The IBM System/370
vector architecture

Discussed is the instruction-set architecture of the
IBM Systemi370 vector facility, a compatible
extension of the SystemI370 architecture. Both the
base system, which is a general-purpose
Systemi370 processor, and the optional vector
facility employ a register type of organization. Data
formats are the same, arithmetic operations
produce exactly the same results, arithmetic
exceptions are handled in the same way, and
instructions are precisely interruptible for page
faults and other causes in the same manner as
those of the base system. This approach permits
substantially increased performance on
veclorizable programs with only a modest increase
in hardware and software, while retaining the ability
to run existing nonvector programs unchanged.

he architecture of the 1BM System/370 vector

facility! is a compatible extension of the Sys-
tem/370 architecture.”* Use of the facility can sub-
stantially increase performance for applications in
which a great deal of the time of the central pro-
cessing unit (CPU) is spent doing arithmetic on
vectors.*

Much of the numerical data for such computation-
intensive applications has the form of an array.
Vector processing can take advantage of the order
inherent in array data by treating multidimensional
arrays as sets of vectors (one-dimensional arrays).
Vector-arithmetic operations may increase perfor-
mance over loops of scalar arithmetic instructions
in the following three ways:

® The fixed and predetermined structure of vector
data permits housekeeping instructions inside

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

by W. Buchholz

the loop to be replaced by faster internal (hard-
ware or microcoded) machine operations.

® Data-access and arithmetic operations on several
successive vector elements can proceed concur-
rently by overlapping such operations in a pipe-
lined design or by performing multiple-element
operations in parallel.

® The use of vector registers for intermediate re-
sults avoids additional storage references.

Vector processors have been available for a number
of years in two forms. One type of vector processor
is a separately programmed special-purpose unit
that attaches to standard commercial computers
as a peripheral device; examples are the 1BM 3838°
and the Floating-Point Systems FPS 164% array
processors. The other type of vector processor is
integrated into a supercomputer design, as in the
Cray series® !° or the cDC Cyber-200 series and
its predecessors.*!' The IBM vector facility com-
bines aspects of both types. It is designed as an
optional feature which can be added to a general-
purpose System/370 processor, the IBM 3090, op-
erating in either the System/370 mode'? or the
System/370-XA (extended architecture) mode."

When the vector facility is provided, it is viewed
as an integral part of the CPU. Its instructions,

©Copyright 1986 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

BuckHorz B1

registers, and other functions are completely inte-
grated into the System/370 architecture in the fol-
lowing ways:

® Regular System/370 instructions can be used for
all scalar operations.

® Arithmetic operations on individual vector ele-
ments produce exactly the same result as do the
corresponding System/370 scalar instructions.
Vector instructions are interruptible, and their
execution can be resumed from the point of in-
terruption after appropriate action has been
taken, in a manner compatible with the Sys-
tem/370 program-interruption scheme.
Arithmetic exceptions are the same as, or exten-
sions of, exceptions for the scalar arithmetic in-
structions of System/370, and similar fix-up rou-
tines can be used.

® Vector data may reside in virtual storage, with
page faults being handled in a standard manner.

The thorough integration of the 1BM vector archi-
tecture has a number of important consequences.
Support of the vector facility is provided by ap-
propriate additions to current operating systems.
Existing application programs, language compil-
ers, and other software can be run unchanged.
Eligible programs can be modified at any time to
take advantage of the vector instructions, with the
system remaining productive doing scalar jobs
whenever there are no vector applications ready
to run.

Integrating the vector facility into a general-
purpose System/370 processor also requires the
adoption of certain restrictions of the System/370
scalar architecture. The vector architecture gives
the same appearance of sequential instruction ex-
ecution as the scalar architecture; this is extended
to vector-element operations, which each vector
instruction appears to perform sequentially. Only
one exception at a time is allowed to cause an
interruption. At the point of interruption, all pre-
ceding element operations have been completed
successfully, and any subsequent operations that
have already been performed are discarded as
though they had not yet occurred.

Structure of the vector facllity

The vector facility may be viewed simply as an
addition to the instruction-execution part of the
base machine, which contains the additional reg-

B2 BucHHOLZ

isters and the specialized circuits to perform arith-
metic and logic on a stream of data at high speed.
There are also lesser additions to the instruction-
handling part and other controls of the machine,
but these merge readily into the existing control
structure.

Registers. The vector facility has 16 vector regis-
ters, which are used as temporary containers for
vector operands and results, as are the four
floating-point registers and 16 general registers for
scalar data. A vector register may contain a certain
number of consecutive elements of a vector, the
number depending on the model. Each element
of a vector register is 32 bits wide. A pair of
even-odd vector registers is used to hold 64-bit
vector elements. Unlike the scalar floating-point
and general registers, vector registers may be used
interchangeably for floating-point or fixed-point
data. Thus, a single vector register may hold a
vector operand consisting of either floating-point
numbers in the 32-bit short format or 32-bit binary
integers. A vector-register pair may contain a
floating-point vector in the 64-bit long format or
the 64-bit product vector that results from multi-
plying two binary-integer vectors.

Vectors may be of any length that will fit in stor-
age, from one element on up. Vectors longer than
the number of elements that one vector register or
register pair can hold are processed in sections.
Thus, the length of a vector register is referred to
as the section size. The vector architecture allows
the section size to be any power of 2 between 8
and 512. The choice for a particular model is
made by the designers as a performance-cost trade-
off. For the vector facility of the 1BM 3090, the
section size was chosen to be 128. The architecture
provides special instructions to simplify the pro-
cessing of long vectors, one section at a time, in
a manner that is independent of the actual section
size. This sectioning technique is discussed later
in this paper.

Figure 1 shows the vector registers, as well as
other registers of the vector facility that are avail-
able to the program. The vector-mask register con-
tains mask bits that may be used to select which
elements in the vector registers are to be processed.
The vector-status register holds certain control
fields, such as the vector count that determines

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 1 Registers of the Vector Facility, where Z is the model-dependent section size

14 (0) 15(0)
12(0) 13(0)
10 (0) 11(0)
!
|
VECTOR-
VECTOR 8(0) 9(0) |
REGISTERS ‘ || S TER
| , s
6(0) 7(0) | | 0
R —
| 1
4(0) 5(0) ' }
|
] :
200 30 ! :
|
| Z BITS | {
4 ! | | l
0(0) 1(0) : : :
I | Ia—— | |
oM 10) I i I !
: | |
0@ 1(2) : f 71
L 1 !
z A
T | | }___
u | | | (
@ | |
D |
| ' —
| | |
[!
0(Z-1) 1(Z~1)
v
32BITS
-
64 BITS
] VECTOR-STATUS REGISTER
VECTOR-ACTIVITY COUNT
how many elements in the vector registers are to Instruction formats. Like their scalar counterparts,
be processed. The vector-activity count keeps track vector instructions can operate either on operands
of the time spent executing vector instructions. in registers or directly on operands in storage. The

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986 BucHHoLz B3

resultant vector always goes to a vector register
(not necessarily a register that contains one of the
operands), except that the result of a vector com-
parison is placed in the vector-mask register. The
arithmetic and logical vector operations are avail-
able in up to four formats, which differ as to the
source of the operands, as follows:

® vST format—one operand in storage; the other
operand, if any, in a vector register
o vV format—all operands in vector registers

® QST format—one operand in storage; the other
operand in a scalar register

Processing a vector in
storage directly can reduce
the number of separate
vector-load instructions.

® Qv format—one operand in a scalar register; the
other operand, if any, in a vector register

For the arithmetic operations, the four formats
are repeated for long and short floating-point vec-
tors and, with some omissions (such as division),
for binary-integer vectors. Thus addition, subtrac-
tion, multiplication, and comparison operations
are each available in twelve versions; division is
available in eight.

The QST and Qv formats use the contents of a
scalar (floating-point or general) register as one of
the operand sources. The scalar operand is treated
as though it were a vector of the same length as
the vector operand and having all elements equal
to the contents of the scalar register.

Processing a vector in storage directly and the
result, not having to replace either operand, are
capabilities that can reduce the number of separate
vector-load instructions. This saving is nontrivial,
because loading a vector may take about the same
time as performing an arithmetic operation.

54 BUCHHOLZ

Vectors in storage. The primary focus of the vector
instruction set is on vectors of floating-point num-
bers in the long format, where each element con-
sists of 64 bits. For those applications that do not
require the full precision, storage space can be
saved by using the short floating-point format of
32-bit elements. Additional instructions perform
operations on vectors of binary integers and logical
data, but these are intended primarily to support
the floating-point vector operations. Vectors of
half-word (16-bit) binary integers may also be
loaded and stored; these are expanded to the 32-bit
integer format while in vector registers. The data
formats are fully compatible with those of the sca-
lar architecture.

The address of a vector in storage is the address
of the first byte of the first element to be processed.
The address is contained in one of the 16 general
registers of the base machine. As execution of a
vector instruction progresses from one element to
the next, the address in the general register is in-
cremented correspondingly. Upon completion, the
general register points to the next element of the
vector to be processed, so as to be ready if the
program repeats the instruction for another vector
section.

Successive elements of a vector in storage may be
in adjacent storage locations (contiguous vector),
or they may be separated by one or more element
positions. The number of element positions in
storage needed to advance from one vector element
to the next is called the stride of the vector. Con-
tiguous vectors have a stride of one. Each instruc-
tion which accesses a vector in storage can specify
a stride; a contiguous vector is the default.

Consider, for example, an m-by-n matrix (i.e., a
two-dimensional array) in storage. The address of
a column or row is the address of its first element.
If the matrix is stored in column order (i.e., the
FORTRAN convention), each column is a contigu-
ous vector of length m and stride one. Each row
then is a noncontiguous vector of length » and
stride m. For a row to be processed in reverse
order, the instruction specifies the storage location
of the last element and a stride of —m.

As a second example of a square n-by-n matrix
stored in column order, a column is a contiguous
vector, a row is a vector of stride n, the main
diagonal is a vector of stride » + 1, and the sec-

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

ondary diagonal has a stride n — 1. All of these
vectors have a length n.

Converting a stride to an address increment in
storage amounts to multiplication by the element
width in bytes. (Because the element widths are
powers of 2, multiplication merely consists of a
left shift of the binary stride.) Thus, a stride of
10 for a floating-point vector in the long format
requires an address increment of 80 bytes. Much
of this address arithmetic is done automatically
by the machine.

Vectors in vector registers. When a vector is loaded
into a vector register, its elements occupy consec-
utive register positions. The number of elements
loaded is the vector count. A single vector count,
which can be any integer from zero up to the
section size, governs the processing of vectors in
all vector registers.

Another quantity, the vector interruption index,
indicates the element in the vector register or reg-
isters currently being processed. Element positions
in a vector register are numbered from zero to
Z — 1, where Z is the section size. During in-
struction execution, the vector interruption index
normally starts at zero, advances until it reaches
the vector count, and is reset to zero as the in-
struction is completed. If the vector instruction is
interrupted for any reason, the vector interruption
index marks the point that has been reached (hence
its name), and execution resumes from that point
if the instruction is reissued. This automatic op-
eration of the vector interruption index usually
requires no program intervention.

The vector count, vector interruption index, and
certain other information which must be saved at
the time of an interruption are located in the
vector-status register shown in Figure 1.

Instruction execution

Vector sectioning. Sectioning refers to a technique
for processing vectors of any length in sections,
where the section size is the number of element
positions provided in a vector register, except for
the last section, which may be shorter than the
section size of the machine. Sectioning is best ex-
plained by the use of two simple examples pre-
sented in assembler language.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

The first example performs C = A + B, where
A, B, and C are three contiguous vectors of length
N. Figure 2 illustrates schematically the manner
in which vectors are handled, one section of Z
elements at a time, where Z is the section size of
the model (i.e., 128 elements for the IBM 3090).
The corresponding instructions for computing C
= A + B are shown in Figure 3. The vectors in
this example consist of floating-point numbers in
the long format. Instructions that have mnemonics
starting with the letter V belong to the vector fa-
cility; all others are regular System/370 instruc-
tions. (The numbers in parentheses are for use
only in the description.)

Symbols GO, G1, G2, and G3 refer to the arbi-
trarily chosen general registers 0 —3. V0 is vector
register 0, although any even-numbered vector reg-
ister would do. Identification letters are prefixed
to the register numbers for clarity only.

Instructions (1) to (4) load the vector length N
into general register 0 and the starting addresses
of the three vectors into general registers 1 to 3.
Instructions (5) to (9) form the sectioning loop.
Each traversal of that loop processes one section
of each of the three vectors.

Instruction (5) is a special instruction LOAD VEC-
TOR COUNT AND UPDATE (VLVCU). It loads the
vector count with the lesser of the vector length
(specified by the instruction to be in general register
0) or the section size Z (supplied by the machine).
Then the instruction reduces the contents of the
general register by the number just loaded into the
vector count. Finally, the VLVCU instruction sets
the condition code of the machine to indicate
whether the new general-register contents are zero
(i.e., the last or only section has been processed)
or greater than zero (i.e., more sections are to
follow).

Instructions (6) to (8) are long floating-point vector
instructions. VLD loads a section of vector A from
storage into vector register 0. VAD adds to that
section a section of vector B from storage and
returns the result to vector register 0. The first VO
of instruction (7) refers to the result register and
the next VO to the register location of one of the
operands. (The two vector registers are the same
here, but they could have been different.) vSTD
stores the result into a section of C. All three
vector instructions process one vector section at a

BuchhoLz BB

Figure 2 Sectioning example, C=A+B, where Z is the model-dependent section size

Z ELEMENTS
-y

A

—_— + —p
B

E— I SUM ————»p

v
C
N ELEMENTS

Figure 3 Instructions for the example C=A+B

Lo BN
A BLA L)
LA 82,8 - -3
LA 63.C 4y,
LOOP VLVCU 68 SRR (1
VLD V.61 (8)
VAD . VB.VB.BZ (1)
VSTD V0,63 8
BC. 200 (@ -

time, the length of the current section being de-
termined by the vector count as set by instruction
(5). Normally, the vector count is set to Z, the
section size of the machine, except for the last (or
only) vector section, for which the vector count is
set to the remaining number of elements.

B6 BucHHOLZ

Instruction (9) is a BRANCH ON CONDITION (BC)
instruction, which tests the condition code set by
vLvCU. If the condition code is 2, general register
0 is still greater than zero, and the instruction
branches back to instruction (5) to set the vector
count for the next section. Each of the vector
instructions (6) to (8) advances the vector address
in its general register to the first element of the
next section, so that processing can continue di-
rectly from one section to the next. If the condition
code is not 2, general register 0 is now zero, there
are no more sections to be processed, and the
program continues with the instruction following

).

The example in Figure 4 evaluates the vector ex-
pression B = (S — A) % B, where S is a floating-
point scalar, A is a contiguous vector, and B is a
vector of stride 7. The vector length is N. All
floating-point numbers are in the short format for
this example.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

The third and fourth instructions place the address
of vector B in two general registers, 2 and 3, one
register being used for fetching B as an operand
and the other for storing the result back into B.
Two copies of the address are used this time, be-
cause each of two vector instructions separately
updates the address of B. Instruction (5) loads
stride T into general register 4. Instruction (6)
loads scalar § into floating-point register 0.

The sectioning loop in this example consists of
instructions (7) to (11). The VSES instruction (8)
performs a scalar-vector subtraction. This instruc-
tion subtracts each element of the current section
of vector A in storage from scalar S and places
the difference in vector register 5. VME in instruc-
tion (9) multiplies this difference by a section of
vector B in storage. The stride register for the
noncontiguous vector B is specified in parentheses
foliowing the address register. The stride cannot
be in general register 0, because a zero in the
stride-register field of the instruction is defined in-
stead to indicate a contiguous vector. [The assem-
bler permits this zero field to be omitted, as in
instruction (8).] The product of the two short vec-
tors, which is in the long format, is placed in the
vector-register pair consisting of registers 2 and 3,
but only the left half is stored by the VSTE instruc-
tion (10).

These sectioning loops are quite general and work
with vectors of any length N and with any section
size. Short vectors, which are less than or equal
to the section size, are processed in a single pass
through the loop. If N is a variable that happens
to be zero (or even negative), VLVCU sets the vector
count to zero, and the vector instructions inside
the loop are executed once but without processing
any vector elements. The section size does not
appear explicitly in these examples because they
are independent of the actual section size.

Interruptible vector instructions. All long-running
vector instructions, that is, those which can operate
on multiple vector elements, can be interrupted
during execution due to a variety of causes. One
cause of interruptions is the recognition of one of
the standard arithmetic exceptions, such as
overflow or division by zero. There is a new ex-
ception for unnormalized floating-point numbers,
which, for performance reasons, are not permitted
as operands of vector multiplication and division.'*
Page faults and other exceptions may result from

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 4 Instructions for the example B=(S—4) *B

attempts during execution to access vector oper-
ands in virtual storage. Finally, there are asyn-
chronous interruptions from input/output or other
external sources that the machine may allow during
execution of long instructions to provide greater
responsiveness.

Some of these interruptions may require the job
to be terminated, others provide an opportunity
for the program to fix up the result and then re-
sume normal operation, and still others are ex-
pected to be handled transparently by the operating
system in such a way that the application continues
to run as though nothing had happened other than
a short delay.

The updated storage address in the general register
designated by the instruction and the vector inter-
ruption index are key to the interruptibility of
most of the vector instructions. The general reg-
ister and vector interruption index serve as place-
holders in storage and in the vector registers,
respectively, so that resuming the program by re-
executing the vector instruction causes the instruc-
tion to continue from the point of interruption.
Multiple interruptions during the execution of a
single instruction are handled by maintaining the
appearance of sequential execution, instruction by
instruction and element by element. At the point
of interruption, all preceding instructions and all
preceding elements of the current instruction have
been completed, and any operations that may have
been started on elements or instructions beyond
this point are nullified and appear as though they
had never occurred. A few instructions are inter-
ruptible in a different manner, but the same prin-

ciples apply.

BuchHoLz 97

Saving and restoring of vector status. If more than
one program must share the use of the same vector
facility, it becomes necessary to save the contents
of vector facility registers for the just-interrupted
program and to restore the previous contents for
the program that is to be resumed. Unlike the
scalar parts of the machine, where the saving or
restoring of registers involves less than 200 bytes
of data, saving and restoring the registers of the

The structure of the vector
instruction set is simpler
than the count of 171 new
instructions suggests.

vector facility can involve thousands of bytes,
which may have a noticeable performance impact.

Several measures are available to help reduce the
save-restore overhead. Saving and restoring are
handled by special instructions which differ from
the regular vector store and load instructions for
optimum performance. Each pair of vector regis-
ters has an in-use bit. When the bit is off, the
register pair is known to be cleared and does not
participate in saving and restoring. The bit is
turned on as soon as any part of the register pair
is loaded. A clear instruction is provided to allow
the program to turn an in-use bit off and thus
indicate that those vector registers are no longer
needed. A vector-change bit for each vector-
register pair indicates whether the contents have
been changed since the last time the control pro-
gram saved the register contents; this allows re-
dundant saves into the same storage area to be
bypassed, but it cannot avoid the time needed to
restore all registers that are in use, whether changed
or not.

Vector instructions

Arithmetic and logical operations. The structure
of the vector instruction set is simpler than the
count of 171 new instructions would seem to sug-

58 BUCHHOLZ

gest, because each arithmetic and logical operation
is repeated several times for different operand
types and instruction formats. The following are
the basic arithmetic and logical operations on vec-
tors:

ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPARE

AND

OR

EXCLUSIVE OR

The following three compound operations have
direct application in array arithmetic:

MULTIPLY AND ADD
MULTIPLY AND SUBTRACT
MULTIPLY AND ACCUMULATE

The following instructions operate on vector op-
erands to produce scalar results, as does MULTIPLY
AND ACCUMULATE:

ACCUMULATE
MAXIMUM ABSOLUTE
MAXIMUM SIGNED
MINIMUM SIGNED

The maximum and minimum operations, when
used in a sectioning loop, produce as the result a
single number which is the maximum or minimum
element of an entire vector regardless of length,
together, optionally, with its position in the vector.
ACCUMULATE has as its result the sum of all ele-
ments of a vector, and MULTIPLY AND ACCUMU-
LATE gives the sum of the product elements ob-
tained by multiplying a pair of vectors (the inner
or dot product). However, there is a complication.

The basic arithmetic and logical instructions pro-
duce as their result a vector of independent ele-
ments, whose value is not affected by the order in
which they are generated. Execution of the element
operations can, therefore, be readily overlapped,
as in a pipelined arithmetic unit. The same is true
of the maximum and minimum operations, which
produce a scalar result that remains independent
of the order of comparing individual elements.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

The accumulation instructions are different. The
design of an arithmetic pipeline, particularly the
number of stages in the pipeline, places limitations
on the order in which the elements can be added
at top speed. The order of addition may affect the
rounding error and, on occasion, whether and
when overflow or underflow takes place. To over-
come this problem, the accumulation operation is
carried out in two phases: First, the vector elements
or products are reduced to a few partial sums,
using the arithmetic pipeline at full speed; then
the partial sums are added sequentially to form
the desired single result.

The result of the first phase of an accumulation
operation is a partial-sum vector that is placed in
a vector register. The length of this result vector
is p, the partial-sum number, which is a small
number that depends on the model and is essen-
tially the length of the pipeline. (The 3090 has a
partial-sum number of 4.) Given the number p,
however, the result is precisely defined. Accumu-
lation of the elements of an operand vector B to
produce the partial-sum vector A is performed just
like the vector addition A = A + B, except that
the result vector A is wrapped back on itself.
Thus, elements 0 to p — 1 of vector B are added
to elements 0 to p — 1 of vector A; but then ele-
ment p of vector B is added to element 0 of vector
A, element p + 1 to element 1; and, in general,
operand element i is added to partial-sum element
i modulo p in ascending order of i. The only
difference between accumulation and addition is a
simple change of the counter that advances from
one vector element in the target register to the
next, so that it progresses from element p — 1 to
element 0. Vector accumulation is interruptible in
the same way as vector addition. Sectioning loops
for vectors that are longer than the section size
continue to add accumulation results to the same
partial-sum vector.

The second phase of accumulation is performed
by the sequential, unoverlapped instruction SUM
PARTIAL SUMS, which reduces the partial-sum vec-
tor to a scalar sum. Its performance is not critical
because only a few vector elements are involved.

Although the partial-sum technique produces a
result which may differ from one model to another
and from the result of sequential addition, the
result is precisely defined, is independent of any

{BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

interruptions, and can be duplicated by means of
a corresponding scalar loop.

The partial-sum technique
produces a result which is
precisely defined.

Conditional vector processing. Vector elements
may have to be processed conditionally, depending
on the outcome of a comparison between two vec-
tors or between a vector and a scalar. The desired
one of the high-low-equal relationships is specified
by the vector-comparison instruction. The true
(one) or false (zero) comparison results are re-
corded as a set of mask bits in the vector-mask
register, one bit for each vector element. The num-
ber of active bits in the vector-mask register is the
same as the number of active elements currently
in the vector registers, as determined by the vector
count.

Arithmetic and logical operations may be per-
formed conditionally by turning on a vector-mask
mode. When the mode is on, only those elements
are processed that correspond to a mask bit of
one. Where the mask register contains zeros, no
result element is produced, the target register re-
mains unchanged, and any arithmetic exceptions
are suppressed. The division of two vectors pro-
vides an example. If the divisor may contain zero
elements, disruptive divide exceptions are avoided
by first comparing the divisor vector with a scalar
zero and then performing the division with the
mask mode on.

LOAD and STORE instructions are not under the
control of the vector-mask mode. Separate instruc-
tions, LOAD MATCHED and STORE MATCHED, are
provided to load and store elements only where
the vector-mask register contains ones, and they
do so regardless of the mask mode. This separation
of functions allows conditional arithmetic to be
interspersed with unconditional loading or storing

Buckorz B9

Figure 5 Instructions for the example C=A/B

VLVEU 60
VDS B.FE

inside the same sectioning loop, without repeatedly
changing the mode setting.

Figure 5 illustrates the conditional division of vec-
tor A by vector B so as to avoid any interruptions
due to zero elements in the divisor. The largest
possible floating-point number is arbitrarily placed
in element locations of the result vector C which
correspond to zero divisor elements. All three vec-
tors are contiguous and consist of long floating-
point numbers.

The first five instructions set up four general reg-
isters with the vector length N and the addresses
of the three vectors. The address of the divisor is
loaded into both general registers 2 and 3 because
two vector instructions in the following sectioning
loop refer to that vector in storage. Instruction
(6) sets floating-point register 0 to zero. Instruction
(7) loads the largest positive floating-point number
(a constant at storage location MAX, not shown)
into floating-point register 2. The vector-mask
mode is turned on by instruction (8) before starting
the sectioning loop at (9).

Instruction (10) is a vector-comparison instruction
that compares a section of vector B with the scalar
zero set up in floating-point register 0; the 6 is a
modifier field that specifies a not-equal compari-
son, so that the vector-mask bits are set to ones
wherever the vector elements are nonzero. Vector
registers 0 and 1 are loaded unconditionally with
the largest positive value by instruction (11). In-

60 suchHoLz

struction (12) loads the dividend vector into vector
registers 2 and 3. The division is performed by
instruction (13), and the result placed temporarily
in vector registers 0 and 1 is stored by instruction
(14).

The only instruction that is affected by the vector-
mask mode inside the loop is the division instruc-
tion (13). The comparison instruction (which sets
up the vector-mask bits) and the load and store
instructions all operate unconditionally. The divi-
sion instruction places the proper quotient in every
element position of vector registers 0 and 1 that
corresponds to a mask bit of one. The constant
loaded by instruction (11) remains only in element
positions that are skipped because the mask bit is
zero. Instruction (16) turns off the vector-mask
mode upon exit from the sectioning loop.

Conditional operations on vectors are performed
differently from such operations on scalars. The
three or four possible outcomes of a single scalar
comparison are recorded in a two-bit condition
code which is then tested by a conditional branch
instruction for the desired condition. When an
arithmetic operation is not to be performed, the
program branches around the corresponding in-
struction. Vector comparisons obviously cannot
use the branching technique, and most vector in-
structions do not even set the condition code
(which remains free for other uses, such as loop
control). The vector-comparison instructions spec-
ify a more restrictive test that has only two possible
outcomes, so as to limit the comparison result to
a single bit per vector element.

Indirect element selection. The elements of a vector
V are considered to be numbered in sequence from
zero to N — 1, where N is the length of the vector.
The accessing of elements in this sequence is fast-
est. The vector elements can also be accessed in
an entirely different order as vector V(A), where
A is an auxiliary vector consisting of a rearrange-
ment of these element numbers. Auxiliary vector
A may have a length different from N, and each
element number may appear zero, one, or more
times. The resulting vector V(A) has the same
length as A.

To perform such indirect element selection, a sec-
tion of the auxiliary vector is placed into one vec-
tor register, and the corresponding section of vec-
tor elements is then loaded into another vector

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

register or register pair by means of the instruction
LOAD INDIRECT. The selected elements can later
be returned to their storage locations by using the
companion instruction STORE INDIRECT.

Processing of sparse vectors. Sparse vectors have
a large number of zero elements. Such vectors
may often be processed and stored more efficiently
by retaining only the nonzero elements in storage.
The positions of the nonzero elements in such a
sparse vector are recorded in an auxiliary vector.
One type of auxiliary vector is a vector containing
the element numbers of the nonzero elements. An-
other type is a bit vector which has ones in bit
positions corresponding to nonzero elements of
the full vector in storage and zeros as place-holders
for the zero elements of the full vector that are
not stored.

A bit vector is first created in storage by comparing
the full vector with zero (or some tiny value) to
detect nonzero elements. The bit vector may be
converted to a vector of element numbers by
means of the instruction LOAD BIT INDEX. These
element numbers are the positions of all the one
bits in the bit vector.

The instructions LOAD INDIRECT and STORE INDI-
RECT may be used to perform indirect element
selection when the auxiliary vector is or has been
converted to a vector of element numbers. Two
other instructions, LOAD EXPANDED and STORE
COMPRESSED, work directly with a section of a bit
vector in the vector-mask register.

Discussion

The 1BM System/370 vector facility can provide a
substantial performance increase for vectorizable
applications with relatively modest additions to
hardware, software, and application programming,.
The thorough integration of the vector facility into
the existing System/370 base architecture provides
common data formats, produces compatible re-
sults, and allows for common exception handling.
Among the features believed to be novel for a
register type of organization are machine-assisted
vector sectioning and precisely interruptible in-
structions.

To give the appearance of sequential instruction
execution and thereby facilitate the interruptibility
of vector instructions, there is no chaining of these

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

instructions.’ Chaining would allow the execution
of two or more successive vector instructions to
be overlapped, where vector elements produced as
the result of one instruction are passed on-the-fly
to a subsequent instruction which needs them as
operand elements. Some of the advantages of in-
struction chaining are obtained, however, by pro-
viding several of the most important combinations
of operations with single compound instructions
that are cleanly interruptible. They include com-
pound instructions that directly process vector op-
erands in storage and, most particularly, the in-
struction MULTIPLY AND ADD.

Having instructions which are cleanly interruptible
is especially helpful in a virtual-storage environ-
ment. Long vectors may span many storage pages,
especially when the stride is large; in the extreme,
each element may be on a different page. There
is no need to prefetch all the pages and tie up
corresponding space in real storage, just in case
the pages are needed. Although occasional page
faults while loading or storing vectors could be
handled by re-execnting a noninterruptible instruc-
tion from its beginning, such restarting might be
difficult when instructions also perform arithmetic
on vectors in storage.

Users should bear in mind that relying too heavily
on the automatic vectorization of existing pro-
grams may cause performance to be less than that
of which the vector facility is capable. Since op-
timally designed scalar programs do not necessarily
run in optimal fashion in a vector version, it may
be desirable to tune important programs to the
characteristics of the particular vector hardware.
Further improvements may be obtained by devel-
oping new algorithms that are better suited to vec-
tor processing. Such extra efforts can be applied
selectively over a period of time, while obtaining
the initial performance gain available from a sim-
ple conversion.

Acknowledgments

Some of the basic concepts of this vector architec-
ture were derived from two earlier 1BM develop-
ment projects by G. Paul and by D. S. Wehrly.
Credit for major innovations in the present version
belongs to R. M. Smith. Among other contribu-
tors, particular mention should be made of R. J.
Stanton, J. Thomas, and S. G. Tucker for their
contributions from an engineering perspective, and

BuchHorz B1

F. G. Gustavson, W. P. Heising, and T. C.
Spillman for their contributions from a program-
ming perspective. A. Padegs provided technical
guidance and assistance from the beginning.

Cited references and notes

1. IBM System{370 Vector Operations, SA22-7125, IBM Cor-
poration, available through IBM branch offices; contains
a full description of the vector architecture and more pro-
gramming examples than are included in this paper.

2. R. P. Case and A. Padegs, “Architecture of the IBM Sys-
tem/370,” Communications of the ACM 21, No. 1, 73-96
(January 1978).

3. A. Padegs, “System/370 Extended Architecture: Design
considerations,” IBM Journal of Research and Development
27, No. 3, 198 —205 (May 1983).

4. A vector is a linearly ordered collection of data items. A
scalar is a single data item. The term “scalar” is also used
here to mean “nonvector”; thus, scalar instructions are
those that are not part of the vector facility.

5. P. M. Kogge, The Architecture of Pipelined Computers,
McGraw-Hill Book Co., Inc., New York (1981); contains
an extensive bibliography.

6. A. E. Charlesworth, “An approach to scientific array pro-
cessing: The architectural design of the AP-120B/FPS-164
family,” Computer 14, No. 9, 18 —27 (September 1981);
part of special issue on peripheral array processors.

7. T. Louie, “Array processors: A selected bibliography,”
Computer 14, No. 9, 5357 (September 1981); 116 refer-
ences for special issue on peripheral array processors.

8. E. W. Kozdrowicki and D. J. Theis, “Second generation
of vector computers,” Computer 13, No. 11, 7183 (No-
vember 1980); contains extensive references.

9. R. M. Russell, “The CRAY-1 computer system,” Commu-
nications of the ACM 21, No. 1, 63—72 (January 1978).

10. R. L. Sites, “An analysis of the CRAY-1 computer,” The
Sth Annual Symposium on Computer Architecture (IEEE
and ACM), Publication 78CH1284-9C, pp. 101 — 106 (April
1978); available from the Institute of Electrical and Elec-
tronics Engineers, Inc., 345 East 47 Street, New York, NY
10017.

11. D. J. Theis, “Vector supercomputers,” Computer 7, No.
4, 5261 (1974).

12. IBM System/370 Principles of Operation, GA22-7000, IBM
Corporation; available through IBM branch offices.

13. IBM System|370 Extended Architecture Principles of Op-
eration, SA22-7085, IBM Corporation; available through
IBM branch offices.

14. Unnormalized numbers can occur only when introduced
as constants or input data, because all floating-point vector
instructions produce normalized results.

Werner Buchholz Information Systems and Storage Group, De-
partment E57, Building 901, P.O. Box 390, Poughkeepsie, New
York 12602. Dr. Buchholz is a senior engineer in the Central
Systems Architecture Department. He received the B.A.Sc. and
M.A.Sc. from the University of Toronto, Canada, in 1945 and
1946, and the Ph.D. from the California Institute of Technology
in 1950, all in electrical engineering. In 1949, he joined IBM
at the Poughkeepsie laboratory, where he has worked on var-
ious assignments in architecture and performance evaluation,

62 sucHoLz

starting with the IBM 701 and 702, later as manager of systems
planning for Stretch, and most recently on extensions of the
System/370 architecture. He received two IBM Invention
Achievement Awards and an IBM Outstanding Invention
Award. He has published a number of papers on computer
organization and edited the book Planning a Computer System
(Project Stretch), McGraw-Hill Book Co., Inc. Dr. Buchholz
is a Fellow and past Director of the Institute of Electrical and
Electronics Engineers, and a past Chairman of what is now the
IEEE Computer Society. He was a Director of the American
Federation of Information Processing Societies. He is on the
editorial board of the AFIPS Annals of the History of Computing.

Reprint Order No. G321-5261.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

