Quality emphasis at IBM’s
Software Engineering
Institute

Improvements in quality and productivity in the devel-
opment of programs can be obtained by instructing
the programming development groups in the use of
modern software engineering methodology. To provide
this instruction for its employees, IBM has established
a Software Engineering Institute. Currently training in
the methodology is being offered through an education
program of the Institute known as the Software Engi-
neering Workshop. This paper describes the role of the
Institute, its background and offerings, and some re-
sults obtained.

To provide continuing advanced technical edu-
cation to its technical professional employees,
1BM established the Corporate Technical Institutes:
the Manufacturing Technology Institute, the Quality
Institute, the Software Engineering Institute, and the
Systems Research Institute. They offer classes and
laboratories addressing critical areas that concern the
technical vitality of employees. The Software Engi-
neering Institute and its main programs are the focus
of this discussion.

A primary role of the Software Engineering Institute
(SE1) is to communicate and facilitate the use of the
intellectual foundations necessary to meet the qual-
ity and productivity levels mandated by the rapidly
expanding and competitive software industry. In
order to achieve and maintain these levels, the pro-
grammer cannot act as a “skilled craftsman” or as a
“high priest” holding power over clients with mys-
terious knowledge and incantations.! Rather, the
programmer must be a professional, understanding
the disciplines of science and engineering and apply-

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

by M. B. Carpenter
H. K. Hallman

ing them in a controlled and business-sensitive man-
ner to the development of software products. Such a
person is then a software engineer by the definition
used throughout this paper.

The evolution of the Institute to its current organi-
zational structure and the educational and adminis-
trative methods that characterize it are noteworthy,
but equally important is the content of the curricu-
lum chosen. Of course, IBM is not an academic
organization. The educational motivation and ap-
proach are decidedly different in an academic and
in a business concern, although the divergence be-
tween the two has narrowed recently. A business is
primarily interested in producing a needed, high-
quality product in a cost-effective manner, while
optimizing the use of available resources. In the
software business, the most significant resources are
the software developers and the knowledge and skill
they possess. The greater the extent to which those
resources can be enhanced through better intellectual
methods or increased automation of less creative
aspects of the task, the bigger the payback, or return.

The Software Engineering Institute is supportive of
the business concerns of 1BM. Its role is to address

© Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

CARPENTER AND HALLMAN 121

educational and methodological inhibitors to make
order-of-magnitude improvements in software qual-
ity and its corollary, software productivity. This re-
quires the careful selection of curriculum to provide
the maximum quality improvement. The dissemi-
nation of the selected content through a large popu-
lation base such as IBM’s programming development
groups requires tens of thousands of classroom
hours, followed by consultation service back on the
job, where the real application of the curriculum

It frequently takes as long as six
months for professionals to become
comfortable and respected in new
jobs.

occurs. Also required are software development prac-
tices to support the development process suggested
by the methodology. And of critical importance is
the integration of automated development tools into
the process to make the application of the method-
ology both standard and natural for the programmer.

Organizational evolution

Need. In the late 1970s, it was apparent that some
of 1BM’s more experienced programmers were in
danger of having their expertise become obsolete and
that many of the computer science school graduates
had more relevant if not better technical foundations
than our experienced personnel.

An additional phenomenon that had always been a
concern, the terminology gap, was creating problems
in our ability to absorb these new graduates quickly
into our existing software projects. The terminology
used by experienced programmers in industry was
different from that used in the literature and in
educational institutions. Thus, 2 newly hired com-
puter science graduate had to spend considerable
time formally or informally learning the terminology
used in the company before becoming fully produc-
tive in using skills acquired in college.

122 CARPENTER AND HALLMAN

Experience has shown that it frequently takes as long
as six months for professionals changing job assign-
ments to become comfortable and respected in their
new jobs. But with computer science graduates en-
tering industry for the first time this period can take
as long as two years. Within industry circles in the
past, this lengthy adjustment was attributed to the
graduate not getting the proper training in college.
Today there is a different perception. Recent gradu-
ates from schools with good computer science cur-
ricula appear to be better prepared technically than
ever before. They sometimes have better understand-
ing and technical know-how than those who have
been in the profession for many years. However, the
terminology gap and the burden of learning a new
vocabulary can keep them from being productive.

A little perspective is needed to understand why this
problem exists. Programmers in the industrial devel-
opment laboratories have been asked from the very
beginning of the profession to create solutions to
problems that have not been solved before. This
situation is true in all aspects of the programming
profession, but is specifically the case in systems
software development. In creating new solutions, one
frequently has to develop new terminology to suit
the new environment and solution. As the new prod-
uct 1s used and the creators go on to other projects
which are similar yet different, the new terminology
becomes widespread throughout a company’s inter-
nal programming community. This is good and to
be expected and fosters communication across the
various software organizations.

In the past, internal standards frequently were cre-
ated to foster the use of a common terminology, for
example, “buffer,” “communication area,” “save
area,” “indirect addressing,” and “linkage register.”
Since programmers were not being trained in the
universities in the early days of the industry, the
computer manufacturing companies trained their
own programmers using this new terminology. The
problem was that in many industrial environments,
time was not allocated to publish these new devel-
opments in the software trade publications as they
occurred. The terminology sometimes found its way
into the reference manuals for the products, but
technical descriptions were usually missing. For ex-
ample, data-driven logic algorithms had become well
developed by the mid-1960s but appeared in the
code with very few explanations.

In the late 1960s and early 1970s, as more educa-
tional institutions were being encouraged to do re-

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

search in the software sciences, there was a lack of
published work from the industrial sector of pro-
gramming. The scholars began publishing works of
their own creation. These were frequently solutions
to new problems. But there were also frequently new
solutions to old problems with a different terminol-
ogy. With the industrial programmers not publishing
their work, it was not generally known that a prob-
lem had already been solved until after the work was
published and translated. For example, table-search-
ing algorithms were rediscovered in the universities
in the late 1960s.”? This phenomenon has caused
many problems in the software industry. It has also
caused the terminology/vocabulary gap mentioned
above and has made it difficult for the industrial
programmer to read and understand the literature in
his profession. As computer science curricula were
being developed, it was natural for the terminology
in the literature to be used. For example, what in-
dustry calls a “buffer” is referred to as a “list” in
university circles. Another example is the “linked
list,” which is often called a “chained control block”
in industry.

Direction. The technical currency and vitality of the
programming professional community has been
studied in 1BM for some time. By 1981, it had come
to executive attention. Dr. A. Anderson, then IBM
Senior Vice President and Group Executive of the
Data Processing Product Group, chartered a task
force to do a technical assessment and make appro-
priate recommendations. The task force recom-
mended that a Software Engineering Institute be
formed to provide courses in all aspects of the soft-
ware development process. It recommended that in
the near term the institute should concentrate on the
technology transfer of the design methodology work
of Harlan Mills and his associates? into the commer-
cial systems programming departments of 1BM. This
had already been done in 1BM’s Federal Systems
Division (FsD) through their software engineering
program, which is described in the set of papers titled
“The management of software engineering.™

Action. The task force recommendation was ac-
cepted; the FsD courses on design methodology were
modified to be applicable to commercial systems
programming. The commercial divisions are now
engaged in enrolling their programming develop-
ment and management staff in the Software Engi-
neering Institute program—the Software Engineer-
ing Workshop (sew). The curriculum concentrates
on the use of terminology widely published in the
literature and teaches software developers a means

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

to ensure that their design is correct before coding
and implementation begin. In cases where this meth-
odology has been used, the number of errors intro-
duced into the code has been greatly reduced, and

Prior to this decade, the primary

means of addressing the goal of

zero defects in software products
were inspections and testing.

the goal of defect-free code as well as its achievability
can be seen. See the later section entitled “Effect on
quality” for more details.

Status. To date, over 45 Workshop instructors have
been trained and certified by the Software Engineer-
ing Institute, and over 250 classes have been taught.
The Workshop courses are being taught to all levels
of management and to all the professional personnel
in most of the software product development proj-
ects within the company. A program of this magni-
tude has never before been undertaken within 1BM.
The benefits occur in many ways, not the least of
which is the signal to the 1BM programming profes-
sionals that they are expected to become and remain
technically up-to-date.

The curriculum

Prior to this decade, the primary means of addressing
the goal of zero defects in software products were
inspections and testing, i.e., defect removal. The
industry seems to have reached a plateau in the area
of defect removal. We have a very finely tuned defect
removal process, but wringing further improvements
from it is very difficult. In our pursuit of the goal of
zero defects, another avenue is available and must
be taken: defect prevention. Defect prevention
means initially constructing provably correct prod-
ucts rather than unintentionaily building in defects
and later detecting and removing the faults. Defect
prevention techniques have been used very success-
fully both within and outside of 1BM. The central
thrust of the Software Engineering Institute’s curric-

CARPENTER AND HALLMAN 123

Figure 1 Software Engineering Institute curriculum

STUDENT

iELF STUDIES: INDUSTRY OVERVIE!

GEBRA
LOGICAL EXPRESSION
DESIGN LANGUAGE

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING
WORKSHOP WORKSHOP FOR MANAGERS

ADVANCED SOFTWARE

SELF STUDY: TECHNIQUES OF SOFTWARE
DESIGN MATH REVIEW AND ENGINEERING REQUIREMENTS ENGINEERING
WORKSHOP PREPARATION MANAGEMENT ANALYSIS

APPLICATION
LABORATORY

COMPUTER

COMPUTER OPERATING PROGRAM TEST
SCIENCE SYSTEM HARDWARE AND
TECHNIQUES CONCEPTS FUNDAMENTALS VERIFICATION

£

LANGUAGES AND
INTERFACES

ALGORITHMS AND
DATA STRUCTURES

DATA ORGANIZATION,
ADDRESSING & ACCESSING

ulum is the infusion of defect prevention techniques
within the software development process.

Figure 1 illustrates the present curriculum of the
Software Engineering Institute and shows how a
student might progress from one course to another.
In general, the student should take paths through the
curriculum from the top to the bottom of the chart.
A description of each course can be found in the
Software Engineering Institute 1985/86 Bulletin.’

124 CARPENTER AND HALLMAN

Software Engineering Workshop

The course. The foundation course, the Software
Engineering Workshop (shown in light shading on
Figure 1), is a two-week class focusing on disciplined,
precise, and verifiable recording of software design.
Its primary audience comprises all system program-
mers and managers of software development projects
within 1BM. In addition, there is a one-week version
of the Workshop targeted for executive managers

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

who need an appreciation of the concepts as they
affect software products and processes. The Work-
shop is also presented in a {2-session format as part
of the curriculum of the 1BM Systems Research Insti-
tute, where graduate-level college credit can be
earned for the course. The Workshop introduces the
use of mathematical models to describe software
entities, concepts of abstraction and encapsulation,
and design verification.

Why this focus on design recording? Through many
industry-wide studies it has been shown that most of
the defects in a software product are introduced in
the design phase. On average, without defect preven-
tion techniques, 60 defects per thousand lines of
code® will be injected.” Also on average, 42 of them
will be injected prior to the coding phase. As software
developers, we then spend a great amount of time,
effort, and money detecting and removing those
errors through such techniques as reviews, inspec-
tions, and testing. Some estimates show that half of
the development expense goes to some form of defect
detection/removal activity. The message of defect
prevention is that it is highly cost-effective. However,
since design is a human-intensive activity, it is un-
likely that we will universally prevent all defects.
Short of total prevention, the next best thing is to
detect and remove defects earlier in the process,
before they manifest themselves in code and docu-
mentation errors. Therefore, the focus of the Soft-
ware Engineering Workshop is on correct design
recording: fewer defects injected in the design phase
and the ability to detect those errors earlier through
peer inspections driven by mathematically based
correctness reasoning.

The Workshop is most commonly taught in a two-
week format. The first week emphasizes procedural
abstraction, using the mathematical function as a
conceptual model for operations on data. The second
week emphasizes the abstraction of the representa-
tion of data (data abstraction), using the “state ma-
chine” as a model for user-defined data types. The
subject matter of the two weeks is interrelated: The
first week, by pedagogical necessity, limits itself to
very simple data types; the second week relies upon
the functional expressiveness taught in the first week
to define allowable operations on objects of a user-
defined data type and builds upon the mathematical
function model to portray the state machine model.
For each week, the material content has a pattern:

e The concept is introduced that every software
object (procedure or data object) can be viewed in

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Figure 2 Two views of a software object

INTERFACE/BEHAVIOR

TEMPORARY SYSTEM SERVICES
VARIABLES INVOKED

USER'S DESIGNER'S
VIEW VIEW
ALGORITHMS
COMPLEXITY
OF

DATA HARDWARE
STRUCTURE CHARACTERISTICS

two different ways. One view is that seen by the
user of the object. The user may be a person, if
the object is at the human interface level, or may
be another software object, as is more often the
case. The user’s view should be as simple and
sparse as possible, while being both complete and
expressive. The other view of the software object
is the designer/implementer view. This view shows
the actual representation of the object, with the
complexity and details (not necessary to the user’s
understanding of the object) made explicit. The
message is that the two views should be kept
separate. Figure 2 illustrates the concept of an
abstract user’s view of a more complex actual
representation.

Use of the Workshop methodology encourages
increased modularity. Increased modularity facil-
itates the recording of “good” designs by the cri-
teria of good modularization described by Myers:®
maximized module strength and minimized mod-
ule coupling. Module strength is characterized by
the performance of a single specific function rather
than a multiplicity of unrelated functions. Module
coupling is a measurement of intermodule rela-
tionships and dependencies (often involving
knowledge of the internal structure of the module
or its data). It is important that a clear and specific
user’s view be kept independent of the designer’s
internal view. A methodology that supports a
“two-views” philosophy of design presents the op-
portunity for precise statements of modularity

CARPENTER AND HALLMAN 125

Figure 3 Hierarchy of abstractions and their realizations

ABSTRACTION
OBJECT 1

REALIZATION

ABSTRACTION
OBJECT 2

OBJECT 3

REALIZATION REALIZATION

ABSTRACTION |
REALIZATION

decisions regardless of the criteria of “goodness”
espoused by the designer.

e Next the mechanisms for presenting the user’s
view (writing the specification) are addressed. The
underlying mathematical model of the software
object, be it procedural logic or data, is presented,
and a notation for expressing the specification for
the object is taught. In writing specifications, the
students are encouraged to balance the precision
of mathematical notation with the expressiveness
of natural language annotation.

¢ Following the specification recording, the process
of recording designs in a top-down manner is
illustrated. The process of design discovery is
hardly ever top-down. It tends to be partly top-
down, partly bottom-up, and partly lateral as re-
lationships among other software objects are con-
sidered. The process of correct design recording is,
however, a top-down process, commonly referred
to as “stepwise refinement.” (The term “stepwise
refinement™® was widely published among com-
puter professionals by Niklaus Wirth in 1971))
The philosophy of stepwise refinement is that
movement from a higher to a lower level of defi-
nition should be taken in small, and therefore
verifiable, steps, with each step containing inter-
mediate specifications which become the starting
point for lower levels of refinement. Designs so
produced are hierarchical networks of interacting
objects.

126 CARPENTER AND HALLMAN

Figure 3 illustrates the notion of hierarchical ar-
chitectures of abstractions and their realizations.
Here object 1 is composed of both an abstraction
(an interface and behavior view) and a realization
(actual representation or designer’s view). The re-
alization of object 1 makes use of two lower-level
abstractions: that of object 2 and that of object 3.
The use of objects 2 and 3 by object 1 is dependent
on their abstract view; object | is independent of
their realizations. The realization of object 3
makes use of yet another object lower in the
hierarchy: object 4. The complexity of the reali-
zation of each object is isolated from the user/
invoker of that object.

» The subsequent pedagogical step is the definition
of the process of determining the correctness of
each step of refinement. The process is called
“verification.” A means of recording “proofs” or
correctness arguments is shown. These recorded
proofs are not, however, the goal of the instruction
in verification. For each construct within the de-
sign language, there is a set of mentally applicable
questions which the student is encouraged to make
a part of his/her habitual practice of design crea-
tion. For example, for a looping construct, one of
the questions in its verification set would concern
loop termination. The emphasis is on the use of
the correctness questions to examine each design
step prior to introducing it into the software prod-
uct. Thus, the goal of verification is termed “con-
structive correctness,” a key aspect of the overall
theme of defect prevention.

The Workshop is taught by a combination of lec-
tures, classroom exercises, discussions, homework
exercises, ungraded quizzes, case studies, and graded
tests. Successful completion of the Workshop re-
quires participation in a significant team exercise
(case study) and achieving a passing average on the
two graded tests, one for each week. The subject
matter is introduced in gradually increasing levels of
complexity. The class size is targeted at 25 students
so that the creation of a constructive, friendly at-
mosphere between student and instructor is feasible.
There are generally two instructors who share the
instructional load, which is quite intense, with 80
hours of classroom time during the two-week period.
Individual assistance to students is available before
and after class. Every effort is made to make the
Workshop experience a positive and successful one
for the student.

The Software Engineering Workshop, as part of a
quality improvement program of a business organi-

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

zation, produces a somewhat unique educational
atmosphere. Little emphasis is placed on graded
activities, but the presence of tests is a motivator for
learning. The grades serve as a measure of minimal
competency in the material and indicate general
trends in instructional quality. The only data kept
after the class on a student’s achievement is a record
of successful completion of the course. The grades
are not distributed and are not used as a measure of
the employee’s job performance. The Software En-

The selection and training of
instructors for the Workshop are
critical to its success.

gineering Institute’s expectation and experience with
this Workshop is that half the students will achieve
an average of 90 or above on the two tests and that
less than five percent of students will score below 70.
The Workshop is not a means of ranking employees
or of effecting career changes. It is a success-oriented
program for establishing a universal foundation in
certain software engineering principles, thus enhanc-
ing communication among software professionals
and moving the total organization toward the goal
of zero-defect software products.

The selection and training of instructors for the
Workshop are critical to its success. Instructors are
drawn from 1BM’s own software development com-
munity. Qualities primarily sought are extensive ex-
perience in software development, a strong mathe-
matics background, and peer leadership. The ability
to relate to students and their experiences at work is
essential to instructor credibility. An instructor can-
didate must first successfully complete the Workshop
as a student and then go through an intensive certi-
fication program. Certification requires full-time
concentration for up to a year. The candidate must
do in-depth studies of the technical content of the
course, prepare and give each of the 21 lectures
before an audience of other instructors who deter-
mine how ready the presenter is to teach the lecture,
and conduct all the lectures plus 11 other review/
discussion sessions in live classes. During candidacy,

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

the instructor is expected to practice applying the
methodology and using methodology-related tools.
Typically, a certified instructor is assigned for two
years 1o an IBM site where software is developed. At
each of these “satellite” locations of the Software
Engineering Institute, instructor teams will run
workshops on the methodology of the Software En-
gineering Workshop and provide technology con-
sulting service to local projects. At present there are
20 active satellite locations worldwide.

The student materials for the Workshop include a
four-volume set of lecture notes.!® These volumes
contain copies of material presented during the lec-
tures, student exercises with answers, and essays or
self studies related to individual lectures. One of the
four volumes is a reference manual describing the
design language used as a vehicle for design expres-
sion during the class and on projects after class. Each
student receives a textbook, Structured Program-
ming: Theory and Practice, by Linger, Mills, and
Witt.> The classroom contains a selection of books
on subjects covered in the Workshop or applicable
to other courses in the Software Engineering Institute
curriculum.

The Workshop methodology. The methodology
taught in the Workshop can be termed a “function-
based” methodology. Software may be defined in
simplified terms as “operations on data.” Those op-
erations are modeled in the Workshop on the math-
ematical function; i.e., each operation might be
viewed as a set of ordered pairs mapping inputs to
outputs, where each input value is unique. What is
distinctive about the application of the function
model in the Workshop is the definition of the set
from which the values in the function elements are
drawn. Often a function is used to map inputs con-
tained in one set to outputs contained in a different
set. In the Workshop the model is used to map input
states of all the variables known to the operation to
output states of all those variables. The model is
divorced from the concept of modes of parameters
and applies to functions defined at all levels of design,
1.e., functions subordinate to external interfaces. The
set of first elements used in the function is called the
domain; the set of second elements is called the
range. Both the domain and range are within the set
of declared values, termed the data space. The func-
tion rule records which second element will be pro-
duced given a first element.

The notation used to record functions is called the
“concurrent assignment statement.” It describes the

CARPENTER AND HALLMAN 127

Figure 4 Mathematical function applied to software
operation

DATA SPACE:
a, b, ¢, d: INTEGER;

in (<a, b, c>>)

WHERE AN ARBITRARY S, MIGHT BE PRODUCING AN S, OF

I

QO TN
([}

n

w0
QOoo

i

simultaneous transformation of the current data
states of all variables to their new data states. Figure
4 illustrates the use of a concurrent assignment state-
ment to express a function. In the example, the data
space is defined by the variable declarations. The
diagram shows the results of a function acting upon
a sample data state and producing a new data state.
The statement of the function expresses what is to
occur and suppresses all procedural logic defining
how the output might be attained. As the operation
is viewed as concurrent, there is no concept of inter-
mediate data states. The function is an opaque box
view of the operation.

Defining function rules is relatively natural to a
programmer, but specifying the domain (set of legal
inputs) of a function is not. Using the mathematical
function model adds the discipline of explicitly re-
corded domains. In cases where the domain is not
equal to the data space, domains must be clearly
understood by both the user and the designer of the
function. In the example of Figure 4, the domain is
equal to the data space. All of the illustrated opera-
tions keep data within the declared bounds because
the set of integers is closed under the operations of
addition and subtraction.

If we change the data space to

a, ¢, d INTEGER
b JINTEGER = 0

the domain is then less than the data space. The
function must be guarded to ensure that a negative
integer is not assigned to b. To express the domain

128 CARPENTER AND HALLMAN

of the function over the revised data space, one
would record

b+1
a-—2
a+b
min ({a, b, ¢))

az=z2—

Qo o8
1

thus indicating that there are no ordered pairs in the
function which contain an input data state with a
value for a less than 2.

Through a process known as “stepwise refinement,”
a function may be refined into a program whose
control structures are members of a predefined set
of control structures native to the design language.
At each step of refinement, more how information
is added to the design. Function boxes, viewed as
opaque, are expanded into control structures, which
in turn contain other function boxes. Figure 5 illus-
trates this process. Letters represent functions (as-
signment statements) and predicates (expressions
that produce a Boolean value).

A distinguishing feature of the Workshop method-
ology is the retention of function abstractions in the
design recording (as illustrated in Figure 5) as inter-
mediate specifications in the square brackets ([. . .]).
They allow the reader to understand what the more
detailed design is accomplishing without the under-
lying complexity of the design. Furthermore, inter-
mediate specifications form the basis for reasoning
about the correctness of the design.

Since every assignment statement reflects a mathe-
matical function, correctness reasoning (called veri-
fication) involves applying mathematical concepts to
the functions. The verification technique for a se-
quence control structure consists in first deriving the
mathematical function of the sequence using the
concept of function composition and then compar-
ing the result to the specification. Alternative branch-
ing programs are verified by partitioning the domain
of the specification by the program predicate(s) and
comparing the functions in the specification and in
the program in corresponding partitions. Looping
programs are verified by first ensuring loop termi-
nation through arguments based upon finite sets.
When it has been determined that the loop will
produce a final mapping, a function-based verifica-
tion technique, making use of the iteration recursion
theorem as covered in the text,® is taught as an
alternative to methods based on loop invariants. The
verification techniques are easy to apply and present
the potential for certification of the correctness of a

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

design. Essential to the simplicity of the verification
process is its application to relatively small pieces of
the design, each with a precise specification. The
process can be applied mentally, verbally, or in writ-
ten form at each step of the refinement process, as
shown in Figure 5.

A corresponding stepwise refinement process can be
applied to data. The mathematical model for data is
the state machine, where operations can be viewed
as functions applied to the data modeled. Figure 6
depicts the state machine model and its mathemati-
cal function view.

Each operation uses as input any external data values
(i) and the current value of the data modeled (¢). It
potentially produces external data values (0) and a
new value of the retained data (n). Thus viewed as a
function, each operation is defined by a set of ordered
pairs, composed of ((i,c), (o,n)).

The state machine model is commonly applied to a
particular instance of data. The Workshop extends
the model to be applicable to a data type, ie., a
family of data instantiations with common charac-
teristics. Furthermore, there may be two different
views of each data type. One view presents the sim-
plest possible structure in which to describe the
information content of the data type and in which
to define the set of allowable operations upon data
of this type. Abstract structures are often defined in
terms of sets, lists, or maps. Each operation is clearly
defined in terms of its interface and behavior, again
described in the format of a concurrent assignment
statement. The other view, the designer’s, describes
the actual data representation structure. The opera-
tions are restated in terms of the more complex
structure and often have a larger number of parti-
tions of behavioral specification.

Stepwise refinement as applied to data, as with func-
tion, is the movement from the abstract view to the
actual representation view. The total data transfor-
mation may occur in one step or may occur in
several steps, where intermediate data abstractions
may be used to encapsulate logical partitions of the
data entity. As with function refinement, a verifica-
tion technique is taught to ensure that the transfor-
mation at each step is correct, i.c., satisfies the intent
of the abstract view. After the operations allowed for
the data type are expressed against the actual data
representation, they are refined into procedural logic
using the same techniques as used for other func-
tions.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Figure 5 Stepwise refinement of function

r;

END; t;
[h] END;
DO WHILE w; [n]
¥ DO WHILE w [y];
END; X3
END; z;

END;

Figure 6 State machine model applied to data

OPERATION(S)

] RETAINED DATA
VALUE

The design product using the Workshop methodol-
ogy is a network of interacting functions and data
objects, each with two distinct views (abstract and
concrete). Systems thus developed tend to be easier
to understand, more modular, more maintainable,
and more free from defects. More precision in the
design product eases the task of early prototyping
and performance modeling. Since design details are
encapsulated (decoupled from their use), alternative
representations can be substituted with minimal ef-

CARPENTER AND HALLMAN 129

fect to the system. As libraries of alternative design
representations are developed, the potential for reus-

A significant part of the curriculum is
developed and taught by university
faculty.

ability grows, having a positive effect on both pro-
ductivity and quality.

Courses for Software Engineering Workshop grad-
uates. Follow-on courses to the Software Engineering
Workshop (shown in medium shading on Figure 1)
are designed to apply and augment its concepts.

* Advanced Design Workshop expands the meth-
odology to the concerns of designing mechanisms
for multitasking environments.

» The Software Engineering Management curricu-

lum offers to managers of software development

projects perspectives on business and managerial
issues as they are affected by evolving technologies
and processes.

Techniques of Requirements Analysis extends the

discipline of rigorous specification and design to

the requirements definition phase of development.

Software Engineering Application Laboratory em-

phasizes the practical concerns of applying soft-

ware engineering methodology to designing in
real-world environments and using methodology-
specific tools.

University programs. A significant part of the Soft-
ware Engineering Institute curriculum (shown in
dark shading on Figure 1) is developed and taught
by university faculty from a variety of cooperating
colleges and universities. These courses are elective
for graduates of the Software Engineering Workshop.
Topics are more typical of those found in computer
science curricula and are taught in the style of a
university course. Courses in the university programs
are typically five days in length.

The Corporate Technical Institutes encourage the
sharing of ideas and teaching responsibilities between

130 CARPENTER AND HALLMAN

industry and academia. The cross-pollination is mu-
tually beneficial to the faculties and to the students.

All courses in the Software Engineering Institute’s
university programs require the Software Engineer-
ing Workshop as a prerequisite as well as the com-
pletion of a self-study in mathematics. There is a
subset of university program courses with only these
two prerequisites:

e Computer Science Techniques presents subjects
normally encountered by a student in computer
science during the freshman and sophomore years.
These include graph theory, efficiency measures
and notations, and logic design verification using
pre- and post-conditions.

e Operating System Concepts examines system de-
sign concepts as applied to operating systems.

e Computer Hardware Fundamentals explores the
principles of computer hardware design.

e Program Test and Verification focuses on the prin-
ciples that underlie an engineered approach to the
testing phase of software development.

The remaining courses of the university programs
additionally require the successful completion of
Computer Science Techniques for attendance:

¢ Algorithms and Data Structures presents methods
for analyzing both algorithms and data structures
in light of efficiency considerations.

» Languages and Interfaces examines the relation-
ships among tasks, people, and computers as they
are communicated through languages and inter-
faces.

¢ Data Organization, Addressing, and Accessing fo-
cuses on the role of data in software systems,
highlighting means of data access and control.

Industry overview. Professionals with responsibility
for making high-level decisions concerning products
and the marketplace require a broad awareness of
the computer industry. Industry Overview is a one-
week course which surveys computer technology and
products, both hardware and software. The course is
taught by university personnel and independent con-
sultants involved with research in the computer in-
dustry. The course concludes with an overview of
1BM’s business planning process.

Past indicators of success and future direction
To date the Software Engineering Institute has had

approximately 5000 students worldwide go through

1BM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

its Software Engineering Workshop and hundreds
more through its various follow-on courses. As our
motivation is not solely an academic one, the true
measure of our success is not classroom statistics but
the business impact of the use of the methodology
taught.

The first conference to evaluate that influence was
the Workshop on Applications of Software Engi-
neering Technology. Held October 16-19, 1984, in
La Gaude, France, it featured speakers from 15 1BM
sites worldwide. The presentations at this conference
illustrated that the curriculum content of the Soft-
ware Engineering Institute is being applied in a wide
variety of environments. Future conferences of this
nature are planned.

Further documentation of the methodology usage is
distributed internally by the Institute to graduates of
the Software Engineering Workshop. The mailing
includes copies of papers written by employees about
projects in which they applied concepts of software
engineering to advantage. The intent of this internal
publication is to foster communication among prac-
titioners of the methodology and to encourage peo-
ple to write about their work.

Effect on quality. The use of the Workshop meth-
odology can have a very significant effect on the
quality of the product being developed. The term
“quality” in this application is used to refer to intrin-
sic quality or quality in the form of measurable
entities such as defects found per unit of work. It is
not necessary to discuss the pros and cons of this
type of measurement here; that has been done ade-
quately elsewhere in the literature.’'**> When one is
making the same measurement with the new meth-
odology as was made with the old methodology, the
results are indicative of what can be expected from
the use of the new methodology.

First let us look at the results on a large systems
software type of product. Project A was a large
ongoing effort over many years with many versions.
It consisted of an operating system, real-time control,
data management plus specific application-type
code. It existed in an environment where high quality
has always been required. Over a period of several
years and several versions, it had a historical average
of 60 defects injected per thousand shipped lines of
code, which is not an unusual number. It is about
the norm for the technologies used in the 1970s. A
new version of the product was created using the
Workshop methodology. It contained significant

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

modifications to the existing system plus large
amounts of new code (greater than one hundred
thousand lines of code). For areas using the meth-
odology as applied to both functions and data ab-
stractions, the number of defects injected was re-
duced by a factor of 10. For areas using the meth-
odology but applying it only to the area of functions,
the defects injected were reduced by a factor of 3.
The techniques for defect detection and removal and
their associated yields remained unchanged for the
new version. The intrinsic quality of the delivered
product was improved by a factor of 12.

Project B was a financial application developed for
use within IBM at several locations. Similar applica-
tions developed by the same organization had a
history of problems during instaliation and after-
ward. This was a medium-sized product, about
20 000 lines of PL/1 code, developed using the Work-
shop methodology. No errors were found after unit
test. At no time after design was complete were any
design defects found. The programmers on this proj-
ect have become well known among their user com-
munity for developing zero-defect code.

The methodology has many subjective effects on
quality. The users of the methodology claim that
having the design of the product documented in an
accurate hierarchical manner allows the user to un-
derstand the potential of the product earlier in its
life cycle. This knowledge reduces late changes to
requirements,

Effect on productivity. Productivity reflects the cost
of a product. To get an improvement in productivity,
one has to reduce this cost. There are many parts of
the development cycle that can be worked on to
affect product cost. The industry is just coming to
understand the effects of quality on productivity.
The two are usually tied together; 1.e., if you concen-
trate on those things that affect the quality of the
product, you will minimize the cost of the product.

The Workshop methodology concentrates on pre-
venting errors from getting into the design and thus
into the product. This aspect not only improves the
quality but also avoids expensive repair actions after
the product is shipped. Thus, the total cost of the
product is reduced. It also has a very positive effect
on the customers’ costs.

The part of the development cycle prior to shipment
to the customer is, for product development groups,
the part of the cycle usually analyzed for productivity

CARPENTER AND HALLMAN - 131

effects. The methodology increases the effort prior to
writing of code. The design cycle can take twice as
long, but all projects report that coding and testing
go very quickly. The experience of Project B was
that total time was reduced by 10 percent, even when
accounting for the learning curve problems. Design
time increased to 70 percent of the total time with
the use of the Workshop methodology, up from
previous project measurements in which design used
20 percent of the total time. Coding time decreased
from 40 percent to 20 percent; and testing decreased

Risk management is the primary
activity that occurs in planning and
managing a software project.

from 40 percent to 10 percent. In summary, it is
expected that the methodology will not increase the
development cycle but will most likely decrease its
costs 10 percent or more when the people are over
the learning curve with the methodology. Since the
methodology concentrates on simplifying the design,
greater productivity can be gained where more com-
plex designs are being created.

The phenomenon of lengthening the design cycle
can be very troublesome to management who have
been measuring progress on the basis of lines of code.
For this reason, the Software Engineering Institute
has the strong conviction that a management team
should go through the Workshop classes ahead of or
with their programming staffs.

Another interesting aspect that affects productivity
has to do with how fast new people can be brought
into a project and made productive. Project C was
adding a component of 20 000 lines of code to an
existing operating system. Using the Workshop
methodology, they were able to complete the design
and coding phases in one sixth of the time it took a
sister project to complete. This was done with a
similar number of experienced programmers but
using two relatively new programmers for each ex-
perienced programmer. The new programmers be-

132 CARPENTER AND HALLMAN

came productive quickly after both the new and
experienced programmers attended the Workshop
class. The terminology used in documenting the
design was that taught in the class. Thus, the termi-
nology gap was removed by having all people
brought to the same level. The manager of the project
was pleasantly surprised by how quickly the new
people became productive.

Effect on risk management. Risk management is the
primary activity that occurs in planning and man-
aging a software project. It involves the assurance
that there is enough time to fix a problem after it is
discovered. The major advances in software engi-
neering in the 1970s had to do with risk manage-
ment: using the inspection process to find errors
earlier in the development cycle so that there is time
to fix the problem before shipping the product to the
customer.

The Workshop methodology provides a significant
addition to the manager’s tools for risk management.
The manager can actually see the progress in the
design development, including the presence of a
more formal way to validate the correctness of the
design, before coding resources are committed. The
testing people have a better organized design to test,
with test points already defined. If requirements
change, as they frequently do in today’s environ-
ment, the manager has the design decisions encap-
sulated so that the impact of the change is isolated
and therefore affects a smaller part of the system
than it normally would. The implementation of de-
tails in the design can be changed and perfected
without affecting the user of that portion of the
system. The manager has better control over the
function in the system, leaving subordinates free to
perfect the way to carry out that function. The
manager also can have the user community examine
an early functional (but not optimized) version of
the product before committing it to more detailed
design and code. The manager also gets better utili-
zation of the programmers’ skills. Most of their time
will be spent in creating solutions rather than in
finding and fixing defects as in the past. In summary,
a manager gets better control of the product devel-
opment cycle.

Conclusion

The benefits realized by use of a modern software
engineering methodology are real. Significant quality
improvements are being realized. The methodology
has the side effect of increasing the modularity of

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

software systems, which offers greater ease of design
understanding, module robustness, and product
maintainability. Underlying all the statistics and all
the words of testimony is an important by-product
of the Software Engineering Institute’s technical con-
tribution to the business: the technical vitality of
1BM’s employees and their increased awareness of the
professional responsibility of continuing education.

Acknowledgments

We are indebted to the Software Engineering Insti-
tute staff and instructors worldwide for their contri-
butions to the technical and informational content
of this paper. Special recognition is given to those
pioneers who have taken what they have learned at
the Software Engineering Institute, applied it on the
job, and led the way for others. Without the dedica-
tion of such people, there would be nothing to write
about. Special thanks is extended to Alfred M.
Pietrasanta, Bernard A. Rackmales, and Seward E.
(Ed) Smith for their careful and considered critique
of this paper.

Cited references and note

1. C. A. R. Hoare, “Programming: Sorcery or Science?” [EEE
Sofiware, 5-16 (April 1984).

2. A. T. Berztiss, Data Structures—Theory and Practice, Aca-
demic Press, Inc., New York (1971).

3. R.C. Linger, H. D. Mills, and B. L. Witt, Structured Program-
ming: Theory and Practice, Addison-Wesley Publishing Co.,
Reading, MA (1979).

4. “The management of software engineering,” H. D. Mills, “Part
I: Principles of software engineering,” D. O’Neill, “Part II:
Software engineering program,” R. C. Linger, “Part [II: Soft-
ware design practices,” M. Dyer, “Part IV: Software develop-
ment practices,” R. E. Quinnan, “Part V: Software engineering
management,” IBM Systems Journal 19, No. 4, 414-477
(1980).

5. Software Engineering Institute 1985/86 Bulletin, G320-6353,
IBM Corporation; available through IBM branch offices.

6. B. W. Boehm, Sofiware Engineering Economics, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1981).

7. Defects injected are measured by counting all errors found in
the product beginning with the point at which inspections
start and continuing through the life of the product (or version
of the product). Counting usually stops when the product is
replaced by a new product or version.

8. G. J. Myers, Composite/Structured Design, Van Nostrand-
Reinhold Co., New York (1978).

9. N. Wirth, “Program development by stepwise refinement,”
Communications of the ACM 14, No. 4, 221-227 (1971).

10. Sofiware Engineering Workshop (SEW) Student Notebook,
Volumes 1-4, Software Engineering Institute, G325-0010,
IBM Corporation; available through IBM branch offices.

11. A.J. Albrecht, “Measuring application development produc-
tivity,” Proceedings of the Application Development Sympo-
sium, Monterey, CA, Guide/Share (October 1979), pp. 83-
92.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

12. C. E. Walston and C. P. Felix, “A method of programming
measurement and estimation,” IBM Systems Journal 16, No.
1, 54-73 (1977).

13. K. Christensen, G. P. Fitsos, and C. P. Smith, “A perspective
on software science,” IBM Systems Journal 20, No. 4, 372~
387 (1981).

General references

J. L. Bentley, Writing Efficient Programs, Prentice-Hall, Inc..
Englewood Cliffs, NJ (1982).

B. Beizer, Software Testing Techniques, Van Nostrand-Reinhold
Co., New York (1983).

O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-
gramming, Academic Press, London (1972).

H. D. Mills, Sofiware Productivity, Little, Brown, and Co.. Boston
(1983).

N. Wirth, Algorithms + Data Structures = Programs, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1976).

W. A. Wulf, M. Shaw, P. N. Hilfinger, and L. Flon, Fundamental
Structures of Computer Science, Addison-Wesley Publishing Co.,
Reading, MA (1981).

Maribeth B. Carpenter /BM Corporate Technical Institutes, 500
Columbus Avenue, Thornwood, New York 10594. Ms. Carpenter
received her B.A. degree from Duke University in 1966. She then
joined IBM, working for the Federal Systems Division (FSD) for
15 years as a programmer, designer, and manager of software for
both Air Force and Navy systems. She spent two of those years as
an instructor in the Software Engineering Education program of
FSD, helping to educate 2300 programmers in the software meth-
odology required by division practices. In 1981, Ms. Carpenter
became a faculty member of IBM’s Software Engineering Institute,
where she is a course developer. instructor, methodology consult-
ant, and instructor trainer.

Harvey K. Hallman /BM Corporate Technical Institutes, 500 Co-
lumbus Avenue, Thornwood, New York 10594. Mr. Hallman began
his career as a programmer in 1956 while in the Air Force, joining
IBM in 1960 with a B.S. degree in biochemistry from The Penn-
sylvania State University. He continued studies for a master’s
degree in industrial administration from Union College. Mr. Hall-
man has worked on many diversified projects within IBM, includ-
ing engineering design automation, MVT for OS/360 in the Model
91, performance-related advanced technology. the Virtual Tele-
communications Access Method, finance and insurance industry
software support, microcode for the 3695 check processing ma-
chine, and process advanced technology. He has been a manager
of most parts of the software development cycle: project planning,
project control, design, code and unit test. build and test. perform-
ance, and advanced technology organizations. Mr. Hallman is
currently the manager of Software Engineering Disciplines at the
IBM Software Engineering Institute.

Reprint Order No. G321-5243.

CARPENTER AND HALLMAN 133

