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Discussed  in  this  paper are  the  underlying  principles of 
a programmer  productivity  measuring  system.  The  key 
measures  (or metrics)  are  people and  lines  of  code. 
Definitions  of  these  metrics are refined  and  9ualified, 
according to the  conditions  under  which  they  are  used. 
Presented  also  is  a  data  base  design  for  retaining  and 
retrieving  these  metrics  under  a  wide  variety  of  appli- 
cations  and  other  circumstances.  Depending  on  defini- 
tions,  applications, and  other  circumstances,  produc- 
tivity  measurements  may M e r  widely. On the  other 
hand,  after  suitable  productivity  metrics  have  been  de- 
fined,  consistency of application of the same  metrics 
yields  comparable  results  from  project to project. 

B y the mid-l970s, many  factors were contribut- 
ing to a  renewed  interest  in  software  productiv- 

ity.  Hardware  costs were  decreasing  faster than soft- 
ware  costs, so that software  costs  were  becoming an 
increasing  portion  of the data processing  budget  even 
if  they  remained constant in  absolute  values. The 
labor-intensive nature of software  development  also 
indicated that this  would  be  a continuing trend.' 
Adding to the  concern  over computer software  costs 
was an apparent decline in overall  productivity in 
the United  States.2 

However,  a  means of measuring  large-system  soft- 
ware  productivity was no longer  available.  Products 
had  previously  been  packaged  as  system  releases, 
thereby  providing the focal point for  collecting  pro- 
ductivity data. Improvements made  in  the  software 
delivery  process  allowed  products to be  released in- 
dependently  of  the  system.  With the end of system 
releases, the control point  for  collecting  productivity 
data ceased to exist.  Other  changes  were  also  occur- 
ring.  Resources  used to produce  products were  ac- 
counted  for  differently, and precision  in  counting 

lines of code was increasing.  These  changes  made 
comparisons of current productivity  with that of the 
past  difficult if not  impossible. 

Productivity  measurement  system 

In response to the need to collect and preserve con- 
sistent  productivity  measurements, the IBM Data 
Processing  Product Group established  a  Process  Pro- 
ductivity Department. The mission of this depart- 
ment was to design and develop  a  software  process 
Productivity  Measurement  System  for  large-system 
products. This would  provide the means  for  setting 
goals,  tracking  results,  improving  resource  planning, 
and increasing  awareness  of the need to control 
software  development  costs. The success  of the  mea- 
surement system  depends on the application of stan- 
dard measures of productivity, or metrics.  Success 
also  requires  a  method of collecting and storing 
information in  a  consistent way and the use of 
existing  metrics to minimize the effect  of the  collec- 
tion process on the development  process. 

To this end, we  began an extensive  review of the 
literature on software  productivity. This process  led 
to the conclusion that lines of code (LOC) per  person 
or per  dollar were the best  candidates  for  productiv- 
ity rnetric~.~ 
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Large-system products are developed  using  assem- 
bler  language or a  high-level  system  development 
language  such as Programming  Language  System 
(PLS). A tool for counting assembler and PU lines of 
code  underwent  a  major  revision to provide  a  higher 
degree  of  consistency and accuracy than had  previ- 
ously  been attained. That tool has  become  a standard 
method for counting lines of  code. 

In  parallel  with the ~ o c  counter, enhancements to a 
software  cost-estimating  system  have  provided  a 
method  for  collecting actual and estimated product 
costs in the metrics people and dollars in a standard 
format. The cost-estimating  system  also contains 
product availability dates and numbers of lines  of 
code,  as  defined by the counting tool.  These param- 
eters  have  become the basis  for standard productivity 
metrics for large-system products. 

The Productivity  Measurement  System  has  also  re- 
quired the development  of  a data base to preserve 
the data and allow  for  easy  access for analysis. 

This paper  describes  what we have  learned  through 
the use  of the Productivity  Measurement  System. 
We  discuss the fallacy  of depending on numbers for 
comparison without  using standard definitions to 
ensure  consistency in data collection.  Better than 
productivity numbers alone is the ability to establish 
a  long-term trend as provided by process,  tools, and 
productivity  factors. Thus, the productivity data 
show  such trends as the effect  of  varying  lines of 
code, the effect  of various  staffing  definitions, and 
the variability in rates  caused  by product size and 
class or new and modified  code  as  a  percentage  of 
total code  shipped. 

We  have further concluded that trends are of greater 
value than absolute numbers, although they are not 
without limitations. Trends require time to manifest 
themselves. There is no guarantee that as many as 
eight  years are adequate to establish  a trend. For 
large  systems  two- to three-year trends may be mis- 
leading.  In our studies, we have  normalized the data 
collected so that the lowest  productivity rate is taken 
as one ( 1 .O), and the other rates have  been  calculated 
relative to the lowest  rate. 

As stated earlier in  this  paper, there is a  need to 
develop parameters for measuring  large-system prod- 
ucts. We shall  see later why the metric people was 
chosen in preference to development  dollars for  mea- 
suring  productivity  rates.  Discussed  first are lines  of 
code and people, as used  by our measurement sys- 
tem; the data base  is then described. 
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Lines of code 

Lines ofcode ( ~ o c )  as a  productivity metric generates 
much  discussion.  Although  a  search of the available 
literature reveals  inconsistencies and problems  in 
using ~ o c ,  it continues to be the most  widely  used 
productivity m e t r i ~ . ~  

There are alternatives to ~ o c ,  such as Halstead's 
l e t~g th~ .~  and Albrecht's function points.6 Each  has 
been  shown to have  a strong correlation  with ~ o c  or 
with source  lines ofcode (s~oc).  Most  of the research 

Most  large-system  development 
effort is spent  on  enhancements  to 

existing  products. 

and studies of  software  engineering  metrics  have 
dealt  with their application to new code  only. The 
application of the metrics length and function points 
to modified  code has not been  adequately  defined or 
explored  for  large  systems.  However,  most  large- 
system development effort  is  spent on enhancements 
to existing products, support for  extending the Sys- 
tem/370 architecture, and additional hardware s u p  
port. Thus a  significant amount of old  code  requires 
modification and maintenance. 

For our purposes, LOC measures the change and/or 
new source  instructions-designated as csI-for the 
release  of a product. CSI measures non-commentary- 
executable and nonexecutable  source  statements.  In 
PLS, a statement ends with  a  semicolon (;), except 
for IF, THEN, SELECT, and WHEN, which are counted 
as instructions. Further, each  unfactored  element  of 
a DECLARE is an instruction. In  assembler  language, 
each statement is an instruction. 

An automated tool  provides the accuracy and con- 
sistency  required to measure the LOC. The tool  uses 
a  special  flag on the card image  for the added or 
modified statement. Some editors have  been  modi- 
fied to support the automatic insertion of  flags. 

People 

For  productivity measurement, we divide the devel- 
opment people into three groups,  designated as di- 
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people are used  for  productivity  measurements;  lo- 

The  process  productivity  data  base 
contains  information  on  over  four 

hundred  product  releases  from  eight 
development  locations. 

cation support people are included for completeness 
only. Note that all  activities  listed under directs are 
included  in the total development category as well. 

Directs 
Architecture and system  design 
Design,  code, and unit test 
Test 
Publications 
Performance 
Other (technical  consulting,  build, contract man- 
agement) 

Total development 
Directs 
Feasibility studies 
Abandoned  effort 
Authorized  program  analysis report (APAR) certi- 

Customer walk-through 
Second  line management and higher,  if not 

fication 

counted as direct 
APAR forward  fit 
Other customer service 
Secretarial support 
Tools development 
Early support program 
Process  technology 
Business planners 

Location support 
Assurance 
Data processing support 
Site support 
Financial 
Personnel 
Programmer training 
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mation on over four hundred product releases trom 
eight development locations and represents  over one 
billion  dollars  of  development  effort. The primary 
sources of data are software cost estimates. These 
estimates are produced at the request of the product 
development manager at significant points in  the 
development  cycle. For productivity  measurements, 
data from the following three checkpoints are con- 
sidered  relevant  for  analysis: 

Development funds committed to the product, 
including accumulated actual and projected  re- 
sources 
The product as announced, including accumu- 
lated actual and projected  resources 
The product after announcement, including  ac- 
cumulated actual resources 

The following  is  a  list  of the fields maintained for 
each product in the productivity data base: 

Identification information 
Product name 
Cost estimate number 
Development  location 
Product classification 
Announcement date 
First customer ship date 

Lines of code in product 
Total CSI, i.e.,  new plus  modified  change  source 

New CSI 
Modified CSI 
Percent  of CSI in  a  high-level  language 
Total shipped  source instructions 

Resources in person-months and dollars 
System  design and architecture 
Design,  code, and unit test 
Test and build 
Publications 
Performance 
Other 
Data processing  (dollars only) 

Additional information may be collected  for  analy- 
sis, depending on local  requirements. Also available 
by  year for  each  location are the percentage of directs 
and the total number of development  people. 

instructions (CSI) 
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Measurements 

Software  productivity  measurements were initially 
stated  in  both  dollars  per CSI and CSI per  person- 
month. Both  measures  were  found  frequently in our 
literature search, and they  appeared  to be equally 
useful at the time they  were  used. Dollars accounted 
for a greater portion of the resources  expended than 
people alone, because  dollars  included-in addition 
to the cost  of  people-overhead and support costs. 
Because  dollars  have  such  disadvantages  as  local 
variations  in  overhead and inflation  rates,  productiv- 
ity  measurements  are  adversely  affected during pe- 
riods of  higher  inflation  unless  dollars are normal- 
ized.  To  avoid  normalizing  dollars, person-months 
and lines of code  have  been  designated the preferred 
parameters for  most  of our productivity  measure- 
ments. 

Before  making that designation,  however, we com- 
pared the dollar-per-csI rate with the cs1-per-people 
rate, as  shown in Figure 1. Usually the cost  per CSI 
is  inversely proportional to the CSI per  person- 
month. Because the dollar and people  productivity 
rates  appeared to be so closely  related, CSI per  person- 
month became our primary measurement standard. 
However,  dollars  are  still  collected  for  each product 
and are used to analyze products where  more than 
ten percent of the expense  is  accrued by an outside 
vendor. For these  products, the person-month  is not 
relevant to a study of the large-system  development 
process. 

Data were  collected on the total number of  devel- 
opment people and the percentage of direct  people 
at each  location. It became apparent after data had 
been  collected  for  several  years that the definition  of 
directs was not as consistent as had  originally  been 
believed.  After 1979, the trend was to increase the 
percentage of the total number of development  peo- 
ple counted as direct.  Although  this action better 
established the actual expenses  for a product, the 
productivity rate measured in terms of direct  people 
was reduced. 

Of course,  there  is  no  precise  method  for  normalizing 
direct  people.  However, an estimate was made of the 
effect of moving  more of the total number of devel- 
opment people into the direct  people count. Taking 
this into account, the adjusted  productivity rate 
shows a seven  percent compound growth rate from 
1977 to 1984. 

The decision was made at the end of 1983 to use 
total development people (TDP) in  place  of  direct 
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Figure 1 Comparison of dollars per change  source 
instruction (CSI) and  CSI per person-month 
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people  in future productivity  measurements. This 
change  essentially eliminates an inconsistency 
caused by counting direct people  only. The expanded 
base  used to compute productivity  rates now in- 
cludes  most of the support resources. A count of the 
TDP has  been  tracked  since 1977, making  it  possible 
to reconstruct the trends using CSI and TDP. 

The immediate effect  of  such a change  is to lower 
the absolute numbers for the productivity  rates  as- 
sociated  with  large-system  development. Of greater 
significance  is the year-to-year  variation  in produc- 
tivity  rates that became  more pronounced. The CSI/ 
TDP ratio is  calculated  using the CSI shipped  in a 
given  year,  divided by the total number of develop 
ment people  available that year  for product devel- 
opment and support. Because  code  is not shipped at 
a constant rate, there are years of higher and lower 
productivity.  In  Figure 2, the year-to-year  changes 
are  shown  with a nonlinear regression  curve  fitted to 
the data. This curve  shows that the compound 
growth rate in  productivity  is about seven  percent, 
which  is  similar to estimated  productivity  when the 
direct  people  were  normalized. This measure is very 
useful in showing  overall trends, and it  is  consistent. 
On the other hand, it  has  limited application in the 
analysis by product class,  activity distribution, and 



Figure 2 Year-to-year  changes  in  productivity  overlaid  with 
a  fitted  compound  growth  rate  curve  showing  a 
nonlinear  increase  in  productivity 
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Figure 3 Relative  productivity  by  program  size  and  product 
class 
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size. Therefore, direct people are still tracked to 
provide  insight into the effect of tools and process 
changes at the detail level. 

Although the overall productivity trend for  large- 
system products is  increasing at the rate of  seven 
percent, individual products show  wide  variability. 
To understand this variability, we investigated the 
characteristics of the products. Each product in the 
data base  has  been  given one of the following  classi- 
fications, according to  'the system function it sup- 
ports: control program, control program support, 
subsystem controller, data base  access, communica- 
tions, and languages.  At  first, productivity rates were 
compared by class or size.  We found that the prod- 
ucts  classified  as communications have the lowest 
average productivity and that languages  have the 
highest  measured productivity in terms of CSI and 
direct people.  Differences in functional complexity 
between the product classes are the most  likely  ex- 
planation for this changeability in productivity rates. 
In terms of  size alone, as the CSI increased, produc- 
tivity also increased. By 1982, we had sufficient data 
to compare productivity by  class and size  (Figure 3). 
The average productivity difference  between  small 
communications products and small  language prod- 
ucts is not significant. The average productivity for 
large communications products is twice that for 
small communications products. The difference in 
productivity between  large  language products and 
small communications products is about 4 to 1. 

Productivity rates  range  from one  to eleven  for 
ninety percent of the products. The fact that the 
products with the smallest CSI are on the average the 
least productive is surprising, because many studies 
have  shown just the opposite-the  larger the product 
the lower the productivity.'  Paulsen' and Boydstong 
compared productivity percentage  using the ratio of 
change  code (the CSI) to the total product code 
shipped, as  shown in Figure 4. This gives an idea  of 
the effect on productivity of  modifying product code 
compared to producing all-new product code. It 
appears that modified-to-new-code productivity dif- 
ferences are greater than productivity differences be- 
tween product classes. 

Variability  in  definitions 

The greatest  range of productivity we found in the 
product set we studied was about eleven to one. 
However, productivity rates ranging as high as 56 to 
one have  been reported in the software productivity 
literature.","  Because there are wide variations in 
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measurement definitions, we  used the Large-System 
Productivity Data Base to try to understand the effect 
varying the definitions for  lines of code and people. 
We substituted assembler-equivalent  code  for CSI. 
We then used  people and several alternative defini- 
tions for counting lines of code to recalculate the 
large-system productivity rate. The results of  using 
these alternative definitions are discussed  in the next 
two  sections. 

Assembler equivalent. Many development organi- 
zations produce products using multiple languages. 
In IBM, both assembler and high-level  languages are 
used. When their respective  uses remain propor- 
tional to  one another over time, the distinction be- 
tween  languages is not  significant  for measurements. 
The trend for  the  large-system products has  been to 
increase the use  of  high-level  languages. A high-level 
language requires fewer source code statements for a 
given function than does assembler language.12 This 
situation gives the impression that productivity de- 
creases or remains constant when  assembler lan- 
guage  is  replaced by a high-level  language,  when  in 
fact it may  have  increased. 

A way  of comparing assembler and high-level lan- 
guages  is to convert the high-level  language statement 
counts to equivalent assembler  language statement 
counts. Figure 5 shows  relative productivity based 
on equivalent assembler  language  code. The expan- 
sion rate from the PLS compiler to the assembler 
equivalent is an estimate based on a sample of our 
own data and those  from other sources.’  Whatever 
factor is selected, the result  is to increase the produc- 
tivity rate. The use  of assembler-language-equivalent 
instructions requires that the tool used to count 
source statements be  modified to count the new and 
modified  assembler  language statements generated 
by the compiler for CSI. Normalizing to assembler- 
equivalent instructions (for CSI) has the effect of 
doubling the compound growth rate for large-system 
products. 

For the  large-system products, data on productivity 
factors such  as  those  in use  by Walston and Felix13 
and BoehmI4 are not collected. There is  general 
agreement, however, that people and their experi- 
ence, data processing support, tools, and process 
control are all factors that contribute to increased 
productivity. There is continued focus on these  fac- 
tors as the means to sustain future productivity and 
quality improvements. 

Variability in people and lines of code. Figure 6 
shows the relative expansion in productivity under 
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Figure 4 Relative  productivity  by  product  class  using  the 
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Figure 6 Relative  numbers of lines  of  code  and  people 
compared  using  several  definitions 

several definitions of people and LOC for the same 
set of products. Each counting method is  useful for 
achieving a given objective, such as estimating code 
development or service  costs.  Difficulties occur when 
the rates are used out of definitional context, and, as 
indicated previously, the resulting variability can be 
quite significant. 

It is sometimes useful to analyze the productivity of 
the design, code, and unit test resources only. This 
productivity rate is four times that of the CSI per total 
number of development people. For a productivity 
calculation, the people may be only those related to 
design, code, and  unit test. 

Consider the effect  of variability in  the definition of 
LOC. In  place of CSI, suppose the total of shipped 
source instructions (SI) is used as a measure. SSI 
includes the new and modified code plus the base 
code shipped as a product. SSI is  useful for estimating 
field  service costs and represents the  product size as 
seen in the field. This measure can be as much as 
thirteen times greater than CSI per total number of 
development people (TDP). 

The reuse of code has been cited as a method for 

improving productivity.” Macros and included code 
are examples of  reused code; these have  been incor- 
porated into large-system products for many years. 
When LOC is measured after macro expansion and 
the includes have been  resolved, the estimated pro- 
ductivity is  fifty-two times that for CSI per TDP. 

There  are  other ways  of looking at productivity, such 
as the previously  discussed assembler-equivalent 
LOC, the  number of unique operating systems sup- 
ported by common code, and  the  count of card 
images  versus source statements. The estimated pro- 
ductivity possible using various definitions exceeds 
two hundred fifty times that for our CSI per total 
number of development people. 

Concluding remarks 

Software productivity rates are not easily compared. 
There is  significant variability in rates, depending on 
the  standard definitions used for counting lines of 
code and people. Although comparisons based on 
different definitions may not be commensurable, a 
measurement system that is consistent and accurate 
in data collection for a specific  set  of products and 
processes can provide useful information on factors 
that affect long-term trends in productivity. Within 
a process and product set, the variability caused by 
functional complexity between classes of products is 
not as great as the differences  in productivity rates 
between  new and modified products. 

While the overall trends based on  information avail- 
able today are very  useful, future productivity mea- 
surements must focus on  the tasks within the process 
stages in greater detail. Thus, a future requirement 
will  be to  understand  the effect on productivity and 
quality of  specific changes in  processes and tools. 

Increased attention to productivity and measure- 
ments is leading to a rethinking of software metrics. 
Today there are a number of  possible alternatives to 
lines of code and complexity measurements. In place 
of lines  of code there is the concept of function, or 
“chunks,”  but this metric requires further research. 
Function  points as a metric is better developed as  an 
alternative to lines of code, but this metric requires 
study of its application to modified code for large- 
system products. To account for complexity, there 
is the possibility  of combining metrics of  varying 
complexity, as proposed by  Bays16 and Jones.” 
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