
Engineering and
scientific processing
on the IBM 3090

by D. H. Gibson
D. W. Rain
H. F. Walsh

The IBM 3090 processor implementation of the
System1370 Vector Architecture represents a major
new system design for engineering and scientific
processing, featuring both scalar and vector
capability in a uniprocessor and in a dyadic and
four-way parallel processing environment. The
history of large-scale scientific processing is
reviewed, leading to a statement of current
requirements. The design objectives for scalar,
parallel, and vector capabilities are identified,
followed by a summary of the resulting 3090
features. Selected highlights of the vector hardware
are given, followed by a summary of the supporting
software. The paper concludes with a discussion of
performance, beginning with the identification of
suitable applications. An example is given of one
application utilizing each of the three capabilities:
scalar, parallel, and vector. Several of the most
important performance parameters are identified.

T he design of computers well suited to the com-
putational requirements of large-scale engi-

neering and scientific applications can proceed
along three complementary lines of implementa-
tion. The IBM 3090 processor implementation with
the System/370 Vector Architecture combines all
three lines-fast scalar processing, parallel process-
ing, and vector processing1-in a single product.
The problem space addressed by each is depicted
in Figure 1. Each of the three must achieve the
minimal requirement of providing fast floating-
point arithmetic and large memory capacity.

This paper discusses the 3090 Central Electronic
Complex design, focusing on the implementation
structures that contribute the most to performance
and capacity on engineering and scientific appli-
cations. The general computational characteristics
of these applications are described, showing the
need for the fast floating-point execution and large
memory, and the opportunity for scalar, parallel,
and vector designs. A brief historical review sum-
marizes a few of the preceding fast scalar, parallel,
and vector offerings, and then the requirements
for large-scale scientific processing in the
1985 - 1990 time frame are discussed. The remain-
der of the paper follows each of the three comple-
mentary capabilities-scalar, parallel, and vec-
tor-from design objectives to design features to
selected highlights. The paper concludes with ex-
amples of measured performance utilizing each of
the three capabilities.

General description of engineeringlsclentific
applications

High-performance scientific systems have histori-
cally been aimed at the solution of specific appli-

%opyright 1986 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

36 GIBSON, RAIN, AND WALSH IBM SYSTEMS JOURNAL, VOL25, NO 1.1986

cations in the areas of weather and hydrodynamics.
Interest in the use of computers, rather than phys-
ical models, is now increasing for fundamental en-
gineering and scientific studies. In one case, a
computer costing tens of millions of dollars, rather
than a wind tunnel costing even more, has been
proposed for studies by NASA Ames. In another,
the use of computer simulation runs costing thou-
sands of dollars, rather than construction of a pro-
totype car costing hundreds of thousands, is the
preferred method for Detroit automobile manu-
facturers to conduct structural analysis studies.

The effect of the historical improvement in perfor-
mance and price-performance of computing sys-
tems, together with the increased cost of personnel
and the greater availability of prepackaged pro-
grams, has resulted in a pronounced growth in the
use of computers for engineering and scientific ap-
plications. Many designers are relying on the com-
puter throughout the entire development cycle.
The use of physical models and “testing to destruc-
tion” is being replaced by extensive computer sim-
ulation. The consequences are several: shortened
design cycles, reduced development cost, improved
products, and the ability to attack problems that
cannot be solved by any other means.

The well-known computational characteristics of
engineering/scientific (E/s) applications may be
summarized as follows:

0 FORTRAN is the most commonly used language.
0 64-bit floating-point arithmetic is preferred.
0 Millions of words of data are often required.

The trend is towards larger problems, requiring
even more memory and greater performance.

In addition, as described below,

The basic equations affect the computational
process.
The numerical analysis technique used to ap-
proximate the basic equations determines the
data structures.

These two characteristics, when depicted as in Fig-
ure 1, suggest that there is value in different kinds
of computers. At any given point in time, there
is a limit on the speed of a scalar processor. To
provide higher levels of computational capability,
it is appropriate to consider computer designs em-
ploying concurrency. When the basic equations

IBM SYSTEMS JOURNAL, VOL 25, NO 1,1986

~~

Figure 1 Problem space: The domains of scalar, vector,
and parallel implementations

REPETITIVE

STRUCTURES
DATA

SINGULAR

VECTOR

SCALAR

COMPUTATIONAL PROCESSES

include independent variables, it is often possible
to execute independent processes in parallel. A
computer providing multiple processors should
have value here. When the numerical analysis
technique uses data structures such as vectors and
matrices, a computer providing for direct operation
on such structures will be of interest. However,
there are key applications that simply do not lend
themselves to either parallel or vector formulation.
For such studies, a computer should provide very
fast scalar floating-point arithmetic. Finally, for
those studies where both parallel and vector for-
mulations are possible, a computer providing all
capabilities should be best.

History of iarge-scale engineeringlscientific
processors

The first computers did not have floating-point
arithmetic in their primitive instruction set. The
IBM 704 computer introduced this feature circa
1954,’ in response to the need established by the
use of the predecessor 701 computer for scientific
applications. Built-in floating-point instructions
have been a fundamental requirement since then,
and the major focus has shifted to the speed of
floating-point arithmetic.

GIBSON, RAIN, AND WALSH 37

Scalar floating-point arithmetic. The speed of
floating-point arithmetic can be improved, up to
a limit, by the addition of hardware circuits. There
is a theoretical minimum number of logic levels
required for each primitive floating-point opera-
t i ~ n , ~ , ~ but there is a practical limit to the number
of circuits that can be employed. Computers in
the 1950s and 1960s were often compared on the
speed of a floating-point multiply operation.

In the late 1950s, several proposals were put for-
ward to improve the execution speed of floating-
point arithmetic, using "pipelining." IBM'S 7030
(STRETCH) system: for example, segmented a
floating-point operation into sequential steps.
Each step required one machine cycle; thus n ma-
chine cycles were required to complete an operation
consisting of n steps. The STRETCH machine per-
mitted the initiation of a new operation each ma-
chine cycle, so that step n of an operation would
occur on the same machine cycle as step n - 1 of
the succeeding operation. The result was a possible
execution rate of one operation per machine cycle.
Achieving that rate was dependent upon a sequence
of consecutive floating-point operations thought
to be characteristic of engineering and scientific
applications.

Vector floating-point arithmetic. The usefulness of
pipelining on STRETCH (and other machines) de-
pended upon a consecutive sequence of floating-
point operations. Given that such sequences could
occur, a machine designed with an architecture
which guarantees that such sequences do occur
should have a faster floating-point execution. This
thinking led to the first vector machines, e.g., the
CDC STAR-~OO~ and the Texas Instruments
early in the 1970s. Vector instructions were made
a part of the architecture, such that a guaranteed
number of floating-point operations in a guaran-
teed sequence were presented for execution. The
vector machines could execute a sequence of
floating-point operations faster than any scalar
machine of the day, provided the application used
the vector instructions.

Parallel floating-point arithmetic. Another way to
achieve a fast floating-point execution rate is to
provide parallel computation elements. The ILLIAC
IV,' also a machine of the early 1970s, provided
for multiple floating-point operations to be com-
pleted simultaneously under the control of a single
instruction. The ILLIAC machine could execute

38 GIBSON, RAIN, AND WALSH

floating-point operations faster than any scalar
machine of its day, provided the application used
the parallel elements.

Current requirements for a large-scale
engIneerlnglsclentlfIc processor

Fast floating-point. The typical engineering/scien-
tific application executes floating-point operations
on 64-bit floating-point words, and the time to
complete the application is dominated by such op-
erations. It is therefore a requirement to make the
floating-point execution speed as fast as possible.
A NASA-sponsored survey' of the research com-
munity on the needs of scientific applications in
the 1985 - 1990 time frame produced a require-
ment, based on a consensus of the respondents, of
from 100 to 1000 million floating-point operations
per second (MFLOPS). The requirement is not
qualified with regard to whether this MFLOPS per-
formance is needed at the job level or at the sub-
routine loop level. It is instructive to consider the
implications of this requirement, with respect to
the subroutine loop level, for the three different
design approaches-scalar, parallel, and vector. As
is argued below, no one approach to a large-scale
processor (as opposed to a supercomputer) suffices
for the subroutine loop level, and since this is an
easier requirement to meet than the job level re-
quirement, no one design approach currently meets
the research community requirement.

For the purpose of understanding the three design
approaches against the NASA-identified require-
ments, we assume a subroutine loop for a matrix
multiply operation. The average number of cycles
needed to execute floating-point operations in this
loop can be derived for scalar and vector designs
on the basis of previously published data.g With
use of these derived data for a scalar design ap-
proach, a machine cycle of less than two nanosec-
onds would be needed to achieve 100 MFLOPS."
To meet the requirement on subroutine loops ame-
nable to parallel processing, in a machine design
of four parallel elements using four scalar elements
of the assumed design, a cycle time of about seven
nanoseconds would be needed to approach 100
MFLOPS.'~ To meet the requirement on subroutine
loops amenable to vector processing in a single-
pipelined vector machine of the assumed design,
a cycle time of about twelve nanoseconds would
be needed for 100 MFLOPS."

IBM SYSTEMS JOURNAL, VOL25, NO 1,1988

Hence, each machine design, whether scalar, par-
allel, or vector, requires its own machine cycle to
meet the requirement, scalar being the most de-
manding. The attainable machine cycle is in turn
determined by circuit speed and packaging tech-
nology. Even the least demanding cycle time re-
quirement, that of a single-pipelined vector ma-
chine, cannot be supported by the circuit speeds
and packaging technologies used in the mid-1980s
for large-scale processors (as opposed to

A parallel design in
combination with a vector

design is necessary.

supercomputers). The logical conclusion of this
reasoning is that to approach the minimum re-
quirements of the research community with a large-
scale computer (as opposed to a supercomputer)
in the mid-l980s, a parallel design in combination
with a vector design is necessary.

Other operations. The floating-point operation se-
quences that characterize engineering/scientific ap-
plications dominate the execution time, but other
operations must also be performed. For one ex-
ample, modeling boundary conditions requires
special handling and uses logical and branching
operations. For another example, data access
methods are required to support the input and
output of application data. The execution time of
these “other” operations cannot be ignored in the
design of a large-scale processor. If, for example,
75 percent of the time is spent in floating-point
operations, the total time can be reduced at most
by a factor of four if the 25 percent spent for
“other” operations is not changed.

It is a requirement of large-scale engineering/
scientific processors that these “other” operations
be fast, lest the time to complete the nonfloating-
point portion of an application erode the gains
made in the floating-point portion.

IBM SYSTEMS JOURNAL, VOL25, NO 1.1988

Large memory. The NASA survey’ that identified
the need for 100 to 1000 MFLOPS in a 1985 - 1990
product also identified the need for 1 to 100 million
64-bit words of “core” memory and up to 1000
billion words of on-line storage. As a practical
matter, the memory must be affordable, and, of
course, must be fast enough to support the fast
floating-point execution speed.

The requirement for “core” memory to have the
attributes of being large (1-plus million 64-bit
words), fast, and affordable suggests a hierarchy
of memory elements. Many survey respondents
specifically suggested a memory hierarchy of two
or more levels. This is because fast memory is
known to be inherently expensive, whereas large
affordable memory is typically slow. A combina-
tion of some amount of fast memory with a larger
amount of affordable memory, in a hierarchy, is
a practical response to the requirement. It is rea-
sonable to infer from the respondents’ comments
that system management of a hierarchy as directly
addressable virtual storage is desirable.

Engineeringlscientific design objectives
of the 3090

The IBM 3090 processor is, like its predecessors
(the 308X and 3033), a large-scale data processing
system. These systems have been used by engineers
and scientists for the management of their technical
data, for the creation and display of graphics, and
for interactive end-user computing. An additional
design objective for the 3090, established by con-
sideration of the current requirements for a large-
scale engineering/scientific processor, was to inte-
grate new performance capabilities into the base
processor.

A design objective of this large-scale computer
was to have reliability characteristics equal to or
better than those of its predecessors and to be
manufacturable in large quantities. This objective
in turn dictated the use of a circuit technology
package known to have high reliability and
manufacturability characteristics. For IBM in the
mid- 1980s, the chosen emitter-coupled-logic circuit
logic and thermal-conduction-module packaging
determined that a machine cycle time of 18.5 nano-
seconds would result. This scalar cycle time, in
turn, dictated the need for both parallel and vector
capabilities if the engineering/scientific require-
ments were to be approached. Since the scalar

GIBSON, RAIN, AND WALSH 39

Figure 2 Vector content effects

90% (10.0)

ASYMPTOTE

and parallel capabilities are also useful for general-
purpose computing, these capabilities were to be
included in the base offering. The vector capability,
useful primarily for large-scale engineering/sci-
entific applications, was to be an optional offering.

The objectives to provide scalar, parallel, and vec-
tor capabilities in the 3090 required new architec-
ture as well as the use of pipeline and parallel
implementation techniques. The existing IBM Sys-
tem/370 and 370/XA (Extended Architecture) archi-
tectures were scalar, with provision for parallel
processing implementation. Only by extending
these architectures" would it be possible to imple-
ment vector capability. However, an architectural
extension alone would not be sufficient to create
vector capability with the desired performance im-
provement. To achieve this capability, a pipeline
implementation technique would have to be used.
Parallel capability for a single engineering/scientific
application would be provided by adding software

40 GIBSON, RAIN, AND WALSH

to the already known parallel hardware implemen-
tation techniques.

Scalar objectives. From an engineering/scientific
viewpoint, the scalar design of the 3090 had the
objective to provide fast floating-point arithmetic.
Matrix operations were selected as a specific mea-
sure of the ability of various proposed designs to
meet the objective. The well-known matrix mul-
tiply operation and the matrix factorization oper-
ation were established as test cases for the scalar
design. In the FORTRAN language, these test cases
consist of DO-loops containing two operators, a
multiply and an add. Thus, the design of the sca-
lar 3090 focuses on high-speed execution of such
loops.

Parallel objectives. Multiprocessor configurations
have been a part of the IBM large-system product
line for many years. Their purpose has been pri-
marily to improve the throughput under a single
operating system. In the engineering/scientific
area, a parallel design would provide a theoretical
capability to improve the turnaround time of a
single application. The 3090 design objective was
to provide both parallel hardware and supporting
software such that an engineering/scientific appli-
cation could be run in the minimum possible
elapsed time. Fluid dynamics techniques were se-
lected as a specific measure of the ability of the
design to meet the objective. Since it was under-
stood that the scalar engine would be replicated
in a tightly coupled configuration to form the par-
allel offering, attention was concentrated on soft-
ware to exploit the capabilities of the hardware.
The objective was established to have the MVS
multitasking capability surface at the FORTRAN
level in a user-friendly way.

Vector objectives. Given the IBM 3090 high-speed
base processor, the next step was to consider how
to add a vector processing capability to further
enhance performance on appropriate applications.
A wide variety of performance choices were avail-
able, and, as expected, cost increased with perfor-
mance. The choice of the appropriate performance
target, and the associated cost, was a function of
the nature of the applications that were considered
of primary importance.

A study of many engineering and scientific appli-
cations revealed that certain portions of the exist-
ing scalar programs could be profitably replaced

IBM SYSTEMS JOURNAL, VOL 25, NO 1. 1986

by vector functions. The time required to execute
these replaceable portions, divided by the total
scalar run time, is called the vectorizable fraction,
which can also be expressed as a percentage. The
time required to execute the vectorizable fraction
on a scalar element, divided by the time to execute
the same function on a vector element, is called
the vector/scalar speed ratio. The machine de-
signer can choose to speed up the vectorizable
fraction by a large or a small amount. The decision
should be dictated, at least in part, by the appli-
cations for which the product is intended.

As Figure 2 shows, the relative job performance
that can result from adding vector capability de-
pends both on the vector/scalar speed ratio and
on the vectorizable percentage of an application.
Each curve in the figure can be derived using the
equation

Relative job performance = 1 / [(l - F) + F / VSR]

where F equals the vectorizable fraction and VSR
equals the vector/scalar speed ratio.

Applications with a 90 percent vector content
could approach a ten-times speedup as the vector/
scalar speed ratio reaches a high level. However,
applications with only a 30 percent vector content
would achieve most of their gain from a rather
modest vector/scalar speed ratio.

The choice of the appropriate vector/scalar speed
ratio should be determined by the vector content
of the anticipated set of applications.

Figure 3 is another plot of the same equation, this
time using F as the independent variable. The
individual curves representing different vector/
scalar ratios become widely divergent at high
vectorizable percentages. However, in the mid-
range of vectorization the spread in performance
is not as pronounced.

Extensive studies of the projected set of applica-
tions for the IBM 3090 Vector Facility led to the
decision to optimize the design for the midrange
of vectorizable percentage. Interpretation of Fig-
ures 2 and 3 led to a vector/scalar speed ratio goal
in the vicinity of four. This ratio would result in
a very cost-efficient design providing job perfor-
mance gains quite comparable to those of other

IBM SYSTEMS JOURNAL, VOL25. NO 1.1986

Figure 3 Vectorkalar performance effects
~~~ ~~ ~~ ~~ 

3 20 

z 2 18 

B 
8 

z 

16 

5 
14 

12 

10 

8 

6 

4 

2 

0 

VECTORIZABLE PERCENTAGE 

designs  with  much  higher vector/scalar speed ratios 
at significantly  higher  cost. 

The 3090 offering that evolved  from  the  above 
scalar,  parallel, and vector  design  objectives  is  de- 
scribed in the remainder of this paper. 

Englneeringlsclentific  features of the 3090 

The 3090 offers an approach to the current re- 
quirements  for a large-scale  engineering/scientific 
processor by providing  in  one  system a high- 
performance  scalar capability, dyadic and four- 
way parallel capability, and an optional vector 
capability. 

Scalar features. Features of the  scalar  design  in- 
clude a high-speed  multiply function, an improved 

GIBSON, RAIN. AND WALSH 41 



Figure 4 Vector  Facility block diagram 

STORAGE  VECTORS  TO 
OR FROM HIGH-SPEED 

OR FLOATING- 
BUFFERORGENERAL 

POINT  REGISTERS 
RESULT 

0 0 MULTIPLIER 

add function,  the  elimination of address  generation 
interlock  in  the  loop-closing  instructions, and a 
mechanism for conditional  branch  handling.  These 
features  are  described  in  more  detail  in  the  paper 
by  Tucker.12 At the  time  of  the 3090 announcement 
in February 1985, its scalar  capability  was  the  best 
listed13 for scalar  machines  running  MacNeal- 
Schwendler’s NASTRAN.~ 

Parallel features. The February 1985 announce- 
ment  included  both  a  dyadic and a  four-way 
offering,  usable  under FORTRAN for  parallel  pro- 
cessing.  An  innovative  use of FORTRAN library 
routines  in  combination  with MVS multitasking 
provided  the support needed for the  use  of  all 
available  resources  on  a  single  engineering/sci- 
entific  application.  Benchmark  tests  showed  the 
capability to reduce  elapsed  time by up to 1.8 
times  on  the  dyadic and up to 3.3 times  on  the 
four-way  when  compared to a  single  processor. 

42 GIBSON. RAIN, AND WALSH 

The  software support for  this  is  described  in  more 
detail later in  this  paper. 

Vector  features. The  October 1985 announcement 
of the  Vector  Facility for the 3090, one  per pro- 
cessor,  offered  a  machine  capable  of approaching 
the  minimum  requirement of the  research  commu- 
nity  on  routines  suitable for parallel  vector pro- 
cessing. On routines (e.g., matrix  multiplication), 
the  best  achievement on a  single  Vector  Facility 
was about three quarters of the  minimum  require- 
ment of the  research  community.  When an appli- 
cation is  able to use independent  routines  on  the 
parallel  vector  hardware, it is  possible to surpass 
the  minimum  requirement. 

The Vector  Facility  achieves  the  cost-performance 
design  objectives by  use  of a  powerful  instruction 
set,  a  pipelined  multiplier and ALU, and a  design 
integrated  with  the  base IBM 3090, including its 
high-speed  cache to provide  operand data. These 
features are described  in  more  detail  in  a  succeeding 
portion of this paper. 

Memory. The 370/XA architecture  permits  direct 
addressability of a  virtual  memory  of 256 million 
64-bit  words,  consistent  with  the  large  memory 
requirements for a current large-scale  engineering/ 
scientific  processor.  The IBM 3090 implements 
physical  storage to realize this virtual addressing 
architecture  with  a  hierarchy of  high-speed  buffer, 
central  storage,  expanded  storage, and DASD. This 
provides  the  flexibility to use both a  high- 
performance  chip  technology in the  central  storage 
and an advanced,  low-cost,  dense  chip  technology 
in  the  expanded  storage. 

Vector Facility  highlights of the  3090 

A  vector  processing  capability has been  integrated 
into the  basic structure of  the  3090,’’ fundamen- 
tally  as an extension of the  execution  element  in 
each of the  central  processors (CPS). The  instruc- 
tion  element of the  central  processor has the ca- 
pability to decode  the  vector  instruction  set,  con- 
sisting of  171 instructions, and direct  the  execution, 
depending on the  instruction  type, to either  the 
execution  element or the  vector  element.  The 
buffer control element  of  the  central  processor  also 
participates  in  vector  instruction  handling, just as 
it does  with  nonvector  instructions. 

IBM SYSTEMS JOURNAL, VOL 25, NO 1,1966 



Figure 5 Vector multiply  and add sequence  chart 

A Vector  Facility  can  optionally be added to one 
or more  of  the  central  processors in the IBM 3090 
models. 

Data flow. The IBM 3090 Vector  Facility data flow 
is  shown  in  Figure 4. 

The 8 (or 16)  vector  registers,  each  holding  128 
elements,  can  supply up to two  64-bit (or 32-bit) 
word operands per  machine  cycle.  These operands 
can be  delivered to either  the  Arithmetic  Logic 
Unit (ALU) or the  Multiplier, or one  operand to 
each. The ALU and the  Multiplier  can  also be 
supplied  via  a data path that carries  operands 
from  storage by  way  of the  high-speed  buffer, or 
from  the  general or floating-point  registers. An- 
other data path into the ALU comes  directly  from 
the  Multiplier.  This path supports the  compound 
vector  instructions,  such as multiply and add, gen- 
erating as many  as  two  floating-point operations 
per  machine  cycle. 

Pipeline  operation. The  timing of the  pipelined 
execution of a  vector  instruction is variable.  Each 
vector  instruction may  be thought of as composed 
of four sequential  parts.  These are startup, vector 
execution,  end-of-operation  (end-op), and overlap. 
Each part requires  a  specific  number  of  machine 
cycles,  depending on the  specific  vector  instruction. 

The  complexity  of four sequential parts to each 
instruction, and the  variability of timing for each 
part, introduce  the  need  for  a  first-order approx- 
imation to the  timing  of  vector  instructions. For 
this  purpose,  a  matrix  multiply  code  has  been ex- 
amined,  each  sequential part has  been  analyzed, 
and the  whole  has  been  reduced  by  combining 
startup, a portion of the  vector  execution,  the  end- 
op, and the  overlap.  This  combined  timing  has 
been prorated across  the  vector  instructions that 
constitute  the  matrix  multiplication  code, and for 
this  purpose  has been  called  simply  vector  over- 
head.  The  resulting  first-order approximation of 
the  time to execute  a  vector  instruction  is 28  cycles 
of vector  overhead  plus  one  cycle  per  element,  per 
vector  instruction. 

The  sequence of a  smoothly  flowing  pipeline  during 
vector  execution,  doing  a  multiply and add vector 
instruction which  performs  two  floating-point  op- 
erations to produce one result,  is  shown  in  Figure 
5. Note that one  result  is  produced  per  machine 
cycle,  with  the  registers and storage  supporting 
the flow  of three operands per  cycle. 

The  Multiplier unit, which  consists  of  three  sepa- 
rate Multipliers,  each  capable of producing  a prod- 
uct  three cycles after receiving  the input, can  ac- 
cept  a new multiplier/multiplicand pair each  cycle. 

IBM SYSTEMS JOURNAL, VOL 25. NO 1,1986 GIBSON, RAIN, AND  WALSH 43 



The two streams of operands, one from storage 
and the other from a floating-point register, are 
initiated. Several  cycles later the first product 
emerges from the Multiplier and is fed to the ALU 
for the ADD. On that same  cycle the other input 
to the ALU is supplied with the operand from a 
vector register  which represents the running sum. 
A few  cycles later the first  of the results is produced, 
ready to be gated into a vector register. The op- 
eration continues, one result per machine cycle, 
until the vector length is exhausted (or the section 
size,  whichever occurs first). 

The depicted multiply and  add sequence  is  illus- 
trative of operations within the Vector Facility. 

Section size. The length of a vector may  be shorter 
or longer than the  128  elements available in a 3090 
vector register, as determined by the application. 
The 370/XA vector architecture provides special in- 
structions to simplify the processing of variable- 
length vectors on fixed-length  registers. The ap- 
plication specifies the length of the vector to be 
processed, and the processor  divides the processing 
of the vector into “section-size’’  pieces  (128  ele- 
ments in the case  of the 3090).  If the vector is 
longer than the section  size, the processor  executes 
a “section” at a time.  If shorter, the processor 
stops when the last element has been  processed. 
The section  size  is  chosen by the processor designer. 

Large section  size  increases cost and save/restore 
time, but reduces startup effects. The chosen  vec- 
tor section  size  of  128  was  based upon cost, per- 
formance, and application considerations. The ap- 
plications considered did not benefit  significantly 
from a section size greater than 128  elements. 

Memory  hierarchy. An important implementation 
consideration for the design  of a vector facility  is 
the provision for accessing  high-speed storage. 
Two approaches may be considered: (1) a single- 
level,  very  high-speed, high-bandwidth central stor- 
age, or (2) a memory hierarchy providing a very 
high-speed cache. 

In the 3090 the memory hierarchy approach was 
selected for several reasons. First, there is a definite 
cost advantage to implementing a high-speed 
cache, backed by a large central storage, as com- 
pared to a single, large, high-performance central 
storage. The cache concept, introduced in 1968,14 
is generally  used in the implementation of large- 

44 GIBSON, RAIN, AND WALSH 

scale computers. With the introduction of  ex- 
panded storage in the 3090, the cost advantage 
accrues a second  time. Expanded storage provides 
capacity extensions with performance approxi- 
mately equivalent to  that which  would  be attained 
by the same capacity extension  of central storage, 
but with  reduced cost. 

Second,  because a high-performance scalar pro- 
cessor is required in conjunction with the Vector 
Facility, it is appropriate to share the mechanisms, 
and thereby share the costs, of the memory hier- 
archy. And third, there is a favorable performance 
characteristic when  using the Vector Facility with 
a memory hierarchy. More specifics on the per- 
formance of the Vector Facility are contained in 
Part I1  of the paper by Clark and Wil~on.’~ 

Engineeringlscientific  software  support 
for  vector  processing 

Requirements. An application can benefit from 
the speed  of the Vector Facility only  if it contains 
vector instructions. A sample of conceptual object 
level code of an application using vector instruc- 
tions might look like the code depicted on the left 
in Figure 6 .  The corresponding sample of object 
code using  only scalar instructions would look like 
the code depicted on the right. 

The example  shows vector instructions in capital 
letters (for ease  of reading the  example) and uses 
the abbreviations VR for Vector  Register and SR 
for Scalar Register. On the left  side the example 
contains both vector and scalar instructions, typ- 
ical of vector coding. The same scalar instructions 
appear  on the right in the scalar-only coding, but 
here the four vector instructions have  been  replaced 
by four scalar instructions and  an indicated loop. 
To obtain the same result with both codings, the 
3090  would  have to  loop through the scalar-only 
coding as many  times as there are elements in the 
vector being  processed,  whereas  only one pass  is 
required through the vector coding. 

If no vector instructions are present in the executed 
object code, the Vector Facility will remain idle. 
Two methods are available to utilize the Vector 
Facility. One method is to use prepackaged pro- 
grams that already contain vector instructions. 
Another method is to incorporate vector code into 
a program using a vectorizing compiler, an assem- 
bler supporting the  vector instructions, or a “call” 

IBM SYSTEMS JOURNAL, VOL 25, NO 1, 1986 



Figure 6 Hypothetical object code 

V e c t o r   c o d i n g  

L o a d   a d d r e s s   r e g i s t e r s  
L o a d   s c a l a r   v a l u e  
Add t o   s c a l a r   v a l u e  
LOAD VR w i t h  N e l e m e n t s  
MULTIPLY V R  by s c a l a r  v a l u e  
A D D  VECTOR I N  STORAGE TO V R  
STORE VR 

S c a l a r - o n l y   c o d i n g  I, I 
L o a d   a d d r e s s   r e g i s t e r s  
L o a d   s c a l a r   v a l u e  
Add t o   s c a l a r   v a l u e  
Load SR 
M u l t i p l y  SR by s c a l a r   v a l u e  
Add 1 v e c t o r   e l e m e n t   i n   s t o r a g e  t o  SR 
S t o r e  S R  4 1  

to a subroutine which  utilizes the vector instruc- 
tions. 

Available  software support. A basic area of soft- 
ware support is that of prepackaged  programs 
from  independent  software  vendors.  Studies  con- 
ducted by IBM have  shown that in many  large- 
system installations doing  engineering and 
scientific applications, over 50 percent  of  the pro- 
duction workload  consists of the  running of these 
prepackaged  programs. A number of these pro- 
grams  already  exist for IBM scalar  processors, and 
IBM is  encouraging and cooperating in the  conver- 
sion of as many of them as is  feasible to vector 
and parallel  versions. 

Also  fundamental to the support of the Vector 
Facility  is a VS FORTRAN offering  which  has  the 
capability to take existing  programs  written in IBM 
FORTRAN, both ANSI level 66 and 77, and to com- 
pile  them,  producing  vector  object  code  where 
such potential exists. FORTRAN DO-100pS  will  be 
converted to vector instructions where  possible 
and reasonable. Other conditions, for example, IF 
statements that cannot be removed or accommo- 
dated, may inhibit vectorization. 

A critical part of  every FORTRAN facility  is an 
efficient FORTRAN library.  Many  of the subrou- 
tines in the FORTRAN library now  have  vectorized 
versions and enhance  the  performance  of  the  sys- 
tem.  The  Interactive  Debug  Facilities  (IAD) are 
also provided as part of the library.  (This  same 
library  provides  the  Multitasking  Facility.) 

Extensions to the  Assembler H product are pro- 
vided to support the 171  new vector instructions. 

An  Engineering and Scientific Subroutine Library 
(ESSL) is  also  available.  Subroutines  covering a 
variety of methods are included:  basic  linear  alge- 
bra subprograms, routines for the solution of  si- 
multaneous  linear  algebraic equations for a variety 
of conditions,  eigenanalysis  routines for a real  gen- 
eral  matrix and a real  symmetric matrix, signal 
processing  routines  including fast Fourier trans- 
forms and IBM 3838 array processor  algorithms, 
matrix operations, a random number generator, 
and an error monitor. 

For the  seismic  analysis application, the  Vector 
Processing  Subsystem/Vector  Facility (VPSSpF) al- 
lows  users  of the IBM 3838 Array  Processor to 
utilize the Vector  Facility as an emulator of their 
current VPSS programs,  without  rewrite,  with an 
improvement in performance. A scalar option 
within V P S S ~ F  can also be  used for emulation, 
with  lower  performance. 

For applications that experience  heavy  usage or 
are of vital importance to an installation, it may 
be both desirable and profitable to re-examine  the 
application to determine if it might be restructured 
to use the above  vector  software support with  the 
vs FORTRAN Program  Multitasking  Facility. 

Engineeringlscientific  software  support 
for parallel processing 

As stated in the  design  objectives,  the  focus for 
parallel  capability  was on software. A set  of  three 

IBM SYSTEMS JOURNAL,  VOL 25. NO 1.1986 GIBSON, RAIN, AND  WALSH 45 



Figure 7 Multitasking flow 
~ 

- 
C A L L  NTASKS ( N U M T S K )  - 
DO 10 111 to NUMTSK 

10 C A L L   D S P T C H  ( ' P A R A L '   , A ( I )   , B ( I ) )  - 
- 

" " 

subroutines was  developed to further improve turn- 
around performance  for  those  users  having appro- 
priate  critical  applications. As a part of the vs 
FORTRAN library,  this  set of subroutines,  known 
as  the VS FORTRAN Program  Multitasking  Facility, 
was  provided to enable a user  with a dyadic or 
four-way  system to structure a program so that 
those parts of an application  which  can be run in 
parallel  (inherent  parallelism) on the  multiple pro- 
cessors  may do so. These  subroutines  allow  the 
application  programmer to utilize  the  multitasking 
capability of MVS and to thus  reduce  the "turn- 
around''  time of the  application.  They  allow  the 
concurrent  scheduling  ("fork")  of  those  portions 
of the  application which permit it, and also  provide 
the  ability to synchronize  ("join")  the  completion 
of the  parallel parts when it is  necessary to ensure 
the  completion of all  prior  work  before a program 
can  continue.  Figure 7, depicting  time  from top 
to bottom, with  statements  executed as bars,  is an 
example. 

In the  example,  the  three  subroutines that consti- 
tute the  application  interface are shown.  The  first 
subroutine, CALL NTASKS, returns to the  applica- 
tion the  number  of  subtasks  available for concur- 
rent scheduling. In the  example,  the  value 4 is 
returned  in  the  argument NUMTSK, indicative of 
four available  subtasks  (as  might be preferred on 
a 3090/400). The  second  subroutine, CALL DSPTCH, 
attaches one  application  subroutine for execution 
by one  subtask on one  available  processor. In the 

example,  the  application  subroutine PAUL is  dis- 
patched four times,  each  time  with an independent 
set  of arguments A(1) and B(I), for execution on 
the four available  processors.  Although not shown 
by this  example, it is  also  possible to dispatch 
distinct  application  subroutines.  The third subrou- 
tine, CALL SYNCRO, causes  the  main  program to 
wait  until  all  concurrently  scheduled  tasks  have 
completed. In the  example,  this  is  pictorially 
shown  by  the  middle  column  of bars representing 
the  main  program and by the  side  columns  repre- 
senting  the four dispatches of the  application sub- 
routine PARAL. 

Engineeringlscientific  performance of the 3090 

A broad  range of applications  across a wide  spec- 
trum of industry  has  developed, and it is at these 
areas that the IBM 3090 Vector  Facility  is  directed. 
The  application areas listed in Figure 8 are  exam- 
ples  of  those that should  benefit  from  the  combined 
capabilities of the IBM 3090 system  with its excel- 
lent  scalar  performance  enhanced,  where appro- 
priate, by both the  Vector  Facility and the vs 
FORTRAN Program  Multitasking  Facility. 

The current approach to many  of  the  application 
programs in Figure 8 is  still  based on conventional 
scalar  processing.  The future should see growth 
both in  the  number and type  of  applications  of 
interest, and a trend  toward  vectorization and 
parallelization of  these  applications.  This  should 

46 GIBSON. RAIN, AND  WALSH IBM SYSTEMS JOURNAL, VOL25. NO 1,1986 



occur as the  benefits of these  techniques, in both 
improved  performance and lowered computer 
costs,  become apparent. 

An example. The  October 1985 announcement of 
the 3090 Vector  Facility  identified certain perfor- 
mance data for a set  of applications. As an exam- 
ple,  the  levels of performance attained for an en- 
gine  design application, turbine blade  analysis 
(T-Blade), are expanded in Figure 9. This  figure 
includes internal throughput rate (ITR) ratios and 
external throughput rate (ETR) ratios,16  using  the 
3081KX with  one central processor  (CP) as the 
reference point. Further discussions of perfor- 
mance are contained in Part I of  the paper by 
Clark and Wil~on.'~ The  steps  required to attain 
the performance  values  given in Figure 9 are il- 
lustrative of scientific and engineering  processing 
on the 3090/200 with  Vector  Facility. 

The  T-Blade application is  written in FORTRAN. 
The  base 3081KX and the 3090/200 one-cP  scalar 
values  were  determined by compiling  the applica- 
tion source  code  under vs FORTRAN Version 2, 
producing  scalar  code  using the highest  level of 
scalar  optimization.  The  resulting  source  code  was 
then  executed and timed" and its internal through- 
put rate (ITR) ratio calculated. 

Next  the  same application source  code  was  com- 
piled  using  the  highest  level  of  vector optimization, 
which  causes  the  compiler to automatically pro- 
duce  object  code  with  vector instructions where 
possible.  The  resulting  source  code  was  then  exe- 
cuted and timed17 on a single CP and Vector Fa- 
cility, and the  performance  calculated.  This  cal- 
culation produced an ITR ratio of 5.2, which,  while 
respectable,  was  judged to be a performance  level 
that could be improved  upon.  The  original  source 
code  was  examined and the inner loops, as written 
in FORTRAN, were  modified  according to "good 
vector  coding  practices."  Some  of  these  coding 
practices are described in a comprehensive report 
by Dubrulle et al." The new source  code  was  then 
compiled,  executed, and timed" to produce the 
6.9 ITR ratio given in Figure 9. 

The  final step involved another modification to 
the FORTRAN source  code,  this  time to create mul- 
tiple subroutines that could be invoked  using  the 
Multitasking  Facility.  This new source  code  was 
then compiled to produce  scalar  code, and again 
to produce  vector  code. In both compilations the 

IBM SYSTEMS  JOURNAL,  VOL25.  NO 1,1966 

Figure 8 Examples  of  suitable  applications 

AUTOMOTIVE 

I PETROLEUM 
SEl%lC  ANALYSIS 
RESERVOIR  MODELING 1 REFINERY  OPERATIONS 

COMPUTATIONAL  FLUID  DYNAMICS 
AIRFOIL 
ENGINE  DESIGN 

NUCLEAR  PHYSICS 

HYDRODYNAMICS 
REACTOR  SAFETY 

ECONOMETRIC  MODELING 

Figure 9 3090 processor,  Model 200: T-blade  performance 
in ITR and ETR  ratios 

T  BLADE 

3 W K X  

ONE CP 

SCALAR 
1.0 

3090/200 

ITR 

ONE  CP 

SCALAR  VECTOI 
2.5 6.9 

highest  level  of optimization was  used.  The  com- 
piled  codes  were  then  executed on the 3090/200. 
Since  parallel  processing  performance  is a measure 
of turnaround time,  which  is  based on elapsed 
time,  the  elapsed  times  were  recorded.  Therefore, 
for the parallel  processor  values,  external through- 
put rate ratios were calculated. 

The  T-Blade application is  one  of a class of ap- 
plications that can  benefit  from  all of the capabil- 
ities  (scalar,  parallel, and vector)  of  the 3090. All 
floating-point applications will,  of course,  benefit 

GIBSON,  RAIN,  AND  WALSH 47 



from the  scalar  capability.  Some applications may 
experience  improved  performance  from  the use  of 
vector compilation and execution as described 
above.  Some applications may  experience  im- 
proved  performance  from  source-code  modifi- 

Matrix multiplication 
routines are  particularly 

interesting. 

cations to invoke  the  parallel capability. Further, 
some applications may  experience  improved  per- 
formance from using  the ESSL library, a possibility 
previously  discussed but not illustrated by the T- 
Blade application. 

Engineering/scientific  performance  parameters. The 
performance of the IBM 3090 with  Vector  Facility 
varies as a function of  specific application charac- 
teristics and coding  techniques. A few  of the most 
important performance parameters follow.  An  un- 
derstanding of these parameters may  be  useful to 
the FORTRAN language  user, the assembler lan- 
guage  user, or both. 

Contiguous data: Although  scalar  performance 
will  vary  with  the  placement of data in  memory, 
this parameter is  particularly important in vector 
performance.  The  rule  is to access  contiguous 
(e.g., column-order for FORTRAN) application data 
where  possible. 

Reuse of data: Data present in cache or registers 
(general-purpose, floating-point, or vector)  should 
be reused  where  possible. 

Vector  length:  The  rule  is to provide  long  vectors 
rather than short vectors. 

Concurrency:  The  rule  is to use those algorithms 
and coding  techniques that will  give the  maximum 
concurrent usage  of  the  available hardware facil- 
ities.  The hardware facilities that may  be  used 
concurrently are the dyadic or four-way  CPS, in- 
cluding  their  vector  facilities.  Performance in- 

48 GIBSON, RAIN, AND WALSH 

creases as the amount of concurrent usage,  some- 
times  referred to  as the inherent parallelism and 
the  vectorizable  percentage,  increases. 

Instruction mix: Generally  speaking,  in  the  execu- 
tion of scalar floating-point operations, addition 
is  faster than multiplication, and both are 
significantly  faster than division. In the  execution 
of vector  floating-point operations, compound op- 
erations, such as multiply and add, are faster than 
the corresponding separate vector instructions, 
and all are significantly faster than division.  The 
rule  is to remove  division  from the inner loop 
wherever  possible, and when  dividing  more than 
once by the same  number, to obtain an inverse 
and multiply. 

Knowledge of these 3090 performance parameters 
has proven  useful in construction of the  code for 
routines in the  Engineering and Scientific Subrou- 
tine Library. The  matrix  multiplication routines, 
for example, are particularly  interesting  because 
of their level  of attainment. Consideration was 
given in the design of these routines to the  section 
size  of the 3090 Vector  Facility, the available  com- 
pound instructions, and the  cache  size.  The  levels 
of performance attainment for a subroutine mul- 
tiplying  matrices  with order between 100 and 1000 
may  be  derived  from  previously  published  mate- 
rial.*’ The LOOP-MFLOPS values so derived are ap- 
plicable  only to this subroutine loop. For matrix 
multiplication on one  3090/200  Vector  Facility, 
the  derived  value  is around 70 LOOP-MFLOPS, de- 
pending on the size  of the  matrices.  When  two or 
four Vector  Facilities are executing  copies  of  the 
matrix  multiplication  routines, the capacity of the 
system  increases  approximately  with  the  number 
of  Vector  Facilities. Of course,  these  values  apply 
to routines, not to full jobs. JOB-MFLOPS values 
are considerably  less than LOOP-MFLOPS values. 
The reader should  refer to the paper by Clark and 
Wilson” for specific  examples  of JOB-MFLOPS on 
the  3090/200  Vector  Facility. 

Summary 

Engineering/scientific applications may be ad- 
dressed in a large-scale  processor by three  com- 
plementary  approaches: 

1.  High-speed  scalar  floating-point  processing 
2. Parallel  processing 
3. Vector  processing 

IBM SYSTEMS JOURNAL, VOL25. NO 1,1986 



The IBM 3090 processor offers a balanced response 
to these three approaches by including a high- 
performance scalar capability; dyadic and four- 
way multiprocessing, which in conjunction with 
the vs FORTRAN Program Multitasking Facility 
provides a parallel processing capability; and an 
optional Vector Facility which provides a vector 
processing capability. 

The design  of the Vector Facility was based on 
application studies which concluded that applica- 
tion vectorizable percentages significantly beyond 
the midrange, though possible, are  not currently 
anticipated to be the norm. This implies that a 
Vector Facility should be accompanied by a high- 
performance scalar capability. 

The base IBM 3090  achieves its engineering/ 
scientific performance enhancements through im- 
provements in specific floating-point and branch 
instruction handling. The 256 million 64-bit-word 
virtual storage is implemented in a physical storage 
consisting of a high-speed  buffer, central storage, 
optional expanded storage, and DASD. 

The Vector Facility achieves its cost-performance 
design objectives by  use of a powerful instruction 
set, a pipelined multiplier and ALU, and a design 
integrated with the base IBM 3090, including its 
memory hierarchy and high-speed  buffer. 

Extensive software support  has been provided with 
the Vector Facility, including operating system 
Support, a Vector FORTRAN Compiler, a FORTRAN 
library, and  an engineering/scientific subroutine 
library. 

Acknowledgments 

The comprehensive acknowledgment of the indi- 
viduals on the teams responsible for the IBM 3090 
would be impractical, for they are numerous. We 
wish, rather, to recognize the teams by function. 
The architectural team coordinated the many as- 
pects of definition to develop the integrated vector 
architecture upon which the IBM 3090 Vector Fa- 
cility  is based. The planning team identified the 
applications, the section size requirements, and the 
performance and price-performance goals. The 
design team established the design direction leading 
to the specific implementation of the IBM 3090. 
The development team integrated the logical and 
physical elements necessary to realize the final 

IBM SYSTEMS JOURNAL, VOL 25, NO 1.1986 

packaged product  and conducted the verification 
testing. The programming team planned, designed, 
and developed the supporting software. We  wish 
also to acknowledge the leadership of the manage- 
ment team in bringing the IBM 3090 to the mar- 
ketplace. 

NASTRAN is a registered trademark of the  National  Aero- 
nautics and Space Administration.  MSC/NASTRAN@ is an 
enhanced proprietary version developed by the MacNeal- 
Schwendler Corporation. 

Cited  references  and  notes 

1. Scalar processing operates on scalars, which are single data 
items. Parallel processing operates  on  either scalars or vec- 
tors, utilizing multiple processors on a single application. 
Vector processing operates on vectors. A vector is a col- 
lection of data items which is ordered  along a single di- 
mension. 

2. R. Moreau, The Computer Comes of Age, MIT Press, Cam- 
bridge, MA (1984). 

3. S. Winograd, “On the time to perform  addition,” Journal 
of the ACM 12, 277  (1965). 

4. S .  Winograd, “On the time to perform multiplication,” 
Journal of the ACM 14, 793  (1967). 

5.  W. Buchholz, Planning a Computer System-Project Stretch, 
McGraw-Hill Book Co., Inc., New York (1962). 

6. P. Kogge, The Architecture of Pipelined Computers, 
McGraw-Hill Book Co., Inc., New York (1981). 

7. K.  Hwang  and  F. A. Briggs, Computer Architecture and 
Parallel Processing, McGraw-Hill Book Co., Inc., New 
York (1984). 

8. The survey was distributed to  about 1800 individuals, of 
whom about 10 percent responded, representing 90 
affiliations. The survey and results are summarized in a 
paper by Peter Lykos, “Working Document on Future 
Computer System Needs for Large Scale Computations,” 
Joint Project of NASA Ames Research Center and IIT, 
1978. 

9. Contained in Table 3 on page 14 of the  October 1985 IBM 
3090 Product Announcement Letter 185-120; available 
through IBM branch offices. 

10. Cycle time in microseconds = N/(MFLOPS x cycles per 
floating-point operation), where N = number  of indepen- 
dent processing elements. 

11. W. Buchholz, “The IBM System/370 vector architecture,” 
IBM Systems Journal 25, No. 1, 51 - 62  (1986, this issue). 

12. S. G. Tucker,  “The IBM 3090 system: An overview,” IBM 
Systems Journal 25, No. 1, 4- 19  (1986, this issue). 

13. A number of engineering/scientific application packages 
available from  non-IBM  software vendors run on processors 
that have System/370 or 370-XA architecture, including the 
3090. Some include a run time estimate for each processor 
on which the application will execute. MacNeal-Schwendler 
Corporation’s  MSC/NASTRAN,@ one such package com- 
monly used for  structural analysis, provides an application 
manual.  This  manual  tabulates a processor-dependent vari- 
able which can be used to estimate total job run time. This 
variable, called the M value, is the time in microseconds 
required for one execution of a floating-point multiply/add 
loop on a given processor. The M values are sometimes 

GIBSON. RAIN, AND  WALSH 49 



used as a rating of a processor, and comparison of M 
values can be made  among processors. In such a compar- 
ison, the smaller the M value, the faster the processor. A 
MacNeal-Schwendler Corporation document entitled Time 
Estimation and Problem Execution contains information 
published in the applicable computer-dependent editions of 
the  MSC/NASTRAN Application Manual (Section 7.3). 
Included in the document are the M values for processors 
from the many vendors for which the MSCPASTRAN 
software package is available. The  February 1985 edition 
lists the 3090 Processor Unit Model 200 M value as smaller 
than that of any  other nonvector processor cited. That is, 
the 3090 Model 200 executes the  MSC/NASTRAN 
multiply-add loop faster than any other nonvector processor 
listed in the publication. 

14. C. J. Conti, D.  H. Gibson, and S. H. Pitkowsky, “Structural 
aspects of the System/360 Model 85; Part I, General or- 
ganization,” ZBM Systems Journal 7, No. 1, 2- 14 (1968). 

15. R. S. Clark  and T. L. Wilson, “Vector system performance 
ofthe IBM 3090,” ZBM Systems Journal 25, No. 1,63 - 82 
(1986, this issue). 

16. For those who may be unfamiliar with the terms ITR ratio 
and  ETR  ratio, refer to  K. Radecki, Introduction to  Pro- 
cessor Performance Evaluation, IBM Washington Systems 
Center Technical Bulletin, GG66-0232,  IBM Corporation 
(February 1986); available through IBM branch offices. 

17. Refer to Table 1 on page 11 of the October 1985 IBM 3090 
Product Announcement Letter 185-120; available through 
IBM branch offices. 

18. A. A. Dubrulle, R. G. Scarborough, and H.  G. Kolsky, 
How to  Write  Good  Vectorizable FORTRAN, G320-3478, 
IBM Corporation; available through IBM branch offices. 

19. Refer to the IBM 3090 Vector Performance Bulletin, 
GG66-0245; available through IBM branch offices. 

20. Refer to Table 3 on page 14 of the October 1985 IBM 3090 
Product Announcement Letter 185-120; available through 
IBM branch offices. Note that (2 x N3)/(time in microsec- 
onds), where N is the  order of each of the two square 
matrices being multiplied, is approximately equal to 
LOOP-MFLOPS. 

Donald H. Gibson ZBM Data  Systems Division, P.O. Box 390, 
Poughkeepsie, New York 12602. Mr. Gibson joined IBM in 
1956, specializing in CPU  and memory design, working first 
on the SAGE project and then on the  STRETCH system. After 
attending IBM’s Systems Research Institute in 1962, he did 
early design study work leading to the System/36O Model 91 
and System/370 Model 195. His simulation work on block 

introduced in the System/360 Model 85. For his contributions, 
transfer memory systems design  led to the “cache” design, first 

he shared a Corporate  Outstanding  Contribution Award in 
1967. He was manager of the Large Systems Technical Support 
Group in the late 1960s and early 1970% then left management 
in the mid-1970s to pursue technical interests in graphics and 
artificial intelligence. His customer survey consultancy in the 
late 1970s  led to the engineering/scientific design features of the 
3090, including the Vector Facility. In the early 1980s, he led . the activity in IBM on engineering data base, chaired the work 
on a computer-aided engineering strategy, and pioneered the 
work on cooperative processing. Mr. Gibson is currently IBM 
Poughkeepsie’s senior engineer for Engineering/Scientific Re- 
quirements. In this position he led the initial effort to define 
and  announce  the scalar engineering/scientific capabilities of 

50 GIBSON, RAIN, AND WALSH 

the 3090. He earned the B.S. in electrical engineering at the 
University of Kentucky in 1956. 

Don  W. Raln ZBM Data  Systems Division, P.O. Box 390, 
Poughkeepsie, New York 12602. Dr. Rain is a Senior Technical 
Staff Member in Advanced Processor Development. He joined 
IBM in 1964 at Poughkeepsie and  has since been  involved in 
multiple aspects of large-system design. He was  involved with 
design support activities including performance analysis and 
simulation of large systems until 1971. From 1969 to 1975 he 
was  involved with a high-level machine architecture definition, 
user specialty language creation, and an application develop- 
ment system architecture. From 1975 to the present he  has  had 
responsibilities in the  area of overall system design of IBM’s 
high-performance processors, including specifically the IBM 
3090. Areas of concentration have included system functional 
specification, storage hierarchy definition, and project coordi- 
nation. In 1985 he received an IBM Outstanding  Innovation 
Award for his work on expanded storage. Dr. Rain received a 
B.S. degree in electrical engineering from Purdue University in 
1958, an M.S. degree from the University of Connecticut in 
1961, and a Ph.D. degree in electrical engineering from the 
University of Illinois in  1964. 

Hugh F. Walsh ZBM Data  Systems Division, P.O. Box 100, 
Kingston, New York 12401. Mr. Walsh (now retired) was most 
recently Program Manager of Engineering/Scientific Analysis 
for IBM’s Kingston Laboratory. He has been with IBM since 
1955 in technical marketing, education, and systems planning. 
Since  1960 he has been involved  in the planning of  IBM’s large 
systems, including the System/360 Models 91,  95, and 195 and 
most recently the IBM 3090 and the Vector Facility. His ex- 
perience has led to his involvement in computer systems in a 
wide variety of application areas including petroleum, aero- 
space, automotive, and circuit design usage. Mr. Walsh holds 
a B.S.  in physics from Siena College and an M.S. in physics 
from Rensselaer Polytechnic Institute. 

Reprint Order No. G321-5260. 

IBM SYSTEMS JOURNAL, VOL 25. NO 1. 1986 


