
A process-integrated
approach to defect
prevention

by C. L. Jones

Recent efforts to improve quality in software have con-
centrated on defect detection. This paper presents a
programming process methodology for using causal
analysis and feedback as a means for achieving quality
improvements and ultimately defect prevention. The
methodology emphasizes effective utilization of all er-
ror data to prevent the recurrence of defects.

enhance our techniques over time rather than forcing
us to invent new methods with each iteration. Edu-
cation classes, tools, and quality improvement teams
are also examples of prevention techniques. Any
mechanism that helps to prepare the programmer or
that automates error-prone tasks is a defect preven-
ter. But even though we already do much for defect
prevention, more can be done. A vast amount of
information available to us is not used.

H istorically, formalized programming develop-
ment processes have been defined in terms of

defect detection.’ In general, a stage of the process
was considered to be complete when all inspection
steps or tests were done. At that point, the next stage
of the process could officially begin. As these proc-
esses evolved, they became more comprehensive
through the introduction of entry and exit criteria
and clearly documented definitions of each stage of
the process.* However, the emphasis for quality has
centered, for the most part, on the defect detection
process.

With the advent of software engineering, defect pre-
vention, rather than defect detection, has become a
concept of interest. Although the quality concepts
which advocate that we should “do it right the first
time” have been introduced to programmers, the
concepts have not been incorporated adequately into
our processes.

Some defect prevention already exists in the way we
do business today. The very fact that we have docu-
mented and clearly defined processes is, in itself, a
prevention technique. The existence of documented
internal standards and methodologies allows us to

Some analysis that takes advantage of our data by
trying to determine error rate trends has been done.3
Statistics are being used to point out error-prone
modules, components, or process stages. These anal-
yses are very useful; however, they must be aug-
mented with an in-depth study of the errors them-
selves and what causes them if we are to take full
advantage of our data. Field problems, test problems,
inspection errors, and design changes can all be
evaluated in a more comprehensive way to allow us
both to understand the causes of errors and to put
action plans in place to remove error-causing situa-
tions. The purpose of this paper is to present a
methodology for performing causal analysis as part
of the programming process.

The paper presents the philosophy behind this meth-
odology, followed by specific enhancements which

Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the JOumd reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL. VOL 24, NO 2,1985

should be made to the existing process. Details are
included about ways to implement causal analysis.
Finally, some remarks are offered on the cost as well
as the results of the new methodology.

Goals in defining the methodology

The quality improvement teams (~ 1 ~ s) ~ that were
widely established several years ago basically oper-
ated in a subjective mode. That is, the team would
brainstorm about what problems existed and would
then try to resolve them. The approach worked for
a while but gradually died out in many areas. There

When problem analyses take place,
recommendations result.

seemed to be two main reasons why this occurred.
First, the suggested actions very often were not im-
plemented because of resource constraints. Second,
people had a limited set of opinions and quickly ran
out of discussion items. Subjectively identifying
problems did not take full advantage of the data at
our disposal. In contrast, one of the goals for causal
analysis is to provide for a systematic way to identgy
problem areas.

History also demonstrates that if problem analysis is
done on an ad hoc basis, and if resources are not
specifically allocated for analysis, the analysis work
will be done in a haphazard way or it will fade away
altogether. Yet, when an analysis is part of the proc-
ess itself, it tends to continue on a regular basis
regardless of the specific personnel involved. There-
fore, data should be analyzed as part of the process
and not as a stand-alone activity.

When problem analyses take place, recommenda-
tions usually result. Often, however, the recommen-
dations do not receive attention and are not enacted.
A popular sentiment among developers seems to be
“There are lots of good ideas floating around, but we
cannot seem to keep up with them all if our main
mission is to produce products.” But it is also an
ineffective way of operating. A mechanism for col-

IBM SYSTEMS JCURNAL. VOL 24, NO 2, 1%

If a collection mechanism for suggestions is pro-
vided, an effective way of implementing those sug-
gestions must also be provided. As mentioned earlier,
QITS often fail because resources are not available to
implement the ideas. An implementation plan is
critical to a successful quality approach.

Finally, the feedback mechanism itself needs to be
defined in detail. Questions arise as to who should
do each of the activities, in what order, and when.
The goal is to clearly define the feedback process.

Basic concepts

The defect prevention methodology is based on three
concepts:

1. Programmers should evaluate their own errors.
Programmers themselves should be involved in
the analysis of errors because

The best person to determine the cause of error
is the person who made it. Having those people
involved provides for a more accurate assess-
ment of what really happened in creating the
error. There are subtle reasons for making
some errors, and what may appear to an ob-
server to be the cause may not be remotely
related to the real cause.
There is also a difference in the interest that
people take in their own errors. It is a natural
tendency for people, when seeing someone
else’s error, to assume that they would never
make that error themselves, and therefore they
do not take such an error seriously. But when
it is their own error, they become much more
interested in discussing how to prevent it. They
are more likely to suggest meaningful ideas
because they understand the error more thor-
oughly.
People also benefit from the immediacy of the
feedback. Instead of seeing data months after
the fact, they see it right after they have made
the error.
If one person is assigned to do the causal anal-
ysis for an entire project or organization, he or
she will soon suffer burnout. Moreover, an
individual can bring only a single perspective
to the problems, thus limiting creativity in
determining corrective actions.

2. Causal analysis should be part of the process. As
mentioned earlier, if the activities for problem

~ N E S 151

Figure 1 A normal process stage

r“---- ENTRY

T*

VALIDATION

EX17

analysis are not established as part of the process,
they are subject to haphazard implementation.
Making causal analysis part of the process spreads
the work, involves the appropriate people, and
creates an environment that emphasizes preven-
tion of errors as a daily activity. As a result, the
programmers realize that quality is everyone’s
day-to-day responsibility.

3. Feedback should be part of the process. Even
though programming processes have been used
for quite some time, detected errors and statistics
have seldom been used as feedback to improve
those processes. A “looping” effect for the detec-
tion and correction of errors has been defined,
but an equivalent feedback of data for improve-
ments to the process or for the education of
programmers has not been fully exploited. Errors
and statistics should be made visible to the pro-
grammers, thus allowing them to refine their tech-
niques and to learn from their own mistakes.
“Feedback” is a key consideration in the meth-
odology described here. The goal is to change the
process from one where a single programmer

learns from only his or her own mistakes to one
where all programmers learn from every mistake.

Enhancements to the process for defect
prevention

Defect prevention is established both by implement-
ing a feedback mechanism which encourages fine-
tuning of the process and by augmenting the activi-
ties that occur in each stage of the process.

Although the process stages themselves remain the
same with the new methodology, additional activities
are needed to facilitate defect prevention, such as
kickoff meetings, causal analysis meetings, and Ac-
tion Team follow-up. Details of these meetings and
activities of the Action Team are given in the ap-
pendices. The process enhancements are discussed
in this section.

Figure 1 illustrates a typical stage of the development
process, such as module level design or code.2 In the
ENTRY substage, the input to the stage is evaluated
for completeness. The TASK substage represents the
work being done for the stage, VALIDATION includes
verification of the quality of the work product, and
EXIT ensures that all activities have been completed
before work may begin on the next stage. The ar-
rangement of the TASK and VALIDATION substages
illustrates the looping between rework and verifica-
tion until all detected errors have been corrected.

ENTRY substage-Add kickoff meeting. The defect
prevention methodology adds a formal kickoff meet-
ing to the ENTRY substage. At the beginning of a
stage, the team assigned to the unit of work meets
together with the following objectives:

Review what is available as input. The input to
the stage is evaluated to make sure that all mem-
bers of the team understand what is available and
whether or not everything from the previous stage
is complete.

Review process/methodology guidelines. The team
discusses the output requirements for the stage,
going over examples, guidelines, and explicit ex-
pectations of the team leader($. Examples are
extremely useful in eliminating contradictory in-
terpretations of guidelines or descriptions of what
the output should be. Sample outputs help to
clarify exactly what is expected. Guidelines and
standardized kickoff packages should be available
for each stage to ensure consistency between teams

IBM SYSTEMS JOURNAL, VOL 24, NO 2.1985

and to provide documentation that can be incre-
mentally improved rather than constantly rein-
vented.

Review error checklists. The most common error
causes for a particular stage are reviewed from a
checklist. This review increases awareness, which
is critical to defect prevention. If people can be
reminded of the most common causes for errors
made in a task just before they start to perform
that task, they are less likely to repeat the errors.
Checklists should be available for each stage and
they should be updated constantly.

Set team goals. Normally, quality goals will be set
for a product for each stage of the process and will
be documented in a quality plan. These goals will
generally take the form of expected error detection
rates. There is an inherent conflict between the
desire to detect and remove a high number of
errors and the desire to prevent their creation, thus
resulting in a low number of errors. However, an
expected rate for the release which takes both
perspectives into consideration and provides a
realistic estimate for the release given the process
being used should be established.

At the kickoff meeting, the team should establish
its own team goals, thereby increasing the psycho-
logical commitment of the individual members to
the quality of the team’s work. The team goals are
never published. They are simply kept informally.
After each person on the team is polled for an
opinion, a group discussion is held to project the
number of errors for the stage. This discussion
helps to emphasize quality rather than schedules
or other pressures.

VALIDATION substage-Add preliminary causal
analysis. Normally inspections are conducted as part
of the VALIDATION substage to ensure that all work
has been done properly. The inspection data is en-
tered into a data base.

The enhancement to this substage is to have the
defect description added to the data base, and as
rework occurs, to add defect resolutions as well as
preliminary causal analysis. Since rework is usually
done by the person who created the error, he or she
can provide some additional insight about the real
cause for the error. He or she can also determine the
category of error, the originating stage, and some
suggestions for prevention. This helps the causal
analysis team later when they are trying to determine
specific preventive actions.

IBM SYSTEMS XWRNAL. VOL 24. NO 2.1985

EXIT substage-Add causal analysis meeting. The
EXIT substage is normally concerned with malung
sure that all required work is complete. The defect
prevention methodology incorporates in the EXIT
substage a formal causal analysis meeting to do the
following:

Analyze defects. The causal analysis meeting itself
is a brainstorming session to produce not only
creative actions for individual problems but also
comprehensive actions for recumng groups of
problems. During the sessions, all team members
learn from the errors of other team members. In
this way, the entire team can create an action plan
and feel a real closure to the stage.
Evaluate results versus team goals. The results of
the errors actually detected are compared in this
meeting with the goals set in the ENTRY substage.
This enables the team to understand how it did in
relation to the product or release goals and to its
own goal. The comparison triggers discussions on
how to improve future work.
Process stage evaluation. After all causal analysis
is complete, the team should discuss general proc-
ess improvements, such as how the inspections
could be improved, what tools would be useful, or
what positive actions were taken during the stage
that should be added to the process or kickoff
packages.

Questions for each defect

Answers to the following questions are collected for
each error:

What stage originated the error?
Category of cause of error?

Communications
Education

New functions
Old functions
Other

Oversight
Transcription

How was the error introduced? What caused the

How could it have been avoided?
What corrective actions are recommended?

error?

The purpose of these questions is to collect only the
essential information. Too many questions become
a burden to the causal analysis team; too few under-
mine later evaluation and follow-up to action plans.

JONES 153

end of the causal analysis meeting. During causal
analysis meetings programmers tend to focus on how

The causal analysis meeting should
follow an agenda.

an error should have been found during the inspec-
tion or test, rather than dealing with the real cause
of the problem. Causal analysis should emphasize
prevention of errors rather than detection. Therefore,
the causal analysis meeting should follow an agenda
such as the example in Appendix B. In this agenda,
the meeting consists of a causal analysis portion
followed by a stage evaluation portion. The analysis
portion helps to emphasize preventive actions. The
evaluation portion helps to identify early detection
issues.

Following is the rationale behind each of the ques-
tions:

Originating stage: The stage where the error orig-
inated is noted in order to allow errors to be
directed to the appropriate groups for analysis. For
errors originating in previous stages, the present
team may not be able to determine adequately the
actual cause or an appropriate preventive action.
In this case, the error is routed to the team that
actually created it.
Category of cause of error: Many lists are available
for categorizing Their purpose should be
to aid in determining how to prevent the error. If,
as in this methodology, each error is being evalu-
ated individually and corrective actions occur in
direct response to the error, there is no reason to
have an elaborate list of categories or types of
problems. Categories should be chosen to help the
causal analysis team to think of corrective actions.
For example, if the programmer classifies his/her
error as a communications problem, the team has
a better insight into the real cause of the error and
can better recommend corrective actions. Four
categories describe any error:

I

154 JONES

among team members. For example, a high-
level designer may state a concept that is mis-
interpreted by a low-level designer.

2. Education errors occur when a team member’s
failure to understand something causes the er-
ror. Education errors are further divided into
the following:

New function-the programmer does not
understand the new function and therefore
makes an error (e.g., misunderstands the use
of a bit).
Old function-the base code or function is
not understood, and when new function is
added to it, the placement or implementa-
tion causes problems (e.g., the programmer
does not understand the base code well
enough to know that the placement of new
function causes regression problems).
Other-the programmer needs education in
a subject other than the function being de-
veloped (e.g., compiler knowledge).

3. An oversight arises when all of the possible
cases or conditions are not considered or han-
dled (e.g., an error condition is missed).

4. A transcription error occurs when the program-
mer knows what to do and thoroughly under-
stands the item, but for some reason simply
makes a mistake (e.g., types in the wrong label).

What caused the error: The purpose of this ques-
tion is to identify the exact cause of the error
before trying to put an action in place. Causes
vary enormously from error to error. Causes such
as inadequate schedule time, too many interrup-
tions, or too little tools support often occur when
least expected. Because causes are not obvious
from the error, it is very important to have the
creator of the error do the causal analysis, if at all
possible.
How to avoid the error: This item calls for a
suggestion that would prevent the error from oc-
cumng in the future. For example, in a situation
where an education session is needed, the avoid-
ance suggestion might be to establish a class to
address the topic that is confusing.
Recommended corrective action: Whereas the pre-
ceding question asks for a general suggestion, this
question requests specific plans to correct the
problem. For example, the corrective action to
establish a needed class would be to assign the task
to a specific person to determine who should teach
the class, determine who should attend, establish
a location, send out notices, and handle all other

IBM SYSTEMS JOURNAL, VOL 24, NO 2.1985

administrative details. This is quite different from
the general suggestion that a class is needed. The
action question focuses on how to get the solution
implemented.

Action Team

When programmers make suggestions but nothing
happens to implement them, they are less inclined
to continue making the suggestions. Without some-

An Action Team which will respond
to suggestions for improvements is

recommended.

one assigned to follow through on ideas, many sug-
gestions fail to be implemented. This failure is not
only discouraging to the programmers but is also an
ineffective way to operate. Therefore, this method-
ology suggests the formation of an Action Team to
respond to suggestions for improvements. The size
of the team depends on the number of recommended
actions deemed appropriate for implementation. In
addition, a manager should be responsible for the
team, to prioritize work and to provide management
focus. It is his or her responsibility to make sure that
the work gets done and is visible.

The Action Team should consist of one or more
persons who can handle suggestions in the areas of
process, education, and tools. These three areas cor-
respond to the normal support functions that must
occur for any program development group. Actions
that need to be implemented in areas other than
process, education, or tools can be directed to other
people in the development organization. The final
resolution of the action, however, is still the respon-
sibility of the Action Team.

The Action Team, then, has the following responsi-
bilities:

Prioritization of all action items.
Status tracking of all action items.

IBM SYSTEMS XXIRNAL. VOL 24. NO 2, 1985

many forms, such as classes, seminars, process
document updates, process management tech-
nique memos, newsletters, tools, guidelines for
product-specific internals, kickoff packages, error
lists, etc.
Data base administration. A tool and an associated
data base are needed to assist in the collection and
manipulation of the defect prevention data. The
tool should handle data on both defects and ac-
tions, since data for the two are logically associ-
ated.
Generic analysis. Causal analysis in this method-
ology emphasizes the investigation of every error.
When causal analysis teams focus on errors, they
may not be exposed to a global range of problems
across an entire organization. It is the responsibil-
ity of the Action Team to evaluate the defect data
periodically to see if trends may indicate problems
which need to be addressed and which the individ-
ual analysis teams have not noticed.
Visibility of success stories, recognition. The Ac-
tion Team should make success stories visible to
the entire organization and should identify for
recognition all effective solutions.

Defect prevention methodology

Figures 2 through 5 help describe the flow through
the process stages. Those stages which utilize inspec-
tions are discussed first, with additional stages intro-
duced later in this series of charts.

Figure 2 shows the process stage before the addition
of the defect prevention enhancements described in
this paper. Inspection data are collected and entered
into a data base following the inspection meeting.
Rework and Follow-up are tasks that resolve the
problems found in the inspection and verify that
resolutions are correct.

Figure 3 shows the addition of a kickoff meeting
during the ENTRY substage. Inspections are held, as
usual, after the TASK substage work is complete.
Following the inspection meeting(s), inspection data
and defect data are entered into a data base. As
rework progresses, the errors are analyzed by the
programmers on an individual basis as each error is
corrected. The cause of the error and the program-
mer’s suggestion of how to avoid the error are added
to the data base. Following rework, the team holds
a Causal Analysis Review meeting. At this meeting
the team completes the causal analysis of all errors

~

Figure 2 A process stage without defect prevention

VALID

INSPECTION
INSPECTION DATA

REWORK

FOLLOW UP

EXIT

-

and produces a set of actions aimed at preventing
errors in the future. These actions are then entered
into an action data base. At this point, the stage is
considered complete.

In Figure 4, the Action Team has been added. The
Action Team holds regular meetings to set priorities,
make new assignments, and check status. The team
is aware of new actions entered into the data base
and responds by assigning each action to an Action
Team member for resolution. As actions are imple-
mented, the Action Team closes the entries in the
data base and provides feedback to the rest of the
development organization via the most effective
feedback technique for that action.

There are additional data that can be analyzed and
that do not result from an inspection: specifically
test problems, field problems, design changes, and
QIT and miscellaneous suggestions. Ordinarily, test
data and design changes are handled the same as
inspection data and are analyzed at the end of the
normal test stage. Special causal analysis meetings

may, however, be required for some data, as shown
in Figure 5 . For example, a Functional Verification
Test team may evaluate their operational errors and
those errors which were not detected by their test
but were found in a later test. This type of error
analysis is done to determine how the test might be
run more effectively or how test cases could be
written better.

Field errors are received constantly through the en-
tire development cycle for inclusion into the latest
release of the product. Since there is a lag time
involved with these problems, the person who cre-
ated the problem may not be available, and the
current owner of the code may be the best person to
determine causes and suggest preventions. A special
causal analysis meeting is held periodically to eval-
uate these errors.

There are many causal analysis sessions that can be
performed in addition to those in the main path
development cycle. Whenever possible, the errors
should be reviewed during an EXIT' causal analysis

156 JONES IBM SYSTEMS JOURNAL, VOL 24. NO 2,1985

session, but some additional work may be necessary
for data received at irregular intervals.

Cost of implementing this methodology

Time required. The cost of implementing this meth-
odology is not as high as one might assume at first
glance. Since it has been integrated into the process,
the impacts to the development team are minimized.
Listed below are the various time and resource re-
quirements.

Kickoff sessions-A kickoff session normally lasts
approximately one to one and a half hours. Gen-
erally this is enough time to review all materials
and discuss quality and team goals.
Entry of data during rework-The additional
overhead of having programmers enter error data

into a system and do preliminary causal analysis
depends on the number of errors to be processed.
However, this overhead, when spread across an
entire team, does not create a problem. Generally,
having the data on the system reduces the control
work required by a team leader.
Causal analysis meetings-Generally a causal
analysis meeting will last about one and a half
hours. The time, of course, is dependent on the
number of problems to be evaluated. However, if
a large number of errors need to be analyzed,
more than one session should be planned, since
one and a half to two hours is about the maximum
amount of time that people can concentrate on
errors. This session is creative and therefore should
be limited in time.
Action Team meetings-Since the Action Team
meeting is really just a status, prioritization, and

~ ~

Figure 3 Addition of causal analysis
~~

I I

I TASK I VALID
INSPECTION

INSPECTION DATA + DEFECTS

SOLUTIONS. CAUSES,

JONES 157 IBM SYSTEMS JOURNAL. VOL 24, NO 2, 1985

Figure 4 Addition of the Action Team and feedback

v ENTRY

MEETING
I I

TASK

EXIT

REVIEW MEETING

4J-l ACTION TEAM

ACTION
SYSTEM

' f
VALID

INSPECTION
INSPECTION DATA + DEFECTS

I REWORK

I FOLLOWUP
SOLUTIONS, CAUSES,
RECOMMENDATIONS

< f
EXAMPLES

KICKOFF PACKAGES
ERROR LISTS P

FEEDBACK
v

TOOLS
DISSERTATIONS
NEWSLETTERS
AWARDS RECOGNITION
PROCESS DOCUMENTATION UPDATES

MEMOS
MANAGEMENT REPORTS
CLASSES
GUIDELINES

assignment meeting, it generally goes fairly fast. may be one part-time person plus management
One-half to one hour is usually the maximum, involvement. For a development organization of
again depending on the volume of work to be 100 to 150 people, the team may be as large as
reviewed. four or five full-time members with a dedicated

manager.
Staffing required

Action Team-The Action Team will vary in size
Additional requirements

based on the number of actions being generated A data base and tool are needed for tracking both
by the organization. For a small group, the team defects and actions.

158 JONES ISM SYSTEMS JOURNAL, VOL 24, NO 2,1985

Figure 5 Addition of noninspection data
~

L

L

u ENTRY

KICKOFF

MEETING

TASK

EXIT
I VALID

INSPECTION
INSPECTION DATA
+ DEFECTS

REWORK

FOLLOW UP

I
SOLLJTIONS, CAUSES,
RECOMMENDATIONS

I

REVIEW MEETING I
I ”

CAUSAL ANALYSIS
MEETING

ACTION TEAM
SYSTEM

I I -

I <
EXAMPLES

KICKOFF PACKAGES
ERROR LISTS

FEEDBACK 1
TOOLS MEMOS
DISSERTATIONS MANAGEMENT REPORTS
NEWSLETTERS
AWARDS, RECOGNITION
PROCESS DOCUMENTATION UPDATES

CLASSES
GUIDELINES

I

Training is required for the Action Team and
causal analysis teams.
Process documentation should be provided for
people entering the organization and for reference.

Off setting benefits

The cost of each error is high, as has been demon-
strated many times. The cost of field problems alone
can be estimated in the tens of thousands of dollars.

Internal test problems are very expensive if one
considers the cost of screening the problem, debug-
ging it, developing and applying the fix, and verifying
its correctness. This normally costs a minimum of
nine hours for the most simple problem when all
factors are considered.

Obviously, at these prices, the prevention of errors
will pay for the additional cost of implementing this
methodology in a short time.

Samples of defects and actions

Samples of actual defects and actions are shown here
to illustrate the types of errors and subsequent ac-
tions which can occur.

Error: WXTRN was coded when an EXTRN was

Categ.: Education-base code/other.
Cause: EXTRN statement not understood.
Action: Create an entry for the project notebook on

Action: Add this item to the common errors list.

Error: Several program error conditions were over-

Categ.: Oversight.
Cause: Last-minute additions caused multiple er-

rors.
Action: Add item to common error list to warn

people that late changes are more prone to
error.

needed.

EXTRN Statements.

looked.

Error: Program abnormally ended.
Categ.: Transcription.
Cause: Wrong register label typed in. (Assembler

Action: Write a tool to trace registers during unit
program.)

test.

Error: Program functions were coded in incorrect

Categ.: Communications.
Cause: Communications failed between high-level

and low-level designers.
Action: Change the process to include regularly

scheduled communication sessions to be
attended by the designers.

order.

Error: Function would not work as designed in the

Categ.: Education-new function.
Cause: Low-level designers were not aware of a

high-level design implication. (The low-
level designers and high-level designers are
in separate groups.)

Action: Institute education sessions involving both
designer groups.

Action: Make sure that low-level designers are as-
signed in time to attend all education ses-
sions.

low-level stage.

Conclusions

The major benefit of this program is that higher
product quality is achieved through reduced errors.

160 ~ E S

Preliminary results of applying defect prevention in
two product areas indicate that fewer errors are
injected at each development stage, and there is a
corresponding reduction in errors during the test
stages by as much as 50 percent. Improvements are
also noted in the areas of communications, quality
awareness, education, and use of methodologies and
tools.

By establishing a feedback mechanism, the process
can be improved incrementally by taking advantage
of the defect information at our disposal. The process
can evolve in a concrete way based on actual data
rather than purely from perceptions. Quality takes
an active role in the process, and fine-tuning can
occur on a day-to-day basis with everyone involved.

The defect prevention methodology described in this
paper has the following recommendations:

1. The development team must be directly involved
in the causal analysis of defects.

2. The causal analysis of all defects must be inte-
grated into the process.

3. The ENTRY substage must be enhanced to accom-
modate kickoff sessions at which input, process
guidelines, and common errors are reviewed and
team goals are set.

4. The EXIT substage must be enhanced to accom-
modate causal analysis sessions consisting of
causal analysis of defects and evaluation of team
results.

5. Defect and action data must be collected and
managed. A tool and a data base are required.

6 . An Action Team should be established to manage
the defect prevention data, implement actions to
improve the development process, and provide
feedback to the developers. A manager should be
responsible for the Action Team, to give the
team’s work management focus.

Several actions can be taken to prevent defects. No
matter what methodology is used, however, there
must be an aggressive effort to learn from the avail-
able data. Without analyzing statistics, defects, or
trends, we fail to utilize the most valuable informa-
tion we have at our disposal for fine-tuning the
development processes.

Acknowledgments

The author wishes to acknowledge Robert G. Mays
for his insightful contributions to this paper as well
as for his active involvement in the development of

IBM SYSTEMS JOURNAL. VOL 24, NO 2,1985

this methodology, Gerald J. Holloway and Charles
E. Brabec for their initial work on causal analysis,
and John F. Osterhoudt and Judith E. Dearlove for
their invaluable editorial work.

Appendix A. Guidelines for conducting a kickoff
session

Preparing for the meeting. A team leader, a process
leader, an Action Team member, or other trained
leader can run the meeting. The leader must plan
and prepare for the meeting.

The kickoff sessions utilize a standard kickoff pack-
age which consists of an agenda, process stage defi-
nition, product guidelines for the stage, examples of
expected output, and a common errors list for the
stage. The kickoff leader simply prints out the pack-
age for everyone and brings the package to the meet-
ing. There is no preparation required of the partici-
pants for these meetings, so the package need not be
distributed ahead of time.

The input to the stage is distributed to all members
of the team in advance. In addition, the entry criteria
have been verified earlier. Issues regarding input to
the stage are resolved prior to the meeting, but if
members wish to discuss special problems with the
input to the stage, the kickoff meeting is an excellent
place for such topics.

The only other material needed by the leader for the
meeting is the release quality plan, which contains
the expected error rates for the stage. The team will
need to know the release quality values in order to
determine what they plan to achieve as their team
goal.

Conducting the meeting. The following topics should
be addressed in the meeting:

Input to the stage. A brief review of the input is
conducted and the team evaluates whether the
input is understood by everyone and whether it is
complete.

Process stage definition. This includes entry and
exit criteria as well as the intent of the stage and
the tasks to be performed.

Product-specific guidelines. Each product usually
has its own set of internal guidelines for each stage;
for example, methodologies to be used, status
tracking techniques, specifics about what is re-

IBM SYSTEMS XWRNAL. VOL 24, No 2, 1985

quired as output, design languages to be used, etc.
These guidelines need to be reviewed so that all
team members understand exactly what is ex-
pected from them as a result of this stage.

Examples of output. Examples are specifically
identified here because they are an excellent way
of showing exactly what is meant by a guideline.
For example, levels of detail are often interpreted
differently by each team member, and examples
help to clarify what is expected.

Common errors list. Each stage should have a list
of the most commonly experienced errors. New
errors can be added and old errors removed as
new data become available. The purpose of re-
viewing an error list is to heighten the awareness
of the team members immediately before they
start working on an item. If the leader can elicit
discussions while reviewing the error lists, the
value of the kickoff increases.

Team goals. The release quality goal for the stage
should be presented by the leader, followed by a
discussion by the team of what they believe their
team goals should be. Can they do any better than
the release goals? What does each person think the
goal should be, and what is the plan for achieving
it? What can be done to raise the release quality?

The leader should record the team goal for the
exit substage. This goal is not recorded in any data
bases or made public to anyone but the team.
When the team meets for the exit stage, the actual
results will be compared to the team goal, and
discussion can ensue about what worked and what
did not work in the methodologies used. Often,
the comparison of team goals versus actual results
can aid in discussions about process improve-
ments which do not show up as a result of the
causal analysis of specific errors.

Appendix B. Guidelines for conducting a causal
analysis session

Preparing for the meeting. A team leader, process
leader, or Action Team member can run the meet-
ing, but he or she should be aware of what is to be
expected from the meeting as well as what can be
expected during the meeting. For specifics, see the
following subsection on conducting the meeting.

A description of all errors being evaluated is made
available to each team member. The format will vary

JONES 161

(see Appendix F) are helpful in collecting the right
information if the error report form does not have
all appropriate fields on it. The causal analysis form
has been designed to provide a convenient way to
record the results of the discussions for later input
into a data base system.

For a causal analysis exit meeting, the release goal,
team goals, and the corresponding actual results are
needed.

Conducting the meeting. The purpose of the meeting
is to use all available data to recommend actions for
improvement.

The session is run in three parts. First, the release
and team defect goals are compared to the actual
results. This comparison provides feedback to the
team members in terms of how well they did com-
pared to their initial estimates. Second, all errors are
reviewed and an action list is created. Third, the
stage is evaluated for improvements. A sample
agenda is given below. The analysis portions are
divided because it is important to focus on the
preventive suggestions based solely on the defects
first. After all errors have been evaluated and actions
have been created, the team has a good understand-
ing of what happened in the stage and can then have
a meaningful evaluation of that stage.

During the analysis portion of the meeting, it is best
to review all errors before trying to create an action
list. This approach of reviewing all errors first allows
the team to group similar errors together before
determining suggested actions. It also creates an
environment where more comprehensive sugges-
tions can be discussed. Trying to formulate actions
based on single errors becomes meaningless at times;
however, when the scope includes all errors in the
session, the team will expand its discussions beyond
the immediate errors.

Sample agenda

1. Compare release goals, team goals, and actual

2. Causal analysis
results.

a. Evaluate all errors. That is, read through each
error, discussing the defect and the cause.
Make sure that all team members understand
why the error occurred.

b. Create an action list after all errors have been
discussed by quickly reviewing the errors and
placing their preventive actions in a list. Sev-

162 JWES

and several actions may be required for a given
defect.

3. Process stage evaluation-When all causal anal-
ysis is complete, do the following:
a. Ask the following questions:

(1) What was done by this team that worked
well and should be recommended or
pointed out to the next team going
through this stage?

(2) What could be done to improve the proc-
ess?

(3) What tools could help detect the errors
while still in this stage?

b. Create additional action items based on dis-
cussions in the process evaluation part of the
session.

Clues for conducting the meeting

Be sensitive to defensiveness. When inspections were
first instituted, there was a tendency on the part of
the authors to be defensive about errors. With causal
analysis, this problem once again becomes an issue.
The team investigates, in depth, why a team member
made a mistake, putting the team member in a
vulnerable position. The leader should be sensitive
to this issue. There are several techniques that can
be used:

Do not attack. Do not focus on who is at fault or
who is to blame.
Keep the discussion focused on preventing a sim-
ilar error in the future. Team members must feel
free to discuss their own mistakes. Members
should be reminded that the error that they made
has been made in the past and may well be com-
mon. What can be learned from the mistake?
If necessary, assure the team that only the name
of the team leader will be entered into the data
base so that errors are not traceable to individuals.
Keep the meeting informal. Humor frequently
helps.

Allow errors to trigger general discussions. Each error
can be used as a springboard to more general solu-
tions. The specific error will usually remind the team
of a series of errors that are similar. The type of error
then becomes the topic of discussion.

Consider error categories. Generally, communica-
tions- and education-type errors are easier to resolve.
They tend to result in either process or education
actions.

IBM SYSTEMS JOURNAL, VOL 24, NO 2.1985

Preventive techniques for oversight- or transcription-
type errors are more difficult to determine and re-
quire more creativity. Techniques that improve the
working environment, methodologies for coverage
completion, or tools are often good ideas for these
errors.

Do not stop after one action. Just because the team
has identified an action for a defect does not mean
that it should stop the discussion and move on to
the next defect. Often, several other suggestions will
surface if given a chance.

Consider all errors. Make sure that all errors are
considered when making the action list.

Get real actions-not suggestions. Remember that
someone on the Action Team must actually do a
specific task to implement the suggestion. When
defining the action, the team should be very precise
about what must be done in the way of actions or
tasks. The determination of the actions should not
be left to the Action Team. Be precise. Define not
only what is to be done but also how to do it.

Following the meeting. After the meeting is over, the
leader enters the actions into a data base. The actions
are linked to the defects at this time. Action sugges-
tions formulated during the process evaluation part
of the session are also entered into the system but
without linked defects.

The leader generates a report of the actions and their
associated defects for distribution to all team mem-
bers. This report summarizes the causal analysis
session and identifies the actions that have been
turned over to the Action Team. The action system
should be available for anyone to browse so that
interested team members can determine the status
of an action at any time.

Appendix C. Action meeting

The Action Team meets regularly, every week or
every two weeks. The Action Team meeting is short
and emphasizes status and actions that have not
been assigned. A member of the Action Team is
responsible for bringing the appropriate reports to
the meeting. This member also enters the updates to
the data base reflecting new assignments. Each indi-
vidual Action Team member can update action en-
tries when his or her status changes.

Periodically, the Action Team performs generic anal-
yses of errors and evaluation of feedback techniques.

IBM SYSTEMS JOURNAL. VOL 24, No 2.1985

The team makes recommendations to management
for recognition of development teams that have
made effective suggestions.

Appendix D. Defect records

Automated support of a defect prevention method-
ology requires keeping data on each error reported
and each suggested action. This information is stored
in defect and action records. Many defects may
correspond to a single action, and one defect may
relate to many actions. Therefore, it is recommended
that there be some ability to cross-reference defects
to actions and vice versa.

A defect record must track certain metrics. Those
listed below are the fields which, at a minimum,
should be considered.

DEFECT ENTRY #

PRODUCT
RELEASE
DRIVER

LINEITEM

STAGE DETECTED IN

STAGE CREATED IN

QIT DEPARTMENT

PROBLEM REPORT #

CREATE DATE

ANALYST

TYPE OF ANALYSIS

TYPE OF INSPECTION

CHECKPOINT DATA

A unique number to
identify the entry
Name of the product
Release identifier
Identifier of driver (a
small subset of the
release)
Functional item being
developed
Process stage where er-
ror was detected
Process stage where er-
ror was created
For QIT suggestions, the
department of the QIT
For miscellaneous prob-
lem suggestions, the
number of the problem
(example, test problem
number)
Date the defect was en-
tered into the system
Programmer who
should be contacted for
questions
Inspection, test prob-
lem, field problem, QIT,
miscellaneous
Group, peer, team
leader, other
Current status of the en-
try-attentioned,
screened, being investi-
gated, closed

CLOSE DATA Closing/reason codes,
answer text, program-
mer identification, and
date

down
Education-New func-
tion
Education-Base func-
tion
Education-Other
Oversight-Did not
consider all cases
Transcription error-
Mistake

CATEGORY OF CAUSE Communications break-

ABSTRACT OF DEFECT/ A short description of

ABSTRACT OF CAUSE OF A short description of
PROBLEM the defect

DEFECT the defect cause
ASSIGNED ACTIONS Action numbers as-

(a list of associated signed to prevent this de-
actions) fect

PROBLEM DESCRIPTION A full description of the
and SUGGESTED ACTIONS problem and actions

AGAINST THE DATA BASE tivities checkpointed
LOG OF ACTIVITIES A track record of all ac-

against this defect

Appendix E. Action records

The purpose of the action record is to track each
action that is recommended. Each record should
contain at least the following:

ACTION # A unique number to
identify the action

identifier

the action

tered into the system

PRODUCT The product name or

PROGRAMMER Programmer submitting

CREATE DATE Date action item was en-

PRIORITY 1-4
AREA CODE Where the implementa-

tion occurred (process,
tools, etc.)

area

try-attentioned,
screened, being investi-
gated, closed

LINEITEM Specific item within the

CHECKPOINT INFO Current status of the en-

164 ~ E S

COST ESTIMATE Number of days ex-
pected for implementa-
tion

pletion

programmer identifica-
tion, date

mentation actually took

the action

action

to this action

action that took place

TARGET DATE Date of expected com-

CLOSE DATA Closing/reason codes,

FINAL COST Number of days imple-

ABSTRACT OF ACTION A short description of

ACTION DESCRIPTION A full description of the

ASSOCIATED DEFECTS List of all defects linked

ANSWER TEXT A full description of the

LOG OF ACTIVITIES A track record of all
AGAINST THE activities checkpointed
DATA BASE against the action

Appendix F. Causal analysis forms

Three forms are shown here:

Problem Report Form: This form is used during
the inspection to collect data on the problem and
during rework to record resolutions and causal
analysis data.
Defect Analysis Report: This is a general-purpose
form used in any causal analysis meeting for re-
cording analyses of defects.
Action Plan Analysis: This form, also used in the
causal analysis meeting, is used to determine rec-
ommended actions.

Cited references

1. M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Systems Journal 15, No. 3, 182-
211 (1976).

2. R. A. Radice, N. K. Roth, A. C. OHara, Jr., and W. A. Ciarfella,
“A programming process architecture,” IBM Systems Journal
24, No. 2, 79-90 (1985, this issue).

3. A. Endres, “An analysis of errors and their causes in system
programs,” IEEE Transactions on Software Engineering SE-1,

4. P. B. Crosby, QUQ/ity Is Free, McGraw-Hill Book Co., Inc.,
140-149 (1975).

New York (1979).

General references

J. D. Aron, “The programming development process: Part 11: The
programming team,” The System Development Life Cycle, Addi-
son-Wesley Publishing Co., Reading, MA (1983), pp. 163-195.
P. W. Metzger, Managing (I Programming Project, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1973).

IBM SYSTEMS JOURNAL. VOL 24. NO 2,1985

PROBLEM REWRT FORM Page - of -
c i r c l e one: PRODUCT COMPONENT MODULE C O E OTHER:

c i r c l e one: INSPECTION PEER REVIEW TEAM LEADER REVIEW

Product I Release I Dr i ve r

Component Module/Macro I Developer

Date Submitted f o r Review Date Reviewed Hours

L ine i tern

Reviewer

Number o f Major Errors

Person rais ing issue: Problem Descript ion:

Type: 1 2 Answer Date: Answered by: Ans. Review Date: Reviewed by:
c i r c l e one:

Solution:

Pbstract o f de fec t (50 char maxJ:

PHASE where e r ro r was CREATED (check one):

- PRODUCT - FUNCTIONAL TEST - COMPONENT - PRODUCT TEST

- MODULE - SYSTEM TEST

- CODE PACKAGING TEST

- - POST-SHIP UNIT TEST
-

Cause Category (check one):
- Education: D i d n ' t understand new
- Education: Didn't understand base

- Education: Other
- Communications.
- Oversight. D i d n ' t consider a l l cases
- Transcription. Simply made a mistake

Pbstract of cause f o r e r r o r (5 0 char max):

low can error be avoided the next t ime?

dhat a c t i o n i s needed?

-
IBM SYSTEMS XXIRNAL. VOL 24. NO 2.1985 EMS 165

DEFECT ANALYSIS REPORT:

PRODUCT:

ANALYST NAME:

TYPE OF ANALYSIS: INSPECTION TEST-PROBLEM FIELD-PROBLEM DESIW-CHME Q IT MISC POST-HORTEM

t

I f an Inspection:
Release: (XX . X 1
Driver: (XX)

L i m i t - : - (xx)o

Stage uhere error was detected:

- PRODUCT - FUNCTIONAL TEST

-)IM)ULE - SYSTEM TEST
- CODE - FINAL PACKAGE TEST

- W I T TEST - AFTER SHIPHENT

- COMPONENT - PRODUCT TEST

- OTHER

I f a Test Problem:
Release: (XX.X)

L i n e i t e n : (x x x)

Prob. 8 : (7-chars 1

Stage uhere error mas detected:

- W I T TEST - PACKAGE TEST - FUNC. TEST - AFTER SHIP

- SYSTEM TEST

- PROD. TEST - OTHER

For InspectionrTest-Prob.,Field-Prob.rDesign-Change:
k b s t r a c t of D e f e c t (50 char nax) :

Process Stage where crea ted : (check one)

- PRODUCT - W I T TEST - PACKAGE TEST

- COMPONENT - FUNC. TEST - AFTER SHIPHENT

- m U L E - PROD. TEST - OTHER
- CODE - SYSTEM TEST

:ategory o f Cause (check one):

- Educat ion: D i d n ' t unders tand neu
- Educat ion: D i d n ' t understand base
- Educat ion: Other
- Communications Breakdown
- Overs igh t . D i d n ' t c o n s i d e r a l l c a s e s .
- T r a n s c r i p t i o n e r r o r . S i m p l y made a mistake.

t b s t r a c t of Cause o f E r r o r (5 0 char max):

I f a Fie ld -Prob lem I

D e s i 9 Change:
Nunbcr :

(7-chars 1
"""""""""""

I f f rom a QIT:

D e p t :
(3-chars 1

I f a Post -Hor tm:

Release: XX.X

~ ~~~

Fo r QIT, Pos t -Mor tm, or Misc. Entry:

A b s t r a c t o f Problem (50 c h a r l a x) :

A b s t r a c t of Came of Problem (50 char nax) :

How c a n e r r o r b e a v o i d e d n e x t t i m e :

166 JWES IBM SYSTEMS JOURNAL. VOC 24, NO 2.1985

ACTION PLAN ANALYSIS:

PRODUCT:

PROGRAMER NAME :

PRIORITY (c i r c l a o m) : 1 2 3 4

COnnITTED TARSET DATE: (YrWPlDD 1

PROJECTED COST (in person-days): o(XXX.X)

ABSTRACT OF ACTION ITEM (50 char nax):

DETAILED DESCRIPTION OF ACTION ITEfl:

L IST OF DEFECT ANALYSIS ENTRY IDS (7 chars each):

Carole L. Jones IBM Communication Produc~s Division, P . 0 .
Box 12195, Research Triangle Park, North Carolina 27709. Ms.
Jones received her B.S. in mathematics from Youngstown State
University in 1966. She joined IBM in DOS development at
Endicott, New York, working in both the development and ad-
vanced testing areas. She transferred to Research Triangle Park
(Raleigh) in 1970 and began work in Engineering and Administra-
tive Software Support for the Raleigh site. She then transferred to
the TPNS project, with emphasis in both development and test.
Ms. Jones joined the Network Control Program (NCP) develop
ment area in 1975 and worked as a development leader on several
releases until 1980, when she assumed the responsibility of process
coordinator for the NCP products. In that capacity, she focused
on process definitions, methodologies, and all aspects of quality
and productivity as they apply to process management. For the
past eighteen months, she has been actively developing and apply-
ing the concepts of defect prevention to the NCP products.

Reprint Order No. G321-5245.

IBM SYSTEMS JOURNAL, VOL 24, NO 2.19% JONES 167

