Engineering and

scientific processing
on the IBM 3090

The IBM 3090 processor implementation of the
Systemi370 Vector Architecture represents a major
new system design for engineering and scientific
processing, featuring both scalar and vector
capability in a uniprocessor and in a dyadic and
four-way parallel processing environment. The
history of large-scale scientific processing is
reviewed, leading to a statement of current
requirements. The design objectives for scalar,
parallel, and vector capabilities are identified,
followed by a summary of the resulting 3090
features. Selected highlights of the vector hardware
are given, followed by a summary of the supporting
software. The paper concludes with a discussion of
performance, beginning with the identification of
suitable applications. An example is given of one
application utilizing each of the three capabilities:
scalar, parallel, and vector. Several of the most
important performance parameters are identified.

he design of computers well suited to the com-

putational requirements of large-scale engi-
neering and scientific applications can proceed
along three complementary lines of implementa-
tion. The 1BM 3090 processor implementation with
the System/370 Vector Architecture combines all
three lines—fast scalar processing, parallel process-
ing, and vector processing'—in a single product.
The problem space addressed by each is depicted
in Figure 1. Each of the three must achieve the
minimal requirement of providing fast floating-
point arithmetic and large memory capacity.

36 GissON, RAIN, AND WALSH

D. H. Gibson
D. W. Rain
H. F. Walsh

by

This paper discusses the 3090 Central Electronic
Complex design, focusing on the implementation
structures that contribute the most to performance
and capacity on engineering and scientific appli-
cations. The general computational characteristics
of these applications are described, showing the
need for the fast floating-point execution and large
memory, and the opportunity for scalar, parallel,
and vector designs. A brief historical review sum-
marizes a few of the preceding fast scalar, parallel,
and vector offerings, and then the requirements
for large-scale scientific processing in the
1985 — 1990 time frame are discussed. The remain-
der of the paper follows each of the three comple-
mentary capabilities—scalar, parallel, and vec-
tor—from design objectives to design features to
selected highlights. The paper concludes with ex-
amples of measured performance utilizing each of
the three capabilities.

General description of engineering/scientific
applications

High-performance scientific systems have histori-
cally been aimed at the solution of specific appli-

©Copyright 1986 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

cations in the areas of weather and hydrodynamics.
Interest in the use of computers, rather than phys-
ical models, is now increasing for fundamental en-
gineering and scientific studies. In one case, a
computer costing tens of millions of dollars, rather
than a wind tunnel costing even more, has been
proposed for studies by NASA Ames. In another,
the use of computer simulation runs costing thou-
sands of dollars, rather than construction of a pro-
totype car costing hundreds of thousands, is the
preferred method for Detroit automobile manu-
facturers to conduct structural analysis studies.

The effect of the historical improvement in perfor-
mance and price-performance of computing sys-
tems, together with the increased cost of personnel
and the greater availability of prepackaged pro-
grams, has resulted in a pronounced growth in the
use of computers for engineering and scientific ap-
plications. Many designers are relying on the com-
puter throughout the entire development cycle.
The use of physical models and “testing to destruc-
tion” is being replaced by extensive computer sim-
ulation. The consequences are several: shortened
design cycles, reduced development cost, improved
products, and the ability to attack problems that
cannot be solved by any other means.

The well-known computational characteristics of
engineering/scientific (E/S) applications may be
summarized as follows:

® FORTRAN is the most commonly used language.

® 64-bit floating-point arithmetic is preferred.

® Millions of words of data are often required.

® The trend is towards larger problems, requiring
even more memory and greater performance.

In addition, as described below,

® The basic equations affect the computational
process.

® The numerical analysis technique used to ap-
proximate the basic equations determines the
data structures.

These two characteristics, when depicted as in Fig-
ure 1, suggest that there is value in different kinds
of computers. At any given point in time, there
is a limit on the speed of a scalar processor. To
provide higher levels of computational capability,
it is appropriate to consider computer designs em-
ploying concurrency. When the basic equations

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 1 Problem space: The domains of scalar, vector,
and parallel implementations

REPETITIVE

. VECTOR PARALLEL

VECTOR
DATA
STRUCTURES
SCALAR PARALLEL
SINGULAR
SERIAL ¢+ oo ossensos INDEPENDENT

COMPUTATIONAL PROCESSES

include independent variables, it is often possible
to execute independent processes in parallel. A
computer providing multiple processors should
have value here. When the numerical analysis
technique uses data structures such as vectors and
matrices, a computer providing for direct operation
on such structures will be of interest. However,
there are key applications that simply do not lend
themselves to either parallel or vector formulation.
For such studies, a computer should provide very
fast scalar floating-point arithmetic. Finally, for
those studies where both parallel and vector for-
mulations are possible, a computer providing all
capabilities should be best.

History of large-scale engineering/scientific
processors

The first computers did not have floating-point
arithmetic in their primitive instruction set. The
IBM 704 computer introduced this feature circa
1954,% in response to the need established by the
use of the predecessor 701 computer for scientific
applications. Built-in floating-point instructions
have been a fundamental requirement since then,
and the major focus has shifted to the speed of
floating-point arithmetic.

GIBSON, RAIN, AND WALSH 37

Scalar floating-point arithmetic. The speed of
floating-point arithmetic can be improved, up to
a limit, by the addition of hardware circuits. There
is a theoretical minimum number of logic levels
required for each primitive floating-point opera-
tion,>* but there is a practical limit to the number
of circuits that can be employed. Computers in
the 1950s and 1960s were often compared on the
speed of a floating-point multiply operation.

In the late 1950s, several proposals were put for-
ward to improve the execution speed of floating-
point arithmetic, using “pipelining.” 1BM’s 7030
(STRETCH) system,” for example, segmented a
floating-point operation into sequential steps.
Each step required one machine cycle; thus n ma-
chine cycles were required to complete an operation
consisting of » steps. The STRETCH machine per-
mitted the initiation of a new operation each ma-
chine cycle, so that step n of an operation would
occur on the same machine cycle as step n— 1 of
the succeeding operation. The result was a possible
execution rate of one operation per machine cycle.
Achieving that rate was dependent upon a sequence
of consecutive floating-point operations thought
to be characteristic of engineering and scientific
applications.

Vector floating-point arithmetic. The usefulness of
pipelining on STRETCH (and other machines) de-
pended upon a consecutive sequence of floating-
point operations. Given that such sequences could
occur, a machine designed with an architecture
which guarantees that such sequences do occur
should have a faster floating-point execution. This
thinking led to the first vector machines, e.g., the
CDC STAR-100° and the Texas Instruments ASC,
early in the 1970s. Vector instructions were made
a part of the architecture, such that a guaranteed
number of floating-point operations in a guaran-
teed sequence were presented for execution. The
vector machines could execute a sequence of
floating-point operations faster than any scalar
machine of the day, provided the application used
the vector instructions.

Parallel floating-point arithmetic. Another way to
achieve a fast floating-point execution rate is to
provide parallel computation elements. The ILLIAC
1v,” also a machine of the early 1970s, provided
for multiple floating-point operations to be com-
pleted simultaneously under the control of a single
instruction. The ILLIAC machine could execute

38 cisson, RAIN, AND WALSH

floating-point operations faster than any scalar
machine of its day, provided the application used
the parallel elements.

Current requirements for a large-scale
engineering/scientific processor

Fast floating-point. The typical engineering/scien-
tific application executes floating-point operations
on 64-bit floating-point words, and the time to
complete the application is dominated by such op-
erations. It is therefore a requirement to make the
floating-point execution speed as fast as possible.
A NAsA-sponsored survey® of the research com-
munity on the needs of scientific applications in
the 1985—1990 time frame produced a require-
ment, based on a consensus of the respondents, of
from 100 to 1000 million floating-point operations
per second (MFLOPS). The requirement is not
qualified with regard to whether this MFLOPS per-
formance is needed at the job level or at the sub-
routine loop level. It is instructive to consider the
implications of this requirement, with respect to
the subroutine loop level, for the three different
design approaches—scalar, parallel, and vector. As
is argued below, no one approach to a large-scale
processor (as opposed to a supercomputer) suffices
for the subroutine loop level, and since this is an
easier requirement to meet than the job level re-
quirement, no one design approach currently meets
the research community requirement.

For the purpose of understanding the three design
approaches against the NAsA-identified require-
ments, we assume a subroutine loop for a matrix
multiply operation. The average number of cycles
needed to execute floating-point operations in this
loop can be derived for scalar and vector designs
on the basis of previously published data.” With
use of these derived data for a scalar design ap-
proach, a machine cycle of less than two nanosec-
onds would be needed to achieve 100 MFLOPs.'®
To meet the requirement on subroutine loops ame-
nable to parallel processing, in a machine design
of four parallel elements using four scalar elements
of the assumed design, a cycle time of about seven
nanoseconds would be needed to approach 100
MFLOPS.!? To meet the requirement on subroutine
loops amenable to vector processing in a single-
pipelined vector machine of the assumed design,
a cycle time of about twelve nanoseconds would
be needed for 100 MFLOPS.'

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Hence, each machine design, whether scalar, par-
allel, or vector, requires its own machine cycle to
meet the requirement, scalar being the most de-
manding. The attainable machine cycle is in turn
determined by circuit speed and packaging tech-
nology. Even the least demanding cycle time re-
quirement, that of a single-pipelined vector ma-
chine, cannot be supported by the circuit speeds
and packaging technologies used in the mid-1980s
for large-scale processors (as opposed to

A parallel design in
combination with a vector
design is necessary.

supercomputers). The logical conclusion of this
reasoning is that to approach the minimum re-
quirements of the research community with a large-
scale computer (as opposed to a supercomputer)
in the mid-1980s, a parallel design in combination
with a vector design is necessary.

Other operations. The floating-point operation se-
quences that characterize engineering/scientific ap-
plications dominate the execution time, but other
operations must also be performed. For one ex-
ample, modeling boundary conditions requires
special handling and uses logical and branching
operations. For another example, data access
methods are required to support the input and
output of application data. The execution time of
these “other” operations cannot be ignored in the
design of a large-scale processor. If, for example,
75 percent of the time is spent in floating-point
operations, the total time can be reduced at most
by a factor of four if the 25 percent spent for
“other” operations is not changed.

It is a requirement of large-scale engineering/
scientific processors that these “other” operations
be fast, lest the time to complete the nonfloating-
point portion of an application erode the gains
made in the floating-point portion.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Large memory. The NASA survey® that identified
the need for 100 to 1000 MFLOPS in a 1985 —1990
product also identified the need for 1 to 100 million
64-bit words of “core” memory and up to 1000
billion words of on-line storage. As a practical
matter, the memory must be affordable, and, of
course, must be fast enough to support the fast
floating-point execution speed.

The requirement for “core” memory to have the
attributes of being large (1-plus million 64-bit
words), fast, and affordable suggests a hierarchy
of memory elements. Many survey respondents
specifically suggested a memory hierarchy of two
or more levels. This is because fast memory is
known to be inherently expensive, whereas large
affordable memory is typically siow. A combina-
tion of some amount of fast memory with a larger
amount of affordable memory, in a hierarchy, is
a practical response to the requirement. It is rea-
sonable to infer from the respondents’ comments
that system management of a hierarchy as directly
addressable virtual storage is desirable.

Engineering/sclentific design objectives
of the 3090

The 1BM 3090 processor is, like its predecessors
(the 308X and 3033), a large-scale data processing
system. These systems have been used by engineers
and scientists for the management of their technical
data, for the creation and display of graphics, and
for interactive end-user computing. An additional
design objective for the 3090, established by con-
sideration of the current requirements for a large-
scale engineering/scientific processor, was to inte-
grate new performance capabilities into the base
processor.

A design objective of this large-scale computer
was to have reliability characteristics equal to or
better than those of its predecessors and to be
manufacturable in large quantities. This objective
in turn dictated the use of a circuit technology
package known to have high reliability and
manufacturability characteristics. For IBM in the
mid-1980s, the chosen emitter-coupled-logic circuit
logic and thermal-conduction-module packaging
determined that a machine cycle time of 18.5 nano-
seconds would result. This scalar cycle time, in
turn, dictated the need for both parallel and vector
capabilities if the engineering/scientific require-
ments were to be approached. Since the scalar

GIBSON, RAIN, AND WALSH 39

Figure 2 Vector content effects

VECTORIZABLE
PERCENTAGE

#90% (10.0)

RELATIVE
Joe

|

PERFORMANCE
ASYMPTOTE

N

RELATIVE JOB PERFORMANCE

® 80% (5.0)
-/

70% (3.33)
/ —

\,\

—— ©50% (2.0)
o /./
Z./ * *30% (1.4)

-

1 12 Ta ta ls ls |7 [a 1o l10
VEGTOR/SCALAR SPEED RATIO

and parallel capabilities are also useful for general-
purpose computing, these capabilities were to be
included in the base offering. The vector capability,
useful primarily for large-scale engineering/sci-
entific applications, was to be an optional offering.

The objectives to provide scalar, parallel, and vec-
tor capabilities in the 3090 required new architec-
ture as well as the use of pipeline and parallel
implementation techniques. The existing IBM Sys-
tem/370 and 370/XA (Extended Architecture) archi-
tectures were scalar, with provision for parallel
processing implementation. Only by extending
these architectures'! would it be possible to imple-
ment vector capability. However, an architectural
extension alone would not be sufficient to create
vector capability with the desired performance im-
provement. To achieve this capability, a pipeline
implementation technique would have to be used.
Parallel capability for a single engineering/scientific
application would be provided by adding software

40 ciBsON, RAIN, AND WALSH

to the already known parallel hardware implemen-
tation techniques.

Scalar objectives. From an engineering/scientific
viewpoint, the scalar design of the 3090 had the
objective to provide fast floating-point arithmetic.
Matrix operations were selected as a specific mea-
sure of the ability of various proposed designs to
meet the objective. The well-known matrix mul-
tiply operation and the matrix factorization oper-
ation were established as test cases for the scalar
design. In the FORTRAN language, these test cases
consist of DO-loops containing two operators, a
multiply and an add. Thus, the design of the sca-
lar 3090 focuses on high-speed execution of such
loops.

Parallel objectives. Multiprocessor configurations
have been a part of the 1BM large-system product
line for many years. Their purpose has been pri-
marily to improve the throughput under a single
operating system. In the engineering/scientific
area, a parallel design would provide a theoretical
capability to improve the turnaround time of a
single application. The 3090 design objective was
to provide both parallel hardware and supporting
software such that an engineering/scientific appli-
cation could be run in the minimum possible
elapsed time. Fluid dynamics techniques were se-
lected as a specific measure of the ability of the
design to meet the objective. Since it was under-
stood that the scalar engine would be replicated
in a tightly coupled configuration to form the par-
allet offering, attention was concentrated on soft-
ware to exploit the capabilities of the hardware.
The objective was established to have the MVS
multitasking capability surface at the FORTRAN
level in a user-friendly way.

Vector objectives. Given the 1BM 3090 high-speed
base processor, the next step was to consider how
to add a vector processing capability to further
enhance performance on appropriate applications.
A wide variety of performance choices were avail-
able, and, as expected, cost increased with perfor-
mance. The choice of the appropriate performance
target, and the associated cost, was a function of
the nature of the applications that were considered
of primary importance.

A study of many engineering and scientific appli-
cations revealed that certain portions of the exist-
ing scalar programs could be profitably replaced

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

by vector functions. The time required to execute
these replaceable portions, divided by the total
scalar run time, is called the vectorizable fraction,
which can also be expressed as a percentage. The
time required to execute the vectorizable fraction
on a scalar element, divided by the time to execute
the same function on a vector element, is called
the vector/scalar speed ratio. The machine de-
signer can choose to speed up the vectorizable
fraction by a large or a small amount. The decision
should be dictated, at least in part, by the appli-
cations for which the product is intended.

As Figure 2 shows, the relative job performance
that can result from adding vector capability de-
pends both on the vector/scalar speed ratio and
on the vectorizable percentage of an application.
Each curve in the figure can be derived using the
equation

Relative job performance = 1 /[(1 — F) + F/ VSR]

where F equals the vectorizable fraction and VSR
equals the vector/scalar speed ratio.

Applications with a 90 percent vector content
could approach a ten-times speedup as the vector/
scalar speed ratio reaches a high level. However,
applications with only a 30 percent vector content
would achieve most of their gain from a rather
modest vector/scalar speed ratio.

The choice of the appropriate vector/scalar speed
ratio should be determined by the vector content
of the anticipated set of applications.

Figure 3 is another plot of the same equation, this
time using F as the independent variable. The
individual curves representing different vector/
scalar ratios become widely divergent at high
vectorizable percentages. However, in the mid-
range of vectorization the spread in performance
is not as pronounced.

Extensive studies of the projected set of applica-
tions for the 1BM 3090 Vector Facility led to the
decision to optimize the design for the midrange
of vectorizable percentage. Interpretation of Fig-
ures 2 and 3 led to a vector/scalar speed ratio goal
in the vicinity of four. This ratio would result in
a very cost-efficient design providing job perfor-
mance gains quite comparable to those of other

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 3 Vector/scalar performance effects

VECTOR/SCALAR __,
¢ 20 SPEED RATIO 0
z]
= N
@ -
g 18-
[y -
i]
o
3]
g -4
2 16
Y]
2 3
g]
w N
T 44
12
10 —} 10
R /
8
6 —
N 5
4
R 3
2]
]
0]
o 110 |20 30 40 [s0 [eo |70 180 o0 l100
VECTORIZABLE PERCENTAGE

designs with much higher vector/scalar speed ratios
at significantly higher cost.

The 3090 offering that evolved from the above
scalar, parallel, and vector design objectives is de-
scribed in the remainder of this paper.

Engineering/scientific features of the 3090

The 3090 offers an approach to the current re-
quirements for a large-scale engineering/scientific
processor by providing in one system a high-
performance scalar capability, dyadic and four-
way parallel capability, and an optional vector
capability.

Scalar features. Features of the scalar design in-
clude a high-speed multiply function, an improved

GIBSON, RAIN, AND WALSH 41

Figure 4 Vector Facility block diagram

STORAGE VECTORS TO
OR FROM HIGH-SPEED
BUFFER OR GENERAL
OR FLOATING-

POINT REGISTERS

RESULT

e

VECTOR REGISTERS

.v.[.'.' -th

JR———
ALU MULTIPLIER

L —1

add function, the elimination of address generation
interlock in the loop-closing instructions, and a
mechanism for conditional branch handling. These
features are described in more detail in the paper
by Tucker.!? At the time of the 3090 announcement
in February 1983, its scalar capability was the best
listed" for scalar machines running MacNeal-
Schwendler’s NASTRAN.®

Parallel features. The February 1985 announce-
ment included both a dyadic and a four-way
offering, usable under FORTRAN for parallel pro-
cessing. An innovative use of FORTRAN library
routines in combination with MVS multitasking
provided the support needed for the use of all
available resources on a single engineering/sci-
entific application. Benchmark tests showed the
capability to reduce elapsed time by up to 1.8
times on the dyadic and up to 3.3 times on the
four-way when compared to a single processor.

42 GIBSON, RAIN, AND WALSH

The software support for this is described in more
detail later in this paper.

Vector features. The October 1985 announcement
of the Vector Facility for the 3090, one per pro-
cessor, offered a machine capable of approaching
the minimum requirement of the research commu-
nity on routines suitable for parallel vector pro-
cessing. On routines (e.g., matrix multiplication),
the best achievement on a single Vector Facility
was about three quarters of the minimum require-
ment of the research community, When an appli-
cation is able to use independent routines on the
parallel vector hardware, it is possible to surpass
the minimum requirement.

The Vector Facility achieves the cost-performance
design objectives by use of a powerful instruction
set, a pipelined multiplier and ALU, and a design
integrated with the base IBM 3090, including its
high-speed cache to provide operand data. These
features are described in more detail in a succeeding
portion of this paper.

Memory. The 370/XA architecture permits direct
addressability of a virtual memory of 256 million
64-bit words, consistent with the large memory
requirements for a current large-scale engineering/
scientific processor. The 1BM 3090 implements
physical storage to realize this virtual addressing
architecture with a hierarchy of high-speed buffer,
central storage, expanded storage, and DASD. This
provides the flexibility to use both a high-
performance chip technology in the central storage
and an advanced, low-cost, dense chip technology
in the expanded storage.

Vector Facility highiights of the 3090

A vector processing capability has been integrated
into the basic structure of the 3090,'? fundamen-
tally as an extension of the execution element in
each of the central processors (CPs). The instruc-
tion element of the central processor has the ca-
pability to decode the vector instruction set, con-
sisting of 171 instructions, and direct the execution,
depending on the instruction type, to either the
execution element or the vector element. The
buffer control element of the central processor also
participates in vector instruction handling, just as
it does with nonvector instructions.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 5 Vector muitiply and add sequence chart

STARTUP

ooaoaol.l

OPERANDS FROM STORAGE

MULTIPLIER

-
—_ e

ADDER

OVERLAP

F .. |]

T 1
RESULTS

Ll

o o o 00

L

e s s o o ENDOP

A Vector Facility can optionally be added to one
or more of the central processors in the IBM 3090
models.

Data flow. The 1BM 3090 Vector Facility data flow
is shown in Figure 4.

The 8 (or 16) vector registers, each holding 128
elements, can supply up to two 64-bit (or 32-bit)
word operands per machine cycle. These operands
can be delivered to either the Arithmetic Logic
Unit (ALU) or the Multiplier, or one operand to
each. The ALU and the Multiplier can also be
supplied via a data path that carries operands
from storage by way of the high-speed buffer, or
from the general or floating-point registers. An-
other data path into the ALU comes directly from
the Multiplier. This path supports the compound
vector instructions, such as multiply and add, gen-
erating as many as two floating-point operations
per machine cycle.

Pipeline operation. The timing of the pipelined
execution of a vector instruction is variable. Each
vector instruction may be thought of as composed
of four sequential parts. These are startup, vector
execution, end-of-operation (end-op), and overlap.
Each part requires a specific number of machine
cycles, depending on the specific vector instruction.

1BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

The complexity of four sequential parts to each
instruction, and the variability of timing for each
part, introduce the need for a first-order approx-
imation to the timing of vector instructions. For
this purpose, a matrix multiply code has been ex-
amined, each sequential part has been analyzed,
and the whole has been reduced by combining
startup, a portion of the vector execution, the end-
op, and the overlap. This combined timing has
been prorated across the vector instructions that
constitute the matrix multiplication code, and for
this purpose has been called simply vector over-
head. The resulting first-order approximation of
the time to execute a vector instruction is 28 cycles
of vector overhead plus one cycle per element, per
vector instruction.

The sequence of a smoothly flowing pipeline during
vector execution, doing a multiply and add vector
instruction which performs two floating-point op-
erations to produce one result, is shown in Figure
5. Note that one result is produced per machine
cycle, with the registers and storage supporting
the flow of three operands per cycle.

The Multiplier unit, which consists of three sepa-
rate Multipliers, each capable of producing a prod-
uct three cycles after receiving the input, can ac-
cept a new multiplier/multiplicand pair each cycle.

GIBSON, RAIN, AND WALSH 43

The two streams of operands, one from storage
and the other from a floating-point register, are
initiated. Several cycles later the first product
emerges from the Multiplier and is fed to the ALU
for the ADD. On that same cycle the other input
to the ALU is supplied with the operand from a
vector register which represents the running sum.
A few cycles later the first of the results is produced,
ready to be gated into a vector register. The op-
eration continues, one result per machine cycle,
until the vector length is exhausted (or the section
size, whichever occurs first).

The depicted multiply and add sequence is illus-
trative of operations within the Vector Facility.

Section size. The length of a vector may be shorter
or longer than the 128 elements available in a 3090
vector register, as determined by the application.
The 370/XA vector architecture provides special in-
structions to simplify the processing of variable-
length vectors on fixed-length registers. The ap-
plication specifies the length of the vector to be
processed, and the processor divides the processing
of the vector into “section-size” pieces (128 ele-
ments in the case of the 3090). If the vector is
longer than the section size, the processor executes
a “section” at a time. If shorter, the processor
stops when the last element has been processed.
The section size is chosen by the processor designer.

Large section size increases cost and save/restore
time, but reduces startup effects. The chosen vec-
tor section size of 128 was based upon cost, per-
formance, and application considerations. The ap-
plications considered did not benefit significantly
from a section size greater than 128 elements.

Memory hierarchy. An important implementation
consideration for the design of a vector facility is
the provision for accessing high-speed storage.
Two approaches may be considered: (1) a single-
level, very high-speed, high-bandwidth central stor-
age, or (2) a memory hierarchy providing a very
high-speed cache.

In the 3090 the memory hierarchy approach was
selected for several reasons. First, thereis a definite
cost advantage to implementing a high-speed
cache, backed by a large central storage, as com-
pared to a single, large, high-performance central
storage. The cache concept, introduced in 1968,
is generally used in the implementation of large-

84 GissON, RAIN, AND WALSH

scale computers. With the introduction of ex-
panded storage in the 3090, the cost advantage
accrues a second time. Expanded storage provides
capacity extensions with performance approxi-
mately equivalent to that which would be attained
by the same capacity extension of central storage,
but with reduced cost.

Second, because a high-performance scalar pro-
cessor is required in conjunction with the Vector
Facility, it is appropriate to share the mechanisms,
and thereby share the costs, of the memory hier-
archy. And third, there is a favorable performance
characteristic when using the Vector Facility with
a memory hierarchy. More specifics on the per-
formance of the Vector Facility are contained in
Part II of the paper by Clark and Wilson."

Englineering/scientific software support
for vector processing

Requirements. An application can benefit from
the speed of the Vector Facility only if it contains
vector instructions. A sample of conceptual object
level code of an application using vector instruc-
tions might look like the code depicted on the left
in Figure 6. The corresponding sample of object
code using only scalar instructions would look like
the code depicted on the right.

The example shows vector instructions in capital
letters (for ease of reading the example) and uses
the abbreviations VR for Vector Register and SR
for Scalar Register. On the left side the example
contains both vector and scalar instructions, typ-
ical of vector coding. The same scalar instructions
appear on the right in the scalar-only coding, but
here the four vector instructions have been replaced
by four scalar instructions and an indicated loop.
To obtain the same result with both codings, the
3090 would have to loop through the scalar-only
coding as many times as there are elements in the
vector being processed, whereas only one pass is
required through the vector coding.

If no vector instructions are present in the executed
object code, the Vector Facility will remain idle.
Two methods are available to utilize the Vector
Facility. One method is to use prepackaged pro-
grams that already contain vector instructions.
Another method is to incorporate vector code into
a program using a vectorizing compiler, an assem-
bler supporting the vector instructions, or a “call”

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 6 Hypothetical object code

Vector coding Scalar-only coding

Load address registers Load address registers

Load scalar value Load scalar value

Add to scalar value Add to scalar value

LOAD VR with N elements Load SR < loop
MULTIPLY VR by scalar value Multiply SR by scalar value back
ADD VECTOR IN STORAGE TO VR Add 1 vector element in storage to SR N
STORE VR Store SR times

to a subroutine which utilizes the vector instruc-
tions.

Available software support. A basic area of soft-
ware support is that of prepackaged programs
from independent software vendors. Studies con-
ducted by IBM have shown that in many large-
system installations doing engineering and
scientific applications, over 50 percent of the pro-
duction workload consists of the running of these
prepackaged programs. A number of these pro-
grams already exist for IBM scalar processors, and
IBM is encouraging and cooperating in the conver-
sion of as many of them as is feasible to vector
and parallel versions.

Also fundamental to the support of the Vector
Facility is a VS FORTRAN offering which has the
capability to take existing programs written in IBM
FORTRAN, both ANSI level 66 and 77, and to com-
pile them, producing vector object code where
such potential exists. FORTRAN DO-loops will be
converted to vector instructions where possible
and reasonable. Other conditions, for example, IF
statements that cannot be removed or accommo-
dated, may inhibit vectorization.

A critical part of every FORTRAN facility is an
efficient FORTRAN library. Many of the subrou-
tines in the FORTRAN library now have vectorized
versions and enhance the performance of the sys-
tem. The Interactive Debug Facilities (IAD) are
also provided as part of the library. (This same
library provides the Multitasking Facility.)

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Extensions to the Assembler H product are pro-
vided to support the 171 new vector instructions.

An Engineering and Scientific Subroutine Library
(ESsL) is also available. Subroutines covering a
variety of methods are included: basic linear alge-
bra subprograms, routines for the solution of si-
multaneous linear algebraic equations for a variety
of conditions, eigenanalysis routines for a real gen-
eral matrix and a real symmetric matrix, signal
processing routines including fast Fourier trans-
forms and 1BM 3838 array processor algorithms,
matrix operations, a random number generator,
and an error monitor.

For the seismic analysis application, the Vector
Processing Subsystem/Vector Facility (VPSS/VF) al-
lows users of the 1BM 3838 Array Processor to
utilize the Vector Facility as an emulator of their
current VPSS programs, without rewrite, with an
improvement in performance. A scalar option
within VPSS/VF can also be used for emulation,
with lower performance.

For applications that experience heavy usage or
are of vital importance to an installation, it may
be both desirable and profitable to re-examine the
application to determine if it might be restructured
to use the above vector software support with the
VS FORTRAN Program Multitasking Facility.

Engineering/scientific software support
for parallel processing

As stated in the design objectives, the focus for
parallel capability was on software. A set of three

GIBSON, RAIN, AND WALSH 48

Figure 7 Multitasking flow

CALL NTASKS (NUMTSK)
DO 10 I=1 to NUMTSK
10 CALL DSPTCH ('PARAL',A(I),B(I))

NRRRN

NERNRRE

CALL SYNCRO

|11

LT

subroutines was developed to further improve turn-
around performance for those users having appro-
priate critical applications. As a part of the vs
FORTRAN library, this set of subroutines, known
as the VS FORTRAN Program Multitasking Facility,
was provided to enable a user with a dyadic or
four-way system to structure a program so that
those parts of an application which can be run in
parallel (inherent parallelism) on the multiple pro-
cessors may do so. These subroutines allow the
application programmer to utilize the multitasking
capability of Mvs and to thus reduce the “turn-
around” time of the application. They allow the
concurrent scheduling (“fork”) of those portions
of the application which permit it, and also provide
the ability to synchronize (“join”) the completion
of the parallel parts when it is necessary to ensure
the completion of all prior work before a program
can continue. Figure 7, depicting time from top
to bottom, with statements executed as bars, is an
example.

In the example, the three subroutines that consti-
tute the application interface are shown. The first
subroutine, CALL NTASKS, returns to the applica-
tion the number of subtasks available for concur-
rent scheduling. In the example, the value 4 is
returned in the argument NUMTSK, indicative of
four available subtasks (as might be preferred on
a 3090/400). The second subroutine, CALL DSPTCH,
attaches one application subroutine for execution
by one subtask on one available processor. In the

46 GIBSON, RAIN, AND WALSH

example, the application subroutine PARAL is dis-
patched four times, each time with an independent
set of arguments A(I) and B(I), for execution on
the four available processors. Although not shown
by this example, it is also possible to dispatch
distinct application subroutines. The third subrou-
tine, CALL SYNCRO, causes the main program to
wait until all concurrently scheduled tasks have
completed. In the example, this is pictorially
shown by the middle column of bars representing
the main program and by the side columns repre-
senting the four dispatches of the application sub-
routine PARAL.

Engineering/scientific performance of the 3090

A broad range of applications across a wide spec-
trum of industry has developed, and it is at these
areas that the IBM 3090 Vector Facility is directed.
The application areas listed in Figure 8 are exam-
ples of those that should benefit from the combined
capabilities of the 1BM 3090 system with its excel-
lent scalar performance enhanced, where appro-
priate, by both the Vector Facility and the vs
FORTRAN Program Multitasking Facility.

The current approach to many of the application
programs in Figure 8 is still based on conventional
scalar processing. The future should see growth
both in the number and type of applications of
interest, and a trend toward vectorization and
parallelization of these applications. This should

{BM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

occur as the benefits of these techniques, in both
improved performance and lowered computer
costs, become apparent.

An example. The October 1985 announcement of
the 3090 Vector Facility identified certain perfor-
mance data for a set of applications. As an exam-
ple, the levels of performance attained for an en-
gine design application, turbine blade analysis
(T-Blade), are expanded in Figure 9. This figure
includes internal throughput rate (ITR) ratios and
external throughput rate (ETR) ratios,'s using the
3081KX with one central processor (CP) as the
reference point. Further discussions of perfor-
mance are contained in Part I of the paper by
Clark and Wilson."” The steps required to attain
the performance values given in Figure 9 are il-
lustrative of scientific and engineering processing
on the 3090/200 with Vector Facility.

The T-Blade application is written in FORTRAN.
The base 3081KX and the 3090/200 one-CP scalar
values were determined by compiling the applica-
tion source code under VS FORTRAN Version 2,
producing scalar code using the highest level of
scalar optimization. The resulting source code was
then executed and timed'” and its internal through-
put rate (ITR) ratio calculated.

Next the same application source code was com-
piled using the highest level of vector optimization,
which causes the compiler to automatically pro-
duce object code with vector instructions where
possible. The resulting source code was then exe-
cuted and timed'” on a single CP and Vector Fa-
cility, and the performance calculated. This cal-
culation produced an ITR ratio of 5.2, which, while
respectable, was judged to be a performance level
that could be improved upon. The original source
code was examined and the inner loops, as written
in FORTRAN, were modified according to “good
vector coding practices.” Some of these coding
practices are described in a comprehensive report
by Dubrulle et al.’® The new source code was then
compiled, executed, and timed'® to produce the
6.9 ITR ratio given in Figure 9.

The final step involved another modification to
the FORTRAN source code, this time to create mul-
tiple subroutines that could be invoked using the
Multitasking Facility. This new source code was
then compiled to produce scalar code, and again
to produce vector code. In both compilations the

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

Figure 8 Examples of suitable applications

STRUCTURES
AIRFRAME
AUTOMOTIVE

PETROLEUM
SEISMIC ANALYSIS
RESERVOIR MODELING
REFINERY OPERATIONS

COMPUTATIONAL FLUID DYNAMICS
AIRFOIL
ENGINE DESIGN

NUCLEAR PHYSICS
REACTOR SAFETY
HYDRODYNAMICS

ECONOMETRIC MODELING

Figure 9 3090 processor, Model 200: T-blade performance
in ITR and ETR ratios

ITR ETR
PARALLEL
ONE CP ONE CP TWO CPs
SCALAR SCALAR VECTOR SCALAR VECTOR
10 25 6.9 41 1.4

highest level of optimization was used. The com-
piled codes were then executed on the 3090/200.
Since parallel processing performance is a measure
of turnaround time, which is based on elapsed
time, the elapsed times were recorded. Therefore,
for the parallel processor values, external through-
put rate ratios were calculated.

The T-Blade application is one of a class of ap-
plications that can benefit from all of the capabil-
ities (scalar, parallel, and vector) of the 3090. All
floating-point applications will, of course, benefit

GIBSON, RAIN, AND WALSH 47

from the scalar capability. Some applications may
experience improved performance from the use of
vector compilation and execution as described
above. Some applications may experience im-
proved performance from source-code modifi-

Matrix multiplication
routines are particularly
interesting.

cations to invoke the parallel capability. Further,
some applications may experience improved per-
formance from using the ESSL library, a possibility
previously discussed but not illustrated by the T-
Blade application.

Engineering/scientific performance parameters. The
performance of the IBM 3090 with Vector Facility
varies as a function of specific application charac-
teristics and coding techniques. A few of the most
important performance parameters follow. An un-
derstanding of these parameters may be useful to
the FORTRAN language user, the assembler lan-
guage user, or both.

Contiguous data: Although scalar performance
will vary with the placement of data in memory,
this parameter is particularly important in vector
performance. The rule is to access contiguous
(e.g., column-order for FORTRAN) application data
where possible.

Reuse of data: Data present in cache or registers
(general-purpose, floating-point, or vector) should
be reused where possible.

Vector length: The rule is to provide long vectors
rather than short vectors.

Concurrency: The rule is to use those algorithms
and coding techniques that will give the maximum
concurrent usage of the available hardware facil-
ities. The hardware facilities that may be used
concurrently are the dyadic or four-way CPps, in-
cluding their vector facilities. Performance in-

48 GiBSON, RAIN, AND WALSH

creases as the amount of concurrent usage, some-
times referred to as the inherent parallelism and
the vectorizable percentage, increases.

Instruction mix: Generally speaking, in the execu-
tion of scalar floating-point operations, addition
is faster than multiplication, and both are
significantly faster than division. In the execution
of vector floating-point operations, compound op-
erations, such as multiply and add, are faster than
the corresponding separate vector instructions,
and all are significantly faster than division. The
rule is to remove division from the inner loop
wherever possible, and when dividing more than
once by the same number, to obtain an inverse
and multiply.

Knowledge of these 3090 performance parameters
has proven useful in construction of the code for
routines in the Engineering and Scientific Subrou-
tine Library. The matrix multiplication routines,
for example, are particularly interesting because
of their level of attainment. Consideration was
given in the design of these routines to the section
size of the 3090 Vector Facility, the available com-
pound instructions, and the cache size. The levels
of performance attainment for a subroutine mul-
tiplying matrices with order between 100 and 1000
may be derived from previously published mate-
rial.”® The LOOP_MFLOPS values so derived are ap-
plicable only to this subroutine loop. For matrix
multiplication on one 3090/200 Vector Facility,
the derived value is around 70 LOOP_MFLOPS, de-
pending on the size of the matrices. When two or
four Vector Facilities are executing copies of the
matrix multiplication routines, the capacity of the
system increases approximately with the number
of Vector Facilities. Of course, these values apply
to routines, not to full jobs. JOB_MFLOPS values
are considerably less than LOOP_MFLOPS values.
The reader should refer to the paper by Clark and
Wilson'® for specific examples of JOB_MFLOPS on
the 3090/200 Vector Facility.

Summary

Engineering/scientific applications may be ad-
dressed in a large-scale processor by three com-
plementary approaches:

1. High-speed scalar floating-point processing

2. Parallel processing
3. Vector processing

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

The 18M 3090 processor offers a balanced response
to these three approaches by including a high-
performance scalar capability; dyadic and four-
way multiprocessing, which in conjunction with
the VS FORTRAN Program Multitasking Facility
provides a parallel processing capability; and an
optional Vector Facility which provides a vector
processing capability.

The design of the Vector Facility was based on
application studies which concluded that applica-
tion vectorizable percentages significantly beyond
the midrange, though possible, are not currently
anticipated to be the norm. This implies that a
Vector Facility should be accompanied by a high-
performance scalar capability.

The base 1IBM 3090 achieves its engineering/
scientific performance enhancements through im-
provements in specific floating-point and branch
instruction handling. The 256 million 64-bit-word
virtual storage is implemented in a physical storage
consisting of a high-speed buffer, central storage,
optional expanded storage, and DASD.

The Vector Facility achieves its cost-performance
design objectives by use of a powerful instruction
set, a pipelined multiplier and ALU, and a design
integrated with the base IBM 3090, including its
memory hierarchy and high-speed buffer.

Extensive software support has been provided with
the Vector Facility, including operating system
support, a vector FORTRAN compiler, a FORTRAN
library, and an engineering/scientific subroutine
library.

Acknowledgments

The comprehensive acknowledgment of the indi-
viduals on the teams responsible for the 1BM 3090
would be impractical, for they are numerous. We
wish, rather, to recognize the teams by function.
The architectural team coordinated the many as-
pects of definition to develop the integrated vector
architecture upon which the 1BM 3090 Vector Fa-
cility is based. The planning team identified the
applications, the section size requirements, and the
performance and price-performance goals. The
design team established the design direction leading
to the specific implementation of the 1BM 3090.
The development team integrated the logical and
physical elements necessary to realize the final

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

packaged product and conducted the verification
testing. The programming team planned, designed,
and developed the supporting software. We wish
also to acknowledge the leadership of the manage-
ment team in bringing the 1BM 3090 to the mar-
ketplace.

NASTRAN is a registered trademark of the National Aero-

nautics and Space Administration. MSC/NASTRAN

is an

enhanced proprietary version developed by the MacNeal-
Schwendler Corporation.

Cited references and notes

1.

. P. Kogge,

Scalar processing operates on scalars, which are single data
items. Parallel processing operates on either scalars or vec-
tors, utilizing multiple processors on a single application.
Vector processing operates on vectors. A vector is a col-
lection of data items which is ordered along a single di-
mension.

. R. Moreau, The Computer Comes of Age, MIT Press, Cam-

bridge, MA (1984).

. S. Winograd, “On the time to perform addition,” Journal

of the ACM 12, 277 (1965).

. S. Winograd, “On the time to perform multiplication,”

Journal of the ACM 14, 793 (1967).

. W. Buchholz, Planning a Computer System—Project Stretch,

McGraw-Hill Book Co., Inc., New York (1962).
The Architecture of Pipelined Computers,
McGraw-Hill Book Co., Inc., New York (1981).

. K. Hwang and F. A. Briggs, Computer Architecture and

Parallel Processing, McGraw-Hill Book Co., Inc.,, New
York (1984).

. The survey was distributed to about 1800 individuals, of

whom about 10 percent responded, representing 90
affiliations. The survey and results are summarized in a
paper by Peter Lykos, “Working Document on Future
Computer System Needs for Large Scale Computations,”
Joint Project of NASA Ames Research Center and IIT,
1978.

. Contained in Table 3 on page 14 of the October 1985 IBM

3090 Product Announcement Letter 185-120; available
through IBM branch offices.

. Cycle time in microseconds = N/(MFLOPS x cycles per

floating-point operation), where N = number of indepen-
dent processing elements.

. W. Buchholz, “The IBM System/370 vector architecture,”

IBM Systems Journal 25, No. 1, 51 —62 (1986, this issue).

. S. G. Tucker, “The IBM 3090 system: An overview,” IBM

Systems Journal 25, No. 1, 4—19 (1986, this issue).

. A number of engineering/scientific application packages

available from non-IBM software vendors run on processors
that have System/370 or 370-XA architecture, including the
3090. Some include a run time estimate for each processor
on which the application will execute. MacNeal-Schwendler
Corporation’s MSC/NASTRAN,® one such package com-
monly used for structural analysis, provides an application
manual. This manual tabulates a processor-dependent vari-
able which can be used to estimate total job run time. This
variable, called the M value, is the time in microseconds
required for one execution of a floating-point multiply/add
loop on a given processor. The M values are sometimes

GIBSON, RAIN, AND waLsH 49

used as a rating of a processor, and comparison of M
values can be made among processors. In such a compar-
ison, the smaller the M value, the faster the processor. A
MacNeal-Schwendler Corporation document entitled Time
Estimation and Problem Execution contains information
published in the applicable computer-dependent editions of
the MSC/NASTRAN Application Manual (Section 7.3).
Included in the document are the M values for processors
from the many vendors for which the MSC/NASTRAN
software package is available. The February 1985 edition
lists the 3090 Processor Unit Model 200 M value as smaller
than that of any other nonvector processor cited. That is,
the 3090 Model 200 executes the MSC/NASTRAN
multiply-add loop faster than any other nonvector processor
listed in the publication.

14. C.J. Conti, D. H. Gibson, and S. H. Pitkowsky, “Structural
aspects of the System/360 Model 85; Part I, General or-
ganization,” IBM Systems Journal T, No. 1, 2— 14 (1968).

15. R_S. Clark and T. L. Wilson, “Vector system performance
of’ the IBM 3090,” IBM Systems Journal 25, No. 1, 63— 82
(1986, this issue).

16. For those who may be unfamiliar with the terms ITR ratio
and ETR ratio, refer to K. Radecki, Introduction to Pro-
cessor Performance Evaluation, IBM Washington Systems
Center Technical Bulletin, GG66-0232, IBM Corporation
(February 1986); available through IBM branch offices.

17. Refer to Table 1 on page 11 of the October 1985 IBM 3090
Product Announcement Letter 185-120; available through
IBM branch offices.

18. A. A. Dubrulle, R. G. Scarborough, and H. G. Kolsky,
How to Write Good Vectorizable FORTRAN, G320-3478,
IBM Corporation; available through IBM branch offices.

19. Refer to the IBM 3090 Vector Performance Bulletin,
GG66-0245; available through IBM branch offices.

20. Refer to Table 3 on page 14 of the October 1985 IBM 3090
Product Announcement Letter 185-120; available through
IBM branch offices. Note that (2 x N")/(time in microsec-
onds), where N is the order of each of the two square
matrices being multiplied, is approximately equal to
LOOP_MFLOPS.

-

Donald H. Gibson IBM Data Systems Division, P.O. Box 390,
Poughkeepsie, New York 12602. Mr. Gibson joined IBM in
1956, specializing in CPU and memory design, working first
on the SAGE project and then on the STRETCH system. After
attending IBM’s Systems Research Institute in 1962, he did
early design study work leading to the System/360 Model 91
and System/370 Model 195. His simulation work on block
transfer memory systems design led to the “cache” design, first
introduced in the Systém/360 Model 85. For his contributions,
he shared a Corporate Outstanding Contribution Award in
1967. He was manager of the Large Systems Technical Support
Group in the late 1960s and early 1970s, then left management
in the mid-1970s to pursue technical interests in graphics and
artificial intelligence. His customer survey consultancy in the
late 1970s led to the engineering/scientific design features of the
3090, including the Vector Facility. In the early 1980s, he led
the activity in IBM on engineering data base, chaired the work
on a computer-aided engineering strategy, and pioneered the
work on cooperative processing. Mr. Gibson is currently IBM
Poughkeepsie’s senior engineer for Engineering/Scientific Re-
quirements. In this position he led the initial effort to define
and announce the scalar engineering/scientific capabilities of

B0 GciBsON, RAIN, AND WALSH

the 3090. He earned the B.S. in electrical engineering at the
University of Kentucky in 1956.

Don W. Rain IBM Data Systems Division, P.O. Box 390,
Poughkeepsie, New York 12602. Dr. Rain is a Senior Technical
Staff Member in Advanced Processor Development. He joined
IBM in 1964 at Poughkeepsie and has since been involved in
multiple aspects of large-system design. He was involved with
design support activities including performance analysis and
simulation of large systems until 1971. From 1969 to 1975 he
was involved with a high-level machine architecture definition,
user specialty language creation, and an application develop-
ment system architecture. From 1975 to the present he has had
responsibilities in the area of overall system design of IBM’s
high-performance processors, including specifically the IBM
3090. Areas of concentration have included system functional
specification, storage hierarchy definition, and project coordi-
nation. In 1985 he received an IBM Outstanding Innovation
Award for his work on expanded storage. Dr. Rain received a
B.S. degree in electrical engineering from Purdue University in
1958, an M.S. degree from the University of Connecticut in
1961, and a Ph.D. degree in electrical engineering from the
University of Illinois in 1964.

Hugh F. Walsh IBM Data Systems Division, P.O. Box 100,
Kingston, New York 12401. Mr. Walsh (now retired) was most
recently Program Manager of Engineering/Scientific Analysis
for IBM’s Kingston Laboratory. He has been with IBM since
1955 in technical marketing, education, and systems planning.
Since 1960 he has been involved in the planning of IBM’s large
systems, including the System/360 Models 91, 95, and 195 and
most recently the IBM 3090 and the Vector Facility. His ex-
perience has led to his involvement in computer systems in a
wide variety of application areas including petroleum, aero-
space, automotive, and circuit design usage. Mr. Walsh holds
a B.S. in physics from Siena College and an M.S. in physics
from Rensselaer Polytechnic Institute.

Reprint Order No. G321-5260.

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986

