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Discussed is the instruction-set architecture of the 
IBM System1370  vector facility, a compatible 
extension of the System1370 architecture. Both the 
base system,  which is a general-purpose 
System1370 processor, and the optional  vector 
facility employ a register type of organization. Data 
formats are the same, arithmetic operations 
produce exactly the same results, arithmetic 
exceptions are handled  in the same way, and 
instructions are precisely interruptible for page 
faults  and  other  causes  in the same manner as 
those of the base system.  This approach permits 
substantially increased performance on 
vectorizable programs with only a modest increase 
in hardware and software, while retaining the ability 
to run  existing  nonvector programs unchanged. 

T he architecture of the IBM System/370  vector 
facility'  is a compatible  extension of the  Sys- 

tem/370 ar~hitecture.~,~ Use  of the  facility  can sub- 
stantially  increase  performance for applications in 
which a great  deal of the  time of the central pro- 
cessing unit (CPU) is  spent  doing arithmetic on 
 vector^.^ 

Much  of  the  numerical data for such computation- 
intensive applications has the form  of an array. 
Vector  processing can take advantage of the order 
inherent in array data by treating multidimensional 
arrays as sets  of  vectors  (one-dimensional arrays). 
Vector-arithmetic operations may  increase  perfor- 
mance  over  loops of scalar arithmetic instructions 
in the  following  three  ways: 

The k e d  and predetermined structure of vector 
data permits  housekeeping instructions inside 

the loop to be replaced by faster internal (hard- 
ware or microcoded)  machine operations. 
Data-access and arithmetic operations on several 
successive  vector  elements can proceed concur- 
rently by overlapping  such operations in a pipe- 
lined  design or by performing  multiple-element 
operations in parallel. 
The use of vector  registers for intermediate re- 
sults  avoids additional storage  references. 

Vector  processors  have  been  available for a number 
of years in two  forms.  One  type  of  vector  processor 
is a separately  programmed  special-purpose unit 
that attaches to standard commercial  computers 
as a peripheral  device;  examples are the IBM 38385 
and the Floating-point Systems FPS 1646,7 array 
processors.  The other type  of  vector  processor  is 
integrated into a supercomputer  design, as in the 
Cray series*"' or the CDC Cyber-200  series and 
its predecessors.*~"  The IBM vector  facility  com- 
bines  aspects  of both types. It is  designed as an 
optional feature which can be added to a general- 
purpose System/37O processor,  the IBM 3090, op- 
erating in either the  System/370  model2 or the 
System/370-XA  (extended architecture) mode.I3 

When the vector  facility  is  provided, it is viewed 
as an integral part of the CPU. Its instructions, 
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registers, and other functions are completely inte- 
grated into the System/370 architecture in the  fol- 
lowing  ways: 

Regular  System/370 instructions can be  used  for 
all  scalar operations. 
Arithmetic operations on individual  vector  ele- 
ments  produce  exactly  the  same  result as  do the 
corresponding  System/370  scalar instructions. 
Vector instructions are interruptible, and their 
execution can be resumed  from  the  point  of in- 
terruption after appropriate action has  been 
taken, in a manner compatible  with  the  Sys- 
tem/370 program-interruption scheme. 
Arithmetic  exceptions are the same as, or exten- 
sions  of,  exceptions for the scalar arithmetic in- 
structions of System/370, and similar  fix-up rou- 
tines can be  used. 
Vector data may  reside  in virtual storage, with 
page faults being  handled in a standard manner. 

The thorough integration of  the IBM vector archi- 
tecture has a number  of important consequences. 
Support of the  vector  facility  is  provided by ap- 
propriate additions to current operating  systems. 
Existing application programs,  language  compil- 
ers, and other software can be run unchanged. 
Eligible programs can be modified at any  time to 
take advantage of the  vector instructions, with  the 
system  remaining  productive  doing  scalar jobs 
whenever  there are no vector applications ready 
to run. 

Integrating the  vector  facility into a general- 
purpose  System/370  processor also requires  the 
adoption of certain restrictions  of  the  System/370 
scalar architecture. The  vector architecture gives 
the  same appearance of sequential instruction ex- 
ecution as the  scalar architecture; this  is  extended 
to vector-element operations, which  each  vector 
instruction appears to perform  sequentially.  Only 
one  exception at a time  is  allowed to cause an 
interruption. At the point of interruption, all pre- 
ceding  element operations have  been  completed 
successfully, and any  subsequent operations that 
have  already  been  performed are discarded as 
though they had not yet  occurred. 

Structure of the  vector facility 

The  vector  facility  may be  viewed  simply as  an 
addition to the  instruction-execution part of  the 
base  machine,  which contains the additional reg- 
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isters and the  specialized  circuits to perform arith- 
metic and logic on a stream of data at high  speed. 
There are also lesser additions to the instruction- 
handling part and other controls of  the  machine, 
but these  merge  readily into the  existing control 
structure. 

Registers. The  vector  facility has 16 vector  regis- 
ters,  which are used as temporary containers for 
vector operands and results, as are the four 
floating-point  registers and 16  general  registers for 
scalar data. A vector  register  may contain a certain 
number of consecutive  elements  of a vector,  the 
number  depending on the model. Each element 
of a vector  register  is  32  bits  wide. A pair of 
even-odd  vector  registers  is  used to hold  64-bit 
vector  elements.  Unlike the scalar  floating-point 
and general  registers,  vector  registers  may be  used 
interchangeably for floating-point or fixed-point 
data. Thus, a single  vector  register  may  hold a 
vector operand consisting of either  floating-point 
numbers in the  32-bit short format or 32-bit  binary 
integers. A vector-register pair may contain a 
floating-point vector in the  64-bit  long format or 
the  64-bit product vector that results  from  multi- 
plying  two  binary-integer  vectors. 

Vectors  may be  of any length that will  fit  in stor- 
age,  from  one  element on up.  Vectors  longer than 
the number of elements that one  vector  register or 
register pair can hold are processed in sections. 
Thus, the length of a vector  register  is  referred to 
as the section size. The  vector architecture allows 
the  section size to be any power  of 2 between 8 
and 5 12.  The  choice for a particular model  is 
made by the  designers as a performance-cost trade- 
off. For the  vector  facility of the IBM 3090, the 
section  size  was  chosen to be  128. The architecture 
provides  special instructions to simplify  the pro- 
cessing of long  vectors,  one  section at a time, in 
a manner that is independent of the actual section 
size. This sectioning  technique  is  discussed later 
in this paper. 

Figure 1 shows  the  vector  registers, as well as 
other registers  of  the  vector  facility that are avail- 
able to the program. The vector-musk  register con- 
tains mask  bits that may be  used to select  which 
elements in the vector  registers are to be processed. 
The vector-status register holds certain control 
fields,  such as the  vector count that determines 
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Figure 1 Registers of the Vector Facility, where 2 is  the model-dependent  section size 
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resultant vector  always  goes to a  vector  register 
(not necessarily  a  register that contains one  of  the 
operands),  except that the  result of a  vector  com- 
parison  is  placed  in  the  vector-mask  register.  The 
arithmetic and logical  vector operations are  avail- 
able in up to four formats,  which  differ  as to the 
source of the  operands, as follows: 

VST format-one operand  in  storage;  the  other 

0 vv format-all operands in  vector  registers 
QST format-one  operand  in  storage;  the other 

operand, if any,  in  a  vector  register 

operand  in  a  scalar  register 

Processing a vector in 
storage directly can reduce 

the number of separate 
vector-load instructions. 

QV format-one operand  in  a  scalar  register;  the 
other operand, if  any,  in  a  vector  register 

For the  arithmetic  operations,  the four formats 
are repeated for long and short floating-point vec- 
tors and, with  some  omissions  (such as division), 
for binary-integer  vectors. Thus addition, subtrac- 
tion,  multiplication, and comparison operations 
are  each  available in twelve  versions;  division  is 
available  in  eight. 

The QST and QV formats use the contents of a 
scalar  (floating-point or general)  register  as  one of 
the  operand  sources.  The  scalar  operand  is  treated 
as though it were a  vector of the  same  length as 
the  vector  operand and having  all  elements  equal 
to the contents of the  scalar  register. 

Processing  a  vector  in  storage  directly and the 
result, not having to replace  either  operand,  are 
capabilities that can  reduce  the  number  of  separate 
vector-load  instructions.  This  saving  is  nontrivial, 
because  loading  a  vector  may  take about the  same 
time as performing an arithmetic  operation. 
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Vectors in storage. The  primary  focus of the  vector 
instruction  set  is on vectors of floating-point  num- 
bers  in  the  long  format,  where  each  element  con- 
sists of  64 bits. For those  applications that  do not 
require  the  full  precision,  storage  space  can be 
saved by using  the short floating-point format of 
32-bit  elements.  Additional  instructions  perform 
operations on vectors  of  binary  integers and logical 
data, but these  are  intended  primarily to support 
the  floating-point  vector  operations.  Vectors of 
half-word  (16-bit)  binary  integers  may  also be 
loaded and stored;  these are expanded to the  32-bit 
integer format while in  vector  registers.  The data 
formats are fully  compatible  with  those  of  the  sca- 
lar architecture. 

The address of a  vector  in  storage  is  the  address 
of  the  first  byte  of  the  first  element to be processed. 
The  address  is  contained  in  one of the 16 general 
registers of the  base  machine.  As  execution of a 
vector instruction progresses  from  one  element to 
the  next,  the  address in the  general  register  is in- 
cremented  correspondingly. Upon completion,  the 
general  register  points to the  next  element  of the 
vector to be processed, so as to be ready  if  the 
program  repeats  the instruction for another vector 
section. 

Successive  elements  of  a  vector  in  storage  may  be 
in  adjacent  storage  locations  (contiguous  vector), 
or they  may  be separated by one or more  element 
positions. The number of element  positions  in 
storage  needed to advance  from  one  vector  element 
to the  next  is  called  the stride of the  vector. Con- 
tiguous  vectors  have  a  stride of one.  Each  instruc- 
tion  which  accesses  a  vector  in  storage  can  specify 
a  stride;  a  contiguous  vector  is  the  default. 

Consider, for example, an m-by-n matrix  (i.e.,  a 
two-dimensional array) in  storage.  The  address of 
a  column  or  row  is  the  address of its first  element. 
If  the  matrix  is  stored in column order (i.e.,  the 
FORTRAN convention),  each  column  is  a  contigu- 
ous  vector  of  length m and stride  one.  Each  row 
then  is  a  noncontiguous  vector of length n and 
stride m. For a  row to be  processed in  reverse 
order,  the  instruction specifies  the  storage  location 
of  the  last  element and a  stride of "m. 

As a  second  example  of  a  square  n-by-n  matrix 
stored in column order, a  column  is  a  contiguous 
vector,  a  row  is  a  vector of stride n, the  main 
diagonal  is  a  vector of stride n + 1 , and the  sec- 
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ondary diagonal has a stride n - 1.  All  of  these 
vectors have a length n. 

Converting a stride to  an address increment in 
storage amounts  to multiplication by the element 
width in bytes.  (Because the element widths are 
powers of  2, multiplication merely consists of a 
left shift of the binary stride.) Thus, a stride of 
10 for a floating-point vector in  the long format 
requires an address increment of 80  bytes. Much 
of this address arithmetic is done automatically 
by the machine. 

Vectors in vector  registers. When a vector is loaded 
into a vector register, its elements occupy consec- 
utive register positions. The number of elements 
loaded is the vector  count. A single vector count, 
which can be any integer from zero up to the 
section size, governs the processing of vectors in 
all vector registers. 

Another  quantity, the vector interruption index, 
indicates the element in the vector register or reg- 
isters currently being processed. Element positions 
in a vector register are numbered from zero to 
2 - 1, where 2 is the section size. During  in- 
struction execution, the vector interruption index 
normally starts  at zero, advances until it reaches 
the vector count,  and is  reset to zero as the in- 
struction is completed. If the vector instruction is 
interrupted  for any reason, the vector interruption 
index marks the point that has been reached (hence 
its name), and execution resumes from that point 
if the instruction is reissued. This automatic  op- 
eration of the vector interruption index usually 
requires no program intervention. 

The vector count, vector interruption index, and 
certain other information which must be saved at 
the time  of an interruption  are located in the 
vector-status register shown in Figure 1. 

lnstructlon  execution 

Vector  sectioning. Sectioning refers to a technique 
for processing vectors of any length in sections, 
where the section size  is the number of element 
positions provided in a vector register, except for 
the last section, which  may be shorter  than the 
section size of the machine. Sectioning is best  ex- 
plained by the use  of two simple examples pre- 
sented in assembler language. 

IBM SYSTEMS JOURNAL, VOL25, NO 1,1986 

The first example performs C = A + B, where 
A, B, and C are three contiguous vectors of length 
N .  Figure 2 illustrates schematically the manner 
in which vectors are handled, one section of 2 
elements at a time, where Z is the section size  of 
the model (i.e., 128 elements for the IBM 3090). 
The corresponding instructions for computing C 
= A + B are shown in Figure 3. The vectors in 
this example consist of floating-point numbers in 
the long format. Instructions that have mnemonics 
starting with the letter V belong to the vector fa- 
cility; all others are regular System/370 instruc- 
tions. (The numbers in parentheses are  for use 
only in the description.) 

Symbols GO, G1,  G2,  and G3 refer to the arbi- 
trarily chosen general registers 0 - 3. VO is vector 
register 0, although any even-numbered vector reg- 
ister would do. Identification letters are prefixed 
to the register numbers for clarity only. 

Instructions (1) to (4) load the vector length N 
into general register 0 and the starting addresses 
of the three vectors into general registers 1 to 3. 
Instructions (5 )  to (9) form the sectioning loop. 
Each traversal of that loop processes one section 
of each of the three vectors. 

Instruction (5 )  is a special instruction LOAD VEC- 
TOR COUNT AND UPDATE (VLVCU). It loads the 
vector count with the lesser  of the vector length 
(specified  by the instruction to be in general register 
0) or the section size Z (supplied by the machine). 
Then the instruction reduces the contents of the 
general register by the number just loaded into the 
vector count. Finally, the VLVCU instruction sets 
the condition code of the machine to indicate 
whether the new general-register contents are zero 
(i.e., the last or only section has been processed) 
or greater than zero (i.e., more sections are to 
follow). 

Instructions (6) to (8) are long floating-point vector 
instructions. VLD loads a section of vector A from 
storage into vector register 0. VAD adds  to  that 
section a section of vector B from storage and 
returns the result to vector register 0. The first VO 
of instruction (7)  refers to the result register and 
the next VO to the register location of one of the 
operands. (The two vector registers are the same 
here, but they could have been different.) VSTD 
stores the result into a section of C. All three 
vector instructions process one vector section at a 



Figure 3 Instructions  for  the  example C=A+B 
~~~~~~~~~ . ~ ~~~ 

time, the length of the current section being de- 
termined by the vector count as set by instruction 
(5). Normally, the vector count is set to Z ,  the 
section size  of the machine, except for the last (or 
only) vector section, for which the vector count is 
set to the remaining number of elements. 

Instruction (9) is a BRANCH ON CONDITION (BC) 
instruction, which tests the condition code set by 
VLVCU. If the condition code is 2, general register 
0 is still greater than zero, and  the instruction 
branches back to instruction ( 5 )  to set the vector 
count  for the next section. Each of the vector 
instructions (6)  to (8) advances the vector address 
in  its general register to the first element of the 
next section, so that processing can continue di- 
rectly from one section to the next. If the condition 
code is not 2, general register 0 is now zero, there 
are  no more sections to be  processed, and the 
program continues with the instruction following 
(9). 

The example in Figure 4 evaluates the vector ex- 
pression B = ( S  - A) * B, where S is a floating- 
point scalar, A is a contiguous vector, and B is a 
vector of stride T. The vector length is N .  All 
floating-point numbers are  in the short  format  for 
this example. 
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The third and  fourth instructions place the address 
of vector B in two general registers, 2 and 3, one 
register being  used for fetching B as  an  operand 
and the other for storing the result back into B. 
Two copies of the address are used this time, be- 
cause each of  two vector instructions separately 
updates the address of B. Instruction (5 )  loads 
stride T into general register 4. Instruction (6) 
loads scalar S into floating-point register 0. 

The sectioning loop in this example consists of 
instructions (7) to (1 1). The VSES instruction (8) 
performs a scalar-vector subtraction. This instruc- 
tion subtracts each element of the current section 
of vector A in storage from scalar S and places 
the difference in vector register 5. VME in instruc- 
tion (9) multiplies this difference by a section of 
vector B in storage. The stride register for the 
noncontiguous vector B is specified in parentheses 
following the address register. The stride cannot 
be in general register 0, because a zero in the 
stride-register field  of the instruction is defined in- 
stead to indicate a contiguous vector. [The assem- 
bler permits this zero field to be omitted, as in 
instruction @).I The product of the two short vec- 
tors, which is in the long format, is placed in the 
vector-register pair consisting of registers 2 and 3, 
but only the left half is stored by the VSTE instruc- 
tion (10). 

These sectioning loops are quite general and work 
with vectors of any length Nand with any section 
size. Short vectors, which are less than  or equal 
to the section size, are processed in a single pass 
through the loop. If N is a variable that happens 
to be zero (or even negative), VLVCU sets the vector 
count  to zero, and the vector instructions inside 
the loop  are executed  once but without processing 
any vector elements. The section size does not 
appear explicitly in these examples because  they 
are independent of the actual section size. 

Interruptible  vector  instructions. All long-running 
vector instructions, that is, those which can operate 
on multiple vector elements, can be interrupted 
during execution due  to  a variety of  causes. One 
cause of interruptions is the recognition of one of 
the standard arithmetic exceptions, such as 
overflow or division by zero. There is a new  ex- 
ception for unnormalized floating-point numbers, 
which, for performance reasons, are  not permitted 
as operands of vector multiplication and di~ision. '~ 
Page faults and other exceptions may result from 
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Figure 4 Instructions for the example B=(S-A) f B 
~ ~~ 

attempts during execution to access vector oper- 
ands  in virtual storage. Finally, there are asyn- 
chronous  interruptions from input/output  or  other 
external sources that the machine may allow during 
execution of long instructions to provide greater 
responsiveness. 

Some  of  these interruptions may require the job 
to be terminated, others provide an opportunity 
for the program to fix up the result and then re- 
sume normal operation,  and still others are ex- 
pected to be handled transparently by the operating 
system in such a way that the application continues 
to  run  as though nothing had happened other  than 
a  short delay. 

The  updated storage address in the general register 
designated by the instruction and  the vector inter- 
ruption index are key to the interruptibility of 
most of the vector instructions. The general reg- 
ister and vector interruption index serve as place- 
holders in storage and in the vector registers, 
respectively, so that resuming the program by re- 
executing the vector instruction causes the instruc- 
tion to continue from the point of interruption. 
Multiple interruptions during the execution of a 
single instruction are handled by maintaining the 
appearance of sequential execution, instruction by 
instruction and element by element. At the point 
of interruption, all preceding instructions and all 
preceding elements of the current instruction have 
been completed, and any operations that may have 
been started on elements or instructions beyond 
this point are nullified and  appear  as  though they 
had never occurred. A few instructions are inter- 
ruptible in a different manner,  but the same prin- 
ciples apply. 



Saving and  restoring of vector status. If more than 
one program must share the use  of  the  same vector 
facility, it becomes  necessary to save the contents 
of vector facility  registers for the just-interrupted 
program and  to restore the previous contents for 
the program that is to be  resumed. Unlike the 
scalar parts of the machine, where the saving or 
restoring of  registers  involves  less than 200 bytes 
of data, saving and restoring the registers  of the 

The structure of the vector 
instruction  set  is simpler 

than  the count of 171 new 
instructions suggests. 

vector facility can involve thousands of bytes, 
which  may  have a noticeable performance impact. 

Several  measures are available to help  reduce  the 
save-restore overhead. Saving and restoring are 
handled by special instructions which  differ from 
the regular vector store and load instructions for 
optimum performance. Each pair of vector regis- 
ters has an in-use bit. When the bit is off, the 
register pair is known to be cleared and does not 
participate in saving and restoring. The bit is 
turned on as soon as any part of  the  register pair 
is loaded. A clear instruction is provided to allow 
the program to turn an in-use bit off and thus 
indicate that those vector  registers are no longer 
needed. A vector-change bit for each vector- 
register pair indicates whether the contents have 
been changed since  the last time the control pro- 
gram saved the register contents; this allows  re- 
dundant saves into the same storage area to be 
bypassed, but it cannot avoid the time  needed to 
restore all registers that are in use,  whether changed 
or  not. 

Vector  instructions 

Arithmetic  and logical operations. The structure 
of the vector instruction set  is  simpler than the 
count of 171 new instructions would  seem to sug- 
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gest,  because each arithmetic and logical operation 
is repeated several  times for different operand 
types and instruction formats. The following are 
the basic arithmetic and logical operations on vec- 
tors: 

ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
COMPARE 
AND 
OR 
EXCLUSIVE OR 

The following three compound operations have 
direct application in array arithmetic: 

MULTIPLY AND  ADD 
MULTIPLY AND SUBTRACT 
MULTIPLY AND ACCUMULATE 

The following instructions operate on vector op- 
erands to produce scalar results, as does MULTIPLY 
AND ACCUMULATE: 

ACCUMULATE 
MAXIMUM ABSOLUTE 
MAXIMUM SIGNED 
MINIMUM SIGNED 

The maximum and minimum operations, when 
used  in a sectioning loop, produce as the result a 
single number which is the maximum or minimum 
element  of an entire vector regardless  of length, 
together, optionally, with its position in the vector. 
ACCUMULATE has as  its result the sum of all ele- 
ments of a vector, and MULTIPLY AND ACCUMU- 
LATE gives the sum  of the product elements ob- 
tained by multiplying a pair of vectors (the inner 
or  dot product). However, there is a complication. 

The basic arithmetic and logical instructions pro- 
duce as their result a vector of independent ele- 
ments, whose  value  is not affected by the order in 
which  they are generated. Execution of the element 
operations can, therefore, be readily overlapped, 
as in a pipelined arithmetic unit. The same is true 
of the maximum and minimum operations, which 
produce a scalar result that remains independent 
of  the order of comparing individual elements. 
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The  accumulation instructions are different.  The 
design  of an arithmetic pipeline,  particularly  the 
number of stages in the  pipeline,  places limitations 
on the order in which  the  elements  can be added 
at top speed.  The order of addition may  affect the 
rounding error and, on occasion,  whether and 
when  overflow or underflow takes place. To over- 
come  this  problem, the accumulation operation is 
carried out in two  phases: First, the  vector  elements 
or products are reduced to a few partial sums, 
using  the arithmetic pipeline at full  speed;  then 
the partial sums are added sequentially to form 
the  desired  single  result. 

The  result of the  first  phase of an accumulation 
operation is a partial-sum  vector that is  placed in 
a vector  register.  The  length of this  result  vector 
is p ,  the  partial-sum  number,  which  is a small 
number that depends on the  model and is  essen- 
tially the length of the  pipeline.  (The 3090 has a 
partial-sum  number of 4.) Given  the  number p, 
however,  the  result  is  precisely  defined.  Accumu- 
lation of the elements of an operand vector B to 
produce  the  partial-sum  vector A is  performed just 
like  the  vector addition A = A + B, except that 
the  result  vector A is  wrapped  back on itself. 
Thus,  elements 0 to p - 1 of vector B are added 
to elements 0 t o p  - 1 of vector A; but  then  ele- 
ment p of vector B is added to element 0 of vector 
A, element p + 1 to element 1; and, in general, 
operand element i is added to partial-sum element 
i modulo p in  ascending order of i. The  only 
difference  between accumulation and addition is a 
simple  change of the counter that advances  from 
one  vector  element in the target register to the 
next,  so that  it progresses  from  element p - 1 to 
element 0. Vector  accumulation  is interruptible in 
the same way as vector addition. Sectioning  loops 
for vectors that are longer than the  section  size 
continue to add accumulation  results to the  same 
partial-sum  vector. 

The  second  phase of accumulation is  performed 
by the  sequential,  unoverlapped instruction SUM 
PARTIAL SUMS, which  reduces the partial-sum vec- 
tor  to a scalar  sum. Its performance  is not critical 
because  only a few vector  elements are involved. 

Although  the  partial-sum  technique  produces a 
result  which  may  differ  from  one  model to another 
and from the result of sequential addition, the 
result  is  precisely  defined,  is  independent  of  any 
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interruptions, and can be duplicated by means of 
a corresponding  scalar loop. 

The partial-sum technique 
produces a result which is 

precisely defined. 

Conditional vector  processing. Vector  elements 
may  have to be processed  conditionally,  depending 
on the  outcome of a comparison  between  two  vec- 
tors or between a vector and a scalar. The  desired 
one of the high-low-equal  relationships  is  specified 
by the  vector-comparison instruction. The true 
(one) or false  (zero)  comparison  results are re- 
corded as a set of mask  bits in the  vector-mask 
register,  one  bit  for  each  vector  element.  The  num- 
ber of active  bits in the  vector-mask  register is the 
same as the  number of active  elements currently 
in  the  vector  registers, as determined by the vector 
count. 

Arithmetic and logical operations may  be  per- 
formed  conditionally by turning on a vector-mask 
mode. When the mode  is on, only  those  elements 
are processed that correspond to a mask  bit  of 
one.  Where  the  mask  register contains zeros, no 
result  element  is  produced, the target register  re- 
mains  unchanged, and any arithmetic exceptions 
are suppressed.  The  division of two  vectors pro- 
vides an example.  If  the  divisor  may contain zero 
elements,  disruptive  divide  exceptions are avoided 
by first  comparing  the  divisor  vector  with a scalar 
zero and then  performing  the  division  with the 
mask  mode  on. 

LOAD and STORE instructions are not under the 
control of  the  vector-mask  mode. Separate instruc- 
tions, LOAD MATCHED and STORE MATCHED, are 
provided to load and store  elements  only  where 
the  vector-mask  register contains ones, and they 
do so regardless of the  mask  mode.  This separation 
of  functions  allows conditional arithmetic to be 
interspersed  with unconditional loading or storing 
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Figure 5 Instructions  for  the  example C=AIB 
~ ~ _ _ _ _ _  ~ ~ _ _ _ _ _ _ _ ~  ~ ~ _ _ _ _  

inside the same  sectioning loop, without repeatedly 
changing the mode setting. 

Figure 5 illustrates the conditional division  of  vec- 
tor A by vector B so as to avoid any interruptions 
due to zero elements in the divisor. The largest 
possible floating-point number is arbitrarily placed 
in element locations of the result vector C which 
correspond to zero divisor elements.  All three vec- 
tors  are contiguous and consist  of long floating- 
point numbers. 

The first five instructions set up four general reg- 
isters with the vector length N and the addresses 
of the three vectors. The address of the divisor  is 
loaded into  both general registers 2 and 3 because 
two  vector instructions in the following  sectioning 
loop refer to that vector in storage. Instruction 
(6)  sets floating-point register 0 to zero. Instruction 
(7) loads the largest positive floating-point number 
(a constant at storage location MAX, not shown) 
into floating-point register 2. The vector-mask 
mode  is turned on by instruction (8) before starting 
the sectioning loop at (9). 

Instruction (10) is a vector-comparison instruction 
that compares a section  of vector B with the scalar 
zero set up in floating-point register 0; the 6 is a 
modifier  field that specifies a not-equal compari- 
son, so that the vector-mask bits are set to ones 
wherever the vector elements are nonzero. Vector 
registers 0 and 1 are loaded unconditionally with 
the largest positive  value by instruction (11). In- 
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struction (12) loads the dividend vector into vector 
registers 2 and 3. The division  is  performed by 
instruction (13), and the result placed temporarily 
in vector registers 0 and 1 is stored by instruction 
(14). 

The only instruction that is affected by the vector- 
mask mode  inside the loop is the division instruc- 
tion (13). The comparison instruction (which sets 
up the vector-mask bits) and the load and store 
instructions all operate unconditionally. The divi- 
sion instruction places the proper quotient in  every 
element position of  vector  registers 0 and 1 that 
corresponds to a mask bit of  one. The constant 
loaded by instruction (1  1) remains only in element 
positions that are skipped because the mask bit is 
zero. Instruction (16) turns off the vector-mask 
mode upon exit from the sectioning loop. 

Conditional operations on vectors are performed 
differently from such operations on scalars. The 
three or four possible outcomes of a single scalar 
comparison are recorded in a two-bit condition 
code which is then tested by a conditional branch 
instruction for the desired condition. When an 
arithmetic operation is not to be performed, the 
program branches around the corresponding in- 
struction. Vector comparisons obviously cannot 
use the branching technique, and most vector in- 
structions do  not even  set  the condition code 
(which remains free for other uses, such as  loop 
control). The vector-comparison instructions spec- 
ify a more restrictive test that has only two possible 
outcomes, so as  to limit the comparison result to 
a single bit per vector element. 

Indirect  element selection. The elements  of a vector 
V are considered to be numbered in sequence from 
zero to N - 1,  where N is the length of the vector. 
The accessing  of  elements in this sequence  is fast- 
est. The vector elements can also be  accessed in 
an entirely different order as vector V(A), where 
A is an auxiliary vector consisting  of a rearrange- 
ment of  these  element numbers. Auxiliary  vector 
A may have a length different from N,  and each 
element number may appear zero, one, or more 
times. The resulting vector V(A) has the same 
length as A. 

To perform such indirect element  selection, a sec- 
tion of the auxiliary vector is  placed into one vec- 
tor register, and the corresponding section of vec- 
tor elements is then loaded into  another vector 
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register or register pair by means of the instruction 
LOAD INDIRECT. The  selected  elements  can later 
be returned to their storage locations by  using the 
companion instruction STORE INDIRECT. 

Processing of sparse vectors. Sparse  vectors  have 
a large  number of zero  elements.  Such  vectors 
may  often be processed and stored  more  efficiently 
by retaining  only  the  nonzero  elements in storage. 
The  positions of the nonzero  elements in such a 
sparse  vector are recorded  in an auxiliary  vector. 
One  type of auxiliary  vector  is a vector  containing 
the element  numbers of the  nonzero  elements.  An- 
other type  is a bit  vector  which  has  ones in bit 
positions  corresponding to nonzero  elements of 
the  full  vector in storage and zeros as place-holders 
for the  zero  elements  of  the  full  vector that are 
not stored. 

A bit  vector  is  first created in storage by comparing 
the full  vector  with  zero  (or  some  tiny  value) to 
detect  nonzero  elements.  The  bit  vector  may be 
converted to a vector of element  numbers by 
means of the instruction LOAD BIT INDEX. These 
element  numbers are the  positions of all  the  one 
bits in the  bit  vector. 

The instructions LOAD INDIRECT and STORE INDI- 
RECT may  be  used to perform  indirect  element 
selection  when  the  auxiliary  vector  is or has  been 
converted to a vector of element  numbers.  Two 
other instructions, LOAD EXPANDED and STORE 
COMPRESSED, work  directly  with a section of a bit 
vector  in  the  vector-mask  register. 

Discussion 

The IBM System/370  vector  facility  can  provide a 
substantial performance  increase for vectorizable 
applications with  relatively  modest additions to 
hardware,  software, and application programming. 
The thorough integration of the  vector  facility into 
the existing  System/370  base architecture provides 
common data formats, produces  compatible  re- 
sults, and allows for common  exception  handling. 
Among  the  features  believed to be  novel for a 
register  type  of organization are machine-assisted 
vector  sectioning and precisely interruptible in- 
structions. 

To give the appearance of  sequential instruction 
execution and thereby  facilitate the interruptibility 
of vector instructions, there  is no chaining of these 
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 instruction^.^ Chaining  would  allow  the  execution 
of two or more  successive  vector instructions to 
be overlapped,  where  vector  elements  produced as 
the  result  of  one instruction are passed  on-the-fly 
to a subsequent instruction which  needs  them as 
operand elements.  Some of the advantages of in- 
struction chaining are obtained, however, by pro- 
viding  several of the most important combinations 
of operations with  single  compound instructions 
that are cleanly interruptible. They  include  com- 
pound instructions that directly  process  vector op- 
erands in storage and, most  particularly,  the in- 
struction MULTIPLY AND ADD. 

Having instructions which are cleanly interruptible 
is  especially  helpful in a virtual-storage environ- 
ment.  Long  vectors  may span many  storage  pages, 
especially  when  the stride is  large; in the  extreme, 
each  element  may be on a different  page.  There 
is no need to prefetch  all the pages and tie up 
corresponding  space in real  storage, just in case 
the  pages are needed.  Although  occasional  page 
faults while  loading or storing  vectors  could be 
handled by re-executing a noninterruptible instruc- 
tion from its beginning,  such restarting might be 
difficult  when instructions also perform arithmetic 
on vectors in storage. 

Users  should  bear in mind that relying too heavily 
on the automatic vectorization of existing pro- 
grams  may  cause  performance to be  less than that 
of which  the  vector  facility  is  capable.  Since op- 
timally  designed  scalar  programs do  not necessarily 
run in optimal fashion in a vector  version, it may 
be desirable to tune important programs to the 
characteristics of the particular vector  hardware. 
Further improvements  may be obtained by devel- 
oping new algorithms that are better suited to vec- 
tor processing.  Such extra efforts  can be applied 
selectively  over a period of time,  while obtaining 
the  initial  performance  gain  available  from a sim- 
ple conversion. 
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