensed application software packages, to-
gether with customer problem data or vendor-
supplied benchmark data

A large number of applications were collected,
from which a benchmark set was established rep-
resenting the types of workloads expected to be
run on the 3090 Vector Facility system. The se-
lected applications became the Scientific/Engi-
neering Application Program (SEAP) set.

Measurements of the jobs in the SEAP application
set were performed in a variety of environments,
reflecting the diversity implied by a need to measure
the system on the basis of application performance.
Measurements of scalar versions of the programs

{BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

were made on both the 1BM 3081 and 3090 com-
puter systems to provide bases of comparison for
the vector versions. 1hesc also serve as a base for
comparing the parallel versions of a subset of the
jobs. Both the parallel scalar and serial vector
versions of the jobs serve in turn as the bases of
comparison for parallel vector measurements. In
all cases, measurement was conducted for appli-
cation programs, consistent with the overall prod-
uct evaluation framework. Data for the full set of
benchmarks were published at the time of product
announcement.® Additional measurement data are
normally published by the 1BM marketing divisions
as the data become available.

Individual job measurements were made to estab-
lish specific application performance levels for
each job. Nonparallel jobs made use of only one
processor in the Model 200 configuration for the
initial runs; they were later run on the Model 180
uniprocessor. Parallel jobs were run using ali the
processors in the configuration. Table 1 presents
a subset of the single-job measurement data as
published by the time of writing (December 1985).
On the basis of the published parameters of FLOP
counts and processor execution time, JOB_MFLOPS
can be calculated as job FLOP content divided by
processor time.

For capacity measurements, use of multiple pro-
cessors in the Model 200 and 400 configurations
was accomplished by running multiple copies of
the jobs to create multijob environments. Multiple
processor measurement data yielded low degrees
of elongation experienced by vector applications
in environments with multiple central processors,
thus confirming the value of the 3090 storage hi-
erarchy for multiple-processor vector processing.

Implications of application criteria

In this part of the paper, we have examined the
performance of the 3090 Vector Facility product,
with the intent of providing insight into how the
objective of a system designed for application per-
formance was carried into the design, implemen-
tation, and evaluation of the product. The
significance of using application performance cri-
teria for design and evaluation is refiected in many
of the characteristics of the product and the data
with which it was introduced. These implications
include

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

¢ Departure from the usage of MFLOPS terminol-
ogy to describe vector processor system perfor-
mance

® Publication of application performance data
with the product announcement

® Vector unit speed balanced for midrange vector-
ization

® Use of a cache-based storage hierarchy to sup-
port vector processing

® Construction of a benchmark measurement set
of application programs

¢ Emphasis on total system throughput capacity
as well as on individual job performance

® Measurement of multiple versions of many ap-
plications, covering scalar, vector, serial, and
parallel

Part Il — Vector performance with
the 3090 cache storage hierarchy

One of the most significant aspects of the 3090
Vector Facility system design is the use of the
3090 storage hierarchy to supply operands to the
vector processing execution element in the proces-
sor. The use of the cache to supply operands from
storage to the processor may seem obvious to one
familiar with 1BM large-system processors, for the
use of a storage hierarchy with a cache, or high-
speed buffer, has been well-established since the
late 1960s.” Vector processing systems, however,
have not been cache-based for vector operand
data. Vector operands are transferred directly be-
tween the vector execution element and main stor-
age in many other vector processing systems, even
those which employ a cache for scalar operands
and/or instructions.

The use of a high-speed cache buffer is a proven
technique for achieving high performance in large
computers. The cache is a small high-speed mem-
ory which services most storage requests from the
processor, in combination with a large main mem-
ory which takes longer to access, but which is
needed for only a small percentage of the processor
storage requests.®

The use of the cache principle for the 3090 Vector
Facility is based on several factors:

CLARK AND witson 69

® The ability of the cache to supply operands to
the vector processing execution element at an
adequate rate

® The operand addressing patterns of engineering/
scientific codes, which produce observed oper-
and reuse and adjacent-data line reuse for op-
erands in the cache

e The advantages that accrue from the use of a
common storage hierarchy with the base 3090
system, which include a storage hierarchy de-
signed to support not only uniprocessor
configurations, but also two-way and four-way
multiprocessing, as well as Dbenefits of
configuration and migration flexibility

In this portion of the paper, we explore the per-
formance characteristics and sensitivities of the
IBM 3090 Vector Facility, with emphasis on those
related to its cache-based structure. In laboratory
analysis of application performance, it has been
beneficial to decompose a complete application in-
to vectorizable and nonvectorizable portions, and
examine the characteristics of each separately.
This examination can be approached both analyt-
ically and with measurement. Insight into the per-
formance characteristics and sensitivities of the
3090 Vector Facility hardware can be obtained,
using simple models, by analyzing those portions
of the applications in which vector instructions
are executed. The performance of loops from sam-
ple applications has been analyzed in order to un-
derstand performance sensitivities of coding vari-
ations. The vector and scalar execution times for
loops of varying characteristics have been analyzed
in order to project the overall application speedups
which result from improved performance in loops.

Use of the cache storage hierarchy

The use of the 3090 cache for vector operands is
feasible based on the performance design point of
the 3090 Vector Facility. To achieve a vector/
scalar loop speedup goal in the vicinity of 4,' com-
pared to a 3090 scalar processor that can perform
a floating-point operation in three or more cycles,’
a vector execution element capable of performing
one to two floating-point operations per cycle is
required. In the 370 Vector Architecture, a vector-
register architecture, operations that involve stor-
age require a storage delivery rate of one vector
operand per cycle. For data contained in the cache
of a processor, the cache has the ability to supply
one 64-bit operand per cycle to the vector execution

70 cLARK AND WiLsON

element. Data may be stored at the same rate
from the vector element into the cache. This is
true for each processor in the configuration in the
case of a multiple processor complex—transfers
between processor execution units and processor
cache can go on simultaneously at the rate of an
operand per cycle for each processor in the
configuration. The delivery rate of operands com-
ing from main storage as a result of a cache miss

The delivery rate of operands
coming from main storage is
a key factor in vector
performance.

is also a key factor in vector performance. The
rate of data transfer is again one double-word
operand per cycle during data movement, but
main storage access times can lower the effective
transfer rate for data not in the cache. To coun-
terbalance the effect of such delays, there are, in
the 3090 Vector Facility system, optimizations of
main storage operand delivery, which can improve
the effective rate at which vector operands move
from main storage to the central processor vector-
processing execution element.

Optimization of storage operand delivery. For Sys-
tem/370 scalar code, instructions used in floating-
point or binary computational code reference at
most one operand from storage, and it is generally
a double word (eight bytes) or a word (four bytes)
in length. In the case of vector instructions, a
much larger amount of data is referenced by each
instruction. The storage references implicit in a
single vector instruction provide information that
can be used for optimization of the system design,
just as the knowledge that multiple computations
must be performed for a vector instruction allows
efficient implementation of pipelined vector arith-
metic components. If required operands are in the
cache, they can be supplied to the vector execution
element as fast as they are needed. When required
operands are not in the cache, optimization of

IBM SYSTEMS JOURNAL, VOL. 25, NO 1, 1986

delivery may occur based on the knowledge that
many operands are needed, a form of pipelining
of main storage requests. In the 3090 Vector Fa-
cility system, this optimization of storage operand
delivery has two modes of operation. They apply
to vector operations at Strides 1 and 2 when op-
erands are not in the cache.!® It is at these strides
that the most benefit is obtained, since data are
transferred between main storage and the processor
in groups of contiguous operands called cache
lines.

The optimization of main storage operand delivery
has two components. The first is prefetching,
effectively an anticipation of the need for operands
before the vector element actually needs them.
Both optimization modes employ prefetching. The
second component of optimized delivery is direct
delivery of operands from main storage to the
vector element as well as to cache. This component
is used when the rate of operand delivery from
main storage matches the one per cycle needed by
the vector element. The effect of prefetching plus
direct operand delivery is to give more stable vec-
tor loop performance over variations of data-
in-cache and data-not-in-cache situations. For
Stride 1 or 2 vector operations which miss the
cache, and for which the rate of operand delivery
from main storage does not match the rate of
processing in the vector element, an optimization
mode that uses prefetching only is employed. In
these cases, prefetching is initiated, but the data
are placed in the cache, and the processor, on
behalf of the vector element, obtains the operands
from the cache. The paper in this issue by Tucker’
provides more description of these optimization
modes.

Analysis of job performance parameters

The operand delivery ability of the 3090 cache
makes it feasible to use the cache to supply the
vector execution element with operands, and
prefetching reduces the delays associated with miss-
ing the cache. However, the cache storage hierar-
chy concept really works only if the cache can
service a significant portion of the operand require-
ments for the processor, shielding main storage
and thereby keeping the demand on main storage
within the limits for which it was designed. The
ability of the system to achieve multiprocessor
vector performance also results from the cache
serving as a dedicated high-speed memory for

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

much of the data needs of each processor, allowing
shared main storage to serve the multiple proces-
sors in the configuration.

The support of the argument that the cache really
works and is an effective design for 3090 vector
processing lies in the cache performance parame-
ters of the vector applications, specifically in the
cache hit ratios achieved by the vector benchmark
jobs. Before the data are examined, it is worthwhile
first to take a closer look at the concepts of locality
of reference and data reuse in the context of vector
operations.

Locality of reference is the phenomenon upon
which caches work. When a request is made from
storage for operand data or instruction data, the
probability is good that the same data or closely
adjacent data will be referenced in the near future.
When the processor needs data that are not in the
cache, those data and an adjacent set of data are
placed in the cache on the assumption that some
of the data will be used in a short time. Reuse
means that a data request can be satisfied from
the cache because the data were recently used. If
the data in question are instruction data, locality
of reference and reuse are common because of the
iterative loop nature of the code.

For operand data in vector operations, locality of
reference is often more than a probability—it may
be a certainty. In some cases, the use of adjacent
operands may take place within the operation of
a single instruction. Operations at Stride 1, for
example, use contiguous storage operands. The
cache does not provide any “locality of reference”
advantage for a Stride 1 instruction where oper-
ands must be brought from main storage. In fact,
in the previously discussed optimization of deliv-
ery, operands are supplied to the vector execution
element as they are brought from main memory.
The operands are also put into the cache to take
advantage of the reuse that may occur from ref-
erences to the same operands in subsequent in-
structions.

Subsequent instruction locality of reference with
reuse of operands in the cache is the type where
the cache provides benefit and the type also seen
in computational code, and thereby in vectorized
loops. It may result from the load-update-store
logic of computation upon an array, or from the
repeated use of one vector from storage in a series

cLarK AND witson 71

of computations, while another vector is stepped
through an array. Examples of such locality of
reference and reuse of operands from the cache
are exhibited by the matrix multiplication examples
given later in this paper.

For vector operations at higher strides, a set of
adjacent data is placed in the cache (if it is not
already there) for each operand requested by the
vector execution element. In Stride N vector op-
erations resulting from operating on a matrix row,
locality of reference often comes from subsequent
operation on adjacent rows. This type of reference

Measured cache hit ratios
have shown a decrease when
running vectorized
applications.

pattern is exhibited by the Stride N matrix multi-
plication example later in this paper.

Cache hit ratios. Quantification of the degree of
cache usage is often made in terms of cache hit or
miss ratios. It is desirable to quantify cache usage
for vector applications also, but there are some
terminology considerations that should be ad-
dressed. The term “cache hit” has a slightly
broader meaning than a strict interpretation as an
operand that is fetched from the cache. In addition,
expectations concerning cache hit ratios need some
adjustment based on differences between vector
code and scalar code.

Counting the number of operands furnished by
the cache is complicated by the nature of vector
instructions and the locality of reference inherent
in Stride 1 or 2 vector operations. The prior dis-
cussion of main storage operand delivery optimi-
zations implies that Stride 1 or 2 operands not in
the cache at the beginning of an instruction are in
fact supplied to the vector element directly from
main storage, and not from the cache. For each
cache line of data brought from main storage,

72 cLARK AND WiLSON

there is only one operand “cache miss.” For con-
sistency, we assume that every operand should be
counted as a storage reference and consequently
as a hit or a miss; therefore, the rest of the oper-
ands in the storage line must be counted as “hits,”
even though strictly speaking the operands are not
supplied by the cache. However, the rest of the
operands in the cache line are available to the
vector execution element as a result of the cache
hierarchy storage organization of the system, so it
is not entirely inaccurate to label them as “cache
hits.”

The “miss” count is an accurate reflection of the
demand placed on main memory for vector oper-
ands. The number of cache misses that occur is a
parameter that can be modeled, can be measured
with laboratory monitors, and can provide a basis
for comparison of main storage demand rates be-
tween applications. Miss counts may be turned
into miss ratios or converted to cache hit ratios
as follows:

Miss Count

Cache Miss Ratio =
Reference Count

Cache Hit Ratio = 1 —~ Cache Miss Ratio

Cache hit ratios may be measured by hardware
instrumentation devices connected to a system ex-
ternal interface."" Cache hit ratios of 95 to 99 per-
cent plus are commonly measured for workloads
on IBM systems. Rules of thumb for cache hit
ratios generally hold that a decreasing hit ratio
reflects a degradation of performance, since more
time is implied for transferring data from main
storage to the cache.

Cache hit ratios of vector applications. With the
1BM 3090 Vector Facility, measured cache hit ratios
on internal test systems have shown a decrease
when vectorized applications are running, as com-
pared to the scalar versions of the same programs,
although the application performance improved
substantially. A key contributor to this change in
a measured parameter is the significant decrease
in the number of instructions executed by the vec-
tor application. Requests from the processor for
instructions are valid storage references and are
counted as such. Instructions are fetched from the
cache to be kept in the processor for decoding and
execution. With substantial portions of the scalar

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Table 2 Laboratory measurement data

SEAP Scalar Version Vector Version
Application
Miss Reference Hit Miss Reference Hit
count count ratio count count ratio
(x 10%) (x 10%) (x 10%) (% 10%
Job 1 508.2 60580 0.9916 492.5 27260 0.9819
Job 2 3253 38500 0.9915 344.4 24360 0.9858
Job3 33.83 10130 0.9967 32.28 3368 0.9904

application execution time being spent in loops,
the cache hit ratio for instruction requests is high;
stated another way, loop instruction references
contribute little to a count of cache misses, but
account for many references. With a single vector
instruction potentially replacing many scalar in-
structions, the number of instruction references is
sharply reduced for the vectorized portions of an
application. With the assumption that the number
of cache misses for operands does not change
significantly, the new hit ratio is calculated on the
basis of a lower total number of references. Ex-
amples are shown in Table 2, using measured data
from three of the laboratory benchmark jobs used
for measurement of performance in the October
1985 announcement of the 3090 Vector Facility.
For each of the examples in the table, the number
of misses stayed relatively constant, whereas the
number of references to cache decreased dramat-
ically, mainly because of the decreasing number
of instructions.

Although not illustrated by these examples, other
changes that affect the number of cache references
and/or the number of misses may also occur when
code is vectorized. The number of operand refer-
ences and the order of the operand reference are
determined for FORTRAN scalar code mainly by
the structure of the FORTRAN statements—loops
are not logically switched around by the scalar
FORTRAN compiler. For vector code, however, a
further divergence relative to scalar parameters
may occur when code is optimized to take advan-
tage of holding operands in vector registers rather
than storing and loading intermediate results. The
number of storage references is reduced, so the
miss ratio increases, and the hit ratio again de-
creases.

The opposite effect may occur when code is opti-
mized, either by the compiler or within a subroutine

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

library, to achieve high cache reuse. In this case,
the number of cache misses decreases, while the
number of operand references may stay constant,
causing the miss ratio to decrease and the hit ratio
to improve.

These latter effects are examples of how the order
of the operand reference may significantly change
for vector operations, relative to scalar code com-
piled from the same FORTRAN code. Of course,
operand reference order must inherently change
as code is vectorized. A sequence of vector in-
structions usually references up to Z elements of
one array, then up to Z elements of another array,
whereas scalar code typically alternates referencing
of operands between arrays. (Z is the vector reg-
ister section size of the system, 128 in the case of
the 3090 Vector Facility.) If the inner loop of a
nested set of FORTRAN DO-loops is vectorized, the
order of reference for operands changes only
modulo Z; the same operands are used by both
scalar and vector code within the scope of each Z
iterations of the scalar loop. For a nested set of
Do-loops, however, vectorization need not occur
on the innermost loop; when an intermediate or
outer loop is vectorized, the order of the operand
reference can change significantly from the scalar
to the vector code. An example of such vector-
ization is shown later in the matrix multiplication
discussion. When this occurs, the number of cache
misses may also decrease, thereby further altering
the hit and miss ratio parameters.

Main storage demand of engineering/scientific ap-
plications. After much preparatory discussion, we
come back to the fundamental question of whether
computationally intensive engineering/scientific
application programs do exhibit enough data usage
characteristics to make a cache system structure
advantageous.

CLARK AND WILSON 73

Although it is always possible to construct counter-
examples, laboratory analysis has shown that many
computational programs do exhibit cache usage
characteristics, as exemplified by the buffer hit rate
data shown in Table 2. Some of the reasons for
this locality of reference and operand reuse are
illustrated in the following sections of the paper
through the examination of matrix multiplication
codes.

Individual computational algorithms for particular
solution methods, combined with coding style vari-
ations, will obviously cause cache usage charac-
teristics to vary. The overall demand on main
storage seen in the laboratory benchmark set of
programs, however, leads to the conclusion that
use of cache is a common factor across many ap-
plications.

Analysis of loop performance

Although the interpretation of loop performance
measurements is difficult enough that it ought to
discourage reliance on such measures, measure-
ments are inevitably made, especially for vector
processing systems. Though the use of the cache
by the 3090 Vector Facility provides substantial
performance benefits, it also introduces further
difficulties into the interpretation of loop perfor-
mance measurements.

The problem arises from the fact that loops, or
code kernels, generally represent the logic of a
sample computation from an application, but sel-
dom represent the full scope of the data that are
computed. Most kernels exercise their logic against
small data arrays. Typical measurement tech-
niques repeat the execution of a loop many times
in order to average out small variations that may
occur in timings. On a cache machine, this method
can result in all the operands being in the cache
for all but the first pass through the loop. This
result produces a best-case measurement, one very
close to what we call “primed cache,” a condition
where all operands required by a set of code are
forced into the cache prior to execution.

To overcome the advantage the cache provides,
measurements can be made for a single iteration
of the loop, starting with none of the required
operands in the cache. This method is a worst-case
measure, which we refer to as “empty cache.” No
single interpolation between these two points is an

TR cLARK AND WiLSON

adequate figure of merit, for it would assume a
specific proportion of data residing in the cache.
Rather, the two measures must be treated as
definitions of the performance extremes of the
loop logic for a cache-based vector system. Pro-
jection of the actual performance of a loop within
an application program context must be based on
analysis of the cache usage characteristics of the
loop operating on the full data arrays.

We have used the approach of bounding best-case
and worst-case loop performance in analyzing loop
performance on a cache-based system. The matrix
multiplication performance is presented in this
manner in the following sections. Although this
model provides insight into the effects of the cache
and the sensitivities of loop performance to cache
usage, the cache is only one of several key factors
that affect vector loop performance and therefore
the vector/scalar ratio for a given loop. Other
factors include vector lengths, the number of stor-
age references required in the vector code (whether
results can be held in vector registers), and the
number of vector instructions needed to perform
the computation (whether compound operations
can be utilized, for example).

In examining the extremes of best-case and worst-
case loop performance vis-d-vis the cache, the
results are valid only within the context of a par-
ticular loop logic. Only the cache hit/miss char-
acteristics are assumed to vary. If another variable
changes, for example, by using vector registers to
hold intermediate results of computations, loop
performance may reach beyond the limit of pre-
vious best-case code, although exactly the same
computation is being performed. An example is
shown in the last matrix multiplication example
in the following section of the paper.

Examples using matrix multiplication

Several examples of cache usage characteristics are
illustrated here using matrix multiplication algo-
rithms. There are six basic arrangements of the
nesting of three FORTRAN DO-loops needed to per-
form a matrix multiplication.”? We concentrate
mainly on two of these to illustrate the effects of
data reference patterns and cache data reuse. All
the examples that follow were coded in FORTRAN
and compiled with the VS FORTRAN compiler, Ver-
sion 2, which is the 1BM vectorizing compiler. In
some cases, the compiler had to be forced to

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

vectorize less optimally than it would naturally
have done. In most of the following examples, we
wanted vectorization to occur on the innermost
loop to force known vector operand reference pat-
terns that were similar to the order of scalar op-
erand references. The purpose of these examples
is not to provide coding guidelines for writing
good vectorizable FORTRAN programs; that type
of advice may be found in Dubrulle et al.'* and
in the VS FORTRAN Version 2 product publications.

Matrix multiplication with Stride N method. As a
starting point for examining the performance char-
acteristics of matrix multiplication, we looked at
a simple vector inner-product computation, which
is at the heart of textbook matrix multiplication
for the problem A = X x Y. One element of a
result matrix A is computed at a time by forming
the inner product of a row vector from matrix X
and a column vector from matrix Y. We picked
dimensions for the matrices that were not partic-
ularly optimal for vector register length, initially
letting X be of dimension 300 by 200, and Y be
200 by 100. Later the inner-product dimension
was varied. In order to understand the bounds of
performance for such an operation, we looked first
at the inner loop, the inner-product computation,
represented in FORTRAN as

DO 10K = 1,200
10 SUM = SUM + X(I,K) * Y(K,J)

Figure 3 shows the performance points of this
loop for a single (,J) combination, in both scalar
and vector form, using assumptions of primed
cache and empty cache. Primed cache represents
minimal (zero) delays due to cache misses, and
empty cache represents maximal delays for this
particular loop. The intermediate points are inter-
polated linearly versus time, for it is the amount
of delay time that is ultimately important, not the
absolute number of cache misses. In fact, in this
example, cache miss delay time between the two
points is not linearly proportional to the number
of cache misses, for there are both Stride 1 and
Stride N (N =1) misses in the cache empty mea-
surement. Miss delays are not constant for all
types of cache misses, as discussed previously in
the section on optimization of operand delivery.
Speed (LOOP_MFLOPS) is a computed parameter,
inversely proportional to time, and therefore not
linear between the cache-empty and the cache-

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

primed points on the scale of proportional delay
time.

These sets of curves form the range of performance
for the following matrix multiplication code, which
uses inner-product, or Stride N method, calcula-
tions.

To compute the matrix product A = X x Y, the
inner-product logic is used to compute each ele-
ment of the product matrix A. The FORTRAN code
is shown in Example 1 in the Appendix.
Vectorization was forced to the inner loop, the X
variable, so that the inner product is computed
with vector instructions for the vector test case.
(Vectorization on the I induction variable would
occur without this forcing. See final FORTRAN ex-
ample.)

The performance of this loop, in both scalar and
vector form, is shown in Table 3. The loop times
are shown, as well as the normalized figures for
the processor time per basic pair of operations—a
floating-point multiplication and addition. Place-
ment of these points on the lines in Figure 3 in-
dicates that the loop experiences a small amount
of delay due to cache misses, or in other words,
use of data from the cache is high.

The next step was to generalize the array sizes and
measure across a range of dimensions. We wanted
to change only the vector length of the inner-
product operation, so that more data would be
pulled into the cache by each inner-product com-
putation. We let the X array be of dimension 300
by NDIM, and the Y array be of dimension NDIM
by 100. One complication is that total loop exe-
cution time changes not only from cache effects,
but because of more computations taking place
for larger arrays. To normalize the data across
varying array dimensions, time is expressed as
nanoseconds (ns) per multiplication/addition pair
in the following examples.

When we allow NDIM to vary between 50 and 600,
we see a definite effect from the cache. The timings
that result for both scalar and vector code are
shown in Figure 4, curves 1S and 1V, respectively.
Each inner-product computation references NDIM
operands in the X array, at Stride 300, so NDIM
cache lines are needed for the X array operands.
When the amount of data in NDIM cache lines
approaches or exceeds the size of the cache, the

CLARK AND WILSON 78

Figure 3 Timing of inner-product computation (200-element) Stride 300 operation

1000

TIME PER PAIR OF OPERATIONS (ns)

CACHE PRIMED

RANGES OF
POSSIBLE LOOP
PERFORMANCE

CACHE EMPTY

101 20| 30 | 40 50 [60 |

o

PERCENT OF POSSIBLE (STORAGE) DELAY TIME

70| 80| 50! 100 |

cache begins to “roll” on every inner-product com-
putation. Cache lines fetched for the first operands
in the X row vector are displaced by later operand
references for the same vector, so the next loop
iteration that uses the same or an adjacent X row
vector finds none of the required operands in the

Table3 Performance of FORTRAN inner product matrix
multiplication (300,200) x (200,100)

Subroutine Time Time per
(s) Mult/Add
{ns)
Scalar 1.71 285
Vector 0.70 117"

76 CcLARK AND WiLSON

cache. This is the reason for the drop-off of per-
formance beginning above ~¥pipM = 350 in Figure
4. Data usage from the cache, i.e., “hits,” are low,
as indicated by the placement of the speed results
for NDIM = 400 on the curves of Figure 3. Note
that both the scalar and vector codes suffer the
same degradation, since their operand reference
patterns are essentially equivalent. Use of Figure
3 indicates that the cache use of the scalar and
vector code is basically equal for each value of
NDIM tested.

Sectioning the Stride N method. Sectioning is a
term used in vector architectures that are register-
based. It refers to the implementation of perform-
ing a long vector operation using registers of a

IBM SYSTEMS JOURNAL. VOL 25, NO 1, 1986

Figure 4 Loop timing for matrix multiplication (A=XxY)

2 [io00
» IZI = XxY
Z
2
: = 300 by NDIM
§
% [800 = NDIM by 100 18
o
£
o0
(1}
n
w
=
- Vv
600
400
/ 28
38
200
2V
v
4V
Y
0 50 | 1001 150 | 200 | 250 | 300 | as0 | 4001 450 | 500 | 550 1 600 |
DIMENSION NDIM

specific length Z; in the case of the 3090 Vector
Facility, Z is 128, the number of operands a vector
register can contain. A long vector operation is
performed Z operands at a time, with a loop that
repeats the Z-operand operation on successive
“sections” of the long vector, until it is complete.
Such loop control is referred to as sectioning logic.
The length of the vector register is referred to as
the section size. The vectorizing compiler auto-
matically produces all the code required for sec-
tioning of vectors longer than Z or of length un-
known at compilation.

The experiment we performed next on the Stride
N matrix multiplication was to externally impose
a form of sectioning on the vectors used in the
inner-product calculation. The objective was to

{BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

preserve the cache usage that occurs at lower val-
ues of NpIm. This preservation was done in the
FORTRAN code, so that both scalar and vector
codes would again follow similar operand reference
patterns. The FORTRAN code, with its artificial
sectioning constructs, is shown in Example 2 in
the Appendix. Some additional overhead is intro-
duced by the addition of another loop in the nest-
ing, but the operand reference pattern can be
controlled. Vectorization again is forced to the
innermost loop that performs the inner-product
calculation.

The resultant code computes partial results of each
element A(Z,J), but effectively partitions the large
X and Y arrays in a manner that results in cache
usage similar to what is seen on the smaller array

CLARK AND WiLsON 77

Figure 5 Timing of vector * scalar computation (300-element) Stride 1 operation

1000

800

TIME PER PAIR OF OPERATIONS (ns)

400

200

VECTOR

e

RANGES OF
POSSIBLE LOOP
PERFORMANCE

CACHE PRIMED

CACHE EMPTY

0 101 20| 301 a0l 501 601
PERCENT OF POSSIBLE (STORAGE) DELAY TIME

701 gol g0l 100 |

sizes. The performance results, shown in Figure 4
as curves 2S and 2V, indicate performance that
does not degrade. Comparison to Figure 3 indi-
cates that cache usage is high even for large values
of NDIM.

It should be observed that the effects described
here were produced by forcing vectorization on a
certain loop induction variable. Scalar loops coded
as illustrated would perform as in these experi-
ments. Vectorization of these loops would not
normally result in the performance we observed,
because vectorization would not take place on the
innermost loop. Without the INTEGER + 2 induc-
tion variables that force vectorization, the loop
used in this example would be vectorized on the

78 cLARK AND WiLSON

loop having the I induction variable, resulting in
a Stride 1 vector loop with stable performance
across values of NDIM.

The sensitivity of loop performance to the pattern
of operand reference in both scalar and vector
code on a cache-based system is clearly illustrated.
Vectorization algorithms in the compiler may re-
order the reference pattern implied by the
FORTRAN code. In cases where this is not possible,
and the FORTRAN and scalar code exhibit poor
operand reference patterns, the performance of the
vector code will similarly be suboptimal.

Matrix multiplication with Stride 1 method. An
alternative method for performing the matrix mul-

{BM SYSTEMS JOURNAL, VOL. 25, NO 1, 1986

tiplication function is to access elements in the
arrays in a contiguous pattern, that is, columnwise
in FORTRAN. The philosophy of coding for con-
tiguous access patterns has been advocated for
many years, since it tends to produce stable per-
formance characteristics over large array sizes in
virtual storage systems and systems with cache
storage hierarchies.!

The basic operation is a vector times scalar mul-
tiplication, which produces partial results of the
product matrix column vectors. In FORTRAN code,
the inner loop is

DO 101 = 1,300
10 AQLY) = AL + X(LK) » Y(K.J)

The Kth column vector of matrix X is multiplied
by an element from the Y matrix, Y(K,J), to pro-
duce a partial sum of the Jth column vector of
matrix A. The code for a matrix multiplication
coded for a contiguous data access pattern is
shown in Example 3 in the Appendix.

Figure S shows the bounds of a single iteration of
the inner-loop operation, which is now a vector
times scalar multiplication rather than the inner
product seen in the Stride N method. Vectorization
occurs on the innermost loop without any unnat-
ural forcing, since contiguous operand access is
preferred by the vectorization analysis of the com-
piler. The vector length is 300 and does not change
as the NDIM dimension of the X and Y arrays
changes. Empty-cache and primed-cache measure-
ments form the range of performance for the fol-
lowing examples. An immediately noticeable
difference between Figure 5 and Figure 3 is that
the bounds of possible performance for the Stride
1 inner loop are much narrower than for the Stride
N inner loop. The performance of the Stride 1
method should be more consistent regardiess of
cache miss characteristics.

Performing the matrix multiplication experiment
for values of NDIM ranging from 50 to 600 yielded
the results in Figure 4, curves 3S and 3V. As
expected from the use of this coding style, the
results are stable across the varying array sizes.

Sectioning the Stride 1 method. Although the per-
formance of the Stride 1 method is stable and
shows good improvement over the scalar opera-

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

tion, further improvement may still be obtained
by altering the sectioning logic, as was done for
the Stride N inner-product method. It might ap-
pear that little advantage is to be gained since the
bounds of performance are rather tight, as shown
in Figure 5. This is the basic reason this approach
is preferred. However, when the sectioning logic
is altered for the Stride 1 method, the partial re-
sults that are calculated are not scalar partial inner
products but sections of the product matrix col-
umns which are summed to form the result matrix
column. When this change is made for the vector
code, the partial results can be kept in a vector
register, and loading and storing of intermediate
results to the result matrix can be eliminated. The
FORTRAN code is shown in Example 4 in the Ap-
pendix.'® The inner loop in the compiled code has
no vector LOADs or STOREs to the A matrix and
has just one compound vector instruction perform-
ing the multiply/add operation of a vector times
scalar product.

Measurement results for this vector code are shown
in Figure 4, curve 4V. A scalar counterpart is not
applicable, since the result was obtained by ex-
ploiting the vector register to hold a temporary
vector variable. The results of this measurement
do not fall in the range of the loop performance
of the original loop as shown in Figure 5 because
the inner-loop logic has changed. Though exactly
the same computation has been performed, the
ratio of storage references per computation has
been altered by the change to the sectioning logic.

Matrix multiplication summary. The progression
of examples in this portion of the paper has illus-
trated the role the cache plays in the overall per-
formance profile of the 3090 Vector Facility sys-
tem. The cache storage may present some pitfalls,
but they have not been introduced by the addition
of vector processing. It also presents opportunities
for optimization. In the Engineering/Scientific
Subroutine Library (ESSL) software product, cod-
ing of matrix functions has taken advantage of
the types of optimizations discussed in this paper
and further combined them to achieve optimal
vector length, vector register usage, and cache data
reuse. The performance of the ESSL vector matrix
multiplication function illustrates the point, as
shown in Figure 4, curve SV. In this measurement,
ESSL was called to perform the same set of matrix
multiplications used in the previous examples.

CLARK AND WiLsoN 79

Table 4 Performance of vector matrix multiplication
(300,500) x (500,100)

LOOP_MFLOPS

Vectorized FORTRAN 21
Vectorized FORTRAN 46
ESSL 68

Table 4 presents the data measured during these
investigations in the form of LOOP_MFLOPS speeds
for the vectorized forms of matrix multiplication
on a pair of matrices of size (300,500) and
(500,100). The data shown are for the two cases
in which the vs FORTRAN Compiler was allowed
to choose the method of vectorization, plus the
ESSL measurement. In each of these situations, the
previous results show that performance is essen-
tially stable over a range of dimension represented
by the NDIM variable.

These loop speeds represent vector/scalar ratios of
approximately 2.5 to 8 times. The improvement
an application would experience is also a function
of the vectorizability of a particular application,
as discussed in Part I of this paper.

Summary and conclusions

In the last section, we have examined the perfor-
mance of the 3090 from the perspective of its use
of the cache storage hierarchy for vector operand
delivery. We have discussed how the cache storage
hierarchy supports the delivery of operands to the
vector processing execution element in each pro-
cessor, at the rate required for vector pipeline ex-
ecution. In the most commonly observed reference
patterns, operands that are not in the cache are
delivered in an optimized mode to minimize the
delay effects of main storage access. It has been
shown that the introduction of vector instructions
produces results in traditional “cache hit ratio”
terms that run contrary to rule-of-thumb expecta-
tions. Care must be taken in applying metrics to
an analysis of the effectiveness of the cache hier-
archy.

Given these qualifications, however, both the anal-
ysis of cache miss ratios and resultant main storage
demand, as well as the empirical data of application
benchmark measurements, support the conviction

80 CLARK AND WILSON

that the cache hierarchy does indeed provide the
data needed by the processor to achieve the vector/
scalar speedup goals of the 3090 Vector Facility
system.

Finally, we have examined several matrix multi-
plication codes in detail to illustrate the sensitivities
that exist in a cache-based design. These also serve
to illustrate the opportunities that exist in such a
system structure for effective software/hardware
optimization, since neither the unconstrained
FORTRAN vectorization nor the ESSL loop function
exhibits the sensitivity illustrated.

In its innovative approach to vector processing,
building on the strengths associated with IBM’s
state-of-the-art large-systems hardware and soft-
ware products, the 3090 represents a major step
in the maturation of systems designs in support of
engineering/scientific data processing require-
ments.

Acknowledgments

The departments and individuals who planned,
designed, developed, and tested the 1BM 3090 Vec-
tor Facility system, both hardware and software,
are too numerous to acknowledge individually,
but without them we would not have products to
analyze and measure. We particularly recognize
the work of the applications analysis and perfor-
mance measurement departments, which have pro-
vided the foundation of our understanding of the
performance of the system. The applications anal-
ysis groups, directed by A. L. Lim and B. D.
Rudin, analyzed, selected, and migrated the vector
benchmark applications used in characterizing the
performance of the system. Product measurement
has provided us not only with the application per-
formance data, but also the cache characteristics
and analysis of cache usage sensitivities using ma-
trix multiplication codes.

Appendix: FORTRAN code segments used
in matrix multiplication examples

Example 1. This example shows matrix multipli-
cation using inner-product logic (fixed array di-
mensions).

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

DIMENSION A(300,100), X(300,200), Y(200,100)
INTEGER +2 L,
DOUBLE PRECISION A,X,Y,SUM
DO 207 = 1,100
DO 201 = 1,300
SUM = 0.0D0
DO 10K = 1,200
10 SUM = SUM + X(LK) * Y(K.J)
20 A(LJ) =SUM

Example 2. This example depicts matrix multipli-
cation using inner-product logic and variable array
dimension (externally imposed sectioning logic).

DIMENSION A(300,100), X(300,NDIM), Y(NDIM, 100)
INTEGER »2 1)
DOUBLE PRECISION A,X,Y,SUM
MSECSZ = 128
DO 20 J =1,100
C PRODUCT COLUMN SECTION MUST BE
C INITIALIZED TO 0
DO 51=1,300
5 A(LT)= 0.0D0
C VECTOR LENGTH IS NDIM, SECTIONING ON I
K = NDIM
DO 20 KSECT = 0, (K — 1) /MSECSZ
C DO LOOP INDEXED BY I INSIDE SECTIONING
C LOOP
KK1=KSECT + MSECSZ + 1
KK2 = MIN(K, (KSECT + 1) * MSECSZ))
DO 20 I = 1,300
SUM = 0.0D0
DO 10 KK = KK1,KK2
10 SUM =SUM + X(LKK) * Y(KK.J)
20 A(LJ) = A(LJ) + SUM

Example 3. In this example, matrix multiplication
uses vector * scalar logic (variable array dimen-
sion).

DIMENSION A(300,100), X(300,NDIM), Y(NDIM, 100)
DOUBLE PRECISION A X,Y
DO 10 J =1,100
DO 20 I = 1,300
20 A(LJ) =0.0D0
DO 10 K = 1,NDIM
DO 10 I =1,300
10 ALY =A@)) + X(LK) * Y(K,J)

Example 4. This example illustrates matrix mul-
tiplication with optimum vectorized performance.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

DIMENSION A(300,100), X(300,NDIM), Y(NDIM, 100)
DOUBLE PRECISION A, X,Y,SUM

DO 20 J =1,100

DO 20 1=1,300

SUM = 0.0D0

DO 10 K = 1,NDIM

10 SUM =SUM + Y(K,J) * X(IK)
20 A(LJ) =SUM

Clted references and notes

1.

10.

11.

12.

13.

D. H. Gibson, D. W. Rain, and H. F. Walsh, “Engineering
and scientific processing on the IBM 3090,” IBM Systems
Journal 25, No. 1, 36— 50 (1986, this issue).

. G. Amdahl, “The validity of the single processor approach

to achieving large scale computing capabilities,” AFIPS
Conference Proceedings 30 (1967).

. K. Radecki, Introduction to Processor Performance Evalu-

ation, IBM Washington Systems Center Technical Bulletin,
GG66-0232, IBM Corporation (February 1986); available
through IBM branch offices.

. Y. Singh, G. M. King, and J. W. Anderson, “IBM 3090

performance: A balanced system approach,” IBM Systems
Journal 25, No. 1, 20— 35 (1986, this issue).

. Calculation of Peak MFLOPS is

Peak _ MFLOPS = (number of operations per cycle)/(ma-
chine cycle time)

for the 3090 Vector Facility = 2/(18.5 ns) = 108
Peak _MFLOPS (one processor).

. IBM 3090 System Summary—Engineering/Scientific, IBM

Information Systems Group Product Announcement
182-120 (October 1, 1985); available through IBM branch
offices.

. C.J.Conti, D. H. Gibson, and S. H. Pitkowski, “Structural

aspects of the Systemn/360 Model 85; Part I, General or-
ganization,” IBM Systems Journal 7, No. 1, 2 14 (1968).

. C.J. Conti, “Concepts of buffer storage,” Computer Group

News, 2 (March 1969).

. S. G. Tucker, “The IBM 3090 system: An overview,” IBM

Systems Journal 25, No. 1, 4—19 (1986, this issue).
Stride refers to the distance in memory between operands
referenced in an array. Contiguous data are referred to
as Stride 1. Reference to the row of an N x M array in
FORTRAN uses operands in memory that are N elements
apart, and is termed Stride N.

Hardware monitors may be attached to IBM 3090 and
IBM 3081 processors via an external interface available by
a customized order. Signals are provided at the interface
that can allow an attached device to monitor events such
as cache misses.

J. Dongarra, F. Gustavson, and A. Karp, “Implementing
linear algebra algorithms for dense matrices on a vector
pipeline machine,” SI4M Review 26, No. 1 (January 1984).
A. A. Dubrulle, R. G. Scarborough, and H. G. Kolsky,
How to Write Good Vectorizable FORTRAN, 1BM Palo
Alto Scientific Center Technical Report, G320-3478, IBM
Corporation (September 1985); available through IBM
branch offices.

cLARK AND witsoN 81

14. A. A. Dubrulle, The Design of Matrix Algorithms for
FORTRAN and Virtual Storage, IBM Palo Alto Scientific
Center Technical Report, G320-3396, IBM Corporation
(November 1979); available through IBM branch offices.

15. In FORTRAN, this is accomplished in a somewhat oblique
manner by returning to the coding of the inner-product
loop nesting and letting the compiler choose how to
vectorize. Vectorization occurs on the I induction variable
(the Stride 1 direction), and a vector temporary is intro-
duced because of the use of the temporary variable SUM
in the FORTRAN code. This vector temporary variable
is kept in a vector register as an accumulator of a section
of the A column vector, resulting in an inner loop without
vector LOAD and STORE operations.

. Ronald S. Clark IBM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Mr. Clark is currently manager of
System Performance in the Scientific/Engineering Processor
Products development function. He was involved in the design
and system testing of the initial releases of MVS, after which
he spent two years on assignment to the International Systems
Center in Hursley, England, providing large-system support to
MYVS customers in IBM’s World Trade Europe/Middle East/
Africa Corporation. Following that assignment, he worked in
the Washington Systems Center large-system product support
group. His next assignment was with the National Program
Office in Norwalk, CT, providing national account marketing
support to the General Electric Company. Upon returning to
the development lab, he held several positions in software de-
velopment for scientific/engineering products before assuming
his current position. Mr. Clark joined IBM in 1968. He received
a Sc.B. in applied mathematics from Brown University in 1968
and an M.S. in computer science from Rensselaer Polytechnic
Institute in 1972.

Troy L. Willson [BM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Mr. Wilson is currently manager
of System Management and Performance. In this position, he
is responsible for providing the analysis necessary to understand
the processing behavior of scientific applications on IBM’s large
systems, for supporting the engineering projects to achieve high
performance, and for generating guidance in applications re-
quirements. His prior work in IBM included numerous man-
agement positions in software development, in group staff
activities, and in performance technologies. He founded the
corporate Internal Technical Liaison Committee on Perfor-
mance, established and directed the Tokyo System Evaluation
Laboratory, and served as director of performance and of re-
liability and serviceability for the Information Systems and
Technology Group staff. Mr. Wilson is a graduate of the Uni-
versity of Arkansas.

Reprint Order No. G321-5262.

82 cLARK AND WILSON IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

