
The IBM System/370
vector architecture

by W. Buchholz

Discussed is the instruction-set architecture of the
IBM System1370 vector facility, a compatible
extension of the System1370 architecture. Both the
base system, which is a general-purpose
System1370 processor, and the optional vector
facility employ a register type of organization. Data
formats are the same, arithmetic operations
produce exactly the same results, arithmetic
exceptions are handled in the same way, and
instructions are precisely interruptible for page
faults and other causes in the same manner as
those of the base system. This approach permits
substantially increased performance on
vectorizable programs with only a modest increase
in hardware and software, while retaining the ability
to run existing nonvector programs unchanged.

T he architecture of the IBM System/370 vector
facility' is a compatible extension of the Sys-

tem/370 ar~hitecture.~,~ Use of the facility can sub-
stantially increase performance for applications in
which a great deal of the time of the central pro-
cessing unit (CPU) is spent doing arithmetic on
 vector^.^

Much of the numerical data for such computation-
intensive applications has the form of an array.
Vector processing can take advantage of the order
inherent in array data by treating multidimensional
arrays as sets of vectors (one-dimensional arrays).
Vector-arithmetic operations may increase perfor-
mance over loops of scalar arithmetic instructions
in the following three ways:

The k e d and predetermined structure of vector
data permits housekeeping instructions inside

the loop to be replaced by faster internal (hard-
ware or microcoded) machine operations.
Data-access and arithmetic operations on several
successive vector elements can proceed concur-
rently by overlapping such operations in a pipe-
lined design or by performing multiple-element
operations in parallel.
The use of vector registers for intermediate re-
sults avoids additional storage references.

Vector processors have been available for a number
of years in two forms. One type of vector processor
is a separately programmed special-purpose unit
that attaches to standard commercial computers
as a peripheral device; examples are the IBM 38385
and the Floating-point Systems FPS 1646,7 array
processors. The other type of vector processor is
integrated into a supercomputer design, as in the
Cray series*"' or the CDC Cyber-200 series and
its predecessors.*~" The IBM vector facility com-
bines aspects of both types. It is designed as an
optional feature which can be added to a general-
purpose System/37O processor, the IBM 3090, op-
erating in either the System/370 model2 or the
System/370-XA (extended architecture) mode.I3

When the vector facility is provided, it is viewed
as an integral part of the CPU. Its instructions,

QCopyright 1986 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NO 1.1986

registers, and other functions are completely inte-
grated into the System/370 architecture in the fol-
lowing ways:

Regular System/370 instructions can be used for
all scalar operations.
Arithmetic operations on individual vector ele-
ments produce exactly the same result as do the
corresponding System/370 scalar instructions.
Vector instructions are interruptible, and their
execution can be resumed from the point of in-
terruption after appropriate action has been
taken, in a manner compatible with the Sys-
tem/370 program-interruption scheme.
Arithmetic exceptions are the same as, or exten-
sions of, exceptions for the scalar arithmetic in-
structions of System/370, and similar fix-up rou-
tines can be used.
Vector data may reside in virtual storage, with
page faults being handled in a standard manner.

The thorough integration of the IBM vector archi-
tecture has a number of important consequences.
Support of the vector facility is provided by ap-
propriate additions to current operating systems.
Existing application programs, language compil-
ers, and other software can be run unchanged.
Eligible programs can be modified at any time to
take advantage of the vector instructions, with the
system remaining productive doing scalar jobs
whenever there are no vector applications ready
to run.

Integrating the vector facility into a general-
purpose System/370 processor also requires the
adoption of certain restrictions of the System/370
scalar architecture. The vector architecture gives
the same appearance of sequential instruction ex-
ecution as the scalar architecture; this is extended
to vector-element operations, which each vector
instruction appears to perform sequentially. Only
one exception at a time is allowed to cause an
interruption. At the point of interruption, all pre-
ceding element operations have been completed
successfully, and any subsequent operations that
have already been performed are discarded as
though they had not yet occurred.

Structure of the vector facility

The vector facility may be viewed simply as an
addition to the instruction-execution part of the
base machine, which contains the additional reg-

52 BUCHHOLZ

isters and the specialized circuits to perform arith-
metic and logic on a stream of data at high speed.
There are also lesser additions to the instruction-
handling part and other controls of the machine,
but these merge readily into the existing control
structure.

Registers. The vector facility has 16 vector regis-
ters, which are used as temporary containers for
vector operands and results, as are the four
floating-point registers and 16 general registers for
scalar data. A vector register may contain a certain
number of consecutive elements of a vector, the
number depending on the model. Each element
of a vector register is 32 bits wide. A pair of
even-odd vector registers is used to hold 64-bit
vector elements. Unlike the scalar floating-point
and general registers, vector registers may be used
interchangeably for floating-point or fixed-point
data. Thus, a single vector register may hold a
vector operand consisting of either floating-point
numbers in the 32-bit short format or 32-bit binary
integers. A vector-register pair may contain a
floating-point vector in the 64-bit long format or
the 64-bit product vector that results from multi-
plying two binary-integer vectors.

Vectors may be of any length that will fit in stor-
age, from one element on up. Vectors longer than
the number of elements that one vector register or
register pair can hold are processed in sections.
Thus, the length of a vector register is referred to
as the section size. The vector architecture allows
the section size to be any power of 2 between 8
and 5 12. The choice for a particular model is
made by the designers as a performance-cost trade-
off. For the vector facility of the IBM 3090, the
section size was chosen to be 128. The architecture
provides special instructions to simplify the pro-
cessing of long vectors, one section at a time, in
a manner that is independent of the actual section
size. This sectioning technique is discussed later
in this paper.

Figure 1 shows the vector registers, as well as
other registers of the vector facility that are avail-
able to the program. The vector-musk register con-
tains mask bits that may be used to select which
elements in the vector registers are to be processed.
The vector-status register holds certain control
fields, such as the vector count that determines

IBM SYSTEMS JOURNAL, VOLZ5, NO 1.1986

Figure 1 Registers of the Vector Facility, where 2 is the model-dependent section size

VECTOR
REGISTERS

0 (2-1)

32 BITS

64 BITS

VECTOR-STATUS REGISTER
.* i

Z BITS

L: I I

I
I
I
I
I

VECTOR-
MASK
REGISTER

how many elements in the vector registers are to Instruction formats. Like their scalar counterparts,
be processed. The vector-activity count keeps track vector instructions can operate either on operands
of the time spent executing vector instructions. in registers or directly on operands in storage. The

resultant vector always goes to a vector register
(not necessarily a register that contains one of the
operands), except that the result of a vector com-
parison is placed in the vector-mask register. The
arithmetic and logical vector operations are avail-
able in up to four formats, which differ as to the
source of the operands, as follows:

VST format-one operand in storage; the other

0 vv format-all operands in vector registers
QST format-one operand in storage; the other

operand, if any, in a vector register

operand in a scalar register

Processing a vector in
storage directly can reduce

the number of separate
vector-load instructions.

QV format-one operand in a scalar register; the
other operand, if any, in a vector register

For the arithmetic operations, the four formats
are repeated for long and short floating-point vec-
tors and, with some omissions (such as division),
for binary-integer vectors. Thus addition, subtrac-
tion, multiplication, and comparison operations
are each available in twelve versions; division is
available in eight.

The QST and QV formats use the contents of a
scalar (floating-point or general) register as one of
the operand sources. The scalar operand is treated
as though it were a vector of the same length as
the vector operand and having all elements equal
to the contents of the scalar register.

Processing a vector in storage directly and the
result, not having to replace either operand, are
capabilities that can reduce the number of separate
vector-load instructions. This saving is nontrivial,
because loading a vector may take about the same
time as performing an arithmetic operation.

54 BUCHHOLZ

Vectors in storage. The primary focus of the vector
instruction set is on vectors of floating-point num-
bers in the long format, where each element con-
sists of 64 bits. For those applications that do not
require the full precision, storage space can be
saved by using the short floating-point format of
32-bit elements. Additional instructions perform
operations on vectors of binary integers and logical
data, but these are intended primarily to support
the floating-point vector operations. Vectors of
half-word (16-bit) binary integers may also be
loaded and stored; these are expanded to the 32-bit
integer format while in vector registers. The data
formats are fully compatible with those of the sca-
lar architecture.

The address of a vector in storage is the address
of the first byte of the first element to be processed.
The address is contained in one of the 16 general
registers of the base machine. As execution of a
vector instruction progresses from one element to
the next, the address in the general register is in-
cremented correspondingly. Upon completion, the
general register points to the next element of the
vector to be processed, so as to be ready if the
program repeats the instruction for another vector
section.

Successive elements of a vector in storage may be
in adjacent storage locations (contiguous vector),
or they may be separated by one or more element
positions. The number of element positions in
storage needed to advance from one vector element
to the next is called the stride of the vector. Con-
tiguous vectors have a stride of one. Each instruc-
tion which accesses a vector in storage can specify
a stride; a contiguous vector is the default.

Consider, for example, an m-by-n matrix (i.e., a
two-dimensional array) in storage. The address of
a column or row is the address of its first element.
If the matrix is stored in column order (i.e., the
FORTRAN convention), each column is a contigu-
ous vector of length m and stride one. Each row
then is a noncontiguous vector of length n and
stride m. For a row to be processed in reverse
order, the instruction specifies the storage location
of the last element and a stride of "m.

As a second example of a square n-by-n matrix
stored in column order, a column is a contiguous
vector, a row is a vector of stride n, the main
diagonal is a vector of stride n + 1 , and the sec-

IBM SYSTEMS JOURNAL, VOL 25, NO 1,1988

ondary diagonal has a stride n - 1. All of these
vectors have a length n.

Converting a stride to an address increment in
storage amounts to multiplication by the element
width in bytes. (Because the element widths are
powers of 2, multiplication merely consists of a
left shift of the binary stride.) Thus, a stride of
10 for a floating-point vector in the long format
requires an address increment of 80 bytes. Much
of this address arithmetic is done automatically
by the machine.

Vectors in vector registers. When a vector is loaded
into a vector register, its elements occupy consec-
utive register positions. The number of elements
loaded is the vector count. A single vector count,
which can be any integer from zero up to the
section size, governs the processing of vectors in
all vector registers.

Another quantity, the vector interruption index,
indicates the element in the vector register or reg-
isters currently being processed. Element positions
in a vector register are numbered from zero to
2 - 1, where 2 is the section size. During in-
struction execution, the vector interruption index
normally starts at zero, advances until it reaches
the vector count, and is reset to zero as the in-
struction is completed. If the vector instruction is
interrupted for any reason, the vector interruption
index marks the point that has been reached (hence
its name), and execution resumes from that point
if the instruction is reissued. This automatic op-
eration of the vector interruption index usually
requires no program intervention.

The vector count, vector interruption index, and
certain other information which must be saved at
the time of an interruption are located in the
vector-status register shown in Figure 1.

lnstructlon execution

Vector sectioning. Sectioning refers to a technique
for processing vectors of any length in sections,
where the section size is the number of element
positions provided in a vector register, except for
the last section, which may be shorter than the
section size of the machine. Sectioning is best ex-
plained by the use of two simple examples pre-
sented in assembler language.

IBM SYSTEMS JOURNAL, VOL25, NO 1,1986

The first example performs C = A + B, where
A, B, and C are three contiguous vectors of length
N . Figure 2 illustrates schematically the manner
in which vectors are handled, one section of 2
elements at a time, where Z is the section size of
the model (i.e., 128 elements for the IBM 3090).
The corresponding instructions for computing C
= A + B are shown in Figure 3. The vectors in
this example consist of floating-point numbers in
the long format. Instructions that have mnemonics
starting with the letter V belong to the vector fa-
cility; all others are regular System/370 instruc-
tions. (The numbers in parentheses are for use
only in the description.)

Symbols GO, G1, G2, and G3 refer to the arbi-
trarily chosen general registers 0 - 3. VO is vector
register 0, although any even-numbered vector reg-
ister would do. Identification letters are prefixed
to the register numbers for clarity only.

Instructions (1) to (4) load the vector length N
into general register 0 and the starting addresses
of the three vectors into general registers 1 to 3.
Instructions (5) to (9) form the sectioning loop.
Each traversal of that loop processes one section
of each of the three vectors.

Instruction (5) is a special instruction LOAD VEC-
TOR COUNT AND UPDATE (VLVCU). It loads the
vector count with the lesser of the vector length
(specified by the instruction to be in general register
0) or the section size Z (supplied by the machine).
Then the instruction reduces the contents of the
general register by the number just loaded into the
vector count. Finally, the VLVCU instruction sets
the condition code of the machine to indicate
whether the new general-register contents are zero
(i.e., the last or only section has been processed)
or greater than zero (i.e., more sections are to
follow).

Instructions (6) to (8) are long floating-point vector
instructions. VLD loads a section of vector A from
storage into vector register 0. VAD adds to that
section a section of vector B from storage and
returns the result to vector register 0. The first VO
of instruction (7) refers to the result register and
the next VO to the register location of one of the
operands. (The two vector registers are the same
here, but they could have been different.) VSTD
stores the result into a section of C. All three
vector instructions process one vector section at a

Figure 3 Instructions for the example C=A+B
~~~~~~~~~ . ~ ~~~ 

time, the length of the current section being de- 
termined by the vector count as set by instruction 
(5). Normally, the vector count is set to Z ,  the 
section size  of the machine, except for the last (or 
only) vector section, for which the vector count is 
set to the remaining number of elements. 

Instruction (9) is a BRANCH ON CONDITION (BC) 
instruction, which tests the condition code set by 
VLVCU. If the condition code is 2, general register 
0 is still greater than zero, and  the instruction 
branches back to instruction ( 5 )  to set the vector 
count  for the next section. Each of the vector 
instructions (6)  to (8) advances the vector address 
in  its general register to the first element of the 
next section, so that processing can continue di- 
rectly from one section to the next. If the condition 
code is not 2, general register 0 is now zero, there 
are  no more sections to be  processed, and the 
program continues with the instruction following 
(9). 

The example in Figure 4 evaluates the vector ex- 
pression B = ( S  - A) * B, where S is a floating- 
point scalar, A is a contiguous vector, and B is a 
vector of stride T. The vector length is N .  All 
floating-point numbers are  in the short  format  for 
this example. 

IBM SYSTEMS JOURNAL, VOL 25. NO 1,1986 56 BUCHHOLZ 



The third and  fourth instructions place the address 
of vector B in two general registers, 2 and 3, one 
register being  used for fetching B as  an  operand 
and the other for storing the result back into B. 
Two copies of the address are used this time, be- 
cause each of  two vector instructions separately 
updates the address of B. Instruction (5 )  loads 
stride T into general register 4. Instruction (6) 
loads scalar S into floating-point register 0. 

The sectioning loop in this example consists of 
instructions (7) to (1 1). The VSES instruction (8) 
performs a scalar-vector subtraction. This instruc- 
tion subtracts each element of the current section 
of vector A in storage from scalar S and places 
the difference in vector register 5. VME in instruc- 
tion (9) multiplies this difference by a section of 
vector B in storage. The stride register for the 
noncontiguous vector B is specified in parentheses 
following the address register. The stride cannot 
be in general register 0, because a zero in the 
stride-register field  of the instruction is defined in- 
stead to indicate a contiguous vector. [The assem- 
bler permits this zero field to be omitted, as in 
instruction @).I The product of the two short vec- 
tors, which is in the long format, is placed in the 
vector-register pair consisting of registers 2 and 3, 
but only the left half is stored by the VSTE instruc- 
tion (10). 

These sectioning loops are quite general and work 
with vectors of any length Nand with any section 
size. Short vectors, which are less than  or equal 
to the section size, are processed in a single pass 
through the loop. If N is a variable that happens 
to be zero (or even negative), VLVCU sets the vector 
count  to zero, and the vector instructions inside 
the loop  are executed  once but without processing 
any vector elements. The section size does not 
appear explicitly in these examples because  they 
are independent of the actual section size. 

Interruptible  vector  instructions. All long-running 
vector instructions, that is, those which can operate 
on multiple vector elements, can be interrupted 
during execution due  to  a variety of  causes. One 
cause of interruptions is the recognition of one of 
the standard arithmetic exceptions, such as 
overflow or division by zero. There is a new  ex- 
ception for unnormalized floating-point numbers, 
which, for performance reasons, are  not permitted 
as operands of vector multiplication and di~ision. '~ 
Page faults and other exceptions may result from 

IBM SYSTEMS JOURNAL, VOL 25. NO 1, 1986 

Figure 4 Instructions for the example B=(S-A) f B 
~ ~~ 

attempts during execution to access vector oper- 
ands  in virtual storage. Finally, there are asyn- 
chronous  interruptions from input/output  or  other 
external sources that the machine may allow during 
execution of long instructions to provide greater 
responsiveness. 

Some  of  these interruptions may require the job 
to be terminated, others provide an opportunity 
for the program to fix up the result and then re- 
sume normal operation,  and still others are ex- 
pected to be handled transparently by the operating 
system in such a way that the application continues 
to  run  as though nothing had happened other  than 
a  short delay. 

The  updated storage address in the general register 
designated by the instruction and  the vector inter- 
ruption index are key to the interruptibility of 
most of the vector instructions. The general reg- 
ister and vector interruption index serve as place- 
holders in storage and in the vector registers, 
respectively, so that resuming the program by re- 
executing the vector instruction causes the instruc- 
tion to continue from the point of interruption. 
Multiple interruptions during the execution of a 
single instruction are handled by maintaining the 
appearance of sequential execution, instruction by 
instruction and element by element. At the point 
of interruption, all preceding instructions and all 
preceding elements of the current instruction have 
been completed, and any operations that may have 
been started on elements or instructions beyond 
this point are nullified and  appear  as  though they 
had never occurred. A few instructions are inter- 
ruptible in a different manner,  but the same prin- 
ciples apply. 



Saving and  restoring of vector status. If more than 
one program must share the use  of  the  same vector 
facility, it becomes  necessary to save the contents 
of vector facility  registers for the just-interrupted 
program and  to restore the previous contents for 
the program that is to be  resumed. Unlike the 
scalar parts of the machine, where the saving or 
restoring of  registers  involves  less than 200 bytes 
of data, saving and restoring the registers  of the 

The structure of the vector 
instruction  set  is simpler 

than  the count of 171 new 
instructions suggests. 

vector facility can involve thousands of bytes, 
which  may  have a noticeable performance impact. 

Several  measures are available to help  reduce  the 
save-restore overhead. Saving and restoring are 
handled by special instructions which  differ from 
the regular vector store and load instructions for 
optimum performance. Each pair of vector regis- 
ters has an in-use bit. When the bit is off, the 
register pair is known to be cleared and does not 
participate in saving and restoring. The bit is 
turned on as soon as any part of  the  register pair 
is loaded. A clear instruction is provided to allow 
the program to turn an in-use bit off and thus 
indicate that those vector  registers are no longer 
needed. A vector-change bit for each vector- 
register pair indicates whether the contents have 
been changed since  the last time the control pro- 
gram saved the register contents; this allows  re- 
dundant saves into the same storage area to be 
bypassed, but it cannot avoid the time  needed to 
restore all registers that are in use,  whether changed 
or  not. 

Vector  instructions 

Arithmetic  and logical operations. The structure 
of the vector instruction set  is  simpler than the 
count of 171 new instructions would  seem to sug- 

58 BUCHHOU 

gest,  because each arithmetic and logical operation 
is repeated several  times for different operand 
types and instruction formats. The following are 
the basic arithmetic and logical operations on vec- 
tors: 

ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
COMPARE 
AND 
OR 
EXCLUSIVE OR 

The following three compound operations have 
direct application in array arithmetic: 

MULTIPLY AND  ADD 
MULTIPLY AND SUBTRACT 
MULTIPLY AND ACCUMULATE 

The following instructions operate on vector op- 
erands to produce scalar results, as does MULTIPLY 
AND ACCUMULATE: 

ACCUMULATE 
MAXIMUM ABSOLUTE 
MAXIMUM SIGNED 
MINIMUM SIGNED 

The maximum and minimum operations, when 
used  in a sectioning loop, produce as the result a 
single number which is the maximum or minimum 
element  of an entire vector regardless  of length, 
together, optionally, with its position in the vector. 
ACCUMULATE has as  its result the sum of all ele- 
ments of a vector, and MULTIPLY AND ACCUMU- 
LATE gives the sum  of the product elements ob- 
tained by multiplying a pair of vectors (the inner 
or  dot product). However, there is a complication. 

The basic arithmetic and logical instructions pro- 
duce as their result a vector of independent ele- 
ments, whose  value  is not affected by the order in 
which  they are generated. Execution of the element 
operations can, therefore, be readily overlapped, 
as in a pipelined arithmetic unit. The same is true 
of the maximum and minimum operations, which 
produce a scalar result that remains independent 
of  the order of comparing individual elements. 

IBM SYSTEMS JOURNAL, VOL 25, NO 1. 1986 



The  accumulation instructions are different.  The 
design  of an arithmetic pipeline,  particularly  the 
number of stages in the  pipeline,  places limitations 
on the order in which  the  elements  can be added 
at top speed.  The order of addition may  affect the 
rounding error and, on occasion,  whether and 
when  overflow or underflow takes place. To over- 
come  this  problem, the accumulation operation is 
carried out in two  phases: First, the  vector  elements 
or products are reduced to a few partial sums, 
using  the arithmetic pipeline at full  speed;  then 
the partial sums are added sequentially to form 
the  desired  single  result. 

The  result of the  first  phase of an accumulation 
operation is a partial-sum  vector that is  placed in 
a vector  register.  The  length of this  result  vector 
is p ,  the  partial-sum  number,  which  is a small 
number that depends on the  model and is  essen- 
tially the length of the  pipeline.  (The 3090 has a 
partial-sum  number of 4.) Given  the  number p, 
however,  the  result  is  precisely  defined.  Accumu- 
lation of the elements of an operand vector B to 
produce  the  partial-sum  vector A is  performed just 
like  the  vector addition A = A + B, except that 
the  result  vector A is  wrapped  back on itself. 
Thus,  elements 0 to p - 1 of vector B are added 
to elements 0 t o p  - 1 of vector A; but  then  ele- 
ment p of vector B is added to element 0 of vector 
A, element p + 1 to element 1; and, in general, 
operand element i is added to partial-sum element 
i modulo p in  ascending order of i. The  only 
difference  between accumulation and addition is a 
simple  change of the counter that advances  from 
one  vector  element in the target register to the 
next,  so that  it progresses  from  element p - 1 to 
element 0. Vector  accumulation  is interruptible in 
the same way as vector addition. Sectioning  loops 
for vectors that are longer than the  section  size 
continue to add accumulation  results to the  same 
partial-sum  vector. 

The  second  phase of accumulation is  performed 
by the  sequential,  unoverlapped instruction SUM 
PARTIAL SUMS, which  reduces the partial-sum vec- 
tor  to a scalar  sum. Its performance  is not critical 
because  only a few vector  elements are involved. 

Although  the  partial-sum  technique  produces a 
result  which  may  differ  from  one  model to another 
and from the result of sequential addition, the 
result  is  precisely  defined,  is  independent  of  any 

IBM SYSTEMS JOURNAL, VOL25, NO 1,1986 

interruptions, and can be duplicated by means of 
a corresponding  scalar loop. 

The partial-sum technique 
produces a result which is 

precisely defined. 

Conditional vector  processing. Vector  elements 
may  have to be processed  conditionally,  depending 
on the  outcome of a comparison  between  two  vec- 
tors or between a vector and a scalar. The  desired 
one of the high-low-equal  relationships  is  specified 
by the  vector-comparison instruction. The true 
(one) or false  (zero)  comparison  results are re- 
corded as a set of mask  bits in the  vector-mask 
register,  one  bit  for  each  vector  element.  The  num- 
ber of active  bits in the  vector-mask  register is the 
same as the  number of active  elements currently 
in  the  vector  registers, as determined by the vector 
count. 

Arithmetic and logical operations may  be  per- 
formed  conditionally by turning on a vector-mask 
mode. When the mode  is on, only  those  elements 
are processed that correspond to a mask  bit  of 
one.  Where  the  mask  register contains zeros, no 
result  element  is  produced, the target register  re- 
mains  unchanged, and any arithmetic exceptions 
are suppressed.  The  division of two  vectors pro- 
vides an example.  If  the  divisor  may contain zero 
elements,  disruptive  divide  exceptions are avoided 
by first  comparing  the  divisor  vector  with a scalar 
zero and then  performing  the  division  with the 
mask  mode  on. 

LOAD and STORE instructions are not under the 
control of  the  vector-mask  mode. Separate instruc- 
tions, LOAD MATCHED and STORE MATCHED, are 
provided to load and store  elements  only  where 
the  vector-mask  register contains ones, and they 
do so regardless of the  mask  mode.  This separation 
of  functions  allows conditional arithmetic to be 
interspersed  with unconditional loading or storing 

BUCHHOK 59 



Figure 5 Instructions  for  the  example C=AIB 
~ ~ _ _ _ _ _  ~ ~ _ _ _ _ _ _ _ ~  ~ ~ _ _ _ _  

inside the same  sectioning loop, without repeatedly 
changing the mode setting. 

Figure 5 illustrates the conditional division  of  vec- 
tor A by vector B so as to avoid any interruptions 
due to zero elements in the divisor. The largest 
possible floating-point number is arbitrarily placed 
in element locations of the result vector C which 
correspond to zero divisor elements.  All three vec- 
tors  are contiguous and consist  of long floating- 
point numbers. 

The first five instructions set up four general reg- 
isters with the vector length N and the addresses 
of the three vectors. The address of the divisor  is 
loaded into  both general registers 2 and 3 because 
two  vector instructions in the following  sectioning 
loop refer to that vector in storage. Instruction 
(6)  sets floating-point register 0 to zero. Instruction 
(7) loads the largest positive floating-point number 
(a constant at storage location MAX, not shown) 
into floating-point register 2. The vector-mask 
mode  is turned on by instruction (8) before starting 
the sectioning loop at (9). 

Instruction (10) is a vector-comparison instruction 
that compares a section  of vector B with the scalar 
zero set up in floating-point register 0; the 6 is a 
modifier  field that specifies a not-equal compari- 
son, so that the vector-mask bits are set to ones 
wherever the vector elements are nonzero. Vector 
registers 0 and 1 are loaded unconditionally with 
the largest positive  value by instruction (11). In- 

60 BUCHHOLZ 

struction (12) loads the dividend vector into vector 
registers 2 and 3. The division  is  performed by 
instruction (13), and the result placed temporarily 
in vector registers 0 and 1 is stored by instruction 
(14). 

The only instruction that is affected by the vector- 
mask mode  inside the loop is the division instruc- 
tion (13). The comparison instruction (which sets 
up the vector-mask bits) and the load and store 
instructions all operate unconditionally. The divi- 
sion instruction places the proper quotient in  every 
element position of  vector  registers 0 and 1 that 
corresponds to a mask bit of  one. The constant 
loaded by instruction (1  1) remains only in element 
positions that are skipped because the mask bit is 
zero. Instruction (16) turns off the vector-mask 
mode upon exit from the sectioning loop. 

Conditional operations on vectors are performed 
differently from such operations on scalars. The 
three or four possible outcomes of a single scalar 
comparison are recorded in a two-bit condition 
code which is then tested by a conditional branch 
instruction for the desired condition. When an 
arithmetic operation is not to be performed, the 
program branches around the corresponding in- 
struction. Vector comparisons obviously cannot 
use the branching technique, and most vector in- 
structions do  not even  set  the condition code 
(which remains free for other uses, such as  loop 
control). The vector-comparison instructions spec- 
ify a more restrictive test that has only two possible 
outcomes, so as  to limit the comparison result to 
a single bit per vector element. 

Indirect  element selection. The elements  of a vector 
V are considered to be numbered in sequence from 
zero to N - 1,  where N is the length of the vector. 
The accessing  of  elements in this sequence  is fast- 
est. The vector elements can also be  accessed in 
an entirely different order as vector V(A), where 
A is an auxiliary vector consisting  of a rearrange- 
ment of  these  element numbers. Auxiliary  vector 
A may have a length different from N,  and each 
element number may appear zero, one, or more 
times. The resulting vector V(A) has the same 
length as A. 

To perform such indirect element  selection, a sec- 
tion of the auxiliary vector is  placed into one vec- 
tor register, and the corresponding section of vec- 
tor elements is then loaded into  another vector 

IBM SYSTEMS JOURNAL, VOL25. NO 1.1986 



register or register pair by means of the instruction 
LOAD INDIRECT. The  selected  elements  can later 
be returned to their storage locations by  using the 
companion instruction STORE INDIRECT. 

Processing of sparse vectors. Sparse  vectors  have 
a large  number of zero  elements.  Such  vectors 
may  often be processed and stored  more  efficiently 
by retaining  only  the  nonzero  elements in storage. 
The  positions of the nonzero  elements in such a 
sparse  vector are recorded  in an auxiliary  vector. 
One  type of auxiliary  vector  is a vector  containing 
the element  numbers of the  nonzero  elements.  An- 
other type  is a bit  vector  which  has  ones in bit 
positions  corresponding to nonzero  elements of 
the  full  vector in storage and zeros as place-holders 
for the  zero  elements  of  the  full  vector that are 
not stored. 

A bit  vector  is  first created in storage by comparing 
the full  vector  with  zero  (or  some  tiny  value) to 
detect  nonzero  elements.  The  bit  vector  may be 
converted to a vector of element  numbers by 
means of the instruction LOAD BIT INDEX. These 
element  numbers are the  positions of all  the  one 
bits in the  bit  vector. 

The instructions LOAD INDIRECT and STORE INDI- 
RECT may  be  used to perform  indirect  element 
selection  when  the  auxiliary  vector  is or has  been 
converted to a vector of element  numbers.  Two 
other instructions, LOAD EXPANDED and STORE 
COMPRESSED, work  directly  with a section of a bit 
vector  in  the  vector-mask  register. 

Discussion 

The IBM System/370  vector  facility  can  provide a 
substantial performance  increase for vectorizable 
applications with  relatively  modest additions to 
hardware,  software, and application programming. 
The thorough integration of the  vector  facility into 
the existing  System/370  base architecture provides 
common data formats, produces  compatible  re- 
sults, and allows for common  exception  handling. 
Among  the  features  believed to be  novel for a 
register  type  of organization are machine-assisted 
vector  sectioning and precisely interruptible in- 
structions. 

To give the appearance of  sequential instruction 
execution and thereby  facilitate the interruptibility 
of vector instructions, there  is no chaining of these 

IBM SYSTEMS JOURNAL, VOL 25, NO 1.1986 

 instruction^.^ Chaining  would  allow  the  execution 
of two or more  successive  vector instructions to 
be overlapped,  where  vector  elements  produced as 
the  result  of  one instruction are passed  on-the-fly 
to a subsequent instruction which  needs  them as 
operand elements.  Some of the advantages of in- 
struction chaining are obtained, however, by pro- 
viding  several of the most important combinations 
of operations with  single  compound instructions 
that are cleanly interruptible. They  include  com- 
pound instructions that directly  process  vector op- 
erands in storage and, most  particularly,  the in- 
struction MULTIPLY AND ADD. 

Having instructions which are cleanly interruptible 
is  especially  helpful in a virtual-storage environ- 
ment.  Long  vectors  may span many  storage  pages, 
especially  when  the stride is  large; in the  extreme, 
each  element  may be on a different  page.  There 
is no need to prefetch  all the pages and tie up 
corresponding  space in real  storage, just in case 
the  pages are needed.  Although  occasional  page 
faults while  loading or storing  vectors  could be 
handled by re-executing a noninterruptible instruc- 
tion from its beginning,  such restarting might be 
difficult  when instructions also perform arithmetic 
on vectors in storage. 

Users  should  bear in mind that relying too heavily 
on the automatic vectorization of existing pro- 
grams  may  cause  performance to be  less than that 
of which  the  vector  facility  is  capable.  Since op- 
timally  designed  scalar  programs do  not necessarily 
run in optimal fashion in a vector  version, it may 
be desirable to tune important programs to the 
characteristics of the particular vector  hardware. 
Further improvements  may be obtained by devel- 
oping new algorithms that are better suited to vec- 
tor processing.  Such extra efforts  can be applied 
selectively  over a period of time,  while obtaining 
the  initial  performance  gain  available  from a sim- 
ple conversion. 

Acknowledgments 

Some  of  the  basic  concepts  of  this  vector  architec- 
ture were  derived  from  two  earlier IBM develop- 
ment  projects by G. Paul and by D. s. Wehrly. 
Credit for major innovations in the present  version 
belongs to R. M. Smith.  Among other contribu- 
tors, particular mention  should be made of R. J. 
Stanton, J. Thomas, and S. G. Tucker for their 
contributions from an engineering  perspective, and 



F. G. Gustavson, W. P. Heising, and T. C. 
Spillman for their contributions from  a program- 
ming  perspective. A. Padegs  provided  technical 
guidance and assistance  from  the beginning. 

Clted references  and  notes 

1. IBM System/370 Vector Operations, SA22-7125,  IBM Cor- 
poration, available through IBM branch offices; contains 
a  full  description  of  the  vector architecture and  more pro- 
gramming  examples than are included  in  this paper. 

2.  R. P.  Case and A. Padegs,  “Architecture  of the IBM  Sys- 
tem/370,” Communications of the ACM 21, No. 1, 73-96 
(January 1978). 

3.  A.  Padegs,  “System/370  Extended  Architecture:  Design 
considerations,” IBM Journal of Research and  Development 
27, No. 3,  198-205  (May  1983). 

4. A vector is  a  linearly ordered collection  of data items.  A 
scalar is a  single data item. The term “scalar” is  also  used 
here to mean “nonvector”; thus, scalar instructions are 
those that  are not part of the vector  facility. 

5. P. M.  Kogge, The Architecture of Pipelined Computers, 
McGraw-Hill  Book Co., Inc., New York (1981); contains 
an extensive  bibliography. 

6.  A. E. Charlesworth, “An approach to scientific array pro- 
cessing: The architectural design  of the AP-120B/FPS-164 
family,” Computer 14, No. 9, 18-27 (September 1981); 
part of  special  issue on peripheral array processors. 

7. T. Louie, “Array processors:  A  selected  bibliography,” 
Computer 14, No. 9, 53-57 (September 1981);  116 refer- 
ences for special  issue on peripheral array processors. 

8. E. W. Kozdrowicki  and D. J.  Theis,  “Second  generation 
of  vector computers,” Computer 13, No. 11,  71 - 83 (No- 
vember  1980); contains extensive  references. 

9. R. M.  Russell, “The CRAY-1 computer system,” Commu- 
nications of the ACM 21, No. 1, 63-72 (January 1978). 

10. R. L. Sites,  “An  analysis  of the CRAY-1  computer,” The 
5th Annual Symposium on Computer Architecture (IEEE 
and ACM), Publication  78CH1284-9C, pp. 101 - 106 (April 
1978); available  from the Institute of  Electrical and Elec- 
tronics Engineers, Inc., 345 East 47 Street, New York, NY 
10017. 

11. D. J. Theis,  “Vector supercomputers,” Computer 7, No. 

12. IBM System/370 Principles of Operation, GA22-7000,  IBM 
Corporation; available through IBM branch offices. 

13. IBM  System/370 Extended Architecture Principles of Op- 
eration, SA22-7085,  IBM Corporation; available through 
IBM branch offices. 

14. Unnormalized  numbers  can  occur  only when introduced 
as constants or input data, because  all  floating-point  vector 
instructions produce normalized  results. 

4,  52-61  (1974). 

Werner Buchholz Information Systems and Storage Group, De- 
partment E.57.  Building 901, P.O. Box 390, Poughkeepsie. New 
York 12602. Dr. Buchholz is a senior engineer in the Central 
Systems  Architecture Department. He received the B.A.Sc. and 
M.A.Sc. from the University  of Toronto, Canada, in 1945 and 
1946, and the Ph.D. from the California Institute of Technology 
in 1950,  all  in  electrical  engineering. In 1949, he joined IBM 
at the Poughkeepsie laboratory, where  he  has  worked on var- 
ious assignments  in architecture and performance evaluation, 

62 BUCHHOU 

starting with the IBM  701 and 702, later  as  manager  of  systems 
planning for Stretch, and most recently on extensions  of the 
System/370  architecture. He received  two  IBM  Invention 
Achievement  Awards and an IBM Outstanding Invention 
Award. He has published  a  number  of papers on computer 
organization and edited the book Planning a Computer System 
(Project  Stretch), McGraw-Hill  Book  Co., Inc. Dr. Buchholz 
is  a  Fellow  and past Director of the Institute of  Electrical  and 
Electronics  Engineers, and a past Chairman of what is  now the 
IEEE Computer Society. He was a Director of the American 
Federation of Information Processing  Societies. He is on the 
editorial board of the AFIPS Annals of the History of Computing. 

Reprint Order No. G321-5261. 

IEM SYSTEMS JOURNAL, VOL 25, NO 1. 1986 


