
Customer Information
Control System-An
evolving system facility

by B. M. Yelavich

Presented is an overview of the present ClCS architec-
ture. Discussed is the evolution of that original design
as a transaction management system that accommo-
dates data base management, operating systems, and
input and output devices as well as hardware of in-
creasing numbers and complexity. User needs past
and present are analyzed with a view toward under-
standing how ClCS might evolve in the future.

A s of June 1985, the Customer Information Con-
trol System (CICS) entered its seventeenth year

as an IBM program product. This paper examines
from a systems perspective the CICS program product
as it has evolved during much of that period. This
paper is dedicated to the users of data processing
who determined the systems requirements, to the
developers of systems software who fulfilled those
requirements, and to the systems engineers who
designed and implemented the system. Systems en-
gineering and such products as CICS have evolved
together, adapting to the needs of information sys-
tems and applying hardware and software technolo-
gies as they became available.

ClCS in the mid-1980s

Before discussing the evolution of CICS, we first pre-
sent the product as it exists today. CICS is a general-
purpose transaction management system and is also
thought of as a Data Base/Data Communication
(DB/DC) program product that can be used as an
application enabler by the user. CICS provides sup-
port for data communications access methods, such
as VTAM, BTAM, and TCAM, with strategic emphasis
on VTAM and the IBM Systems Network Architecture
(SNA). Applications may be designed to use one of
several data management facilities supported via

CICS, including such data base management systems
(DBMS) as the Information Management System
(IMS), IBM’S Database 2 (D B ~) , SQL/DS, and standard
file access methods, such as VSAM and BDAM. (See
Figure 1.)

CICS provides a transaction control system that the
user can implement for use in tightly coupled sys-
tems such as the IBM 3090-200, the 3084Q, and the
308 1K. A single CICS system, running in an MVS/XA
environment and executing COBOL applications us-
ing VSAM files, has been measured sustaining work-
loads of greater than 80 transactions per second at
approximately 70 percent utilization of an IBM 3090-
200. Other measurements have shown CICS Multiple
Region Operation (MRO) configurations executing
comparable workloads and achieving transaction
rates in excess of I20 per second while fully utilizing
an IBM 3090-200.

When running in tightly coupled environments, CICS
is designed to enable the user to apply the multiple
processors against the systems workload. In that
environment, VTAM would be the preferred data
communications access method, executing as a sep-
arate MVS unit of work and managing the physical
terminal network for CICS. The application workload
can be distributed across multiple CICS address spaces
to achieve any one of a number of desirable user
objectives.

Copyright 1985 by International Business MachinesCorporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

264 YELAVICH IBM SYSTEMS JOURNAL, VOL 24, NOS 3/4, 1985

Figure 1 The software environment that surrounds ClCS

ClCS

OPERATING SYSTEM
F n / S l j . O , M V W , VSE, SEX)

1 L

1

SYSTEM
SERVICES

4PPCICATION
"RAM
SERVICES

DATA ACCESS
HANDLING
FUNCTIONS

To achieve higher availability, a user may configure
a CICS MRO system so that one CICS system acts as a
terminal-owning region, one or more address spaces
might contain file or data base systems, and still
other address spaces contain application programs.
This type of configuration not only allows the use of
all processors on behalf of the machine's DB/DC
workload, but it also has the potential to improve
system and application integrity and availability. In
the event of any failure within a single application
address space, the failure is limited to that one ap-
plication group only, and restart can be done quickly,
because the terminal-management and data-man-
agement systems have not been affected.

With a single MVS system, the distribution of a CICS
workload is not limited only to multiple address

spaces. Like MRO, CICS also supports Intersystem
Communication (ISC) to connect CICS systems that
reside in different MVS systems. Using either facility,
the system designer can configure a global system,
so that applications and data resources can be phys-
ically located in any of the connected systems. CICS
supports transaction routing, thus allowing terminal
input to one CICS system to be delivered to another
CICS application-owning system for execution. The
data accessed by an application can reside on any
other clcs-connected system.

While CICS is architected to enable the user to dis-
tribute his workload or optionally to exploit the
expanded environments of MVS/XA (i.e., tightly cou-
pled and/or network-connected systems), CICS also
is able to support smaller DOS/VSE systems. Most

IBM SYSTEMS XXIRNAL. VOL 24. NOS 3/4, 1985 YELAWCH 265

CICS functions are available to the VSE user, thereby
allowing upward compatibility and the participation
of VSE systems in a network perhaps also containing
Mvs-based systems. Transaction routing or remote
data access can be performed transparently among
CICS VSE and MVS Systems. CICS/DOS/VS SUppOrtS MRO

Few commercial users of data
processing had considered

transaction processing systems.

and ISC in a manner similar to CICS/OS/VS. The CICS
command level (CL) application programming inter-
face (API) provides a consistent, functionally rich
environment to both VSE and MVS users.

The beginnings of ClCS

To a person who is not familiar with CICS, the
preceding discussion may appear to be a description
of a currently available program product, and yet its
origin and its evolution are far from obvious. In the
relatively short history of data processing, it should
be noted that very few software products have had
the architectural soundness to continue to exist in
their original forms. In contrast, the CICS introduced
as a program product in 1969 is architecturally very
similar to today’s product.

During the period from 1955 to 1960, computers
were being introduced to the scientific and academic
communities. Only the very largest commercial en-
terprises had made a beginning with computers and
data processing. As we entered the 1960s, computers
became more commonplace, with the IBM 7000 se-
ries being available for large users and the newly
introduced 1400 series bringing data processing to
many medium-sized organizations. At this point,
operating systems were hardly known, and users
performed most work as a batch process. Data com-
munications among computers was almost unheard
of.

With the advent of the IBM System/360 in 1964, the
new hardware and software products offered new

266 YELAVICH

capabilities and opportunities. Except for airline res-
ervations and military systems, few commercial users
of data processing had seriously considered designing
and implementing transaction processing systems.
Some computers were being used as high-volume
message switching systems, but few were used as
central processors containing data and applications
for use by remote terminals.

From I965 to 1970, a variety of attempts were made
to design and implement terminal-oriented transac-
tion processing systems. The concepts were clear, but
the skills and/or general-purpose solutions were in
short supply. Although many program offerings be-
came available during those years, they were often
limited in scope. For example, some programs sup-
ported local terminals but not remote terminals. The
nature of application programming was varied, and,
in many cases, such programming was felt to be
difficult. The operating systems, data management,
and data communications access methods, although
substantially more powerful than facilities of the
early 1960s, were deemed large, costly, and/or diffi-
cult to use.

Evolution of ClCS as a transaction management
system

Figure 2 shows CICS as it first made its appearance
in 1968. It was produced by a group of IBM workers
in an effort to create a general-purpose transaction
management system that would allow IBM customers
to implement terminal-oriented systems more
quickly. The initial interest at that time was for
customers in the utilities industry. Many electric,
gas, and water supply companies wanted to imple-
ment systems by which their customer service rep-
resentatives could make inquiries to central files or
initiate some customer-related transactions such as
bill payment and service change. Despite the high
interest, the prospective users were in need of assist-
ance regarding the implementation of such systems.

The first versions of CICS supported only OS/360,
assembler language application programs, BTAM for
data communications, and ISAM and BDAM as stan-
dard file access methods. CICS also provided many
environmental services using facilities designed es-
pecially for it, rather than comparable operating
system services. This was done primarily to conserve
processor cycles and/or real main storage. To recall
briefly, the operating systems at that time included
the Primary Control Program (PCP), Multiple Fixed
Tasks (MFT), and Multiple Variable Tasks (MVT).

IBM SYSTEMS JOURNAL, VOL 24. NOS 3/4. 1985

Figure 2 ClCS in 1968

EDAM
ISAM

1050
2740
2741

SYSTEMI360 MODELS 40-65
NETWORK SIZE APPROXIMATELY 50 TERMINALS

None of these systems was particularly suited to
support the potential execution of multiple, concur-
rent applications for 20 to 100 terminal users. PCP
supported only one application in the entire ma-
chine. Although MFT and MVT supported up to fifteen
separate jobs, tasks, or programs, the operating sys-
tems’ subtasking capabilities were felt to be very
costly in terms of overhead.

To support the various operating systems conserva-
tively, CICS provided its own multitasking, program,
and storage services. ClCs did not support QTAM,
because of its message-switching orientation, nor did
it support EXCP, because of its low-level coding. For
data communications, CICS provided a terminal con-
trol function that polled terminals to invite new
input. CICS also serviced application requests to read
or write terminal data, and it handled error situations
without directly involving each application program.

As new transactions were initiated, CICS could load
the application program, if it was not already in

main storage. CICS provided its own program fetch
on an asynchronous basis so as to dispatch other
transactions concurrently. CICS managed main stor-
age within its partition or region, not only to reduce
the overhead of comparable operating system facili-
ties but also to manage storage use by individual
transaction. CICS freed main storage upon explicit
request or transaction termination, or programs not
being used while at the same time storage is needed.

CICS also provided a file control function as a service
to its applications, thereby removing the need for
each application to be concerned with the open/
close function or storage allocation for file-related
areas. This type of facility management was intended
to limit the application concern only to the function
to be performed.

Additionally, the first version of CICS introduced
functional components to provide generalized
queuing services. Transient data and temporary stor-
age services allowed applications to route data to

I3M SYSTEMS JWANAL. VOL 24. NOS 3/4. 1935 YELAVICH 267

other applications or destinations, and, as for the
file-control component, the using application needed
only to be concerned with the functional read/wnte
request and not with the environmental concerns of
storage management or other media concerns.

During 1968- 1970, users who were considering im-
plementing on-line systems had a number of deci-
sions to make. Among them was evaluating the
available general-purpose software and comparing
those possibilities with what would be involved in
designing and implementing their own systems.

In 1969, IBM began producing licensed program
products. CICS was among the first of these and was
considered to be a primary DB/DC offering. In order
to avoid the unnecessary production of software with
similar capability, IBM identified selected program
products as the primary product to address certain
functional or application requirements.

As potential users began to focus their attention on
products such as CICS, other requirements became
more apparent. If CICS were to be considered viable
by a broader spectrum of users, it would have to
support other environments or functions. Foremost
among these at the time was the function of CICS
support of COBOL and/or PL/I in addition to assem-
bler language. It was acknowledged that an applica-
tion could be produced using assembler language
that might be more efficient in its use of such envi-
ronmental resources as real storage and processor
cycles than a higher-level language. However, be-
cause of the ease of use of higher-level languages and
the availability of programmers skilled in COBOL or
PL/I, such support was requested.

To incorporate high-level language support into CICS
posed several problems for its developers. First,
COBOL did not produce re-entrant or reusable code.
Both COBOL and PL/I produced executable code
which assumed that it was in control of its execution
time environment. That is, if a program had to wait
for a certain event, the compiler inserted an operat-
ing system wait until that function had been per-
formed. If main storage were needed, the compiler
issued an operating system request. If an error were
to occur, the compiler simply assumed that that task
should be abnormally terminated. None of these
compiler actions was deemed appropriate for a mul-
titasking, on-line application system.

In 1970, CICS delivered its first support of COBOL and
PL/I. Of primary interest, architecturally, was that

268 YELAVICH

for COBOL, c l c s made a copy of an application’s
working storage, if more than one terminal caused
execution of the same program. For PL/I, CICS sup-
plied a storage management program that could
satisfy the compiler’s request for storage but in a
manner consistent with on-line CICS execution.

Also of major importance was the decision regarding
the CICS application programming interface (API).
Assembler programmers were accustomed to issuing
macro statements. COBOL and PL/I programmers ex-
pected high-level language statements, but they
might use CALL statements on an exception basis.
CICS developers were interested in a common inter-
face that could be used by all programming lan-

Regardless of the application
program and its language, internally

ClCS had a consistent interface.

guages. Therefore, they chose to offer its macro-level
interface for use by all languages. In the COBOL and
PL/I case, a preprocessor was furnished to convert
CICS macro statements in the source program to high-
level language call statements that were then com-
piled.

The architectural significance here is that regardless
of the application program and its language, inter-
nally CICS had a consistent interface. Application
requests were quickly routed to the internal compo-
nent that provided the required service. This CICS
macro-level interface continued in the product until
the CICS command-level interface was introduced in
1977 and became the preferred application program
interface.

Influence of the Disk Operating System on ClCS
design

The need for on-line transaction processing was not
limited to os users. Soon after the introduction of
CICS, Disk Operating System (DOS) users began ask-
ing for comparable facilities for their environment.

IBM SYSTEMS JOURNAL, VOL 24, NOS 3/4, 1985

Because of its functional modularity, CICS was rela-
tively easily adapted to a different operating system
environment. The architectural decisions to be made
if CICS were to support DOS revolved around making
the specific environment transparent to the using
applications and permitting a clcs-like system to
function in a small systems environment.

The first requirement was fairly easily met. In the
CICS/OS case, the application programs did not com-
municate os requests directly. Granted, in many
cases the CICS functional requests may have looked
like their os counterparts, but they were still part of
the CICS API. Internally, CICS would use the os facili-
ties of its own choosing to carry out the external
request of its application. To do something similar
in DOS became straightforward. Although w s did
not have a storage management facility comparable
to that of os, the developers found that CICS could
easily emulate that facility. The same was also true
for file- and data-communication services.

A major requirement for CICS was that it fit into the
typically smaller configurations common to DOS
users. Primarily, that meant being able to function
in systems with less real storage available. In this
regard, CICS developers created the following two DOS
offerings: CICS/DOS Standard (CICS/DOSS), which was
virtually identical to its os counterpart, and CICS/
DOS Entry (CICS/WSE), which was a new offering that
preserved the CICS API but limited internal execution
to only one application at a time. It did this by using
a roll-in/roll-out technique, whereby only one ter-
minal’s application was in main storage at a time.
When the current application finished or reached a
wait state, it was rolled out to auxiliary storage, and
another unit of work was rolled into main storage
and given control of CICS.

CICS continues to offer ws-based system support
today. However, the Entry version was discontinued
in the late 1970s, owing to the introduction of virtual
systems as discussed later in this paper.

By 197 1, CICS was gaining the attention of both os
and DOS users and offered support for assembler,
COBOL, and PL/I. As more users evaluated CICS as a
possible system to control their terminal networks,
still other requirements were becoming known. New
terminal devices were being introduced, and there
was an expectation that if CICS were to be used as
the base control system it should be supportive of
these new terminals. In particular, one such new
terminal was the IBM 3270. The 3270 was a marked

IBM SYSTEMS JOURNAL, VOL 24. NOS 3/4, 1985

change from the keyboard/printer or line-by-line
display terminals of the late 1960s. The 3270 was a
buffered terminal device that could deal with for-
matted data streams or send and/or receive individ-

ClCS provided not only native 3270
data stream support but also a data

mapping facility.

ual fields of data, instead of an entire display. The
field orientation allowed applications to intensify
data or suppress the display of data.

CICS provided not only native 3270 data stream
support but also a data mapping facility, called Basic
Mapping Support (BMS). BMS enhanced application
programming by providing data and device indepen-
dence not found in previous terminal-oriented sys-
tems.

Another requirement that gained wide support was
that CICS should support the IBM data base manage-
ment system. This, the Information Management
System (IMS), was introduced in the mid- and late
1960s. IMS offered its users a base product that pro-
vided data base (DB) services, called Data Language/
I (DL/I) and, optionally, a data communications (DC)
feature. IMS provided hierarchical data base services
via DL/I, but it did not support standard data man-
agement, such as ISAM or BDAM files. It was in this
light that some CICS users-not wanting to commit
all data to a DL/I organization-began looking for a
system that would allow them a choice of DL/I or
standard data management. The first CICS DL/I in-
terface was offered in 1972. This interface was up-
dated in 1975 and was significantly enhanced in the
late 1970s and early 1980s. In contrast to the os
subtask architecture of the 1972 interface, the CICS
DL/I interface today offers the user support of IMS
data sharing, multitasking of up to 255 concurrent
users, and other features to be discussed later in this
paper.

ClCS transition to virtual storage systems

In addition to the requirement to provide terminal
support for the 3270 and to extend data management
support to include data base systems, CICS, in 1972,
was on the forefront of still another major architec-
tural change-virtual storage systems. IBM an-
nounced virtual storage systems together with new
operating systems and such new components for
those environments as the Virtual Telecommunica-

The developers of ClCS were asked
to provide a virtual storage (VS)

version.

tions Access Method (VTAM) and the Virtual Storage
Access Method (VSAM). Thus CICS advanced together
with the other related hardware and software tech-
nologies.

The developers of CICS were asked to provide a
virtual storage (vs) version of its product and its
capability. The expectation was that users had made
a beginning and a commitment to an IBM primary
DB/DC offering and that such users should be able to
move their non-vs, System/360 real storage systems
to the new vs systems of the 1970s. An examination
of this requirement began with determining how CICS
would function in a virtual storage environment. In
much the same way as CICS had shielded its users
from the physical environment in the past, it seemed
appropriate that clcs should not allow the nature of
vs systems to show through to individual applica-
tions under its control. Yet the developers had to
support and exploit any characteristic of the new
environment that might benefit the user and the
user’s applications. Thus the c l c s storage manage-
ment facilities were redesigned, with the introduction
of new internal storage algorithms for long- and
short-running transactions. Thus CICS allocated main
storage by the type of request and use to improve
locality of reference, reference patterns, working set,
and other theoretically desirable goals.

Changes were made in program loading and task
management, in order to deal with the possibility of

270 YELAVICH

page faults in a virtual storage environment. CICS
had previously not required application programs to
be pure re-entrant programs and could not now
expect that from its applications as a means of
redispatching one transaction in the event another
encountered a page fault.

CICS terminal management facilities were enhanced
to support VTAM, and file control facilities were
enhanced to support VSAM. Of the two, the new
support for VTAM was the major change. In contrast
to BTAM, which executed as an integral part of CICS,
VTAM was somewhat asynchronous and ran in its
own environment. CICS support of VTAM had to be
added in a manner consistent with previous BTAM
support but also enabling the user to benefit from
new VTAM Support.

The new CICS VTAM support introduced a sharp
contrast to the previous BTAM support. For instance,
with BTAM, clcs was required to initiate line events
such as polling and addressing, and to handle error
conditions when they occurred. CICS was responsible
for the frequency with which it examined the BTAM
network, either looking for completed events that
had to be acted upon or new events that had to be
initiated. With VTAM, network events were more
asynchronous. VTAM assumed responsibility for the
management of the physical environment and its
interface to a using subsystem or application. Thus
CICS was on a more specific-unit-of-work basis. CICS
no longer had to look for network-related work by
doing terminal control table scans. Rather, it could
deal directly with elements on a work queue that
were posted there by VTAM.

CICS support of VSAM required provision for coexis-
tence as well as migration from ISAM or BDAM. CICS
provided initial support for base clusters and alter-
nate indexes, ISAM/VSAM compatibility, relative rec-
ord data sets, and other VSAM facilities. With each
CICS release since the introduction of that initial
support, clcs has enhanced its support of VSAM.

The early years of virtual storage systems

Virtual storage was announced in 1972, and by 1974
the products, including CICS/VS, that were to support
vs had begun to be delivered to the field. crcs/os/vs
and CICS/DOS/VS were delivered in 1974 and en-
hanced in 1975. By 1976 four releases had been
delivered. Some of these releases delivered new func-
tion and all delivered refinements to the initial sup-
port of virtual storage systems.

IBM SYSTEMS JOURNAL, VOL 24. NOS 3/4, 1985

Figure 3 CICS/VS in 1977

SYSTEM1370
MODELS 115-168

NETWORK SIZE APPROXIMATELY 500 TERMINALS

328X

2770

3770
2780

3780

3600
3650
3660
3790
CERlESil

SYSTEMI7
SYSTEMI3

Figure 3 shows CICS during the 1974-1977 period,
when many users were beginning to install virtual
storage systems. By 1978 virtual storage had estab-
lished itself. The products had made the necessary
adjustments, and a new confidence existed in systems
that supported considerably more virtual storage
than real storage. Thus many users who had been
constrained by the limitations of real storage systems
began to move to and expand their use of virtual
storage systems. By this time, components such as
VTAM and VSAM had also demonstrated their merits.
VTAM had proved to many users that it could produce
better performance characteristics than its predeces-
sors, BTAM and TCAM. About this time, IBM demon-
strated its strategic intent to support Systems Net-

work Architecture (SNA) through implementations
such as VTAM. Thus CICS also adopted VTAM as its
strategic data communications access method.

VSAM also demonstrated its ability to perform as well
as or better than previous access methods, while also
providing considerably more function and service to
the user and his applications. CICS further enhanced
the use of VSAM in 1977 by supporting Local Shared
Resources (LSR) and Alternate Indexes.

Users began redirecting their attention to new re-
quirements. No longer constrained by real storage,
and with adequate basic function, more users indi-

YELAVICH 271 IBM SYSTEMS JOURNAL, VOL 24. NOS 3/4, 1985

Figure 4 An Intersystem Communication configuration

ClCS

i
SNA LINK 1

ClCS OR IMSNS

cated a readiness to expand their applications and
terminal networks. This new set of requirements
placed an emphasis or priority on the ability to
distribute the workload and its resources. Users be-
gan addressing their application backlog with the
new facilities that met the needs of application de-
velopment. To handle the expected growth in sys-
tems and applications, users exploited the new hard-
ware and software environments.

Further enhancements of ClCS

CICS began a series of significant releases and en-
hancements, beginning with Version 1 Release 3.0

in 1977. In that release, the command-level interface
was introduced. Command level, sometimes called
the High-Level Programming Interface (HLPI), pro-
vided a number of enhancements over and above
the previous CICS macro-level API. No longer would
programmers need to be concerned with internal
CICS control blocks or interfaces. The programmer
could code in a more English-like syntax and vocab-
ulary and perform application debugging and devel-
opment, using as an aid the Execution Diagnostic
Facility (EDF). Command level provides precompile
diagnostics. It is also easier to learn and maintain.
Most significant is the fact that the command-level
interface provides a much better architectural inter-

272 YELAVICH IBM SYSTEMS JOURNAL, VOL 24, NOS 314, 1985

face than does the macro-level interface. Since 1977,
command level has been indicated as the preferred
API for CICS applications.

In 1978, CICS delivered Version 1 Release 4, and a
major enhancement to that release was the introduc-
tion of Intersystem Communication (ISC), illustrated
in Figure 4. ISC enables applications to issue requests
for data resources such as VSAM, ISAM, Or BDAM file
records, DL/] data base records, and transient data
or temporary storage queue records, without regard

True distributed systems had
become a reality.

to the physical location of such resources. CICS ISC
provides function shipping of individual application
requests to read or write data resources in such a
way that they are transparent to the requesting ap-
plication. CICS routes the request to the resource-
owning system, executes the request, and returns
either the data or a return code to the requesting
application.

In 1979, it was announced that CICS would include
a new facility that was similar to ISC but that would
allow multiple CICS systems in the same machine to
be connected. With this new Multiple Region Op-
eration (MRO) support, the user could configure mul-
tiple CICS regions or partitions, with terminal, appli-
cation, and data resources distributed as the user
required. MRO enabled the user to enter a system
through terminals connected to one system and have
transactional input routed to other connected sys-
tems for execution. With function shipping, the data
resources used by an application could be connected
to the same or different CICS in the same or a different
machine. Thus, true distributed systems had become
a reality.

New operating systems and hardware systems came
into being in the early 1980s. By this time, many
users depended on the ability of CICS to keep pace
with other enhancements in related products. More

IBM SYSTEMS JOURNAL, VOL 24, N O S 314. 1985

was expected of CICS to support extensions to SNA,
such as Logical Unit 6.2 support and the new office
systems such as DISOSS, Scanmaster, and Display-
writer.

IBM introduced a new relational data base capability
with SQL/DS and D B ~ . Coincident with those an-
nouncements came the expected CICS attachment
support. With CICS/OS/VS Version 1 Release 6.1, CICS
began supporting advanced data base facilities such
as Data Base Recovery Control (DBRC) and IMS Data
Sharing.

In the mid-l980s, many users are migrating to the
expanded environments of MVS/XA. CICS users are
moving their workload data and application storage
requirements that are greater than the so-called 16-
megabyte (MB) line to gain the benefit of the exten-
sion of virtual storage to 31-bit addressing. The
initial CICS support of MVS/XA relocates a number of
storage allocations above the line in a transparent
fashion, requiring no change to user application
programs. As new compilers become available that
are capable of generating 3 1 -bit addresses, users are
able to move application programs above that line
also. With programs, data buffers, temporary storage,
and other functions in expanded storage, consider-
able relief is expected to be provided to those systems
that had been storage-constrained because they were
operating below the 16-megabyte line.

These examples of CICS enhancements since 1977
demonstrate the product’s importance to its users
because it has been supportive of user requirements
and expectations in a timely manner. In prior years,
the user may not have placed high priority on any-
thing other than the function needed to meet a
particular application or system need. With the ad-
vent of virtual storage systems, increasing hardware
capacity, and lower-cost performance-due primar-
ily to advances in hardware technology-the user
was more inclined to expend some of that increased
capability on items other than API function. Whereas
the CICS macro-level interface had served users func-
tionally from 1968 to 1977, the time had come for
advancements in application development. Hence,
the positive acceptance of the new command-level
interface made possible easier programming and
more reliable code.

In the late 1970s, more than at any previous time,
users were seeing a need to distribute their work-
loads. Somewhat contrary to the interest that seemed
prevalent during the early 1970s to centralize much

YELAVICH 273

of the data processing function, users began to think
in terms of putting a data processing function where
the work and the data resided, rather than bringing
them to some central location. With this capability
came user interest in distributed systems. In many
cases, the user looked for symmetry and transpar-
ency. That is, existing applications should not have

LU 6.2 may very well be the key to
future networking of systems.

to change if resources were reconfigured. Also, func-
tions that could be performed in one environment
should be available in other environments. To that
extent, CICS MRO and ISC have addressed the require-
ments for symmetry and transparency. Transaction
routing, function shipping, and distributed transac-
tion processing are available to the application and
system designer, with minimal or no effect on the
participating application(s).

The CICS support of SNA and in particular the support
of ILJ 6.2 has been significant. LU 6.2 is the basis for
Advanced Program-to-Program Communication
(APPC) and is widely used to enable potentially dis-
similar end points to communicate with each other.
APPC can interface between two or more CICS sys-
tems. However, it can also be used to allow a System/
38, System/36, or other LU 6.2-capable system to
communicate with CICS. The underlying concept of
LU 6 formats and protocols is that the end points
have agreed to exchange architected message models.
This basic agreement of support enables potentially
differing systems to exchange meaningful data. Al-
though this may seem simple by today’s standards,
it has taken some years to achieve. LU 6.2 may very
well be the key to future networking of systems.

The initial support of D B ~ by CICS is significant in
more than merely its access to new function. The
D B ~ attachment to CICS uses a new interface called
Task Related User Exits, or sometimes the Resource
Manager Interface (RMI). This new CICS interface has
been put in place to accommodate non-clcs software
that is intended for use by CICS application programs.

274 YELAVICH

The significance of this new interface is that CICS
need not be further involved with any non-acs code.
No other special interfaces are required to permit
the use of non-cIcs code with CICS applications.
Through the use of RMI, CICS and its related products
are now able to achieve release independence.

RMI permits the developer of a resource manager
(such as D B ~) to activate code asynchronously with
respect to CICS (before or after CICS initialization).
R M I also provides a means by which a CICS applica-
tion program can issue function requests to the
resource manager and receive the architected re-
sponse. Also very important is the provision of a
commit/abort architecture. That is, when a CICS
application issues a syncpoint request or when it
abnormally terminates, such events are communi-
cated to any connected resource manager so that it
can take similar action on those resources for which
it is responsible.

These and many other examples could be cited to
demonstrate advances in hardware and software
technology that have created new environments and
new opportunities for new and existing CICS users.
The expectation has been that products such as CICS
provide timely support of new facilities and remove
any major inhibitors to the user’s system growth.
The process just discussed has led to crcs/vs today,
which is shown schematically in Figure 5.

ClCS in the future

Consider Figure 6 as we look forward into the re-
mainder of this decade and further into the 1990s.
Here are some thoughts those of us who function as
system developers should give to requirements of
future systems. Here, the systems engineer of today
contemplates the direction for systems of the future.
Up to now, the developers of CICS have attempted to
provide balanced releases. They have tried to give
these releases something for all users by providing
advances in numerous areas. One might attempt .to
categorize these areas in the following way.

Processors and operating systems. If CICS is to con-
tinue as a strategic base product, providing environ-
mental management for terminal-oriented transac-
tion systems, it seems natural to assume that it
should function in large- as well as small-systems
environments. At the so-called high end, today’s
capacity of 100 transactions per second might well
be extended to perhaps 500 transactions per second
in the next decade. To some users, a 500-transaction-

IBM SYSTEMS JOURNAL, VOL 24. NOS 3/4. 1985

Figure 5 CICSNS today

BDAM

VSAM
ISAM

DUI
SCUDS
DB2

SYSTEMI370
43xx
303X
308X
309X

BTAM
TCAM
ACFITCAM
ACFNTAM

f
1050
274X
3740
3767
CMCT

2260
327X
310X
317X
3290

32XX
328X

2770
2780
3770
3780

R775

I

b IBM SYSTEMS JOURNAL. VOL 24. NOS 3/4. 1985
YELAVICH 275

-. . .
DISPLAYWRITER
PERSONAL
COMPUTER

6670
SCANMASTER

NETWORK SIZE APPROXIMATELY 5000 TERMINALS

36XX
47xx
52XX
3790
8100
511
513
517
5123

Figure 6 The strategic role of CICSNS

.. .
ALPHANUMERIC TEXT
GRAPHICS

ALPHANUMERIC

I..

,..

per-second system may sound unrealistic, but with
the advent of low-cost terminal devices, consumer
or point-of-sale terminals, intelligent work stations,
personal computers, etc., the size of networks is
expected to increase dramatically. With that growth
will come a corresponding increase in message or
transaction rate. At the low end, CICS functions today
on an I B M 4300-class machine. With intelligent work
stations (1ws)”such as the IBM Personal Computer,
PC/XT, or PC/AT-haVing System/370 instruction
capabilities and sizable storage capacities, there is a
natural expectation that system or application code

that was once considered appropriate only for host
machines might now be considered for placement
and use on an IWS.

Thus we should strive to understand and document
the requirements for high-transaction-rate systems.
Such systems have the ability to distribute their
workload, both data and applications, across multi-
ple processors in a tightly coupled system or across
IWS within a network. In order to achieve the
throughput implied by such systems, host nodes and
IWS must work in concert.

276 YELAVICH IBM SYSTEMS JOURNAL, VCL 24, NOS 3/4, 1985

Networks and terminals. Probably the greatest
growth challenge for a acs-based system to deal with
will be the expected large numbers of IWS that will
be used in the coming decade, together with greater
connectivity to other CICS- or LU 6.2-capable nodes
using Intersystem Communication (ISC). This im-
plies increased use of transaction routing, function
shipping, and distributed transaction processing. The
user will expect to have data processing capabilities

Large networks will pose new
requirements for the definition of

such networks.

local to where the need exists and relevant data and
applications accessible by other nodes within the
network. Equally, an IWS user will expect to have
access to applications and data, with security under-
stood, anywhere in the network.

Large networks will pose new requirements for both
the definition and the management of such networks.
Compared to early methods of resource definition,
today’s requirement indicates the need for more
dynamic definition and recognition of resources to
be used with on-line systems such as CICS. This
applies to all types of resources, not just terminals.
Resource definitions will be shared among all using
subsystems and will be more global in nature.

CICS and business data. Probably no one data or-
ganization will be adopted by all users in the near
term. This comes in part from the observation that
the usability of CICS in the past has been attributed
to its support of both standard data management
and data base management systems. VSAM should
continue as the strategic, standard file access method,
perhaps to evolve to a similar but even more com-
prehensive data management facility in the 1990s.

During the remainder of the 1980s CICS users are
expected to increase their use of relational data base
management systems such as D B ~ and SLS/DS. Hier-
archical data base systems are also expected to grow

IEM SYSTEMS JOURNAL VOL 24, NOS 3/4. 1985

in both number and size, the expansion being aided
by facilities such as IMS Data Sharing. This makes
resource sharing possible among batch and on-line
systems, on the same or adjacent machines, and with
complete integrity.

Applications. COBOL has been the predominant
choice of programming language among CICS users
since 1974, and it is expected to remain a popular
choice for some time to come. Application genera-
tors or aids have been produced to assist the user
with the definition and implementation of new or
changed applications. The need for more and greater
application development assistance is expected to
increase. Most users are expected to employ multiple
programming languages, tools, and aids to meet their
requirements for application development and
maintenance.

The IBM Cross Systems Product (CSP) is perhaps a
representative application development aid; it assists
the user with both the creation and the execution of
his application. The IBM Screen Definition Facility
(SDF) is another current product that is indicative of
the type of aid which can assist the application
developer.

VM/SP has made its Conversational Monitor System
(CMS) facilities as well as compilers usable on the IBM
P c / n and PC/AT. For those CICS users who already
do application development under VM or who are
considering the use of VM for application develop-
ment, this also may be indicative not only of an
offload of host work to IWS but also of enhancing
the use of IWS as an application development ma-
chine.

CICS itself will probably continue to focus on provid-
ing environmental facilities. That is, the CICS user
should expect to be able to run in current operating
systems, use current access methods, implement ap-
plications using current programming languages,
and utilize available application development aids.
CICS has repeatedly indicated the strategic impor-
tance of the command-level interface. Thus one
would expect users to code to that interface or, where
application generators are used, to produce execut-
able code that also uses the command-level interface.

Packaging and installation. In recent years and in
recent CICS releases, there has been a movement
toward more pregenerated code or systems. In prior
decades, many users were often resource-con-
strained, so that tailoring or customizing of systems

YELAVICH 277

was extremely important. With increasing capacities
at lower cost, such concern has diminished. Atten-
tion is now being focused on other than the physical
installation of software products. The user today
seems prepared to install and use pregenerated sys-
tems, which suggests object code installation and
service. The need for code modification and/or
unique system generation seems to have declined.
The trend of need for user exits or extensions of base
code probably will continue.

In Version 1 Release 2.0 in 1976, CICS introduced
the concept and support for both source- and object-
level compatibility. This has been extremely impor-
tant to users with large inventories of applications
and allows the customer to continue using existing
programs that do not require recompilation due to
the installation of a new release of CICS.

Other areas of interest. As we look forward, CICS
developers must also consider aspects of systems,
applications, and software products that perhaps did
not receive sufficient attention in the past. Now,
however, not only are they affordable but they are
also increasing in importance and value to today's
user of data processing. The following are a few of
these areas of interest.

High availability. Many users have wanted high
availability, but previously they may not have been
able to justify the system investment needed to in-
crease or ensure higher availability. Today, CICS can
contribute to higher availability and faster restart,
through the use of such facilities as MRO. CICS devel-
opers have indicated their intention to support the
MVS Extended Recovery Facility (XRF).

Continuous operation. For many users, their data
processing has shifted from batch systems to the
long-running, on-line systems of the present. The
application investment in on-line systems has cre-
ated the expectation of almost unlimited accessibility
of those systems. This implies that the designer and
implementer of on-line systems now must provide
for maintenance and change of the system with
minimum disruption to the end user. Maintenance
facilities provided should permit transition to new
or redefined systems without affecting the end user.

New applications and environments. Transaction
processing systems, such as CICS, have done well to
date with applications dealing mostly with character-
type output devices such as display terminals. With
the considerable power of today's systems and the

278 YELAVICH

expectation of even greater processing power in the
future, systems should be able to grow into areas not
heretofore considered viable or feasible. Some of the
systems growth of the near future will come from
such technologies as on-line business graphics. Per-
haps image or facsimile processing can also be con-
sidered as application enhancements.

The challenge for CICS developers is this: As terminal
networks grow and invite more use of existing appli-
cations, and as new devices and new processes are
implemented, an expectation will exist for the un-
derlying components to support such systems.

Concluding remarks

This paper has briefly described the past, during
which CICS came into being to address major user
requirements for transaction processing. We have
touched on some of the changes that have occurred
in both hardware and software which not only af-
fected CICS and motivated a change or enhancement,
but also enhanced the ability of CICS to serve its
users. We have looked at the present with a view
toward the foreseeable future. CICS users and IBM
employees have contributed to the art of systems
engineering in the growth and history of CICS. We
look forward to continuing this joint interest in
systems in the future.

General references

IBM Clrstomer 1nfi)rmution Control Systcvnl l'ir/ual Storaxe. Di-
rection and Strulq!*, G320-5890-1. 1BM Corporation; available
through IBM branch offices.
C'lrstomcv In/i)rmu/ion C'onlrol Sy,stun. Program Prodm Version
1.6 und 1.7. Progrum Nwnhrrs 5740-XXI (CICS/VS) und 5746-
XX3 (<'ICs/ VS), G'cwcml In/i,rrna/ron. GC33-0 155-2, IBM Cor-
poration: available through 1BM branch offices.

0. M. Yelavich IBM Nultonul Atuormt.s Division. 520.5 N . O'Con-
nor Roud, P.O. B0.v 160969, Irvrng. TL,.\-u.s 75016. Mr. Yelavich
joined IBM in 1957. He is currently working in the IBM NAD
Dallas Systems Center-Large. Mr. Yelavich has been involved
with CICS product support since 1968: he earned an IBM Out-
standing Contribution Award in 1970 for the development of
CICS education materials. In 1983 he received an ISM Exceptional
Achievement Award from the System Products Division for his
contributions regarding CICS. As of September 1985, he advanced
to Senior Technical Staff Member: he is the first marketing division
employee to hold that position.

Reprint Order No. (3321-5253.

IBM SYSTEMS JOURNAL, VOL 24. NOS 3/4. 1985

