
Programming process
productivity measurement
system for System/370

by M. J. Flaherty

Discussed in this paper are the underlying principles of
a programmer productivity measuring system. The key
measures (or metrics) are people and lines of code.
Definitions of these metrics are refined and 9ualified,
according to the conditions under which they are used.
Presented also is a data base design for retaining and
retrieving these metrics under a wide variety of appli-
cations and other circumstances. Depending on defini-
tions, applications, and other circumstances, produc-
tivity measurements may M e r widely. On the other
hand, after suitable productivity metrics have been de-
fined, consistency of application of the same metrics
yields comparable results from project to project.

B y the mid-l970s, many factors were contribut-
ing to a renewed interest in software productiv-

ity. Hardware costs were decreasing faster than soft-
ware costs, so that software costs were becoming an
increasing portion of the data processing budget even
if they remained constant in absolute values. The
labor-intensive nature of software development also
indicated that this would be a continuing trend.'
Adding to the concern over computer software costs
was an apparent decline in overall productivity in
the United States.2

However, a means of measuring large-system soft-
ware productivity was no longer available. Products
had previously been packaged as system releases,
thereby providing the focal point for collecting pro-
ductivity data. Improvements made in the software
delivery process allowed products to be released in-
dependently of the system. With the end of system
releases, the control point for collecting productivity
data ceased to exist. Other changes were also occur-
ring. Resources used to produce products were ac-
counted for differently, and precision in counting

lines of code was increasing. These changes made
comparisons of current productivity with that of the
past difficult if not impossible.

Productivity measurement system

In response to the need to collect and preserve con-
sistent productivity measurements, the IBM Data
Processing Product Group established a Process Pro-
ductivity Department. The mission of this depart-
ment was to design and develop a software process
Productivity Measurement System for large-system
products. This would provide the means for setting
goals, tracking results, improving resource planning,
and increasing awareness of the need to control
software development costs. The success of the mea-
surement system depends on the application of stan-
dard measures of productivity, or metrics. Success
also requires a method of collecting and storing
information in a consistent way and the use of
existing metrics to minimize the effect of the collec-
tion process on the development process.

To this end, we began an extensive review of the
literature on software productivity. This process led
to the conclusion that lines of code (LOC) per person
or per dollar were the best candidates for productiv-
ity rnetric~.~

Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 24. NO 2,1985 168 FLAHERTY

Large-system products are developed using assem-
bler language or a high-level system development
language such as Programming Language System
(PLS). A tool for counting assembler and PU lines of
code underwent a major revision to provide a higher
degree of consistency and accuracy than had previ-
ously been attained. That tool has become a standard
method for counting lines of code.

In parallel with the ~ o c counter, enhancements to a
software cost-estimating system have provided a
method for collecting actual and estimated product
costs in the metrics people and dollars in a standard
format. The cost-estimating system also contains
product availability dates and numbers of lines of
code, as defined by the counting tool. These param-
eters have become the basis for standard productivity
metrics for large-system products.

The Productivity Measurement System has also re-
quired the development of a data base to preserve
the data and allow for easy access for analysis.

This paper describes what we have learned through
the use of the Productivity Measurement System.
We discuss the fallacy of depending on numbers for
comparison without using standard definitions to
ensure consistency in data collection. Better than
productivity numbers alone is the ability to establish
a long-term trend as provided by process, tools, and
productivity factors. Thus, the productivity data
show such trends as the effect of varying lines of
code, the effect of various staffing definitions, and
the variability in rates caused by product size and
class or new and modified code as a percentage of
total code shipped.

We have further concluded that trends are of greater
value than absolute numbers, although they are not
without limitations. Trends require time to manifest
themselves. There is no guarantee that as many as
eight years are adequate to establish a trend. For
large systems two- to three-year trends may be mis-
leading. In our studies, we have normalized the data
collected so that the lowest productivity rate is taken
as one (1 .O), and the other rates have been calculated
relative to the lowest rate.

As stated earlier in this paper, there is a need to
develop parameters for measuring large-system prod-
ucts. We shall see later why the metric people was
chosen in preference to development dollars for mea-
suring productivity rates. Discussed first are lines of
code and people, as used by our measurement sys-
tem; the data base is then described.

IBM SYSTEMS XKIRNAL. VOL 24. NO 2,1985

Lines of code

Lines ofcode (~ o c) as a productivity metric generates
much discussion. Although a search of the available
literature reveals inconsistencies and problems in
using ~ o c , it continues to be the most widely used
productivity m e t r i ~ . ~

There are alternatives to ~ o c , such as Halstead's
l e t~g th~ .~ and Albrecht's function points.6 Each has
been shown to have a strong correlation with ~ o c or
with source lines ofcode (s~oc). Most of the research

Most large-system development
effort is spent on enhancements to

existing products.

and studies of software engineering metrics have
dealt with their application to new code only. The
application of the metrics length and function points
to modified code has not been adequately defined or
explored for large systems. However, most large-
system development effort is spent on enhancements
to existing products, support for extending the Sys-
tem/370 architecture, and additional hardware s u p
port. Thus a significant amount of old code requires
modification and maintenance.

For our purposes, LOC measures the change and/or
new source instructions-designated as csI-for the
release of a product. CSI measures non-commentary-
executable and nonexecutable source statements. In
PLS, a statement ends with a semicolon (;), except
for IF, THEN, SELECT, and WHEN, which are counted
as instructions. Further, each unfactored element of
a DECLARE is an instruction. In assembler language,
each statement is an instruction.

An automated tool provides the accuracy and con-
sistency required to measure the LOC. The tool uses
a special flag on the card image for the added or
modified statement. Some editors have been modi-
fied to support the automatic insertion of flags.

People

For productivity measurement, we divide the devel-
opment people into three groups, designated as di-

FLAHERTY 169

people are used for productivity measurements; lo-

The process productivity data base
contains information on over four

hundred product releases from eight
development locations.

cation support people are included for completeness
only. Note that all activities listed under directs are
included in the total development category as well.

Directs
Architecture and system design
Design, code, and unit test
Test
Publications
Performance
Other (technical consulting, build, contract man-
agement)

Total development
Directs
Feasibility studies
Abandoned effort
Authorized program analysis report (APAR) certi-

Customer walk-through
Second line management and higher, if not

fication

counted as direct
APAR forward fit
Other customer service
Secretarial support
Tools development
Early support program
Process technology
Business planners

Location support
Assurance
Data processing support
Site support
Financial
Personnel
Programmer training

170 FLAHERW

mation on over four hundred product releases trom
eight development locations and represents over one
billion dollars of development effort. The primary
sources of data are software cost estimates. These
estimates are produced at the request of the product
development manager at significant points in the
development cycle. For productivity measurements,
data from the following three checkpoints are con-
sidered relevant for analysis:

Development funds committed to the product,
including accumulated actual and projected re-
sources
The product as announced, including accumu-
lated actual and projected resources
The product after announcement, including ac-
cumulated actual resources

The following is a list of the fields maintained for
each product in the productivity data base:

Identification information
Product name
Cost estimate number
Development location
Product classification
Announcement date
First customer ship date

Lines of code in product
Total CSI, i.e., new plus modified change source

New CSI
Modified CSI
Percent of CSI in a high-level language
Total shipped source instructions

Resources in person-months and dollars
System design and architecture
Design, code, and unit test
Test and build
Publications
Performance
Other
Data processing (dollars only)

Additional information may be collected for analy-
sis, depending on local requirements. Also available
by year for each location are the percentage of directs
and the total number of development people.

instructions (CSI)

IBM SYSTEMS JOURNAL, VOL 24, NO 2,1985

Measurements

Software productivity measurements were initially
stated in both dollars per CSI and CSI per person-
month. Both measures were found frequently in our
literature search, and they appeared to be equally
useful at the time they were used. Dollars accounted
for a greater portion of the resources expended than
people alone, because dollars included-in addition
to the cost of people-overhead and support costs.
Because dollars have such disadvantages as local
variations in overhead and inflation rates, productiv-
ity measurements are adversely affected during pe-
riods of higher inflation unless dollars are normal-
ized. To avoid normalizing dollars, person-months
and lines of code have been designated the preferred
parameters for most of our productivity measure-
ments.

Before making that designation, however, we com-
pared the dollar-per-csI rate with the cs1-per-people
rate, as shown in Figure 1. Usually the cost per CSI
is inversely proportional to the CSI per person-
month. Because the dollar and people productivity
rates appeared to be so closely related, CSI per person-
month became our primary measurement standard.
However, dollars are still collected for each product
and are used to analyze products where more than
ten percent of the expense is accrued by an outside
vendor. For these products, the person-month is not
relevant to a study of the large-system development
process.

Data were collected on the total number of devel-
opment people and the percentage of direct people
at each location. It became apparent after data had
been collected for several years that the definition of
directs was not as consistent as had originally been
believed. After 1979, the trend was to increase the
percentage of the total number of development peo-
ple counted as direct. Although this action better
established the actual expenses for a product, the
productivity rate measured in terms of direct people
was reduced.

Of course, there is no precise method for normalizing
direct people. However, an estimate was made of the
effect of moving more of the total number of devel-
opment people into the direct people count. Taking
this into account, the adjusted productivity rate
shows a seven percent compound growth rate from
1977 to 1984.

The decision was made at the end of 1983 to use
total development people (TDP) in place of direct

IBM SYSTEMS JOURNAL, VM. 24, No 2. 1985

Figure 1 Comparison of dollars per change source
instruction (CSI) and CSI per person-month

II:
W a
(I)

1

CSI PER PERSON-MONTH

"

4

people in future productivity measurements. This
change essentially eliminates an inconsistency
caused by counting direct people only. The expanded
base used to compute productivity rates now in-
cludes most of the support resources. A count of the
TDP has been tracked since 1977, making it possible
to reconstruct the trends using CSI and TDP.

The immediate effect of such a change is to lower
the absolute numbers for the productivity rates as-
sociated with large-system development. Of greater
significance is the year-to-year variation in produc-
tivity rates that became more pronounced. The CSI/
TDP ratio is calculated using the CSI shipped in a
given year, divided by the total number of develop
ment people available that year for product devel-
opment and support. Because code is not shipped at
a constant rate, there are years of higher and lower
productivity. In Figure 2, the year-to-year changes
are shown with a nonlinear regression curve fitted to
the data. This curve shows that the compound
growth rate in productivity is about seven percent,
which is similar to estimated productivity when the
direct people were normalized. This measure is very
useful in showing overall trends, and it is consistent.
On the other hand, it has limited application in the
analysis by product class, activity distribution, and

Figure 2 Year-to-year changes in productivity overlaid with
a fitted compound growth rate curve showing a
nonlinear increase in productivity

RELATIVE
LINES
OF CODE
PER
PERSON-
YEAR
BASED ON
ONE
FOR 1977

YEARS

Figure 3 Relative productivity by program size and product
class

RELATIVE PRODUCTiViTY

THOUSANDS OF CSI
LINES

size. Therefore, direct people are still tracked to
provide insight into the effect of tools and process
changes at the detail level.

Although the overall productivity trend for large-
system products is increasing at the rate of seven
percent, individual products show wide variability.
To understand this variability, we investigated the
characteristics of the products. Each product in the
data base has been given one of the following classi-
fications, according to 'the system function it sup-
ports: control program, control program support,
subsystem controller, data base access, communica-
tions, and languages. At first, productivity rates were
compared by class or size. We found that the prod-
ucts classified as communications have the lowest
average productivity and that languages have the
highest measured productivity in terms of CSI and
direct people. Differences in functional complexity
between the product classes are the most likely ex-
planation for this changeability in productivity rates.
In terms of size alone, as the CSI increased, produc-
tivity also increased. By 1982, we had sufficient data
to compare productivity by class and size (Figure 3).
The average productivity difference between small
communications products and small language prod-
ucts is not significant. The average productivity for
large communications products is twice that for
small communications products. The difference in
productivity between large language products and
small communications products is about 4 to 1.

Productivity rates range from one to eleven for
ninety percent of the products. The fact that the
products with the smallest CSI are on the average the
least productive is surprising, because many studies
have shown just the opposite-the larger the product
the lower the productivity.' Paulsen' and Boydstong
compared productivity percentage using the ratio of
change code (the CSI) to the total product code
shipped, as shown in Figure 4. This gives an idea of
the effect on productivity of modifying product code
compared to producing all-new product code. It
appears that modified-to-new-code productivity dif-
ferences are greater than productivity differences be-
tween product classes.

Variability in definitions

The greatest range of productivity we found in the
product set we studied was about eleven to one.
However, productivity rates ranging as high as 56 to
one have been reported in the software productivity
literature."," Because there are wide variations in

IBM SYSTEMS JOURNAL, VOL 24, NO 2,1985

measurement definitions, we used the Large-System
Productivity Data Base to try to understand the effect
varying the definitions for lines of code and people.
We substituted assembler-equivalent code for CSI.
We then used people and several alternative defini-
tions for counting lines of code to recalculate the
large-system productivity rate. The results of using
these alternative definitions are discussed in the next
two sections.

Assembler equivalent. Many development organi-
zations produce products using multiple languages.
In IBM, both assembler and high-level languages are
used. When their respective uses remain propor-
tional to one another over time, the distinction be-
tween languages is not significant for measurements.
The trend for the large-system products has been to
increase the use of high-level languages. A high-level
language requires fewer source code statements for a
given function than does assembler language.12 This
situation gives the impression that productivity de-
creases or remains constant when assembler lan-
guage is replaced by a high-level language, when in
fact it may have increased.

A way of comparing assembler and high-level lan-
guages is to convert the high-level language statement
counts to equivalent assembler language statement
counts. Figure 5 shows relative productivity based
on equivalent assembler language code. The expan-
sion rate from the PLS compiler to the assembler
equivalent is an estimate based on a sample of our
own data and those from other sources.’ Whatever
factor is selected, the result is to increase the produc-
tivity rate. The use of assembler-language-equivalent
instructions requires that the tool used to count
source statements be modified to count the new and
modified assembler language statements generated
by the compiler for CSI. Normalizing to assembler-
equivalent instructions (for CSI) has the effect of
doubling the compound growth rate for large-system
products.

For the large-system products, data on productivity
factors such as those in use by Walston and Felix13
and BoehmI4 are not collected. There is general
agreement, however, that people and their experi-
ence, data processing support, tools, and process
control are all factors that contribute to increased
productivity. There is continued focus on these fac-
tors as the means to sustain future productivity and
quality improvements.

Variability in people and lines of code. Figure 6
shows the relative expansion in productivity under

IBM SYSTEMS XXIRNAL, VOL 24, NO 2, 1985

Figure 4 Relative productivity by product class using the

code shipped
ratio of percent of change code to total product

RELATIVE PRODUCTIVITY

e20 20-40 >40
PERCENT OF CSI CODE

Figure 5 Relative productivity based on equivalent

compound growth rate curve
assembler language code overlaid with a fitted

RELATIVE
LINES
OF CODE

PERSON-
PER

YEAR

ON ONE
BASED

FOR 1977

YEARS

FLAHERTY 173

Figure 6 Relative numbers of lines of code and people
compared using several definitions

several definitions of people and LOC for the same
set of products. Each counting method is useful for
achieving a given objective, such as estimating code
development or service costs. Difficulties occur when
the rates are used out of definitional context, and, as
indicated previously, the resulting variability can be
quite significant.

It is sometimes useful to analyze the productivity of
the design, code, and unit test resources only. This
productivity rate is four times that of the CSI per total
number of development people. For a productivity
calculation, the people may be only those related to
design, code, and unit test.

Consider the effect of variability in the definition of
LOC. In place of CSI, suppose the total of shipped
source instructions (SI) is used as a measure. SSI
includes the new and modified code plus the base
code shipped as a product. SSI is useful for estimating
field service costs and represents the product size as
seen in the field. This measure can be as much as
thirteen times greater than CSI per total number of
development people (TDP).

The reuse of code has been cited as a method for

improving productivity.” Macros and included code
are examples of reused code; these have been incor-
porated into large-system products for many years.
When LOC is measured after macro expansion and
the includes have been resolved, the estimated pro-
ductivity is fifty-two times that for CSI per TDP.

There are other ways of looking at productivity, such
as the previously discussed assembler-equivalent
LOC, the number of unique operating systems sup-
ported by common code, and the count of card
images versus source statements. The estimated pro-
ductivity possible using various definitions exceeds
two hundred fifty times that for our CSI per total
number of development people.

Concluding remarks

Software productivity rates are not easily compared.
There is significant variability in rates, depending on
the standard definitions used for counting lines of
code and people. Although comparisons based on
different definitions may not be commensurable, a
measurement system that is consistent and accurate
in data collection for a specific set of products and
processes can provide useful information on factors
that affect long-term trends in productivity. Within
a process and product set, the variability caused by
functional complexity between classes of products is
not as great as the differences in productivity rates
between new and modified products.

While the overall trends based on information avail-
able today are very useful, future productivity mea-
surements must focus on the tasks within the process
stages in greater detail. Thus, a future requirement
will be to understand the effect on productivity and
quality of specific changes in processes and tools.

Increased attention to productivity and measure-
ments is leading to a rethinking of software metrics.
Today there are a number of possible alternatives to
lines of code and complexity measurements. In place
of lines of code there is the concept of function, or
“chunks,” but this metric requires further research.
Function points as a metric is better developed as an
alternative to lines of code, but this metric requires
study of its application to modified code for large-
system products. To account for complexity, there
is the possibility of combining metrics of varying
complexity, as proposed by Bays16 and Jones.”

174 FLAHERTY IBM SYSTEMS JOURNAL, VOL 24, NO 2.1985

Cited references

I . B. W. Boehm, Software Engineering Economics, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1981).

2. L. J. Arthur, Programmer Productivity, Myths, Methods and
Murthology, John Wiley & Sons, Inc., New York (1983).

3. J. R. Johnson, “A working measure of productivity,” Data-
mation 23, No. 2, 106-1 12 (February 1977).

4. M. H. Halstead, Elements OfSoftwareScience, Elsevier Science
Publishing Co., Inc., New York (1977).

5. C. P. Smith, A SoftwareScienceAnalysisofIBMProgramming
Products, Technical Report TR 03.08 I , IBM General Products
Division, Santa Teresa, CA (January 1980).

6. A. J. Albrecht and J. E. Gaffney, Jr., “Software function,
source lines of code and development effort prediction: A
software science validation,” IEEE Transactions on Software
Engineering SE-9, No. 6, 639-648 (November 1983).

7. R. W. Wolverton, “Cost of developing large scale software,”
IEEE Transactions on Computers C-23, No. 6,6 15-636 (June
1974).

8. L. Paulsen, “The implications of program composition and
size on development productivity,” Proceedings, Twenty-
Third IEEE Computer Society International Conference,
Washington, DC (September 1981), pp. 149-155.

9. R. Boydston, “Programming cost estimates: Is it reasonable?”,
7th International Conjerence on Software Engineering, Or-
lando, FL (March 1984). pp. 153-159.

10. K. H. Kim, “A look at Japan’s development of software
engineering technology,” Computer 16, No. 5, 26-37 (May
1983).

1 I . R. C. Kendall and E. C. Lamb, “Management perspectives on
programs, programming productivity,” Guide 45, Atlanta, GA
(November 1977).

12. T. C. Jones, “Measuring programmer quality and productiv-
ity,” IBM Systems Journal 17, No. I , 39-63 (1978).

13. C. E. Walston and C. P. Felix, “A method of programming
measurement and estimation,” IBM Systems Journal 16, No.

14. B. W. Boehm, “A software development environment for
improving productivity,” Computer 17, No. 6,30-42.44 (June
1984).

15. P. Gillin, “T. Capers Jones on life without programmers,”
Computerworld 18, No. 22, Special Report 3, 6 (May 28,
1984).

16. M. Bays, “Development of a programming productivity mea-
surement system,” Journal oflnformation Management 4, No.
3,21-34 (Spring/Summer 1983).

17. C. Jones, Programming Productivity: Issues for the Eighties,
IEEE Catalog No. EHO 186-7, available from IEEE Service
Center, 445 Hoes Lane, Piscataway, NJ 08854 (1981).

I , 54-73 (1977).

Michael J. Flaherty IBM Information Systems and Storage
Group. P.O. Box 390. Poughkeepsie. New York 12602. Mr.
Flaherty is an advisory programmer in the Programming Quality
Analysis Department. He is involved primarily in the measure-
ment of software process productivity, with special interest in the
application of advanced software metrics. Mr. Flaherty received
the M.Sc. degree in computer science from Union College, Sche-
nectady, NY.

Reprint Order No. G321-5246.

IBM SYSTEMS XXIRNAL. VOL 24. No 2.1985 FLAHERM 175

