
PDM: A requirements
methodology for software
system enhancements

by R. G. Mays
L. S. Orzech
W. A. Ciarfella
R. W. Phillips

Traditional requirements processes often do not ad-
dress the many problems encountered in the develop-
ment of software products. Conventional processes
begin with the structural definition of the proposed
system, under the assumption that the raw require-
ments are understood. How this understanding is d e
veloped is not formally addressed. The IBM software
development process requires a methodology to de-
velop the rationale of the requirement, both in terms of
its underlying problem and its business justification,
prior to the development of the functional specifica-
tion. Conventional requirements processes address a
single software application intended for use by a uni-
form set of end users. The resulting system is usually a
one-time replacement of some existing system. Many
IBM software products, however, address requirements
received from a large, diverse set of customers who
use the products in a wide array of computing environ-
ments. Product releases are typically developed as in-
cremental enhancements to an existing base product.
This paper describes the Planning and Design Method-
ology (PDM), a requirements planning process that
suppotis the collection, analysis, documentation, and
tracking of software requirements. The process in-
cludes requirements collection, definition of the under-
lying problems, development of an external functional
description that addresses the problems, and develop-
ment of system and product designs from the external
functional descriptions. PDM has been applied in three
development areas with positive results.

R eleases of IBM software products are usually
developed as incremental enhancements to an

existing base product. The responsibility for product
development rests with a single development orga-
nization, which typically is divided into several sub-
ordinate organizations by function:

Product Planning is responsible for product re-
quirement analysis, business justification analysis,
and development resource planning.
Product Design is responsible for the functional
specification and the high-level design of the
release.
Product Development is responsible for compo-
nent and module-level design, coding, and unit
testing.
Product Test is responsible for functional testing
of the release.
System Test is responsible for system-level testing
before the product release is shipped. The System
Test organization is generally independent of the
Product Development organization.

Figure 1 illustrates a typical process flow in the
development organization and identifies the major
workproducts of the transformation of raw require-
ments into a product release. The Product Planning
organization receives requirements from a number
of sources including customers, customer represen-
tative organizations, IBM marketing and service di-
visions, and internal IBM users of products. IBM cus-
tomer representative organizations include SHARE
Inc., Guide Inc., SHARE International, SEAS, G.U.I.D.E.

@ Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

134 MAYS ET AL. IBM SYSTEMS JOURNAL, VOC 24, NO 2, 1985

Figure 1 Typical development workproduct flow from raw requirements through product release

REQUIRE-
MENTS

PLANNING DEVELOPMENT

Europe, COMMON, and ASG. For each product re-
leased, Product Planning develops a programming
objectives document that outlines the functional ob-
jectives of the release, operating environments sup-
ported, and characteristics such as performance, re-
liability, availability, serviceability, and usability.
From the programming objectives document, the
Product Design organization develops a prose func-
tional specijication document and a high-level design
document. Product Development, Product Test, and
System Test then carry the release through the soft-
ware development stages of component and module-
level design, coding, unit testing, functional testing,
and system testing.

Requirements may affect one or more products and
thus may be viewed as either product-level or system-
level in scope. Product-level requirements are prod-
uct-specific in that they are directed to a single
product. For example, consider the requirement
“Add a block move capability to the full-screen
editor.” This can be implemented in the editor with-
out affecting the functions of other products. System-
level requirements are cross-product in that they
require a function to be implemented in more than

one product. Consider the requirement “Increase the
number of devices that can be attached to a node of
the network beyond the current maximum.” This
requires changes to the basic communications archi-
tecture, which in turn requires changes to practically
all of the communications software products sup-
porting that architecture.

In general, product-level requirements are forwarded
to and managed by the Product Development orga-
nization. System-level requirements, however, are
handled by the System Planning and System Design
organizations, which perform functions equivalent
to those of their product-level counterparts. A sys-
tem-level design document is produced that specifies
the cross-product design direction to be taken when
the function is implemented. When the system-level
design document has been approved, the prescribed
functions are included in the individual product
programming objectives of the affected products.
The normal development process is then followed.

Many product planning organizations use auto-
mated or semiautomated tools for recording and
maintaining product requirements. However, a for-

1 8 M SYSTEMS JOURNAL. VOL 24. NO 2.1985

mal, documented process and methodology are
needed to transform raw requirements into a pro-
gramming objectives document and to transform the
objectives into functional specifications and high-
level design. Informal requirements-analysis meth-
ods expose the product to errors. For example, re-
quirements that are not fully understood may result
in the development of functions that do not address
the real customer need. If an incorrect level of prior-
ity is assigned to a requirement, customer needs may
not be addressed on time. If an end-user profile and
end-user tasks are not given sufficient consideration,
the function delivered may be difficult to use.

The increasing size, complexity, and number of IBM
software products and the growing sophistication of
customer use have caused the number of product
requirements to grow rapidly. The growth of soft-
ware requirements makes the use of a formal process
imperative. A requirements process should be guided
by the following principles.

Understand the rationale of the requirement. Ideally,
a requirement defines the need or problem to be
addressed and the properties or characteristics a so-
lution must have to be acceptable. The requirement
should be augmented by descriptions of the environ-
ment and the externals of the software. To the extent
possible, requirements should not impose con-
straints on design or implementation by describing
software internals. The specification of internals
should be deferred for the high-level design phase.

A properly defined requirement should include the
following important points:

The end-user problem that is to be resolved or the
need that is to be filled
The end-user operational characteristics of the
proposed solution
Constraints upon the design that are to be ob-
served during the development of the function

Unfortunately, requirements rarely address or iden-
tify these points. Frequently, a requirement is ex-
pressed not as a problem but as a solution, as in the
following example: “Add a session-limit parameter
to the ACTIVATE command.” A requirement may
even be expressed as a design, as in the following
example: “Set the TASKEXT bit in the task control
block to indicate that the task has been restarted.”

Before a requirement is accepted for further analysis,
the rationale, that is, the underlying end-user prob-

136 MAYS ET AL

lem, should be understood. This applies particularly
to proposed solutions and designs. A proposed so-
lution may place the function in the wrong compo-
nent of a product or even in the wrong product. A
proposed design may induce problems in other cus-
tomer environments, whereas a better-conceived de-
sign approach may address the underlying end-user
problem more effectively.

Verify the rationale and the proposed solution with
the customer. Once the underlying end-user problem
has been defined, it should be verified with the
customer who originally submitted the requirement,
as well as with other customers. The customer should
agree with the definition of the problem. If other
aspects of the problem come to the surface, they also
should be incorporated in the rationale.

Customer verification should continue once a pro-
posed solution has been developed. The proposed
solution should correctly answer the requirement
from the end-user viewpoint and be usable in the
end-user operational environment. Customer verifi-
cation should be completed before significant effort
is expended in development.

Define the operational environment. Many IBM soft-
ware products operate in multiple hardware and
software environments. For example, a product may
run on CPU models ranging from an IBM 433 1 to an
IBM 3090 and in networks ranging from ten terminals
to 10 000 terminals. A product may use a range of
operating systems such as Multiple Virtual System
(MVS), Virtual Machine (vM), and Disk Operating
System/Virtual System Extended (DOS/VSE). The o p
erational environment also involves the customer
use of the product: the types of customer applications
that are supported, the size of data bases that are
supported, and the expected response time per trans-
action.

In many cases, a given requirement applies only to
some of the product operational environments.
Which environments are applicable may affect how
the requirement should be addressed. For example,
a bulk data transfer application may require inter-
mediate data storage at each communication node,
whereas interactive transaction applications do not
have such a requirement. This difference will affect
the placement of functions in existing products as
well as new products in the support of bulk data
transfer.

Prioritize and establish business justification. Since
there are always more open requirements than there

IBM SYSTEMS JOURNAL, VOL 24, NO 2,1985

are available development resources to respond to
them, requirements should be selected on the basis
of their relative importance on a priority basis. Re-
quirements need to be given priority on a basis that
considers customer benefit as well as development
cost. The prioritization should be verified with cus-
tomers.

Emphasize usability as well as function. The analysis
of an end-user problem should include the usability
and human factors aspects of the problem. An end
user may have difficulty with a product because it
requires tasks to be performed that are difficult, error
prone, or time consuming, or that require a high
skill level. These factors may have a greater impact
on the end user than any functional deficiencies of
the product.

Earlier approaches to the requirements process

Requirements methodologies typically begin at the
structural level, with the specification of the func-
tional, data, and behavioral characteristics of the
proposed system. These elements are expressed as
data flow diagrams, hierarchical functional struc-
tures, or data abstractions, which are further refined
through functional decomposition and data decom-
position.

The following are some general observations on re-
quirements methodologies. The focus of traditional
approaches is on functional specification (i.e., what
the system is to do) and on design (i.e., how the
system is to do it). The question of the rationale
behind the requirement-that is, the why both in
terms of the underlying end-user problem and in
terms of business justification-is not usually ad-
dressed. These methodologies assume that the raw
requirements are already understood and that a pro-
posed system can be modeled. How the raw require-
ments are filtered for acceptance and subsequent
transformation into the proposed system is often not
considered. Conventional requirements methodolo-
gies generally assume a single, uniform user base and
a uniform operational environment. How require-
ments are to be handled for diverse customers and
operational environments is generally not addressed.
Conventional approaches also frequently develop a
single replacement system from a single set of rela-
tively static requirements. These methodologies are
not geared to handling the large volume of small,
incremental enhancements that are received contin-
uously for integration into an existing product base.

IBM SYSTEMS XXIRNAL. VOL 24. No 2.1985

Aspects such as value assessment, prioritization, and
business case are generally not considered. In sum-
mary, the traditional requirements methodologies
are not applicable to the requirements planning
stage, which precedes the identification of structural
requirements.

The Planning and Design Methodology (PDM) was
developed to address the need for a formal require-
ments process. PDM was designed to handle both
system-level and product-level requirements, with
the following major objectives:

The ability to categorize, prioritize, coordinate,
and manage a large number of diverse require-
ments from the time they are received until they
have been successfully integrated into a product
design
Support for the systematic analysis of require-
ments from the customer viewpoint by first iden-
tifying the underlying end-user problem
Support for the verification of the problem defi-
nition and its proposed solution through customer
reviews
Support for the assessment of a requirement’s
relative priority, value, and business justification
or business case
Support for traceability of the requirements from
initial receipt through implementation
Support for verification of the transformation of
requirements at each step of the process, particu-
larly at the critical transition from external speci-
fication to internal design
Usability and human factors emphasis during re-
quirements definition

In this paper, we describe the Planning and Design
Methodology and discuss some of its major features.
We then give a brief summary of experiences in
applying the methodology in three areas. The dis-
cussion concentrates on the requirements planning
aspects of PDM and does not primarily address the
integration of the methodology with the business
justification analysis and resource planning aspects
of product planning.

The Planning and Design Methodology (PDM)

In the Planning and Design Methodology, shown in
Figure 2, the process begins with requirements col-
lection. Here, raw requirements are received, re-
corded, categorized, and prioritized. Problem analy-
sis is performed on each input requirement that has
a sufficiently high priority. Problem analysis identi-

MAYS ET AL. 137

Figure 2 Ovefview of the Planning and Design Methodology

COLLECTION
REQUIREMENTS

ANALYSIS
PROBLEM

r

SOLUTION
DEFINITION m

PROBLEM
DEFINITION
DOCUMENT I

CUSTOMER VERIFICATION 1

SYSTEM
DESIGN

fies the underlying end-user problems. A problem
definition document is written that describes the
current customer system and its problem conditions.

The problem definition documents are reviewed and
the requirements are reprioritized. Those with a
sufficiently high priority are selected for further anal-
ysis, and a solution definition is developed. The
solution definition document describes a solution in
terms of end-user functions that resolve the problems
identified in the problem analysis. Finally, a number
of solution functions are selected and synthesized
into a system design. A design direction document
is written that identifies the product(s) and product
components that will be affected by the design. Upon
approval of the design direction, the usual product
development process takes over.

During each phase of the PDM process, the require-
ments are reprioritized and reviewed, and necessary
corrections are made to the workproduct. Both the
problem definition and solution definition docu-

ments are verified by selected customers and appro-
priate customer representative organizations. A
functional or product technical strategy, described
in a later section, is used to guide the definition of
external functional specifications and the system de-
sign.

The Planning and Design Methodology can be ap-
plied to both product-level and system-level require-
ments to assist the requirements-planning activity.
For system-level requirements, the final PDM work-
product (i.e., the design direction document) is com-
bined with both the programming objectives and the
functional specifications of the affected products. For
product-level requirements, the design direction doc-
ument is integrated into the programming objectives
and functional specifications of the product release.

Requirements collection. Raw requirements are col-
lected both formally, through standard submission
channels such as customer Product Application and

138 MAYS ET AL IBM SYSTEMS X)URNAL, VOL 24, NO 2.1985

Support Requirements (PASR), and informally from
other sources. Sources for requirements include IBM
customers, IBM marketing and service divisions, cus-
tomer representative organizations, IBM internal-use
and development needs, the IBM Research Division,
customer surveys, competitive awareness, and public
literature. Any information that represents a cus-
tomer or IBM need, or an opportunity for IBM, may
be an input requirement.

The contents of the input requirement are listed in
Table 1. The input requirements are maintained in
a requirements repository. The highest-priority re-
quirements are promoted to problem analysis.
Shown in Table 2 is a typical input requirement.

Problem analysis. In the problem analysis phase each
prioritized requirement is examined to identify and
describe the associated problem(s) from the end
user’s perspective. The resulting workproduct, the
problem definition document, is formatted for read-
ability and processability and includes backward
traceability to the relevant input requirements. Input
requirements do not always exist in a one-to-one
relationship with problems because one requirement
may relate to more than one problem and vice versa.
The basic elements of a problem definition docu-
ment are the following:

Control information, such as author, status, and
requirement category. The control information
includes a backward reference to the input require-
ments each document is addressing, and allows
for the insertion of a future forward reference to
the solution definition that further defines this
problem.
Current system function, which describes the sys-
tem function the end user is currently using. The
current system description focuses on those func-
tions of the product(s) that are related to the
problems being described. For example, for a
problem involving the ease of use of an interactive
editor, the specific editor functions involved are
described.
User tasks, which describe the tasks the end user
performs that are related to problems being de-
scribed. For example, for a problem with an inter-
active editor, the specific tasks that the user per-
forms in using the editor are described. The de-
scription of user tasks is included to focus atten-
tion on usability problems.
Problem conditions, which describe what is wrong
with the current function and user tasks, along
with the impacts or ramifications of the problem

IBM SYSTEMS JWRNAL, VOL 24, NO 2,1985

Table 1 Input requirement contents

Control information:

Input requirement control number
Source reference information, such as document number
and location within document
Submittor information, such as name, address, date received,
and submittor’s assessment of the requirement’s priority
Name, address of person recording the requirement and the
date recorded
Assigned priority
Status and disposition information
Response to the submittor and response date
Fonvard reference to the problem definition@) that address
this requirement
Category and subcategory of the requirement, and associated
search keywords. The categories and keywords permit the
grouping of similar requirements. The categories for com-
munications management requirements include, for exarn-
ple, problem management, configuration management,
change management, operations management, and ease of
Use.

Abstract of the requirement

The requirement text as originally received

Table 2 Example of an input requirement for a hypothetical
communications trace function

Control information:

Input requirement number PRO102
Source reference PASR N18723
Submittor information J. Duncan, Branch Office

Submittor’s priority Medium
Author (person recording) R. G. Mays, Raleigh
Assigned priority High
status Promoted to problem

245, Chicago, IL

analysis
Response to submittor Accepted, 2/ 18/85
Category/subcategory Problem management/

problem determination
Search keywords Trace, operator com-

mands
Problem definition document PR1071

Abstract: Allow keyword abbreviations in the trace command.

Requirement text: It is very difficult to key in the long trace
commands to start up a communications trace. Customer
desires the ability to use one- or two-character abbreviations
for the command keywords. For example, L= for LINE=; N=
for NODE=; EV= for EVENT=.

condition on both the customer and IBM. The
problem conditions describe the specific problem
areas in both the system function and the user

MAYS ET AL 139

Table 3 Problem definition document content

Control information:

Problem definition control number
Author of the problem definition and date written
Assigned priority
Status and disposition information
Category and subcategory of the problem and associated
search keywords
Backward reference to the input requirements which this
problem definition addresses and forward reference to the
solution definition document(s) which address this problem

Abstract of the problem, with a description of specific cases of
the problem, if applicable

Current system function description, including a description
of input and output data associated with the system function

User task description and end-user profile

Problem conditions associated with the system function and
user tasks, including the impact of the problem condition on
the customer and IBM

Environment description

Value assessment

tasks. The impacts of the problem conditions are
one basis for establishing the value of the require-
ment.
Environment description of the hardware and soft-
ware configurations in which the problems exist.
An environment description might include the
hardware and network configurations on which
the problem occurs, and the operating system and
other supporting software that relate to the prob-
lem.
End-user projle, which includes the user class
(e.g., operator, system programmer, network plan-
ner) and user characteristics, such as abilities,
skills, training, and knowledge. Some system func-
tions do not involve people directly, but are used
by customer-written applications. From the view-
point of a software product, customer applications
as well as people may be end users.
Value assessment, which estimates the value of
solving the problem(s) from both the customer’s
and IBM’S standpoints. The value of a problem
solution can be estimated in a number of ways,
depending on the nature of the problem. Examples
are hardware or labor cost savings, increased pro-
ductivity, lower required skill level, and shorter
training time.

The problem definition document is organized and
formatted to give a complete picture of the end-user

problem from both a functional and user-task view-
point. In practice, the actual descriptions of current
function and user tasks can be brief, because the
focal point of the problem definition is the problem
conditions and their impacts. Table 3 summarizes
the major items contained in a problem definition
document. The problem definition documents are
maintained in a requirements repository. The ex-

Table 4 Example of a partial problem definition for a
hypothetical communications trace function

Control information:

Problem definition number PR1071
Category/subcategory Problem management/

problem determina-
tion

Author R. G. Mays
status Customer review com-

pleted
Input requirements addressed PR0085, PRO102
Solution definition document PR2045

Abstract: The communications trace function is too complex
to use and error prone.

Current function: The trace function consists of entering trace
commands at the operator console to control the starting and
stopping of line traces and formatting and printing of the traces
for output.

User tasks: The trace commands are generally entered by the
system programmer. The operator does not enter them because
the commands are complex, and a significant level of expertise
is required to enter them properly. The system programmer
generally looks up the command, writes it out, enters the
command at the console, and waits for an indication that the
desired communications event has occurred. The system pro-
grammer then enters commands to format and print the trace.

Problem conditions:

The trace facility requires too high a skill level.
Only experienced system programmers can reliably do com-
munications traces. The impact of this is that customers
who do not have an experienced staff are unable to do
adequate problem determination.

Trace commands are frequently keyed in erroneously.
Trace commands are long strings of parameters that are
subject to keystroke error. If an error is made, the only
recourse is to re-key the command, a condition that can be
very frustrating.

There is no on-line help facility.
The user must frequently reference the trace manuals and
often guesses at actions and command formats.

The system programmer must guess whether the desired
communications event has occurred.
The impact of this is that large quantities of excess trace
data are often collected, formatted, and printed needlessly.

140 MAYS ET AL IBM SYSTEMS X)URNAL, VOL 24, NO 2.1985

ample in Table 4 is typical of the content of a
problem definition.

This method of describing requirements by defining
the current end-user environment and its problem
conditions can be extended to cases in which a
system function is simply missing. For example, the
“current system” may be a manual procedure and
the “problem condition” is simply that the function
is not provided by current products. This situation
represents a market opportunity that has not yet
been addressed. The other aspects of the problem
definition, such as problem impacts and environ-
ment description, can assist in the analysis of cus-
tomer value and priority of the market opportunity.

Solution definition. The solution definition phase
develops a cost-effective external solution for the
problems described in one or more problem defini-
tions. The resulting solution definition document
describes the new or enhanced functions necessary
to resolve the problems. Only the external function
description is given at this point. (The internal design
is begun in the next phase of PDM.) The solution
definition document resembles the problem defini-
tion document in structure and content. The basic
elements of the solution definition document are the
following:

Control information, such as author, status, and
requirement category. The control information
includes a backward reference to the problem
definitions that this document is addressing and
allows for the insertion of a future forward refer-
ence to the design direction that implements the
solution function.
The proposed system function, which describes the
new or enhanced system functions required to
resolve the problem conditions. The focus in this
phase is on an external function description, that
is, “what” the proposed function will do.
User tasks, which describe the tasks the end user
will perform in using the proposed functions. Only
those tasks related to the resolution of problem
conditions are generally described.
Resolved problem conditions, which describe the
problem conditions that are resolved by the pro-
posed system function and user tasks and the
rationale for their resolution. Reference back to
specific problem conditions in the problem defi-
nitions permits a verification of the completeness
of the solution in addressing the original require-
ments.
An environment description, describing the hard-
ware and software configurations in which the
solution functions are intended to operate.

BM SYSTEMS JWRNAL, VOL 24, NO 2,1985

Table 5 Solution definition document content

Control information:

Solution definition control number
Author of the solution definition and date written
Assigned priority
Status and disposition information
Category and subcategory of the solution and associated
search keywords
Backward reference to the problem definition document(s)
this solution definition addresses, and forward reference to
the design direction document that implements this function

Abstract of the solution

Proposed system function description including a description
of input, output, and internal data associated with the pro-
posed function

User task description and end-user profile

Problem conditions that have been resolved by this solution
definition, including the rationale for their resolution

Environment description

Value assessment

Alternate solutions considered and design decision rationales

An end-user projle, which describes the types of
end users or end-user applications that are affected
by the solution functions. The end users of the
solution function may not be the same as the end
users described in the problem definitions, for
example, if the skill level has changed or if the
system function now interfaces with a different
class of user.
A value assessment, which estimates the value of
providing this particular solution to the customer.
This assessment differs from the assessments made
in the problem definitions, because it is specific to
a particular solution function.

Table 5 summarizes the major items included in a
solution definition document. The solution defini-
tion documents are maintained in the requirements
repository. The example in Table 6 is typical of the
content of a solution definition.

System design. The system design phase refines so-
lution definitions into a coordinated set of system-
level designs that may be allocated to specific prod-
ucts or product components for implementation.
The resulting design direction document describes
how the solution functions are to be implemented
within the affected product or product areas. Typi-
cally, a number of solution functions are combined
in a system design. Table 7 shows the major sections

Table 6 Example of a partial solution definition for the
hypothetical communications trace function

Control information:

Solution definition number PR2045
Category/subcategory Problem management/

problem detemina-
tion

Author R. G. Mays
9 status

Problem definition addressed PR107 1
Design direction Not started

Abstract: Improve the communications trace function’s ease
of use.

Proposed function: The proposed trace function will consist of
a full-screen facility for entering trace commands at the oper-
ator console. All of the existing trace functions will be sup
ported. An additional trace function will be provided to specify
communications events to be associated with the trace. The
trace will then monitor communications events and, when the
specified event is detected, give an indication to the user and/
or terminate the trace. The trace command and all of the
corresponding specifications can be saved in a disk data set
and called up and modified prior to running. A help facility
will be provided to explain specific fields on the screens and
their possible values.

User tasks: The trace commands will be entered by filling the
appropriate fields on the screen. The user may be either a
system programmer or an operator. The user will need to refer
to the trace manual only if a detailed explanation of the trace
command, with examples, is needed.

Problem conditions addressed:

The trace facility requires too high a skill level.

In internal review

With the on-line interface and help facility, less experienced
system programmers will be able to enter the commands.
With canned trace commands, operators will be able to run
preliminary traces for problem determination without hav-
ing to call in a system programmer.

The trace commands are frequently keyed in erroneously.
This is addressed by the full-screen prompting.

There is no on-line help facility.
This will be provided.

The system programmer must guess whether a desired com-
munications event has occurred.
The event monitoring function addresses this.

of the design direction document. The design direc-
tion document undergoes a review and approval
process which includes review by the product devel-
opment organization(s) that must implement the
design. Upon approval of the design direction, the
design is incorporated into the product programming
objectives and functional specifications for an up-
coming product release. If more than one product is
involved in the implementation, the product releases
are coordinated.

Methodology features

We now describe the following concepts of PDM that
underlie each phase of the methodology:

The definition of formal process activities and

The use of viewpoints and aspects for verification
The availability of a technical strategy to guide
product design directions
The involvement of work groups whose members
may include such concerned persons as require-
ments planners and analysts, designers, devel-
opers, marketing organization representatives, and
field support engineers.

verification criteria

Control information:

Design direction control number
Author(s) and date written
Assigned priority
Status and disposition information
Backward reference to the solution definition document($
this design direction addresses

Abstract of the design direction

The functional detail that will be implemented, including
usability and performance criteria. The mapping of the design
functions back to the solution definition functions, including
implementation rationales, pemits a verification of the com-
pleteness of the design direction.

Detailed user-task and end-user descriptions

Data descriptions of input, output, and internal data associated
with the design

External, interproduct, and component-level interfaces

Affected product components and the mapping of functions to
these components, including function sizings in terms of lines
of new and changed code

Environment description, including configurations supported,
customer migration and coexistence considerations, function
dependencies, and architectural specification requirements
such as changes to the Systems Network Architecture (SNA).

Additional design constraints, such as reliability, availability,
serviceability

Alternate designs considered and the design-decision rationales

Implementation considerations, such as the staging of the
function across releases, the packaging of the function, and the
sequencing of the implementation

Value assessment

Table 7 Design direction document content

IBM SYSTEMS JOURNAL, VOL 24. NO 2, 1985

Figure 3 PDM formal process activities

1,
ANALYSIS
CONSISTENCY,
COMPLETENESS

1 1 r‘ CORRECTION Lf
INTERNALCOMMUNICATION
TECHNICAL VERIFICATION

EXTERNAL COMMUNICATION
CUSTOMER VERIFICATION

VERIFIED FOR CONSISTENCY
COMPLETENESS, ACCURACY
AND CONFORMANCE
TO THE TECHNICAL STRATEGY

Formal process activities and verification criteria.
The requirements process can be viewed as a series
of steps that transform initial requirements-often
amorphous, such as “provide the customer with a
single view of the system”-into a clear, concise, and
structured specification document. To facilitate the
transformation, PDM identifies three principal activ-
ities to be applied within each phase of the method-
ology: synthesis, analysis, and communication. Fig-
ure 3 illustrates the relationships among these three
activities.

In PDM, synthesis is the construction of the work-
product(s) of a phase from a number of initially
unrelated sources of information. The workproducts

thus constructed might, for example, be a consoli-
dated statement of a particular set of user problems,
a corresponding statement of an overall system so-
lution, or a design direction that defines how solution
functions are to be integrated into a product set.
Synthesis involves an investigation of the problem
area and the collection, refinement, and extension of
supporting information. The investigation is guided
by the predefined document structures for the prob-
lem definition, solution definition, and design direc-
tion documents.

Analysis is the examination and verification of a
given workproduct for consistency and completeness.
Consistency is a check to determine whether the

EM SYSTEMS JOURNAL. VOL 24. NO 2, 1985

elements of a workproduct relate to and interface
with one another without contradiction, and whether
the workproduct conforms to its prescribed stan-
dards and document structure. This verification in-
cludes checking for consistent use of names, terms,
descriptions, and relationships among elements. An
example of an inconsistency intrinsic to the work-
product itself might be the occasional use of the term

Completeness is a check to ensure
that all necessary sections have

been fully addressed in the
workproduct.

“network setup” as an ambiguous substitution for
the term “network initialization” in the document.
For the solution definition and design direction doc-
uments, an additional consistency check is per-
formed to verify that the functions described con-
form to the technical strategy. Completeness is a
check to ensure that all necessary sections have been
fully addressed in the workproduct. The complete-
ness verification also includes a check that all items
from the previous phase have been satisfactorily
addressed in this phase. For example, the complete-
ness check determines that all problem conditions
identified in the problem definition have been re-
solved in the solution definition. This check also
determines that all external functions specified in the
solution definition have been included in the design
direction.

In practice, the synthesis and analysis activities are
an iterative process of collection, extension, verifi-
cation, and correction that is aided by re-presenting
and examining the workproducts in various view-
points. The use of viewpoints is described in the
following section.

Communication is the third of the PDM transforma-
tion activities. Vital to each phase of PDM is the
communication of the resulting documents to tech-
nical and nontechnical personnel for review and
approval. This communication relies on the concept

144 MAYS ET AL.

of viewpoints to present a structure whose content is
relevant to various types of reviewers. Internal re-
views are conducted to verify conformance to the
accepted technical strategy and to verify overall tech-
nical correctness. External reviews are conducted
with customers and marketing and service organi-
zations to finally verify correctness from the end
user’s viewpoint. Here, correctness means verifica-
tion with the originator of a requirement that the
workproduct does satisfy the expressed requirement.
In PDM this involves two phases. During problem
analysis, the descriptions of the end-user problems
and their effects must be complete and accurate.
During solution definition, the proposed system
function and proposed user tasks must resolve the
end-user problems.

Viewpoints and aspects. The workproducts devel-
oped during an application of PDM are complex and
involve many relationships among the document
elements, not all of which are relevant at all times to
all organizations. To permit different reviewers to
develop different perceptions of the material from
different points of view, the workproducts in each
phase of PDM can be partitioned into different sets
of viewpoints, constructed from the major elements
of a workproduct. The same entity or element of a
workproduct can be presented in multiple view-
points. Presented this way, the entity may appear
correct in one context and at the same time incorrect
or incomplete in another context. The major view-
points defined in PDM and their primary focus are
the following:

System function-system functions, with second-
ary focus on data elements and user tasks
User task-user tasks, with secondary focus on
user descriptions, system functions used, and in-
put/output data elements
Data definition-data elements, with secondary
focus on the system function
Problem condition-problem conditions and their
impacts, with secondary focus on the system func-
tions and user tasks involved
Environment-customer environment descrip-
tion, with secondary focus on user descriptions,
system functions, and input/output data elements
Target product-target products and their com-
ponents, with secondary focus on the system func-
tions to be implemented and their data elements

Viewpoints, in turn, contain various aspects or sub-
ordinate sections. For example, aspects associated
with the environment viewpoint are defined as

IBM SYSTEMS JOURNAL. VOL 24, No 2. 1985

Customer enterprises-the segment of customers
expected to utilize the target product
Systems interfaces-hardware devices, compo-
nents, and features that support or are supported
by the products under consideration, and software
within the existing operating environments that
support or are supported by the products under
consideration
Human interfaces-end-user profiles, system
functions with which the end user interacts, infor-
mation the end user provides to the products
under consideration, information the end user
receives from the products under consideration

The technical strategy. Requirements are received
piecemeal and must, initially at least, be considered
individually or in small sets. A broad perspective of
the product or product area is needed so that func-
tions are not developed at cross-purposes to one
another. The technical strategy provides this per-
spective, serving to guide the development of pro-
posed solution functions and system designs. It pro-
vides a framework within which functions can be
devised, particularly in the context of multiple prod-
ucts that must function together consistently. De-
fined for a single software product or set of prod-
ucts-for example, communications products-the
technical strategy provides a strategic direction for
the product or product set, and is revised, main-
tained, and reviewed frequently. The technical strat-
egy describes

The basic system structure and the system-level
functional evolution for its product set
The relationship of its products to any pertinent
architectural standards, e.g., the IBM Systems Net-
work Architecture (SNA)
User and internal interface standards
Planned staging of function implementation
across the product set

Work groups. The definition and analysis of cus-
tomer requirements must be complete and accurate
if the resulting functions derived in system design
are to fulfill customers' needs. It is frequently nec-
essary, therefore, to convene a work group consisting
of individuals outside the development organization
to supply additional expertise and perceptions re-
garding the problem and proposed solutions. Partic-
ipants in a work group are drawn from wherever
expertise in a particular problem area exists, such as
IBM marketing and service organizations, customer
special-interest organizations, and consultants to
IBM. Work groups are normally convened for two

IBM SYSTEMS JOVRNAL VOC 24, No 2.1985

primary objectives: (1) Requirements work groups
are formed to create the problem definition and
solution definition documents. This type of work
group is typically made up of system planners, prod-
uct planners, and consultants. (2) System-design
work groups are formed to create the design direction
document from a set of solution definitions. This
type of work group is typically made up of system
designers, product designers, and consultants.

Through broader participation in the requirements
process, work groups provide better specification of
problems and solutions than exclusively technical
approaches. Work groups also foster increased un-
derstanding of customer needs and system require-
ments within the development organization. The
work-group approach reduces last-minute changes
caused by unexpected new requirements. Work
groups see the development and understanding of
customer satisfaction and business goals as common
objectives.

Experiences with the Planning and Design
Methodology

Early experiences. Two pilot projects were under-
taken in 198 1 and 1982 to evaluate the effectiveness
of the PDM concepts of formal activities (synthesis,
analysis, communication), verification criteria, and
the viewpoint/aspect representation. The first project
involved the development of a new version of a
compiler, and the second was concerned with the
development of a major new function for the IBM
Multiple Virtual System (MVS) control program. In
both projects, the PDM methodology was introduced
after some initial requirements and design work had
commenced. Although a formal programming ob-
jectives document had not yet been completed, some
of the requirements specification had been written.
The PDM requirements specification was developed
as a combined solution definition and design direc-
tion document, including both the external function
description and details of the internal design. In both
projects, a formal requirements specification was
needed to clarify the design work that had already
begun.

The Problem Statement Language (PSL) and its as-
sociated software, the Problem Statement Analyzer
(PSA),'.~ were used as the specification language and
the repository. PSL/PSA was chosen because its lan-
guage structure supported a network model of the
specification, and its automated analysis functions
facilitated the display of the various viewpoints and

aspects called for in the methodology. PSA analysis
programs also helped to ensure consistency within
the requirements specification as expressed in PSL;
PSA also produced several additional reports that
communicate the requirements specification to re-
viewers and approvers.

Meetings for reviewing the requirements document
were held. Participants included the requirements
planner and one or more of the key designers. At
the initial review meeting, a short tutorial was given
on reading and interpreting the formal specification.
At each review meeting, the material was presented
and reviewed in a structured agenda, according to
the viewpoints previously described. Many misun-
derstandings and unresolved issues surfaced and
were discussed, and the requirements specification
was updated on the basis of the meeting results. A
subsequent review was scheduled. After several re-
finements of the specification, a consensus was
reached on the requirements, and unresolved issues
were documented and incorporated in action plans
for resolution.

The reviewers agreed that the structure and formal-
ism of the PDM requirements specification helped to
raise important issues that normally would not have
come to the surface until later in the process. The
participants noted several benefits of PDM. For ex-
ample, the reviews of the requirements specification
improved communication between the Product
Planning and Design organizations and speeded the
recognition of problems. The formalism provided by
PSL/PSA and PDM forced a crisper statement of re-
quirements as compared to traditional prose. The
requirements specification document made it more
difficult for issues to be ignored or glossed over.

These early PDM experiences demonstrated that
structure and formalism help to clarify the require-
ments specification. Key issues can be brought up
and resolved earlier in the development process than
with traditional methods. PDM improved communi-
cation between requirements planners and designers
and improved the ability of the developers to prepare
a precise response to the requirements.

Experiences in a communications management ap-
plication. In late 1982, the complete PDM method-
ology involving all its phases (requirements col-
lection, problem analysis, solution definition, and
system design) was applied within a complex com-
munications management product development en-
vironment. The objective of the PDM application was

146 MAYS ET AL

to produce a system-level design for the next incre-
mental enhancement of certain communications
management products. The responsibility for the
development and maintenance of these interacting
products was shared among several organizations.

This application of PDM differed from the two expe-
riences just cited in that it was decided not to use
PSL/PSA for automated support. This decision was
based upon several factors. PSL/PSA in its delivered
form was found difficult to use by requirements
planning personnel whose backgrounds were not in
software development.

The need for end-user flexibility with PSL/PSA led to
the initiation of a concurrent development project
to provide this capability. A front end was produced
that greatly reduced the need for the end user to
know the syntax and semantics of the PSL language
and PSA commands and provided appropriate re-
ports on request. Although the resulting support tool
did not totally resolve this key human factors re-
quirement and was used only on a limited basis, the
experience gained provided important insights into
requirements for such tools in the future. We expand
upon this idea in the following section.

This project involved ten planners and system-level
designers. Several work groups were formed to per-
form the necessary prioritization, reviews, and veri-
fication. Members of these work groups were drawn
from system planning, system design, individual
product organizations, and various IBM marketing
and field support divisions. Selected customers who
were very knowledgeable about the affected com-
munications management products and the com-
munications networking interest group of SHARE Inc.
were utilized for customer verification. The technical
strategy, which continues to guide subsequent prod-
uct directions, was developed by an internal IBM
strategy and planning working group.

Slightly fewer than 300 raw requirements were gath-
ered during the requirements collection phase. Of
these, 35 were rejected, 23 were combined with
others because of equivalence or similarity, 57 were
to be studied further, 38 were classified as future
objectives, and 144 were migrated to the problem
analysis phase. During the problem analysis phase,
problem definition, value assessment, combination
of similar problem solutions, and prioritization re-
sulted in 3 1 of the original 300 requirements being
forwarded to the solution definition phase. As shown
in the solution definition example in Table 6 , a

IBM SYSTEMS JOURNAL, VOL 24, NO 2,1985

The definition of a solution for a particular require-
ment does not necessarily imply that the requirement
is forwarded to system design. Prioritization based
upon evaluations of technical and business feasibility
and resource availability can result in additional
attrition. Consolidation may also occur, because a
solution may either be equivalent to the solution of
other requirements or subsumed by other solutions.
Customer and internal review resulted in a consensus
prioritization of the 3 1 solution definitions. Of these,
the 21 highest solution definitions were selected for
system design work and were consolidated into six
design directions.

Thus the system design phase for this application
resulted in six design direction documents, each of
which provides a solution addressing a number of
the original requirements. These documents were
referred to respective product development organi-
zations for final review and inclusion in product
development plans. To date, final testing and release
have not been completed for these communications
management products.

Although the long-term effects of the application of
PDM upon quality and productivity in the total de-
velopment life cycle have yet to be measured, its
application during the planning and system-level
design phases was termed very successful by the
participants and management of the project. The
following results and effects were noted

Discipline was introduced into a previously
loosely defined and controlled requirements plan-
ning process. The identification of specific steps
within the process and their anticipated goals and
workproducts enabled increased communication,
coordination of tasks, definition of work objec-
tives, and enhanced control.
The PDM process served as a problem-solving tech-
nique that quickly put forward all the relevant and
salient issues and facts during analysis and review.
PDM helped remove the parochialism and subjec-
tivity of organizational and functional interests.
The evaluation of potential solutions was facili-
tated by the clear identification of the underlying
problems to be solved and the user environment
into which the solution must be integrated.
A fixed set of discrete product-level requirements
was uroduced and exvressed in a design direction

objectives. Significant to this success was the direct
involvement of customers, planning, and product
development personnel in the review and verifi-
cation process.
The precision, consistency, and depth of the design
direction documents greatly facilitated the gener-
ation of product development plans detailing the
necessary resource requirements, schedules, and
test procedures to be employed.
Automated support is crucial to further gains in
quality and productivity in the PDM process. Au-
tomation is particularly valuable in the manage-
ment and analysis of data and in the production
of documentation. Additional value could be
gained if the PDM process and quality metrics were
also automatically controlled and extracted.’

Future directions

Most of us will agree that advances in the technology
of requirements planning are vital to the continued
reduction of software development and maintenance
C O S ~ S . ~ - ~ Although the need for formalisms to express
requirements has emerged as a long-term goal, prog-
ress is slow in defining rigorous format, content, and
quality criteria by which requirements specifications
can be evaluated.’

PDM is an embryonic stage in the production of
software requirements that are concise, well-defined,
understandable, and verifiable against the original
source requirements as specified by a customer/end
user. The complete realization of these goals by PDM
is currently limited by the amount of information
captured by PDM in the source requirements and
value assessments, which are received and main-
tained in narrative form. This is especially true in
the earlier phases of PDM, in which information is
often fuzzy, subjective, or expressive of the “why” as
opposed to the more rigorous “what” or “how.”
Although initial studies’ have demonstrated the
flexibility of the relational model in capturing se-
mantically vague requirements expressions, further
research is necessary to realize more flexible semantic
modeling techniques to bridge the gap between the
customer/end user and the requirements plan-
ner.’“’

The need for automated support of PDM is strongly
evident. The maintenance of control over and the
insight into data collected during the phases of PDM

mation, but also because of its complexity and the
length of the product life cycle. Nevertheless, any
automated support provided for PDM must be easily
modified and adapted for two reasons: (1) The tech-
nology and the redefinition and refinement of the
PDM process are anticipated to evolve in new direc-
tions. Information elements within PDM and their
interrelationships and dependencies are expected to
become formal notations for expressing program
requirements structures. (2) The PDM process will
not be identical across differing customer/end-user
bases, product structures, development organiza-
tions, and recipients of PDM workproducts. It is
essential to have the ability to generate dialects of
PDM rapidly for different environments, where these
environments are themselves fluid.

The automation of PDM in support of many organi-
zational and product structures will require new
capabilities to strengthen it and increase its flexibil-
ity. Regardless of the implementation, future PDM
directions will require additional capabilities:

Textual searches to locate keywords or character
strings of interest, as provided, for example, by
the IBM product STAIRS.” Much of the source
information required by PDM is and will continue
to be provided in narrative form; isolating partic-
ular requirements and their contexts across volu-
minous narrative documents is necessary.
Expression, storage, and retrieval of information
elements in terms of open-ended relationships as
afforded by relational data bases, such as SQL/DSI3
and ~ ~ 2 . l ~ Flexible semantic models enable the
iterative expression and refinement of usually im-
plicit or incomplete raw requirements into discrete
and precise statements.
Rules-driven verification mechanisms based on
universal and locally established criteria.
Interactive requirements gathering, problem and
solution definition. The current PDM accepts pre-
written source requirements and involves the cus-
tomer/end user in a noninteractive manual proc-
ess of iterative verification.
Adaptability of the PDM process to local product
and organizational needs. Anticipated variations
of the PDM process and any automated support
will require the flexibility of application-generator
systems, such as the IBM Application System” and
The Information Facility.16 These systems not
only exhibit relational capabilities, but also give
the user the ability to rapidly customize the appli-
cation.

These possibilities for future PDM developments
have, from a pragmatic view, automation solutions

148 MAYS ET AL.

that are within the grasp of the practitioner today.
However, to extend the automated support beyond
these capabilities will require advances in two areas
of current research-expert systems and very high
level language processing. We anticipate that devel-
opments in these fields will result in automated
capabilities to derive missing requirements by infer-
ence and validate problem and solution definitions.
This can be done by using an accumulated main
body of knowledge about customers and end users,
their operational environments, and existing sys-
tems. The other technical advance needed is a means
of algorithmic translation from high level solution
statements to product-specific designs.

Concluding remarks

The Planning and Design Methodology has proved
to be valuable in systematically analyzing, docu-
menting, and managing a large set of requirements
from initial input through design. PDM is particularly
applicable to IBM software development environ-
ments that must provide continuously and incre-
mentally enhanced products. Experiences to date
with PDM have been positive on the development
projects in which it has been used, especially on a
large system-level communications management ap-
plication. Nevertheless, experiences have also
pointed out the need for future directions in which
additional gains in quality and productivity can be
attained. Much work remains to be done in the area
of planning and requirements engineering. Never-
theless, PDM has initiated the transfer of technology
into requirements planning, resulting in a more
manageable, disciplined, and tractable software de-
velopment phase.

Acknowledgments

The authors wish to acknowledge the significant
contribution made by Edward A. Altieri, Dorene H.
Palermo, and William E. Warner, Jr. to the devel-
opment of the concepts of requirements collection,
problem analysis, solution definition, and system
design. Richard A. Tidwell and Richard L. Fredrick
also contributed to the basic definition and refine-
ment of these concepts, which form the heart of the
methodology. We also wish to acknowledge the con-
tributions of Dr. A. Lip Lim, under whose direction
PDM was initially developed, and Gerard M. Cocco
and Joseph M. Gdaniec, who helped improve PDM
under the direction of Dr. Lim. We also acknowledge
William R. Brown and Richard A. Tidwell, who
contributed to the refinement of the PDM process
and the development of a prototype tool to support
it.

IBM SYSTEMS JOURNAL. VOL 24, NO 2,1985

Cited references

1. D. Teichrcew and E. A. Hershey, “PSL/PSA: A computer
aided technique for structured documentation and analysis of
information processing systems,” IEEE Transactions on Soft-
ware Engineering SE-3, No. 1, 4 1-48 (January 1977).

2. L. S. Orzech, “PSL/PSA: A computer-aided tool and tech-
nique for specification and analysis of high-level designs,”
IBM/FSD Software Engineering Exchange 2, No. 1, 2-9
(October 1979).

3. G. F. Hoffnagle and W. E. Beregi, “Automating the software
development process,” IBM Systems Journal 24, No. 2,
102-120 (1985, this issue).

4. R. T. Yeh and P. Zave, “Specifying software requirements,”
Proceedings of the IEEE 68, No. 9, 1077-1085 (September
1980).

5. M. W. Alford, “Software requirements in the 80’s: From

ACM 80, Nashville, TN, October 27-29, 1980; ACM, Balti-
alchemy to science,” Proceedings of the Annual Conference,

more, MD (1980), pp. 342-349.
6. T. E. Bell and T. A. Thayer, “Software requirements: Are they

really a problem?”, IEEE, Proceedings, 2nd International
Conference on Software Engineering, San Francisco, CA (Oc-
tober 13- 15, 1976), pp. 6 1-68.

7. IEEE Guide to Software Requirements Specifications, ANSI/
IEEE Standard No. 830-1984, available from the IEEE Service
Center, 445 Hoes Lane, Piscataway, NJ 08854.

8. M. P. Perriens, “Using QBE to process software requirements
and specification data,” IBM/FSD Software Engineering Ex-
change 2, No. I , 10-20 (October 1979).

9. R. Balzer, N. Goldman, and D. Wile, “Informality in program
specification,” IEEE Transactions on Software Engineering
SEA, No. 2,94-103 (March 1978).

10. M. L. Wilson, Requirements Modeling Using the Require-
ments and Design Aid, Technical Report TR-03.199, IBM
Santa Teresa Laboratory, P.O. Box 50020, San Jose, CA
95150, 1982.

1 1. S. J. Greenspan, Requirements Modeling: A Knowledge Rep-
resentation Approach To Software Requirements Definition,
Technical Report CSRG- 155, Computer Systems Research
Group, University of Toronto, Toronto, Canada (March
1984).

12. STAIRS/ConversationaI Monitor System, Terminal Users
Guide, SB21-2783, IBM Corporation; available through IBM
branch offices.

13. SQLIData System, General Information, GH24-5012, IBM
Corporation; available through IBM branch offices.

14. Database 2, General Information, GC26-4073, IBM Corpo-
ration; available through IBM branch offices.

15. Application System Introduction, SC34-2209, IBM Corpora-
tion; available through IBM branch offices.

16. TIF: Thelnformation Facility, Reference Manual, SC26-4479,
IBM Corporation; available through IBM branch offices.

Robert G. Mays IBM Communication Products Division, P.O.
Box 12195, Research Triangle Park, North Carolina 27709. Mr.
Mays joined IBM in 198 1 and is currently working in Communi-
cations Programming Process Planning and Control on projects
related to software process technology and development. His prior
assignments include advanced communications architecture, sys-
tems planning for communications and systems management
projects, and requirements process development. Mr. Mays re-
ceived his B.S. degree in chemistry in 1968 from the Massachusetts

IBM SYSTEMS JOVRNAL, VOL 24, NO 2,1985

Institute of Technology. Prior to joining IBM, he worked for 12
years in management systems development at the Eastman Kodak
Company. He is a member of the Association for Computing
Machinery and the IEEE Computer Society.

Leonard S. Orzech IBM Communication Products Division, P.O.
Box 12195, Research Triangle Park, North Carolina 27709. Mr.
Orzech joined IBM in 1962. He is currently working in the area
of product planning and design methodology development. Prior
to his current assignment, he has held a variety of programming,
design, analysis, education, and research positions within the Fed-
eral Systems Division. Applications of these technologies have
included design automation, formatted file systems, product as-
surance, integrated logistics, on-board training, and intelligence
systems. Mr. Orzech received his B.A. and M.S. degrees from the
University of Connecticut in 1962 and 1976, respectively.

William A. Ciarfella IBM Data Systems Division, Neighborhood
Road, Kingston, New York 12401. Mr. Ciarfella joined IBM in
1980. He is currently working in the Software Engineering function
at the Kingston Programming Center. Since joining IBM, Mr.
Ciarfella has worked on software requirements and design systems.
Most recently, he was one of the authors of the IS&SG Program-
ming Process Architecture. He received his B.S. degree in mathe-
matics and computer science from the SUNY College at Brock-
Port .

Richard W. Phillips IBM Information Systems and Storage
Group, P.O. Box 390, Poughkeepsie, New York 12601. Mr. Phillips
attended the University of Wisconsin, and joined IBM in 1954.
He has held several technical and management posts, both in the
field and at IBM development laboratories for OS and MVS
software development. His technical accomplishments have in-
cluded the development of programming quality measurement
systems and predictive models for analyzing program quality.
From 1980 to 1983, Mr. Phillips was team leader in the advanced
technology effort and early pilot projects that preceded and helped
to found the methodology described in this paper. He is currently
active in a software engineering function in IBM. Mr. Phillips is
also an Adjunct Associate Professor at Rensselaer Polytechnic
Institute, where he teaches software engineering courses in the
graduate study program. He is a member of the Association for
Computing Machinery and the IEEE Computer Society.

Reprint Order No. G32 1-5244

MAYS ET AL. 149

