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The IBM 3090 processor implementation of the 
System1370 Vector Architecture  represents  a  major 
new system design for engineering and scientific 
processing,  featuring both scalar and vector 
capability in a uniprocessor and in a dyadic and 
four-way parallel processing  environment. The 
history of large-scale  scientific  processing is 
reviewed,  leading to a statement of current 
requirements. The design  objectives  for  scalar, 
parallel, and vector capabilities are identified, 
followed by a summary of the resulting 3090 
features. Selected highlights of the vector hardware 
are given,  followed by a summary of the  supporting 
software. The paper concludes with a  discussion of 
performance,  beginning with the  identification of 
suitable  applications. An example  is  given of one 
application utilizing each of the  three  capabilities: 
scalar, parallel, and vector.  Several of the most 
important  performance  parameters are identified. 

T he  design  of computers well suited to the com- 
putational requirements of  large-scale  engi- 

neering and scientific applications can proceed 
along three complementary lines  of implementa- 
tion. The IBM 3090  processor implementation with 
the System/370 Vector Architecture combines all 
three lines-fast scalar processing, parallel process- 
ing, and vector processing1-in  a  single product. 
The problem space addressed by each is depicted 
in Figure 1. Each of the three must achieve the 
minimal requirement of providing fast floating- 
point arithmetic and large memory capacity. 

This paper discusses the 3090 Central Electronic 
Complex  design,  focusing on the implementation 
structures that contribute the most to performance 
and capacity on engineering and scientific appli- 
cations. The general computational characteristics 
of  these applications are described,  showing the 
need for the fast floating-point execution and large 
memory, and the opportunity for scalar, parallel, 
and vector designs. A brief historical review sum- 
marizes  a few  of the preceding fast scalar, parallel, 
and vector offerings, and then the requirements 
for large-scale  scientific  processing  in the 
1985 - 1990 time frame are discussed. The remain- 
der of the paper follows each of the three comple- 
mentary capabilities-scalar, parallel, and vec- 
tor-from  design  objectives to design features to 
selected  highlights. The paper concludes with  ex- 
amples  of measured performance utilizing each of 
the three capabilities. 

General description of engineeringlsclentific 
applications 

High-performance scientific  systems  have histori- 
cally  been aimed at the solution of  specific appli- 
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cations in the areas of weather and hydrodynamics. 
Interest in the use  of computers, rather  than phys- 
ical  models, is now increasing for fundamental en- 
gineering and scientific studies. In one case, a 
computer costing tens of  millions  of dollars, rather 
than a wind tunnel costing even more, has been 
proposed for studies by NASA Ames. In another, 
the use  of computer simulation runs costing thou- 
sands of dollars, rather  than construction of a pro- 
totype car costing hundreds of thousands, is the 
preferred method for  Detroit automobile manu- 
facturers to conduct structural analysis studies. 

The effect of the historical improvement in perfor- 
mance and price-performance of computing sys- 
tems, together with the increased cost of  personnel 
and the greater availability of prepackaged pro- 
grams, has resulted in a pronounced growth in  the 
use  of computers for engineering and scientific ap- 
plications. Many designers are relying on the com- 
puter throughout the entire development cycle. 
The use  of  physical  models and “testing to destruc- 
tion” is being  replaced by extensive computer sim- 
ulation. The consequences are several: shortened 
design  cycles,  reduced development cost, improved 
products, and the ability to attack problems that 
cannot be solved by any other means. 

The well-known computational characteristics of 
engineering/scientific (E/s) applications may  be 
summarized as follows: 

0 FORTRAN is  the most commonly used language. 
0 64-bit floating-point arithmetic is preferred. 
0 Millions  of  words  of data are often required. 

The trend is towards larger problems, requiring 
even more memory and greater performance. 

In addition, as described  below, 

The basic equations affect the computational 
process. 
The numerical analysis technique used to ap- 
proximate the basic equations determines the 
data structures. 

These two characteristics, when  depicted as in Fig- 
ure 1,  suggest that there is value in different  kinds 
of computers. At any given point in  time,  there 
is a limit on the speed  of a scalar processor. To 
provide higher  levels  of computational capability, 
it is appropriate  to consider computer designs em- 
ploying concurrency. When the  basic equations 
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Figure 1 Problem space: The domains of scalar, vector, 
and  parallel  implementations 
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include independent variables, it is often possible 
to execute independent processes in parallel. A 
computer providing multiple processors should 
have  value  here. When the numerical analysis 
technique uses data structures such as vectors and 
matrices, a computer providing for direct operation 
on such structures will  be  of interest. However, 
there are key applications that simply do  not lend 
themselves to either parallel or vector formulation. 
For such studies, a computer should provide very 
fast scalar floating-point arithmetic. Finally, for 
those studies where both parallel and vector for- 
mulations are possible, a computer providing all 
capabilities should be best. 

History of iarge-scale engineeringlscientific 
processors 

The first computers did not have floating-point 
arithmetic in their primitive instruction set. The 
IBM 704 computer introduced this feature circa 
1954,’ in response to the need established by the 
use  of the predecessor 701 computer for scientific 
applications. Built-in floating-point instructions 
have  been a fundamental requirement since then, 
and the major focus has shifted to the speed  of 
floating-point arithmetic. 
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Scalar floating-point  arithmetic. The speed  of 
floating-point  arithmetic  can be improved, up to 
a  limit, by the addition of hardware  circuits.  There 
is  a  theoretical  minimum  number of  logic  levels 
required for each  primitive  floating-point  opera- 
t i ~ n , ~ , ~  but there  is  a  practical  limit to the  number 
of circuits that can be employed.  Computers  in 
the 1950s and 1960s  were  often  compared on the 
speed  of a  floating-point  multiply operation. 

In  the  late 1950s,  several  proposals  were put for- 
ward to improve  the  execution  speed of floating- 
point  arithmetic,  using  "pipelining." IBM'S 7030 
(STRETCH) system: for example,  segmented  a 
floating-point  operation into sequential  steps. 
Each  step  required  one  machine  cycle;  thus n ma- 
chine  cycles  were  required to complete an operation 
consisting of n steps.  The STRETCH machine  per- 
mitted  the initiation of a new operation each  ma- 
chine  cycle, so that step n of an operation would 
occur on the  same  machine  cycle  as step n - 1 of 
the  succeeding operation. The result  was  a  possible 
execution rate of one operation per  machine  cycle. 
Achieving that rate was dependent  upon  a  sequence 
of consecutive  floating-point operations thought 
to be characteristic of  engineering and scientific 
applications. 

Vector  floating-point  arithmetic. The  usefulness of 
pipelining on STRETCH (and other machines)  de- 
pended  upon  a  consecutive  sequence of floating- 
point  operations.  Given that such  sequences could 
occur,  a  machine  designed  with an architecture 
which  guarantees that such  sequences do occur 
should  have  a  faster  floating-point  execution.  This 
thinking  led to the  first  vector  machines, e.g., the 
CDC STAR-~OO~ and the  Texas  Instruments 
early  in  the  1970s.  Vector  instructions were made 
a part of the  architecture,  such that a  guaranteed 
number of floating-point operations in  a guaran- 
teed  sequence  were  presented for execution.  The 
vector  machines  could  execute  a  sequence of 
floating-point operations faster than any  scalar 
machine  of  the  day,  provided  the  application  used 
the  vector  instructions. 

Parallel  floating-point  arithmetic. Another way to 
achieve  a  fast  floating-point  execution rate is to 
provide  parallel computation elements.  The ILLIAC 
IV,'  also  a  machine of the  early  1970s,  provided 
for multiple  floating-point operations to be com- 
pleted  simultaneously  under  the control of a  single 
instruction.  The ILLIAC machine  could  execute 
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floating-point operations faster than any  scalar 
machine of its day,  provided  the  application  used 
the  parallel  elements. 

Current  requirements  for  a  large-scale 
engIneerlnglsclentlfIc processor 

Fast  floating-point. The  typical  engineering/scien- 
tific  application  executes  floating-point operations 
on 64-bit  floating-point  words, and the  time to 
complete  the  application  is  dominated by such  op- 
erations. It is  therefore  a  requirement to make  the 
floating-point  execution  speed  as  fast  as  possible. 
A NASA-sponsored  survey'  of the  research  com- 
munity on the  needs of  scientific applications in 
the 1985 - 1990  time frame  produced  a  require- 
ment,  based on a  consensus of the  respondents, of 
from 100 to 1000 million  floating-point  operations 
per  second  (MFLOPS).  The  requirement  is not 
qualified  with  regard to whether  this MFLOPS per- 
formance  is  needed at the job level or at the  sub- 
routine loop level. It is instructive to consider  the 
implications of this requirement,  with  respect to 
the  subroutine loop level, for the  three  different 
design approaches-scalar, parallel, and vector. As 
is  argued  below, no one approach to a  large-scale 
processor  (as  opposed to a  supercomputer)  suffices 
for the  subroutine loop level, and since  this  is an 
easier  requirement to meet than the job level re- 
quirement, no one  design approach currently  meets 
the  research  community  requirement. 

For the  purpose of understanding  the  three  design 
approaches  against  the NASA-identified require- 
ments, we assume  a  subroutine loop for a  matrix 
multiply  operation. The average  number of  cycles 
needed to execute  floating-point operations in  this 
loop can be derived for scalar and vector  designs 
on  the  basis of  previously  published data.g With 
use  of  these  derived data for a  scalar  design ap- 
proach,  a  machine cycle  of  less than two  nanosec- 
onds  would  be  needed to achieve  100 MFLOPS." 
To meet  the  requirement on subroutine  loops  ame- 
nable to parallel  processing, in a  machine  design 
of four parallel  elements  using four scalar  elements 
of the  assumed  design,  a  cycle  time  of about seven 
nanoseconds  would be  needed to approach 100 
MFLOPS.'~ To meet  the  requirement on subroutine 
loops  amenable to vector  processing  in  a  single- 
pipelined  vector  machine  of  the  assumed  design, 
a cycle  time  of about twelve nanoseconds  would 
be  needed for 100 MFLOPS." 
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Hence,  each  machine  design,  whether scalar, par- 
allel, or vector,  requires its own  machine  cycle to 
meet  the  requirement,  scalar  being  the  most de- 
manding.  The attainable machine  cycle  is in turn 
determined by circuit  speed and packaging  tech- 
nology.  Even  the  least  demanding  cycle  time  re- 
quirement, that of a single-pipelined  vector ma- 
chine, cannot be supported by the circuit  speeds 
and packaging  technologies  used in the  mid-1980s 
for large-scale  processors  (as  opposed to 

A parallel design in 
combination with a vector 

design is necessary. 

supercomputers).  The  logical  conclusion of this 
reasoning  is that  to approach the  minimum  re- 
quirements  of  the  research  community  with a large- 
scale computer (as  opposed to a supercomputer) 
in the  mid-l980s, a parallel  design in combination 
with a vector  design is necessary. 

Other  operations. The  floating-point operation se- 
quences that characterize  engineering/scientific ap- 
plications dominate the  execution  time,  but other 
operations must  also be performed. For one  ex- 
ample,  modeling boundary conditions requires 
special  handling and uses  logical and branching 
operations. For another example, data access 
methods are required to support the input and 
output of application data. The  execution  time of 
these “other” operations cannot be ignored in the 
design  of a large-scale  processor. If, for example, 
75 percent of the  time  is  spent in floating-point 
operations, the total time can be reduced at most 
by a factor of four if the 25 percent  spent for 
“other” operations is not changed. 

It is a requirement of large-scale  engineering/ 
scientific  processors that these “other” operations 
be fast,  lest  the  time to complete  the  nonfloating- 
point portion of an application erode  the  gains 
made in the floating-point portion. 
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Large memory. The NASA survey’ that identified 
the  need for 100 to 1000 MFLOPS in a 1985 - 1990 
product also identified the need for 1 to 100 million 
64-bit  words of “core” memory and up to 1000 
billion  words of on-line  storage. As a practical 
matter, the memory  must be affordable, and, of 
course,  must be fast enough to support the fast 
floating-point  execution  speed. 

The  requirement for “core” memory to have  the 
attributes of  being large  (1-plus  million  64-bit 
words), fast, and  affordable  suggests a hierarchy 
of memory  elements.  Many  survey  respondents 
specifically  suggested a memory  hierarchy  of  two 
or more  levels. This is  because fast memory  is 
known to be inherently  expensive,  whereas  large 
affordable  memory  is  typically  slow. A combina- 
tion of  some amount of fast memory  with a larger 
amount of affordable  memory, in a hierarchy,  is 
a practical  response to the  requirement. It is  rea- 
sonable to infer  from the respondents’  comments 
that system  management of a hierarchy as directly 
addressable  virtual storage is desirable. 

Engineeringlscientific  design  objectives 
of the 3090 

The IBM 3090 processor  is,  like its predecessors 
(the 308X and 3033), a large-scale data processing 
system.  These  systems  have  been  used by engineers 
and scientists  for the management of their  technical 
data, for the creation and display  of  graphics, and 
for interactive  end-user  computing. An additional 
design  objective for the 3090, established by con- 
sideration  of  the current requirements for a large- 
scale  engineering/scientific  processor,  was to inte- 
grate new performance  capabilities into the  base 
processor. 

A design  objective  of this large-scale computer 
was to have  reliability  characteristics  equal to  or 
better than those of its predecessors and to be 
manufacturable in large quantities. This  objective 
in turn dictated the use  of a circuit  technology 
package  known to have  high  reliability and 
manufacturability characteristics. For IBM in the 
mid-  1980s,  the  chosen  emitter-coupled-logic  circuit 
logic and thermal-conduction-module packaging 
determined that a machine  cycle  time of 18.5 nano- 
seconds  would  result.  This  scalar  cycle  time, in 
turn, dictated the  need for both parallel and vector 
capabilities if the  engineering/scientific  require- 
ments were to be approached. Since  the  scalar 
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Figure 2 Vector content effects 

90% (10.0) 

ASYMPTOTE 

and parallel capabilities are also useful for general- 
purpose computing, these capabilities were to be 
included in the base  offering. The vector capability, 
useful primarily for large-scale  engineering/sci- 
entific applications, was to be an optional offering. 

The objectives to provide scalar, parallel, and vec- 
tor capabilities in the 3090 required new architec- 
ture as well as the use  of  pipeline and parallel 
implementation techniques. The existing IBM Sys- 
tem/370 and 370/XA (Extended Architecture) archi- 
tectures were scalar, with  provision for parallel 
processing implementation. Only  by extending 
these architectures" would it be  possible to imple- 
ment vector capability. However, an architectural 
extension alone would not be sufficient to create 
vector capability with the desired performance im- 
provement. To achieve this capability, a pipeline 
implementation technique would  have to be used. 
Parallel capability for a single  engineering/scientific 
application would be provided by adding software 
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to the already known parallel hardware implemen- 
tation techniques. 

Scalar  objectives. From  an engineering/scientific 
viewpoint, the scalar design of the 3090 had the 
objective to provide fast floating-point arithmetic. 
Matrix operations were  selected as a specific  mea- 
sure of the ability of various proposed designs to 
meet the objective. The well-known matrix mul- 
tiply operation and the matrix factorization oper- 
ation were  established as test cases for the scalar 
design. In the FORTRAN language, these test cases 
consist of DO-loops containing two operators, a 
multiply and an add. Thus, the design  of the sca- 
lar 3090  focuses on high-speed execution of such 
loops. 

Parallel  objectives. Multiprocessor configurations 
have  been a part of the IBM large-system product 
line for many years. Their purpose has been pri- 
marily to improve the throughput under a single 
operating system. In the engineering/scientific 
area, a parallel design  would provide a theoretical 
capability to improve the turnaround time of a 
single application. The 3090  design  objective  was 
to provide both parallel hardware and supporting 
software such that an engineering/scientific appli- 
cation could be run in the minimum  possible 
elapsed time. Fluid dynamics techniques were  se- 
lected as a specific measure of the ability of the 
design to meet the objective.  Since it was under- 
stood that the scalar engine  would be replicated 
in a tightly coupled configuration to form the par- 
allel  offering, attention was concentrated on soft- 
ware to exploit the capabilities of the hardware. 
The objective  was established to have the MVS 
multitasking capability surface at the FORTRAN 
level in a user-friendly  way. 

Vector  objectives. Given the IBM 3090  high-speed 
base processor, the  next step was to consider how 
to add a vector processing capability to further 
enhance performance on  appropriate applications. 
A wide variety of performance choices  were avail- 
able, and, as expected, cost increased with perfor- 
mance. The choice of the appropriate performance 
target, and the associated cost, was a function of 
the nature of the applications that were considered 
of primary importance. 

A study of many engineering and scientific appli- 
cations revealed that certain portions of the exist- 
ing scalar programs could be profitably replaced 
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by vector  functions.  The  time  required to execute 
these  replaceable portions, divided by the total 
scalar run time,  is  called the vectorizable fraction, 
which  can also be expressed as a percentage. The 
time  required to execute  the  vectorizable fraction 
on a scalar  element,  divided by the time to execute 
the  same  function on a vector  element,  is  called 
the  vector/scalar  speed ratio. The  machine de- 
signer  can  choose to speed up the  vectorizable 
fraction by a large or a small amount. The  decision 
should be dictated, at least  in part, by the  appli- 
cations for which the product is intended. 

As Figure 2 shows, the relative job performance 
that can  result  from adding vector  capability de- 
pends both on the vector/scalar speed ratio and 
on the  vectorizable  percentage of an application. 
Each  curve in the  figure can be derived  using  the 
equation 

Relative job performance = 1 / [(l - F) + F / VSR] 

where F equals  the  vectorizable fraction and VSR 
equals the vector/scalar speed ratio. 

Applications  with a 90 percent  vector content 
could approach a ten-times  speedup as the  vector/ 
scalar  speed ratio reaches a high  level.  However, 
applications with  only a 30 percent  vector content 
would  achieve  most of their  gain  from a rather 
modest  vector/scalar  speed ratio. 

The  choice  of  the appropriate vector/scalar speed 
ratio should be determined by the  vector content 
of  the anticipated set  of applications. 

Figure 3 is another plot of the same equation, this 
time  using F as the independent  variable.  The 
individual  curves  representing  different  vector/ 
scalar ratios become  widely  divergent at high 
vectorizable  percentages.  However, in the  mid- 
range of vectorization  the  spread in performance 
is not as pronounced. 

Extensive  studies of the  projected  set of applica- 
tions for the IBM 3090 Vector  Facility  led to the 
decision to optimize  the  design for the  midrange 
of  vectorizable  percentage. Interpretation of Fig- 
ures 2 and 3 led to a vector/scalar speed ratio goal 
in the  vicinity of four. This ratio would  result in 
a very  cost-efficient  design  providing job perfor- 
mance  gains  quite comparable to those of other 
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designs  with  much  higher vector/scalar speed ratios 
at significantly  higher  cost. 

The 3090 offering that evolved  from  the  above 
scalar,  parallel, and vector  design  objectives  is  de- 
scribed in the remainder of this paper. 

Englneeringlsclentific  features of the 3090 

The 3090 offers an approach to the current re- 
quirements  for a large-scale  engineering/scientific 
processor by providing  in  one  system a high- 
performance  scalar capability, dyadic and four- 
way parallel capability, and an optional vector 
capability. 

Scalar features. Features of the  scalar  design  in- 
clude a high-speed  multiply function, an improved 
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Figure 4 Vector  Facility block diagram 
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add function,  the  elimination of address  generation 
interlock  in  the  loop-closing  instructions, and a 
mechanism for conditional  branch  handling.  These 
features  are  described  in  more  detail  in  the  paper 
by  Tucker.12 At the  time  of  the 3090 announcement 
in February 1985, its scalar  capability  was  the  best 
listed13 for scalar  machines  running  MacNeal- 
Schwendler’s NASTRAN.~ 

Parallel features. The February 1985 announce- 
ment  included  both  a  dyadic and a  four-way 
offering,  usable  under FORTRAN for  parallel  pro- 
cessing.  An  innovative  use of FORTRAN library 
routines  in  combination  with MVS multitasking 
provided  the support needed for the  use  of  all 
available  resources  on  a  single  engineering/sci- 
entific  application.  Benchmark  tests  showed  the 
capability to reduce  elapsed  time by up to 1.8 
times  on  the  dyadic and up to 3.3 times  on  the 
four-way  when  compared to a  single  processor. 
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The  software support for  this  is  described  in  more 
detail later in  this  paper. 

Vector  features. The  October 1985 announcement 
of the  Vector  Facility for the 3090, one  per pro- 
cessor,  offered  a  machine  capable  of approaching 
the  minimum  requirement of the  research  commu- 
nity  on  routines  suitable for parallel  vector pro- 
cessing. On routines (e.g., matrix  multiplication), 
the  best  achievement on a  single  Vector  Facility 
was about three quarters of the  minimum  require- 
ment of the  research  community.  When an appli- 
cation is  able to use independent  routines  on  the 
parallel  vector  hardware, it is  possible to surpass 
the  minimum  requirement. 

The Vector  Facility  achieves  the  cost-performance 
design  objectives by  use  of a  powerful  instruction 
set,  a  pipelined  multiplier and ALU, and a  design 
integrated  with  the  base IBM 3090, including its 
high-speed  cache to provide  operand data. These 
features are described  in  more  detail  in  a  succeeding 
portion of this paper. 

Memory. The 370/XA architecture  permits  direct 
addressability of a  virtual  memory  of 256 million 
64-bit  words,  consistent  with  the  large  memory 
requirements for a current large-scale  engineering/ 
scientific  processor.  The IBM 3090 implements 
physical  storage to realize this virtual addressing 
architecture  with  a  hierarchy of  high-speed  buffer, 
central  storage,  expanded  storage, and DASD. This 
provides  the  flexibility to use both a  high- 
performance  chip  technology in the  central  storage 
and an advanced,  low-cost,  dense  chip  technology 
in  the  expanded  storage. 

Vector Facility  highlights of the  3090 

A  vector  processing  capability has been  integrated 
into the  basic structure of  the  3090,’’ fundamen- 
tally  as an extension of the  execution  element  in 
each of the  central  processors (CPS). The  instruc- 
tion  element of the  central  processor has the ca- 
pability to decode  the  vector  instruction  set,  con- 
sisting of  171 instructions, and direct  the  execution, 
depending on the  instruction  type, to either  the 
execution  element or the  vector  element.  The 
buffer control element  of  the  central  processor  also 
participates  in  vector  instruction  handling, just as 
it does  with  nonvector  instructions. 
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Figure 5 Vector multiply  and add sequence  chart 

A Vector  Facility  can  optionally be added to one 
or more  of  the  central  processors in the IBM 3090 
models. 

Data flow. The IBM 3090 Vector  Facility data flow 
is  shown  in  Figure 4. 

The 8 (or 16)  vector  registers,  each  holding  128 
elements,  can  supply up to two  64-bit (or 32-bit) 
word operands per  machine  cycle.  These operands 
can be  delivered to either  the  Arithmetic  Logic 
Unit (ALU) or the  Multiplier, or one  operand to 
each. The ALU and the  Multiplier  can  also be 
supplied  via  a data path that carries  operands 
from  storage by  way  of the  high-speed  buffer, or 
from  the  general or floating-point  registers. An- 
other data path into the ALU comes  directly  from 
the  Multiplier.  This path supports the  compound 
vector  instructions,  such as multiply and add, gen- 
erating as many  as  two  floating-point operations 
per  machine  cycle. 

Pipeline  operation. The  timing of the  pipelined 
execution of a  vector  instruction is variable.  Each 
vector  instruction may  be thought of as composed 
of four sequential  parts.  These are startup, vector 
execution,  end-of-operation  (end-op), and overlap. 
Each part requires  a  specific  number  of  machine 
cycles,  depending on the  specific  vector  instruction. 

The  complexity  of four sequential parts to each 
instruction, and the  variability of timing for each 
part, introduce  the  need  for  a  first-order approx- 
imation to the  timing  of  vector  instructions. For 
this  purpose,  a  matrix  multiply  code  has  been ex- 
amined,  each  sequential part has  been  analyzed, 
and the  whole  has  been  reduced  by  combining 
startup, a portion of the  vector  execution,  the  end- 
op, and the  overlap.  This  combined  timing  has 
been prorated across  the  vector  instructions that 
constitute  the  matrix  multiplication  code, and for 
this  purpose  has been  called  simply  vector  over- 
head.  The  resulting  first-order approximation of 
the  time to execute  a  vector  instruction  is 28  cycles 
of vector  overhead  plus  one  cycle  per  element,  per 
vector  instruction. 

The  sequence of a  smoothly  flowing  pipeline  during 
vector  execution,  doing  a  multiply and add vector 
instruction which  performs  two  floating-point  op- 
erations to produce one result,  is  shown  in  Figure 
5. Note that one  result  is  produced  per  machine 
cycle,  with  the  registers and storage  supporting 
the flow  of three operands per  cycle. 

The  Multiplier unit, which  consists  of  three  sepa- 
rate Multipliers,  each  capable of producing  a prod- 
uct  three cycles after receiving  the input, can  ac- 
cept  a new multiplier/multiplicand pair each  cycle. 
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The two streams of operands, one from storage 
and the other from a floating-point register, are 
initiated. Several  cycles later the first product 
emerges from the Multiplier and is fed to the ALU 
for the ADD. On that same  cycle the other input 
to the ALU is supplied with the operand from a 
vector register  which represents the running sum. 
A few  cycles later the first  of the results is produced, 
ready to be gated into a vector register. The op- 
eration continues, one result per machine cycle, 
until the vector length is exhausted (or the section 
size,  whichever occurs first). 

The depicted multiply and  add sequence  is  illus- 
trative of operations within the Vector Facility. 

Section size. The length of a vector may  be shorter 
or longer than the  128  elements available in a 3090 
vector register, as determined by the application. 
The 370/XA vector architecture provides special in- 
structions to simplify the processing of variable- 
length vectors on fixed-length  registers. The ap- 
plication specifies the length of the vector to be 
processed, and the processor  divides the processing 
of the vector into “section-size’’  pieces  (128  ele- 
ments in the case  of the 3090).  If the vector is 
longer than the section  size, the processor  executes 
a “section” at a time.  If shorter, the processor 
stops when the last element has been  processed. 
The section  size  is  chosen by the processor designer. 

Large section  size  increases cost and save/restore 
time, but reduces startup effects. The chosen  vec- 
tor section  size  of  128  was  based upon cost, per- 
formance, and application considerations. The ap- 
plications considered did not benefit  significantly 
from a section size greater than 128  elements. 

Memory  hierarchy. An important implementation 
consideration for the design  of a vector facility  is 
the provision for accessing  high-speed storage. 
Two approaches may be considered: (1) a single- 
level,  very  high-speed, high-bandwidth central stor- 
age, or (2) a memory hierarchy providing a very 
high-speed cache. 

In the 3090 the memory hierarchy approach was 
selected for several reasons. First, there is a definite 
cost advantage to implementing a high-speed 
cache, backed by a large central storage, as com- 
pared to a single, large, high-performance central 
storage. The cache concept, introduced in 1968,14 
is generally  used in the implementation of large- 
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scale computers. With the introduction of  ex- 
panded storage in the 3090, the cost advantage 
accrues a second  time. Expanded storage provides 
capacity extensions with performance approxi- 
mately equivalent to  that which  would  be attained 
by the same capacity extension  of central storage, 
but with  reduced cost. 

Second,  because a high-performance scalar pro- 
cessor is required in conjunction with the Vector 
Facility, it is appropriate to share the mechanisms, 
and thereby share the costs, of the memory hier- 
archy. And third, there is a favorable performance 
characteristic when  using the Vector Facility with 
a memory hierarchy. More specifics on the per- 
formance of the Vector Facility are contained in 
Part I1  of the paper by Clark and Wil~on.’~ 

Engineeringlscientific  software  support 
for  vector  processing 

Requirements. An application can benefit from 
the speed  of the Vector Facility only  if it contains 
vector instructions. A sample of conceptual object 
level code of an application using vector instruc- 
tions might look like the code depicted on the left 
in Figure 6 .  The corresponding sample of object 
code using  only scalar instructions would look like 
the code depicted on the right. 

The example  shows vector instructions in capital 
letters (for ease  of reading the  example) and uses 
the abbreviations VR for Vector  Register and SR 
for Scalar Register. On the left  side the example 
contains both vector and scalar instructions, typ- 
ical of vector coding. The same scalar instructions 
appear  on the right in the scalar-only coding, but 
here the four vector instructions have  been  replaced 
by four scalar instructions and  an indicated loop. 
To obtain the same result with both codings, the 
3090  would  have to  loop through the scalar-only 
coding as many  times as there are elements in the 
vector being  processed,  whereas  only one pass  is 
required through the vector coding. 

If no vector instructions are present in the executed 
object code, the Vector Facility will remain idle. 
Two methods are available to utilize the Vector 
Facility. One method is to use prepackaged pro- 
grams that already contain vector instructions. 
Another method is to incorporate vector code into 
a program using a vectorizing compiler, an assem- 
bler supporting the  vector instructions, or a “call” 
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Figure 6 Hypothetical object code 

V e c t o r   c o d i n g  

L o a d   a d d r e s s   r e g i s t e r s  
L o a d   s c a l a r   v a l u e  
Add t o   s c a l a r   v a l u e  
LOAD VR w i t h  N e l e m e n t s  
MULTIPLY V R  by s c a l a r  v a l u e  
A D D  VECTOR I N  STORAGE TO V R  
STORE VR 

S c a l a r - o n l y   c o d i n g  I, I 
L o a d   a d d r e s s   r e g i s t e r s  
L o a d   s c a l a r   v a l u e  
Add t o   s c a l a r   v a l u e  
Load SR 
M u l t i p l y  SR by s c a l a r   v a l u e  
Add 1 v e c t o r   e l e m e n t   i n   s t o r a g e  t o  SR 
S t o r e  S R  4 1  

to a subroutine which  utilizes the vector instruc- 
tions. 

Available  software support. A basic area of soft- 
ware support is that of prepackaged  programs 
from  independent  software  vendors.  Studies  con- 
ducted by IBM have  shown that in many  large- 
system installations doing  engineering and 
scientific applications, over 50 percent  of  the pro- 
duction workload  consists of the  running of these 
prepackaged  programs. A number of these pro- 
grams  already  exist for IBM scalar  processors, and 
IBM is  encouraging and cooperating in the  conver- 
sion of as many of them as is  feasible to vector 
and parallel  versions. 

Also  fundamental to the support of the Vector 
Facility  is a VS FORTRAN offering  which  has  the 
capability to take existing  programs  written in IBM 
FORTRAN, both ANSI level 66 and 77, and to com- 
pile  them,  producing  vector  object  code  where 
such potential exists. FORTRAN DO-100pS  will  be 
converted to vector instructions where  possible 
and reasonable. Other conditions, for example, IF 
statements that cannot be removed or accommo- 
dated, may inhibit vectorization. 

A critical part of  every FORTRAN facility  is an 
efficient FORTRAN library.  Many  of the subrou- 
tines in the FORTRAN library now  have  vectorized 
versions and enhance  the  performance  of  the  sys- 
tem.  The  Interactive  Debug  Facilities  (IAD) are 
also provided as part of the library.  (This  same 
library  provides  the  Multitasking  Facility.) 

Extensions to the  Assembler H product are pro- 
vided to support the 171  new vector instructions. 

An  Engineering and Scientific Subroutine Library 
(ESSL) is  also  available.  Subroutines  covering a 
variety of methods are included:  basic  linear  alge- 
bra subprograms, routines for the solution of  si- 
multaneous  linear  algebraic equations for a variety 
of conditions,  eigenanalysis  routines for a real  gen- 
eral  matrix and a real  symmetric matrix, signal 
processing  routines  including fast Fourier trans- 
forms and IBM 3838 array processor  algorithms, 
matrix operations, a random number generator, 
and an error monitor. 

For the  seismic  analysis application, the  Vector 
Processing  Subsystem/Vector  Facility (VPSSpF) al- 
lows  users  of the IBM 3838 Array  Processor to 
utilize the Vector  Facility as an emulator of their 
current VPSS programs,  without  rewrite,  with an 
improvement in performance. A scalar option 
within V P S S ~ F  can also be  used for emulation, 
with  lower  performance. 

For applications that experience  heavy  usage or 
are of vital importance to an installation, it may 
be both desirable and profitable to re-examine  the 
application to determine if it might be restructured 
to use the above  vector  software support with  the 
vs FORTRAN Program  Multitasking  Facility. 

Engineeringlscientific  software  support 
for parallel processing 

As stated in the  design  objectives,  the  focus for 
parallel  capability  was on software. A set  of  three 
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Figure 7 Multitasking flow 
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- 
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subroutines was  developed to further improve turn- 
around performance  for  those  users  having appro- 
priate  critical  applications. As a part of the vs 
FORTRAN library,  this  set of subroutines,  known 
as  the VS FORTRAN Program  Multitasking  Facility, 
was  provided to enable a user  with a dyadic or 
four-way  system to structure a program so that 
those parts of an application  which  can be run in 
parallel  (inherent  parallelism) on the  multiple pro- 
cessors  may do so. These  subroutines  allow  the 
application  programmer to utilize  the  multitasking 
capability of MVS and to thus  reduce  the "turn- 
around''  time of the  application.  They  allow  the 
concurrent  scheduling  ("fork")  of  those  portions 
of the  application which permit it, and also  provide 
the  ability to synchronize  ("join")  the  completion 
of the  parallel parts when it is  necessary to ensure 
the  completion of all  prior  work  before a program 
can  continue.  Figure 7, depicting  time  from top 
to bottom, with  statements  executed as bars,  is an 
example. 

In the  example,  the  three  subroutines that consti- 
tute the  application  interface are shown.  The  first 
subroutine, CALL NTASKS, returns to the  applica- 
tion the  number  of  subtasks  available for concur- 
rent scheduling. In the  example,  the  value 4 is 
returned  in  the  argument NUMTSK, indicative of 
four available  subtasks  (as  might be preferred on 
a 3090/400). The  second  subroutine, CALL DSPTCH, 
attaches one  application  subroutine for execution 
by one  subtask on one  available  processor. In the 

example,  the  application  subroutine PAUL is  dis- 
patched four times,  each  time  with an independent 
set  of arguments A(1) and B(I), for execution on 
the four available  processors.  Although not shown 
by this  example, it is  also  possible to dispatch 
distinct  application  subroutines.  The third subrou- 
tine, CALL SYNCRO, causes  the  main  program to 
wait  until  all  concurrently  scheduled  tasks  have 
completed. In the  example,  this  is  pictorially 
shown  by  the  middle  column  of bars representing 
the  main  program and by the  side  columns  repre- 
senting  the four dispatches of the  application sub- 
routine PARAL. 

Engineeringlscientific  performance of the 3090 

A broad  range of applications  across a wide  spec- 
trum of industry  has  developed, and it is at these 
areas that the IBM 3090 Vector  Facility  is  directed. 
The  application areas listed in Figure 8 are  exam- 
ples  of  those that should  benefit  from  the  combined 
capabilities of the IBM 3090 system  with its excel- 
lent  scalar  performance  enhanced,  where appro- 
priate, by both the  Vector  Facility and the vs 
FORTRAN Program  Multitasking  Facility. 

The current approach to many  of  the  application 
programs in Figure 8 is  still  based on conventional 
scalar  processing.  The future should see growth 
both in  the  number and type  of  applications  of 
interest, and a trend  toward  vectorization and 
parallelization of  these  applications.  This  should 
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occur as the  benefits of these  techniques, in both 
improved  performance and lowered computer 
costs,  become apparent. 

An example. The  October 1985 announcement of 
the 3090 Vector  Facility  identified certain perfor- 
mance data for a set  of applications. As an exam- 
ple,  the  levels of performance attained for an en- 
gine  design application, turbine blade  analysis 
(T-Blade), are expanded in Figure 9. This  figure 
includes internal throughput rate (ITR) ratios and 
external throughput rate (ETR) ratios,16  using  the 
3081KX with  one central processor  (CP) as the 
reference point. Further discussions of perfor- 
mance are contained in Part I of  the paper by 
Clark and Wil~on.'~ The  steps  required to attain 
the performance  values  given in Figure 9 are il- 
lustrative of scientific and engineering  processing 
on the 3090/200 with  Vector  Facility. 

The  T-Blade application is  written in FORTRAN. 
The  base 3081KX and the 3090/200 one-cP  scalar 
values  were  determined by compiling  the applica- 
tion source  code  under vs FORTRAN Version 2, 
producing  scalar  code  using the highest  level of 
scalar  optimization.  The  resulting  source  code  was 
then  executed and timed" and its internal through- 
put rate (ITR) ratio calculated. 

Next  the  same application source  code  was  com- 
piled  using  the  highest  level  of  vector optimization, 
which  causes  the  compiler to automatically pro- 
duce  object  code  with  vector instructions where 
possible.  The  resulting  source  code  was  then  exe- 
cuted and timed17 on a single CP and Vector Fa- 
cility, and the  performance  calculated.  This  cal- 
culation produced an ITR ratio of 5.2, which,  while 
respectable,  was  judged to be a performance  level 
that could be improved  upon.  The  original  source 
code  was  examined and the inner loops, as written 
in FORTRAN, were  modified  according to "good 
vector  coding  practices."  Some  of  these  coding 
practices are described in a comprehensive report 
by Dubrulle et al." The new source  code  was  then 
compiled,  executed, and timed" to produce the 
6.9 ITR ratio given in Figure 9. 

The  final step involved another modification to 
the FORTRAN source  code,  this  time to create mul- 
tiple subroutines that could be invoked  using  the 
Multitasking  Facility.  This new source  code  was 
then compiled to produce  scalar  code, and again 
to produce  vector  code. In both compilations the 
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Figure 8 Examples  of  suitable  applications 
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Figure 9 3090 processor,  Model 200: T-blade  performance 
in ITR and ETR  ratios 
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highest  level  of optimization was  used.  The  com- 
piled  codes  were  then  executed on the 3090/200. 
Since  parallel  processing  performance  is a measure 
of turnaround time,  which  is  based on elapsed 
time,  the  elapsed  times  were  recorded.  Therefore, 
for the parallel  processor  values,  external through- 
put rate ratios were calculated. 

The  T-Blade application is  one  of a class of ap- 
plications that can  benefit  from  all of the capabil- 
ities  (scalar,  parallel, and vector)  of  the 3090. All 
floating-point applications will,  of course,  benefit 
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from the  scalar  capability.  Some applications may 
experience  improved  performance  from  the use  of 
vector compilation and execution as described 
above.  Some applications may  experience  im- 
proved  performance  from  source-code  modifi- 

Matrix multiplication 
routines are  particularly 

interesting. 

cations to invoke  the  parallel capability. Further, 
some applications may  experience  improved  per- 
formance from using  the ESSL library, a possibility 
previously  discussed but not illustrated by the T- 
Blade application. 

Engineering/scientific  performance  parameters. The 
performance of the IBM 3090 with  Vector  Facility 
varies as a function of  specific application charac- 
teristics and coding  techniques. A few  of the most 
important performance parameters follow.  An  un- 
derstanding of these parameters may  be  useful to 
the FORTRAN language  user, the assembler lan- 
guage  user, or both. 

Contiguous data: Although  scalar  performance 
will  vary  with  the  placement of data in  memory, 
this parameter is  particularly important in vector 
performance.  The  rule  is to access  contiguous 
(e.g., column-order for FORTRAN) application data 
where  possible. 

Reuse of data: Data present in cache or registers 
(general-purpose, floating-point, or vector)  should 
be reused  where  possible. 

Vector  length:  The  rule  is to provide  long  vectors 
rather than short vectors. 

Concurrency:  The  rule  is to use those algorithms 
and coding  techniques that will  give the  maximum 
concurrent usage  of  the  available hardware facil- 
ities.  The hardware facilities that may  be  used 
concurrently are the dyadic or four-way  CPS, in- 
cluding  their  vector  facilities.  Performance in- 

48 GIBSON, RAIN, AND WALSH 

creases as the amount of concurrent usage,  some- 
times  referred to  as the inherent parallelism and 
the  vectorizable  percentage,  increases. 

Instruction mix: Generally  speaking,  in  the  execu- 
tion of scalar floating-point operations, addition 
is  faster than multiplication, and both are 
significantly  faster than division. In the  execution 
of vector  floating-point operations, compound op- 
erations, such as multiply and add, are faster than 
the corresponding separate vector instructions, 
and all are significantly faster than division.  The 
rule  is to remove  division  from the inner loop 
wherever  possible, and when  dividing  more than 
once by the same  number, to obtain an inverse 
and multiply. 

Knowledge of these 3090 performance parameters 
has proven  useful in construction of the  code for 
routines in the  Engineering and Scientific Subrou- 
tine Library. The  matrix  multiplication routines, 
for example, are particularly  interesting  because 
of their level  of attainment. Consideration was 
given in the design of these routines to the  section 
size  of the 3090 Vector  Facility, the available  com- 
pound instructions, and the  cache  size.  The  levels 
of performance attainment for a subroutine mul- 
tiplying  matrices  with order between 100 and 1000 
may  be  derived  from  previously  published  mate- 
rial.*’ The LOOP-MFLOPS values so derived are ap- 
plicable  only to this subroutine loop. For matrix 
multiplication on one  3090/200  Vector  Facility, 
the  derived  value  is around 70 LOOP-MFLOPS, de- 
pending on the size  of the  matrices.  When  two or 
four Vector  Facilities are executing  copies  of  the 
matrix  multiplication  routines, the capacity of the 
system  increases  approximately  with  the  number 
of  Vector  Facilities. Of course,  these  values  apply 
to routines, not to full jobs. JOB-MFLOPS values 
are considerably  less than LOOP-MFLOPS values. 
The reader should  refer to the paper by Clark and 
Wilson” for specific  examples  of JOB-MFLOPS on 
the  3090/200  Vector  Facility. 

Summary 

Engineering/scientific applications may be ad- 
dressed in a large-scale  processor by three  com- 
plementary  approaches: 

1.  High-speed  scalar  floating-point  processing 
2. Parallel  processing 
3. Vector  processing 
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The IBM 3090 processor offers a balanced response 
to these three approaches by including a high- 
performance scalar capability; dyadic and four- 
way multiprocessing, which in conjunction with 
the vs FORTRAN Program Multitasking Facility 
provides a parallel processing capability; and an 
optional Vector Facility which provides a vector 
processing capability. 

The design  of the Vector Facility was based on 
application studies which concluded that applica- 
tion vectorizable percentages significantly beyond 
the midrange, though possible, are  not currently 
anticipated to be the norm. This implies that a 
Vector Facility should be accompanied by a high- 
performance scalar capability. 

The base IBM 3090  achieves its engineering/ 
scientific performance enhancements through im- 
provements in specific floating-point and branch 
instruction handling. The 256 million 64-bit-word 
virtual storage is implemented in a physical storage 
consisting of a high-speed  buffer, central storage, 
optional expanded storage, and DASD. 

The Vector Facility achieves its cost-performance 
design objectives by  use of a powerful instruction 
set, a pipelined multiplier and ALU, and a design 
integrated with the base IBM 3090, including its 
memory hierarchy and high-speed  buffer. 

Extensive software support  has been provided with 
the Vector Facility, including operating system 
Support, a Vector FORTRAN Compiler, a FORTRAN 
library, and  an engineering/scientific subroutine 
library. 
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