Automating the software
development process

Demand for reliable software systems is stressing soft-
ware production capability, and automation is seen as
a practical approach to increasing productivity and
quality. Discussed in this paper are an approach and
an architecture for automating the software develop-
ment process. The concepts are developed from the
viewpoint of the needs of the software development
process, rather than that of established tools or tech-
nology. We discuss why automation of software devel-
opment must be accomplished by evolutionary means.
We define the architecture of a software engineering
support facility to support long-term process experi-
mentation, evolution, and automation. Such a facility
would provide flexibility, tool portability, tool and proc-
ess integration, and process automation for a wide
range of methodologies and tools. We present the ar-
chitectural concepts for such a facility and examine
ways in which it can be used to foster software auto-
mation.

Software development challenges

hrough the years, measurable gains have been

made through the application of advanced soft-
ware development techniques and tools. Neverthe-
less, we see the need for further improvements. Part
of the underlying problem can be traced to a demand
for software that existing resources cannot satisfy.!
Another factor is a unique dilemma in the evolution
of software technology: As the technology to develop
larger and more complex software systems is real-
ized, the use of these systems and the demand for
increasingly complex systems exposes problems that
exceed the capabilities of the technology.

The fundamental challenge facing software devel-
opers today is the achievement of uncompromising
quality and increased productivity, where we define
quality as the absence of any form of defect. Produc-

102 HOFFNAGLE AND BEREGH

by G. F. Hoffnagle
W. E. Beregi

ing quality software under this definition is a chal-
lenge to the ability of system developers to interpret
user requirements and transform them into a relia-
ble, effective, and appropriate product. Productivity
is a challenge to the ability of system developers to
achieve the goal of quality with the minimum expen-
diture of resources.

Traditionally, efforts to improve software quality and
productivity have centered around four approaches:

» Definition and separation of the software devel-
opment life cycle into phases or steps, to control
complexity and measure progress

« Development of methodologies for each phase to
define the procedures by which the objectives of
the phase are realized

» Development of supporting tools to assist in intel-
lectual control of software volume and complexity
and enforcement of methodological procedures
and standards

» Development of software development support
environments to integrate, monitor, and control
the life cycle

The phased or staged development life cycle is based
upon a divide-and-conquer concept, meaning that a
task is partitioned into smaller units of work with

© Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

1BM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

specific, understandable milestones for purposes of
control and evaluation. Lack of consensus on the
degree of phase granularity, overlap, concurrency,
and emphasis in software development has led to a
proliferation of life-cycle models. For example, the
U.S. Department of Defense (DoD) life cycle is a
complex set of multiple and often concurrent phases
based on standardized documentation milestones.*?

As the size and complexity of software systems in-
creased, the phased approach to development based
solely on such simple phase objectives as documen-
tation milestones became insufficient to control and
guarantee the quality and uniformity of the final
work products. Methodologies were developed and
introduced to identify the procedures and interme-
diate checkpoints that guided the developer from
initiation of a phase to the final work products. In
simple terms, methodologies attempt to define to the
developer where to begin, where to end, and how to
go from start to finish.

The introduction of fools, both manual and auto-
mated, served to augment and reinforce methodol-
ogies. Tools, especially if automated, provided ad-
ditional intellectual control over the increasing vol-
ume and complexity of development data, which
had to be collected, analyzed, and documented.
Tools also supported methodological procedures and
techniques. Tools, notations, and methodologies are
often intricately linked and viewed synonymously,
even though they are separable entities. Program
design via stepwise refinement can be represented
by, for example, pseudo-codes and Nassi-Schneider-
man Diagrams (NsD).* NsDs were proposed to rep-
resent structured programs, but numerous other
tools have been developed to support different no-
tations.

Methodologies and tools have evolved in parallel
with software engineering and hardware technology.
From basic assemblers to optimizing compilers and
from punched-card input to computer-aided graph-
ics design, the availability of methodologies and tools
produced by vendors and academic institutions has
increased in recent years.’ The proliferation of tools,
techniques, and vendors in the marketplace is indic-
ative of the magnitude of the software engineering
challenge. The demand for solutions is coupled with
a lack of consensus on software engineering ap-
proaches. It should be clear that any specific ap-
proach adopted today will quickly become obsolete
unless it fundamentally supports experimentation
and evolution of process, tools, and methodologies.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Within recent years, there has been a shift in research
and development emphasis from methodologies and
tools supporting low-level design and implementa-
tion to the areas of requirements, high-level design,
and maintenance.® This shift has been partly delayed
by a seeming intractability of these phases. However,
the development of more effective cost and benefit
measures across the life cycle through error tracking

A significant challenge remains in
the area of maintenance.

and productivity analysis allows the re-evaluation of
life-cycle costs and a reassessment of accountability.”
The evidence gained has resulted in the realization
that the requirements, high-level design, and main-
tenance phases present significant opportunities for
improvements in quality and productivity.

Emphasis on quality in the requirements definition
and high-level design is moving toward defect pre-
vention, as opposed to defect detection. Defects in-
troduced early in the life cycle that are propagated
and detected in later phases are significantly more
costly to detect and correct.*® A major concern thus
far in the 1980s has been and continues to be that
of tools and techniques to reduce the propagation of
redundant, incomplete, and inconsistent require-
ments. %!

A significant challenge, however, remains in the area
of maintenance (error detection and correction and
product enhancement), which consumes a major
portion of life-cycle costs.”® In what is often called
the old-code problem, methodologies and tools ori-
ented toward the development of new products are
often found to be inappropriate or difficult to use
unless the base product was developed using those
same approaches and the original intermediate work
products still exist. Although useful results are being
realized by the reverse-engineering of existing code
into abstractions representing the design or require-
ments,'? other approaches center on discipline and
formality for incremental enhancements to prod-
ucts.'?

HoFFNAGLE AND Bereal 103

The introduction of tools and methodologies within
the life-cycle phases can be justified” and shown to
improve the quality and productivity of software.'*
However, the chronic software development chal-
lenges persist, despite the introduction and applica-
tion of advanced methodologies and tools.'” Appar-
ently, not all of the factors involved in achieving
significant quality and productivity gains have been
discovered and applied. Also, development systems
must support change, experimentation, and evolu-
tion as those factors are uncovered.

An examination of the current state of the art in

software development environments shows that they
are characterized by a proliferation of methodologies

The span of life-cycle phases
supported by some facilities is very
narrow.

and tools that are essentially disjoint. In these envi-
ronments, tools are brought together under a com-
mon invocation interface but remain essentially un-
related, sharing neither the data nor the methodolo-
gies that they support. The span of life-cycle phases
supported by some facilities is very narrow. Simi-
larly, process and tool expertise may be concentrated
in a few organizations or individuals. This narrow-
ness presents a challenge to further integration of
facilities and to the collection of expertise to offer
broader applicability and benefits. In addition, meth-
odologies and tools are often developed, supported,
and intricately tied to a single operating environ-
ment, which is usually the target system architecture
for which the products are being developed. These
discontinuities, a reflection of the phased approach
to software development within multiple support
environments, manifest themselves in several ways.

Tools and the users of tools may not be easily moved
from one system environment to another. Because
tools must be rewritten for portability, their main-
tenance is compounded, and users must be retrained
on the multiple interfaces and environments.

104 HOFFNAGLE AND BEREGH

Tools use many different data organizations and data
base management systems to store their work prod-
ucts. As a result, tools do not readily share work-
product data. An even greater difficulty is that tools
do not support the view that the work products are
interrelated results of an integrated life cycle, but
rather a set of unrelated results from the phases.

Methodologies are similarly unrelated in that they
do not have a common view of data as related work
products and common conceptual models. The re-
sult is that the transition from one software devel-
opment phase to another is inhibited.

These symptoms point to a need in current software
development support environments to integrate and
manage the development process so that appropriate
supporting methodologies and tools can be selected
or developed at either the location or project level.
The development environment must also support
the experimentation and evolution required to select
and specialize the methodologies and tools. The
integration and control of such a process implies that
all process control functions must be removed from
methodologies and tools. Also, the creation, flow,
and relationships of work-product data must be de-
fined and managed from one phase to another, back-
ward as well as forward. The use of tools and the
methodologies that tools support should be permit-
ted only under conditions that are controlled, or-
derly, integrated, complete, and logical.

These symptoms also point to the need for software
development environments and tools to be portable
across system and data base environments. The lack
of a portable support environment results in dupli-
cated tool development and maintenance costs, ar-
chitecture adaptation costs, and reduced adaptability
of users to changing needs. The cost of adapting tools
from one environment to another is often prohibitive
and minimizes their use and effectiveness.

Current software development support facilities also
indicate a need to provide for flexible process and
tool evolution, for variation, and for experimenta-
tion. The capability must exist for local vartations in
process and the selection of appropriate tools to
reflect differing product, organizational, and devel-
opment environments. Software technology and im-
plementation support bases do not remain stable
over time. A software development support facility
must be capable of flexibility as the process and tools
evolve, either incrementally or radically. A lack of
flexible process and tool evolution can lead to obso-
lescence or increasing maintenance costs.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

The goals of increased programming quality and
productivity suggest a need for an integrated software
engineering support environment. Such an environ-
ment makes possible the explicit definition and con-

Even considering the great value of
the existing work, productively
developed quality software requires
improved software development
environments.

trol of a development process and its supporting
methodologies, so that portable tools can be devel-
oped, integrated, tried, changed, and used to auto-
mate the process.

Motivation

We have addressed challenges facing software devel-
opment organizations today. Under the heading
“Rationale” in the following section, we present ways
in which the industry has responded to those chal-
lenges. In the section under “Goals,” we show what
we believe can be achieved through a new approach
to those same challenges.

Rationale. The challenges previously cited are limi-
tations under which software developers are working
today. We are motivated in our work on software
engineering support facilities by a knowledge of what
has already been accomplished and by the desire to
answer more of those challenges.

Even considering the great value of the existing work,
we believe that productively developed quality
software'” requires improved software development
environments. Current environments'®* do not
contain all of the needed software development ca-
pabilities of automated process control, integration,
portability, and flexible process and tool evolution.
Our ideas for a software engineering support facility
are intended to allow the specification of and auto-
mated support for a well-defined and controlled soft-
ware development process. The facility would also

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

allow us to enhance the use of existing and evolving
methodologies and tools. The result would be im-
proved quality and productivity.

One of the earliest software development environ-
ments is the Software Requirements Engineering
Methodology (SREM),>' developed by TRw for the
U.S. Army. SREM consists of a processable formal
language, the Requirements Specification Language
(RSL), and a validation technique, the Requirements
Evaluation and Validation System (REVS). SREM is
concerned with the software requirements phase. It
incorporates the concept of an integrated data base
surrounded by interrelated tools to be used within
the structure of an informal process control mecha-
nism.

The Computer-Aided Development and Evaluation
System (CcADES),'*'® developed by International
Computers Limited (1cL) of the United Kingdom,
supports a broader segment of the life cycle, from
high-level design through maintenance. CADES is an
operational software engineering support system that
addresses most of our objectives. It was used on the
VME/B operating system project.'*

Earlier software development support environments
tended to use one tool or methodology that concen-
trated on one phase of the life cycle. More recent
support environments>?* are beginning to span a
greater portion of the development life cycle. How-
ever, these newer facilities are more like tool kits
consisting of loose associations of individual tools
and lacking a common and integrated view of de-
velopment data and a rules-driven process control
mechanism.

The most visible contributions toward software de-
velopment support facilities are those of agencies
within the U.S. Department of Defense (DoD). The
Ada® (a registered trademark of the U.S. Department
of Defense) Program Support Environment (APSE)
calls for the integration of conventional software
tools into a framework that is sufficiently open-ended
to accommodate a wide variety of programming
methodologies and automated software tools cur-
rently available or unused in military systems.* One
of the primary objectives of Ada, besides its appli-
cability to the implementation of complex, real-time
software for embedded computer systems in military
applications, is its intended machine independence.
This provides portability across the wide variety of
computing systems used in the DoD. Ada portability
i1s also extended to APSE, the implementation of

HOFFNAGLE AnD Bereal 109

which is being guided by the architecture detailed in
the Common APSE Interface Set (CAIS).' cAIs estab-
lishes interface requirements for the transportability
of Ada tool sets to be used in Department of Defense
Ada Programming Support Environments (APSES).
The prime objective of the APSE is portability, which
in turn provides the secondary benefit of continued
APSE tool evolution. In contrast to our architecture,
APSE objectives do not explicitly support process and
tool integration or automated process control.

A more comprehensive proposal for an advanced
software engineering environment is set forth in a
U.S. Navy document.?® This document defines the
Naval Standard Software Engineering Environment
(NsSEE) in which to build at least one integrated tool
set that operates through all phases of the life-cycle
model. The NSSEE defines a doctrine preliminary to
a formal specification of acquisition requirements.
The doctrine recognizes the need to identify all the
activities and phases in the life cycle, the interfaces
and control between them, and appropriate meth-
odologies and tools to fit within the entire frame-
work. This is in addition to portability and an Ada
support environment.

The increasing demand for less expensive software
products of higher quality will require improved
production resources and increasing numbers of
qualified personnel in the future. Given the predicted
shortfall of qualified software personnel,® facilities
must be built to automate software development and
improve the productivity of the existing workforce.
The software engineering support facility addresses
that challenge.

Goals. The requirements for a software engineering
support facility directly reflect the objectives of the
architecture. Here, we explore the goals, objectives,
and requirements for both the architecture and the
resulting facility.

The goals of a software engineering support facility
are to provide an integrated environment for the
support of software development tools and software
development process automation.

One of the elements we must provide for is variation
and evolution of the process and the tools. The
facility must be flexible so as to accommodate local
process and tool variations. The facility must run in
many operating environments, each using different
processes, life-cycle methodologies, and tools.

106 HOFFNAGLE AND BEREGI

The facility must also be flexible so that it can exploit
evolution in software development technology and
system support, software, and hardware. At any
given time, the process must be formally and explic-
itly defined, yet we must anticipate change. The

The architecture should specify a
common data model.

evolutionary process is expected to result in a finer
granularity of the tasks and validation processes in
the life cycle. This refinement is also expected to be
reflected in smaller and more portable tools that can
be more productively and reliably developed and
maintained.

This objective requires that the architecture specify
a facility that is independent of any particular proc-
ess, life-cycle model, methodology, or tool set. The
architecture must prescribe a framework in which
particular processes, methodologies, and tool sets can
be defined to, embedded in, and easily modified
within the facility.

Another goal is that of fostering the widest possible
use of common tools in the facility. The operation
of tools should not be impeded because they depend
on particular system and data base environments.
Also, the tools should be so designed that changes in
system technology will not make them obsolete. This
requires that the architecture specify a facility that
isolates tools from system dependencies and supports
the development of common tools that are reusable
in multiple operating environments.

A major impediment to current tool integration is
that few tools share data organizations or conceptual
models of the product they help to describe. There-
fore, we have a goal of ensuring that tools in the
facility are integrated and cooperating to automate
software life-cycle tasks. The architecture should
specify a common data model to support tool inte-
gration and cooperation and to reduce the manual
transformation required between process stages and

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

tools. The architecture should also specify a consis-
tent user interface to support a single integrated view
of the tools and process for users.

Still another goal is the automation of process con-
trol. Process definition and execution should be
made explicit, formally definable, and machine proc-
essable. There should be an evolutionary capability
to move from the current process, based upon paper
guidelines that are manually monitored and admin-
istered, to an automated process control mechanism
which uses explicit, formal process definition and
rules-driven control. The architecture should specify
a process mechanism that has functions and inter-
faces for defining a process, storing it in a facility as
a set of rules and using these rules to control the
execution of process tasks. Formal definition and
mechanization will permit the recording and moni-
toring of the usage, performance, and effectiveness
of the specified process. This information, which is
used in analysis and research, is expected to contrib-
ute to improvements in the process and the tools as
well as their evolution.

The objective of the architecture is to guide the
development of a facility that supports a software
development process and its associated tools. The
software development automation architecture has
the following characteristics:

* Process and tool independence to support flexible
process and tool evolution

» System and data service isolation to support tool
portability

* A common data model and a consistent user
interface to support tool and user integration

e A process mechanism to support formal process
definition and automated process control

The architecture must specify a facility framework,
functions, data, interfaces, and event recording to
support these capabilities.

The remaining architecture objective is to specify
these capabilities in terms of a process framework.
Such a framework is described in another paper in
this issue.?* The architecture specifies a facility that
automates the software development process and
process control, as defined by the process framework,
in a way that allows for local variations to the
resulting process definition. Thus the architecture
specifies a scheme by which the process can be
defined, encoded, and used to automate process con-
trol in a software engineering support facility.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Approach and structure

We now discuss means by which the previously
presented software automation goals can be
achieved. In the section under “Principles,” we pre-
sent a model of the software development environ-
ment that defines the structure, roles, and relation-
ships among users, tools, methodologies, process
control, and supporting system functions. This
model captures the relationships among these ele-
ments that we expect to remain valid even as the

As an industry, we do not yet fully
understand the software
development process.

software development enterprise evolves. Under the
heading of “Architecture,” we define the structure
and organization of a software engineering support
facility system base that supports this model and
facilitates evolution toward software automation.

Principles. One approach to an automated program-
ming environment is based on technology (e.g., a
programming or design language), around which an
environment to support development using that
technology is defined and built. Another approach
first assumes a particular software life-cycle model
(e.g., a specified set and ordered sequence of task
methodologies). In this approach, tools to automate
the methodologies are selected and then bound in
the sequence specified by the methodologies to pro-
vide an environment. Both approaches neglect such
important process characteristics as the following:

¢ As an industry, we do not yet fully understand the
software development process.

The software development process will change as
a result of new and improved technologies.
Eventual process requirements cannot be pre-
dicted and accommodated with existing technol-
ogy.

Process change will require environments to be
unbound and reconfigured to accommodate new
methodology relationships.

HoFFNaGLE AND BEreal 107

People use a variety of cognitive models to solve
problems; some persons will find that any single
technology impedes their problem-solving ability
and requires alternatives.

These factors dictate that a software automation
approach be based on two global principles: flexibil-
ity and separation of issues. The model proposed in
this section recognizes that a software engineering
support facility must flexibly accommodate project-
level variation in process, methodology, and tools
usage. It also recognizes that the facility must flexibly
accommodate process and technology evolution.
The model achieves this flexibility by separating the
issues of process control from process methodology,

The model and architecture define a
software engineering support
facility.

methodology from tools, and 100ls from system func-
tions. In this way, changes in any one item are
isolated from the others. The architecture defines the
interfaces between these elements that support their
separation and interaction. These interfaces main-
tain the relationships among the elements as the
elements evolve.

Thus the model and architecture described in this
paper define a software engineering support facility
framework and mechanisms sufficient to allow an
evolving family of programming automation
schemes to be integrated. This approach does not
depend on particular software development meth-
odologies, tools, or languages. Instead, the approach
provides the flexibility for a process and methodol-
ogies to be defined and modified. It provides for tools
to be selected and interchanged in the facility to
automate software development.

Software automation concepts. The goal of the soft-
ware engineering support facility is to create an
integrated, flexible environment and system base to
support the following model for automating software
development.

108 HOFFNAGLE AND BEREGI

Members of a project define their process so that the
tasks to be performed in the programming life cycle
are identified. Each task can be performed manually
or by a tool, if one exists. Alternatively, a tool can
be built to automate the task.

The process definition specifies life-cycle control
rules for the sequencing and control of these tasks.
These rules can be formally defined, encoded, and
captured in a data repository. A process interpreter
engine in the facility can execute the rules to drive
the process. The process interpreter can be used to
gather and analyze process experience, to improve
the process, and increasingly to direct the work of
programmers and to control the tools based on these
rules.

A project may tailor the facility for its methodology
and environment by selecting the agents (human or
tool) to perform each task in its life cycle. A project
may be further tailored by defining the process rules
to be used by the process interpreter to control the
order of operation of the tasks.

New tools, methodologies, and process steps can be
introduced by changing the task definitions, by
embedding and interchanging tools, and by altering
the life-cycle control rules. Process and technology
evolution should be accommodated without disrupt-
ing the facility.

To achieve the flexibility required to exchange tools
in the facility and still have widespread use, the tools
should be portable. They should be capable of run-
ning in the operating system, in the data base, and
in device interface environments in which the facility
runs. To achieve portability, the tools should rely on
common support functions provided by the facility
to manage the data, the system functions, and the
user interface. The common support functions
should not contain unique, system-dependent code
for that purpose.

To achieve integration, the tools should share a
common view of the product data and the process
description provided by the facility. All aspects of a
product should be definable and manageable using
a common data model. The relationships among
data defined at various stages of the life cycle should
also be definable, manageable, and shared by tools.

This model supports the separation of the automa-

tion functions that are necessary to promote flexibil-
ity. Process definition and control are separate from

BM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

the actual process description. The process content
(data) is separate from and modifiable by the process
definition function. Process control is separate from
the agents (human and tool) that perform the proc-
ess. The process is described in terms of tasks. A set
of agents can be defined and associated with the tasks
to describe who or what performs the process. This
association is maintained in the process description,
rather than buried in the function of tools. The
process automation function of a tool is separate
from the system functions used to implement the
tool. Thus, the tool is isolated from system depen-
dencies.

Organizing these functions results in a software en-
gineering support facility with the elements and
structure depicted in Figure 1. A system base, com-
posed of process mechanism (pM) and common tool
services (CTS) components, provides common proc-
ess control, service support, and integration func-
tions to tools and users. A formal process description
that is stored in the repository provides task descrip-
tions and sequencing rules for life-cycle control. A
set of portable process automation tools automates
software engineering practices across the program-
ming life cycle. Each of these elements must be
developed and integrated to support our software
automation approach.

The system base is the foundation and precursor for
achieving our software automation strategy. By de-
fining, providing, and stabilizing system base func-
tions first, the architecture frees tool builders to
concentrate on developing process automation func-
tions. The architecture frees the analysts to concen-
trate on defining process, using system-base func-
tions. The system base permits accelerated tool de-
velopment, process experimentation, and eventual
process automation. The system base should also
encourage those with innovative software engineer-
ing ideas to build new tools that fit in the software
engineering support facility.

Software engineering practices. Before discussing the
architecture of a software engineering support facility
in the next section, we describe here software engi-
neering practices that should be automated in soft-
ware automation tools. We have observed that in
the past, the computer sciences have concentrated
on the study of programming concepts, tools, algo-
rithms, and languages.?® A cadre of skilled program-
mers is now available with the training and talent to
write computer programs. Now, however, there is
another emphasis: software economics. Users expect

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Figure 1 Architectural model of a software engineering
support facility

PROCESS MECHANISM (PM)

COMMON TOOL SERVICES (CTS)

a product to be delivered on time, within budget,
and without errors. Intense competition also de-
mands increased quality, function, price-perform-
ance, and shorter development schedules. For these
reasons and because of the inevitability of human
error, software development automation is now re-
ceiving increased attention.

This new emphasis is known as software engineering,
which can be described as the systematic production
and maintenance of high-quality software systems,
delivered on time and within budget. It is a creative
process supported by professional practices based on
the best-known industrial experiences and comput-
ing theories. In support of software engineering, a
software engineering support facility provides an en-
vironment in which software developers can manage
the complexities of software development, and an
integrated package of views, tools, functions, and
controls that support the productive development of
reliable software.

Figure 2 shows those software engineering practices
expected by the authors to contribute most to success
in automating software development. The figure also
shows the ways in which the practices that benefit
software quality and productivity can be realized.

In some cases, a facility may exhibit these character-
istics directly. For the most part, however, they are
exhibited by the processes, methodologies, and tools
supported by the facility. The facility serves as an
enabler or vehicle to encourage the use of these
practices. The facility is designed with the expecta-
tion that the selected processes, methodologies, and
tools are not in conflict with these practices.

HOFFNAGLE AND BereGi 109

Figure 2 Software engineering practices and benefits

QUALITY BENEFIT

PRODUCTIVITY BENEFIT

FORMALIZED

EXPRESSION FOR CONSISTENCY,
COMPLETENESS, AND
CORRECTNESS

COMMUNICATIONS

o SUPPORTS CONTINUOUS
VERIFICATION

* PERMITS AUTOMATED CHECKING

+ PROMOTES UNAMBIGUOUS

» PERMITS AUTOMATED
TRANSLATION BETWEEN
PROCESS STEPS

o ALLOWS AUTOMATED TEST
CASE GENERATION

ABSTRACTION AND
ENCAPSULATION

* PROMOTES INFORMATION
HIDING

* ENCOURAGES ADVANCED DATA
STRUCTURING AND TYPING

* SIMPLIFIES SYSTEM
STRUCTURES
AND INTERFACES

| * SUPPORTS REUSE

STEPWISE
REFINEMENT

* PROMOTES STRUCTURED

» SUPPORTS CONTINUOUS
VERIFICATION

DESIGN AND PROGRAMMING

» ENCOURAGES PROBLEM-
ORIENTED DESIGN

* SIMPLIFIES DESIGN
UNDERSTANDABILITY

* RETAINS HISTORY OF
TECHNICAL DECISIONS

RAPID

PROTOTYPING USER REQUIREMENTS

* ALLOWS EVALUATION OF
ALTERNATIVE SYSTEM
APPROACHES

* PERMITS EARLY VALIDATION OF

* SELECTS FEASIBLE SOLUTION
EARLY

REUSE AND
REUSABILITY

OVERTIM|

ASPECTS OF PRODUCT

= ASSURE éNCREASlNG QUALITY

* CONCENTRATES EFFORT ON NEW

* DELIVERS FUNCTION WITH
LESS EFFORT AND ERROR
* ABBREVIATES TESTING

CONTINUOUS * BUILDS QUALITY INTO THE
VERIFICATION PRODUCT

* ENSURES ERRORS ARE FOUND
EARLY AND AT LEAST COST

o ENCOURAGES TESTING AS
QUALITY DEMONSTRATION,
NOT ERROR FINDING

MEASURABLE * PROCESS IMPROVEMENTS * PROVIDES FOCUS AND
LIFE-CYCLE THROUGH UNDERSTANDABILITY DIRECTION FOR TASK
CONTROL COMPLETION
« EFFECTIVE MANAGEMENT
Today, software development does not always make Architecture

use of this set of practices in an organized and
integrated way. This is thought to be the result of a
lack of knowledge and experience, rather than a lack
of desire or effort. This possibility lends credence to
the need to evolve toward appropriate processes,
methodologies, and tools, and to encourage such
evolution through a properly supportive facility.

110 HOFFNAGLE AND BEREGH

This section describes the architectural concepts of
a software engineering support facility. It elaborates
on the organizing principles introduced earlier in
this paper under the heading of “Software automa-
tion concepts.” This section also gives an overview
of the models, mechanisms, interfaces, and functions

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

that a software engineering support facility should
provide to support software automation.

The concepts in this section are introduced in terms
of perspectives or views of the facility. A view is a
vantage point from which to examine a given aspect
of the system. The architectural concepts can be
examined in terms of the following three major
views: system view, data view, and life-cycle view.
These views expose the organization and major fea-
tures of the software engineering support facility. A
later section entitled “Direction” speculates on how
such a facility could be used to direct the software
development process toward automation.

System view. An architecture should describe the
functions, interfaces, and organization of a system,
and how one system relates to another in the same
environment. The system view examines the soft-
ware engineering support facility from this perspec-
tive.

To achieve the flexibility and portability needed in
the facility, the architecture introduces a hierarchy
of function layers. This scheme separates the func-
tion of current monolithic tools into discrete layers.
The scheme also describes how these layers interface
with and make use of IBM program products and
operating system facilities. The scheme is described
under the heading “System base” later in this paper.

To understand the rationale for layering, we review
the problems in the current tools environment that
the software engineering support facility aims to
correct. In most current tools environments, unique
tools have evolved to automate or augment various
stages of the software development process. Most of
these tools are monolithic in the sense that each
performs its own data base and system service man-
agement, presenting a unique interface to the user.
Many tools have embedded functions that perform
aspects of project control. Most tools are local, in
the sense that they cannot share data or work prod-
ucts with other tools. In general, the structure of
current tools presents such obstacles as the following
to the merging of tools into an integrated, automated
software engineering environment:

¢ Most current tools are written against a prolifera-
tion of system-dependent interfaces for data, pre-
sentation, and system services.

* Most current tools are not portable.

¢ As a group, tools present many interfaces to the
user.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Figure 3 Architecture of the system base

PROCESS MECHANISM (PM)
AND PROCESS MANAGEMENT LANGUAGE (PML)

[TOOL MANAGEMENT INTERFACE (TMI)]

SOFTWARE
ENGINEERING
SUPPORT

[COMMON TOOL INTERFACE (CTI)]
COMMON TOOL SERVICES (CTS)

DY

USERACCESS | SYSTEM DATA ACCESS
SERVICES SERVICES | SERVICES

USER SYSTEM STORAGE SUPPORT
MEDIA PROGRAMS | MEDIA ENVIRONMENT
PEOPLE MACHINES | DATA

s The tools share no common data representation
of the product they help construct.

¢ The tools share no common view of, nor are they
driven by, a common process.

¢ New tools are expensive to write for system-de-
pendent interfaces.

¢ [t is expensive to write versions of tools to support
multiple system environments and data bases.

¢ It is expensive for tools to migrate to new system,
data base, and device technologies.

The software engineering support facility approaches
these problems by separating the process automation
function in current tools from process control, data
management, and system management tasks. The
facility segregates process automation functions into
tools. It separates the latter functions into a common
support environment called the system base. The
system base provides interfaces against which tools
can be specified and an environment (whether inter-
preted at run-time or compilable) into which the
tools can be embedded to automate process tasks.

System base. The system base organizes common
tool support functions into a hierarchy of function
layers (as shown in Figure 3) that supports tool
portability and tool integration.

HOFFNAGLE AND Bereal 111

The system base is built on a layer of system-depen-
dent services that make up the system environment
in which the software engineering support facility
operates. This layer can consist of IBM system pro-
gram products, such as operating systems and data
base access methods, that provide data communi-
cation, user media presentation, data base, and sys-
tem services to current tools. This layer can be
separated into user access services, data access ser-
vices, and system services. The layer supports user
and tool access to user display devices, data storage
devices, and physical system resources.

The system base introduces a layer of common tool
services (CTS) into the software engineering support
facility. The common tool services provide the com-
mon tool interface (ct1), against which tools are
specified. Tools specified against the CTI can run in
any environment in which the system base runs.
Within the software engineering support facility, the
tools are portable and independent of operating sys-
tem or data base environments. The objective in the
software engineering support facility is to make pos-
sible the evolution of current tools that use system-
dependent services into portable tools that use the
cTl. The cTs layer achieves this by mapping tool
requests for logical CTI services into system-depend-
ent services. The CTs also provides a common data
model that tools can use to describe and share prod-
uct representations.

The system base provides an environment in which
tools can be embedded. Each tool contains functions
that automate one or more software hife-cycle tasks.
A tool may be specific to a phase in the development
process, such as a debugging tool, or it may be used
across several phases, such as a project measurement
tool. Several tool functions may be packaged into a
single tool for some purpose. In the system base, the
tools are independent and do not communicate di-
rectly with one another. They perform no interface,
data base, system service, or process management
functions themselves. They use the CTI to obtain
these functions.

Surrounding the tools in the software engineering
support facility is a process mechanism (M), which
supports process definition and is responsible for
controlling user access to and application of the tools
on the basis of the process definition. The process
mechanism uses a tool management interface (TMI)
to invoke and control the tools. The process mech-
anism presents a process management language
(pPML) to the users, so that they may define their

112 HOFFNAGLE AND BEREGI

process and control its execution in the software
engineering support facility. This process is encoded
and stored (using CTI data services) in the repository
as a set of life-cycle control rules (e.g., finite-state
machine productions). The process mechanism ex-
ecutes these rules to drive the process.

The system base provides a software engineering
support facility environment in which portable tools
may be developed, integrated, and invoked to auto-
mate tasks in the software life cycle. The “data view”

A key ingredient in managing the
software development process is
the distinction between the process
and the product developed using the
process.

and the “life-cycle view” discussed in the next two
sections explore the use of these functions provided
by the system base to integrate tools and manage the
software development process.

The data view. One way to examine software devel-
opment is as an information synthesis enterprise.
The data view examines software engineering sup-
port facility requirements from this perspective.

In gross terms, the development of software involves
synthesizing from a product idea (requirements) a
series of increasingly detailed product descriptions.
The process continues until we reach a description
that runs on a machine and from which we can
derive related product components such as docu-
mentation. Software development depends upon the
creation, management, packaging, and presentation
of information.

A key ingredient in managing the software develop-
ment process is the distinction between the process
and the product developed using the process. The
process can be viewed as a description of the activi-
ties required to manage the development of a soft-
ware product. The product or product description is
the information created as a result of these activities.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

For the most part, developers regard the final code
that 1s released to users as the product of software
development. To effectively manage the process, this
view must be extended to include not only the
released code, but also requirements, design, docu-

A product evolves from an idea to a
released function.

mentation, decision criteria, verification procedures,
metrics, audit trails, other relevant information, and
the relationships among these data that are produced
during the development process. The software in-
dustry bases its intuitive, informal process manage-
ment decisions on such data (or estimates thereof)
today. To be more effective, data must be formally
defined, captured, shared, and manipulated by tools
to provide a basis for integrated, automated process
management.

In a sense, a product evolves from an idea to a
released function, describing new information and
deriving new relationships as it evolves. Our archi-
tecture regards the evolving product as an interre-
lated aggregate of all information derived during the
software development process. This architecture also
regards the process as a separate information aggre-
gate consisting of rules for the creation and manage-
ment of the information in the product.

A software engineering support facility must be able
to create and manage these information aggregates
in two important ways, to achieve product and proc-
ess integration.

Product description sharing. Agents that produce
work products for stages of the product description
(e.g., requirements, system design, implementation,
and test plan) must be able to share work products
and information in the stages of the product descrip-
tion without transformation. This requires that the
software engineering support facility provide all
agents with a common, shared view of the product
description. It also requires that the facility define
and expose to agents the common data elements of

1BM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

which the product description is composed, so that
they may share and manipulate these common ele-
ments.

Traceability. The agents must be able to trace (track
and backtrack) the relationships of product infor-
mation to predecessor and successor information in
the product definition. For example, a tool might
need to determine which requirements statement
motivated the creation of a fragment of program
code. This capability allows tracking of the rationale,
constraints, and relationships used to develop the
product element. It allows analysis of the complete-
ness and consistency of product elements and man-
agement of the process used to produce the product.

These objectives require that we adopt a broader
scheme for data management than that supported in
most current software development environments.

In these environments, the extent of product-descrip-
tion sharing that is achieved is provided by library
management programs. These programs allow the
user to define the structure of a software product as
a hierarchy of parts or files. Some of these programs
contain parts management functions that control
aspects of software development (e.g., promotion of
code into a test system). These functions are based
on the existence of parts (e.g., code completed and
stored in the appropriate file) and the completion of
operations on parts (e.g., code successfully com-
piled). Parts management provides library users with
some elements of project control. Library applica-
tions (e.g., build and integration functions) support
the construction of a software product based on a
parts hierarchy definition.

The deficiency presented by these current environ-
ments is that the part (file) is merely a carrier for
many product data elements contained in the part.
Parts management provides tools with information
about the hierarchical relationships among parts
only. The parts themselves contain a network of
elements and relationships that are, for the most
part, currently invisible to tools. For example, a file
containing program source code contains many
chunks of code. Some of these chunks are related to
or derived from original product requirements.
Other chunks are derived from change requests or
fixes. Some chunks may not be code at all, but
comments or assertions about program behavior for
use in deriving test cases. To manage the software
development process adequately and to promote
sharing and traceability, each of these elements and

HOFFNAGLE anD BEREGI 113

Figure 4 A product as an object network

LIFE-CYCLE PRODUCT OBJECT NETWORK

STAGES DATA ELEMENTS

REQUIREMENTS | USERVIEW |_, | USERVIEW roBLEM
- — .]
——— USER VIEW * T -

l ——— [———

PROTOTYPE — —

DESIGN — .| DESIGN —
IR | L] — []

- ——
D l:l D I:l M _—— -J _] r_
[]
+ = |5

CODE CODE DATA CODE CODE —p | DATA
— -
— —
— -
———

TEST TEST CASE
relationships must be defined as part of a product, The architecture supports this capability by intro-
managed as part of process control, and visible to ducing a unified data view to support product de-
agents. scription sharing and traceability. In the architecture,

114 HOFFNAGLE AND BEREGI IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

a product is defined as a network of related data
objects. An object network (see Figure 4) holds a
product as an information aggregate. A process can
also be defined as an object network. This network
contains descriptions of the activities and rules used
to create and manage the information in the product
object network.

An object is a separately identifiable and named
collection of data that contains its own identifier,
actual content, attributes, and all defined relation-
ships to other objects in the network. The objects
and relationships required for a product are deter-
mined by the process description. The process de-
scription also dictates the granularity of the objects.
For example, a very detailed process definition may
require the tracking of individual lines of code as
objects.

Thus, the architecture describes how a software prod-
uct and related information can be defined and
managed by agents as a unified network of related
objects. On the common tool interface, the architec-
ture provides an object model and a set of services
for manipulating the model. This model, based on
Entity-Relationship (E-R) theory,?’ provides a com-
mon, logical view of data to tools and users. Software
developers can use these facilities to construct data
models of the product to be defined and the process
by which it will be built, both of which can be shared
by all agents in the life cycle. Data sharing and tool
integration are supported in the architecture by hav-
ing all tools manipulate product and process data
using the object model.

To support portability, the architecture isolates the
use of the data model by agents from the physical
organization and storage of actual data. Through the
common tool interface, the architecture provides
functions that allow references to the data model by
agents to be bound to actual data stored in a variety
of physical data organizations and data accessed
through multiple data access methods and data base
management systems. This capability allows an in-
tegrated tool set that shares the common data model
to be portable across physical data base environ-
ments.

The life-cycle view. The software engineering sup-
port facility is designed to alleviate a major problem
in current software development environments—
inadequate life-cycle management. This problem has
three aspects.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

One aspect is that of isolated tools and manual
methods that are used to create disjoint representa-
tions (e.g., requirements, design, and code) of a
software product. Usually the representation is pro-
duced manually and is not processable by machine.
Representations that are machinable usually do not
share the same data organization. As a result, prod-
uct description data cannot be shared or mapped
across process stages without manual transforma-
tion. In turn, process management in these environ-

Mechanisms for controlling the order,
sequence, and communication
among tools are today embedded
in the tools themselves.

ments is fragmented. Without the means to analyze
the content of a product representation or to relate
one product representation to another, process stages
and transitions from one development stage to the
next cannot be effectively managed.

In another aspect, the mechanisms for controlling
the order, sequence, and communication among
tools that collaborate to perform life~-cycle tasks are
today embedded in the tools themselves. These hard-
wired connections limit life-cycle management to
the functions and order dictated by the tools. These
connections also limit the flexibility of the environ-
ment to adapt to improved methodologies, better
tools, and new technologies, because change requires
the expense of breaking old connections and estab-
lishing new ones.

The third aspect of the problem is that the process is
informal, and process experience is not adequately
recorded. Without such information, there is no
basis for process review, analysis, feedback, and im-
provement.

The architecture approaches this problem by intro-
ducing a flexible, integrated, and automated life-
cycle control scheme into the software engineering
support facility. The life-cycle view examines the
facility from this perspective.

HOFFNAGLE AND Bereal 115

Our scheme for tool integration, communication,
and life-cycle control is based on several concepts
that we outline here.

Life-cycle control is separate from the automation
of life-cycle tasks in the facility. Agents (both persons
and tools) accomplish software development tasks.
Life-cycle management is provided independently of
these agents by process mechanism functions that
span and control all of the agents.

Agents are mutually independent and they do not
communicate explicitly or share private data. They

Tools are designed to be pluggable
and interchangeable in the facility.

use common facilities in the system base for com-
munication, data sharing, and control.

Agents access a common data view of the product
they describe and the process used to describe it.
This view is provided by the object model.

The process mechanism spans the entire life cycle
and controls all agents by means of a rules-driven
scheme. It provides users with a process management
language they can use to define a process control
scheme to the facility. The process mechanism en-
codes this process description as a set of life-cycle
control rules. Using the object model, the process
mechanism stores these rules in a repository for use
during process execution.

During execution, the process mechanism accepts
all user requests for data and development tasks to
be performed, and records actions taken for later
analysis. It accesses the process rules to determine
whether a requested action is permitted, based on
whether the actions and conditions specified in the
process as prerequisite to this request have been
satisfied. The process mechanism then uses the tool
management interface to invoke an appropriate tool
to satisfy the request, or notifies an appropriate
human agent to carry out the task. The tools are
structured to respond to process mechanism action-

116 HOFFNAGLE AND BEREGI

on-object-through-agent commands, as specified us-
ing the tool management interface.

To support this scheme, the tools are designed to be
pluggable and interchangeable in the facility. A pro-
gramming site may choose the tool it prefers to use
to automate a task in the programming process,
assuming that alternative tools are available. The set
of tools in a software engineering support facility
configuration can be determined at installation bind-
ing, when specific tools can be chosen to map to the
tasks specified in the local process description. Tool
order, whether sequential or concurrent, is con-
trolled at execution time by the process mechanism,
using the precedence relationships expressed in the
life-cycle control rules.

The key feature of this life-cycle control scheme is
its independence of methodology and tools. Rather
than hard-wiring a specific set of tools into the facility
in a sequence designed to automate a specific meth-
odology, the scheme allows local project administra-
tors to change the set of tools contained in that
project’s facility. This allows local process managers
to modify the process and, therefore, the sequence
of tool use. This flexible scheme provides integrated,
automated life-cycle management. At the same time,
the scheme accommodates changing process, tools,
and technology, as well as local process vanation.

Direction

The software engineering support facility architec-
ture discussed in this paper is designed to allow
flexibility and adaptability across a wide spectrum of
software development processes, local conditions,
tools, and technologies. The architecture is expected
to remain effective for many facilities, collections of
tools, and process definitions. It has characteristics
designed to make it stable in the presence of changes
in tools and process technology. We expect its influ-
ence to be effective over a long period of time.

In this section we discuss the direction that we be-
lieve processes and tools will take under the influence
of this architecture. We also consider the effects of
evolutionary pressure on process definition and con-
trol, tools, and people. We begin with a brief look at
software development today, in terms of evolution
under this architecture, We then consider near-term
practical implications of the architecture and a cor-
responding facility. Finally, we speculate on the
longer-term direction that software development ev-
olution might take under such an architecture.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

The situation today. Large-system software develop-
ment tools and processes in use today are character-
ized by the formality and power of large, uninte-
grated tools and by the relative informality of com-

Automated processes for tools are
quite controllable.

plex manual processes used to join and control them.
Tools have evolved in this direction through the lack
of a common support system. This encourages large
tools that contain their own support systems (inciud-
ing user interfaces, system interfaces, and data base
management). Also, there has been a desire to au-
tomate as much of the process as possible, while
using unintegrated tools. This has led to process
assumptions and limitations being built into large
tools in fundamental and inflexible ways.

As a direct result of this tools-driven environment,
the portion of the software development process that
is automated today is almost precisely that portion
which is built into the large but inflexible tools. The
effect has been the development of paper processes
that are both flexible and visible. Paper processes
are, however, not very controllable. Automated proc-
esses for tools are quite controllable, but they are
neither flexible nor visible.

The near term. What this architecture introduces to
today’s situation is a software engineering support
facility, i.e., a common support system for tools and
a mechanism for process automation. The presence
of a common tool interface (ct1) in such a facility
encourages tools developers to rid their tools of
unique user interfaces, system service interfaces, and
data base management systems, in favor of a com-
mon set of such services. Any such architected facil-
ity includes a mechanism for automated process
control, called a process mechanism (PM), that exists
above and beyond the individual tools. The presence
of the PM encourages tool developers and process
owners to remove process automation from the sep-

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

arate tools and place it in a common control
mechanism where it is flexible, visible, and control-
lable.

The effect is twofold: (1) the tools change shape,
content, and scale, and become integrated at the
service level; and (2) the process takes on an auto-
mated life of its own, separate from the tools. The
near term under the first effect is characterized by
planned migration from existing tools to tools that
make best use of the facility. The architecture and
corresponding facility must accommodate such mi-
gration through provisions for levels of tool integra-
tion, from simple unintegrated user access to tools
all the way to full and unrestricted use of the facility’s
capabilities. Such best use will be exemplified by
tools that are divided in function into user interface,
system interface, data base management, tool invo-
cation, and tool function. By tool function we mean
whatever is left over that describes what the tool
actually does for a user. The facility provides all of
these services except the actual tool function.

For existing tools, the change is principally one of
removing unigue code that provides the facility ser-
vices today. For new tools, the advantage comes
from not having to write such code.

With respect to the second effect, the process be-
comes an entity separate from the tools, with its own
automation—the pM. The combination of removing
the process from the tools (where it is relatively rigid)
and providing automated support for what is basi-
cally a complex job in its own right creates a new
situation for any software development project. That
1s, the process itself must now have the same kind of
automation-oriented formality and sophistication
that tools work already has. The process for any
project must be codified and defined to the pMm and
executed under automated control. This new, sepa-
rate, formal, automated process definition will re-
quire human effort, intelligence, and maintenance.
Whether or not this is done by specialists, best use
of the facility will require automation.

The process definition must match the project and
process data available during the process with the
available tools capabilities and with the capabilities
of the persons who have roles in the process. The
process definition includes all those dimensions. We
call the matching of a formal definition with the
available working parts of the process complemen-
tarity. Complementarity must always be maintained
or the process will fail to function properly.

HOFFNAGLE AND BEREGI 117

We now explore the anticipated effect of maintaining
complementarity. Initially, the process definition
may be at a very high level and made up entirely of
human activities, regardless of whether the people
involved use tools to accomplish some or all of a
process step. Under such conditions, complementar-
ity becomes a determination that people can perform
the steps, and that the steps make sense to those who
will perform them.

Best use of the facility implies that eventually,
through a carefully planned migration, a fine-grained
process codification will emerge. The codified defi-
nition will include both human and automated steps,
and complementarity will become much more im-
portant and obvious. It is always true that the human
steps must make sense to people. It is also true that
complementarity must work for automated, tool-
driven steps. Here the rigidity of tool capabilities
melds with automatic invocation by the pM to yield
a direct connection between process step and tool
power, without human intervention, i.e., the com-
plementarity of process and tool.

Thus, the near term is characterized by migration
from existing large and unintegrated tools to tools
utilizing the facility for services and process control.

The long term. The effects of this architecture and
corresponding facilities over the long term are, of
course, more speculative than those for the near
term. The authors believe that some directions have
been clarified by the discussion thus far.

The process definitions are expected to become more
formal, more sophisticated, and more detailed over
time. This is a natural result of the desire to use the
capabilities of the facility and its pM to the maxi-
mum. As one part of the process comes under close
scrutiny and definition in the pm, another part ap-
pears both more tractable and more in need. Com-
plementarity, as just discussed, must be preserved at
all times, but many of the human aspects of the
process and some of the tools aspects could become
far more formally defined and measured than they
are today without disrupting the existing tools or
process. As investment in tools and process is al-
lowed to progress into the longer term, pressure will
build naturally, first to define and automate the
simple yet troublesome things. Then one will turn
to whatever is at least tractable. This process could
eventually lead to complementary investment in
tools and process, where one cannot move forward
without the other.

118 HOFFNAGLE AND BEREGI

The tendency cited earlier in this paper to draw the
process out of the tools and into the PM over time
should lead to a more detailed process, being both
finer-grained and more visible. Those progressive

The other side of the increasingly
refined process granularity is the
long-term breakup of today’s large
tools.

levels of granularity and visibility will likewise lead
to more controllable and measurable processes, and
tools to support them.

The other side of the increasingly refined process
granularity is the long-term breakup of today’s large
tools. As we described earlier in this paper, the
services provided by the facility will replace similar
services built uniquely into each tool. What has not
yet been affected is the tool function itself, which
remains as a large, multifunction black box. Over
time, however, the desire to make more effective and
efficient use of the facility, the desire to extract the
process from those large tools to make it visible, and
the investment pattern of new tools (which will
utilize the facility from the start) are expected to
cause the large-tools functions of today to break up.
That breakup is expected to be along process-defined
lines. That is, as the process definition becomes more
granular, process definers look at each large-tool
function as though it were a black box to be better
understood. The understanding of a function causes
its process substeps to become known. Once known,
the tool function can be broken along those process
lines, resulting in a yet-finer-grained process defini-
tion and smaller tool functions. Thus, instead of
today’s expectation that tools systems will become
more and more monolithic as they become more
and more integrated, our architecture anticipates a
situation in which the tools become smaller and
smaller carriers of single, discrete process steps
wherein the process definition serves as the glue. The
separate and complementary development of tools

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

facility to be at or beyond the current state of the art
in software development environments. We also be-
lieve such a facility would support the practice of
advanced software engineering techniques. The ob-
jective of such a facility is to support software devel-
opment tools and process automation with the fol-
lowing characteristics:

and process, while preserving complementarity, is a
cornerstone to foreseeing the effect of this architec-
ture over time.

In the future envisioned here, new tools come as
single functions for single process steps. Since tools
are more discrete and no longer need expensive
services or process knowledge built in, more alter-
native tools can be tried and tested at the local level.
Also, more alternative processes can be tried and
measured for effect. Because most tools and process
ideas start at the desk of one person with a problem
on a real project, the effect of our architecture should
make ingenious solutions and progress more likely.

* Process and tool independence to support flexible
process and tool evolution

e System and data-service isolation to support tool
portability

* A common data model and a consistent user
interface to support tool and user integration

* A process mechanism to support formal process

Without tool and process portability from one facil- OC
definition and automated process control

ity or project to another, process granularity and the
resulting functional tools would be primarily of local
value and not easily shared. With portability of
processes and tools, the impact of even small im-
provements can be readily and cheaply achieved by
many users.

Technologies are available today that make imple-
mentation of this architecture appear to be feasible.
The use of this architecture to direct the implemen-
tation of a software engineering support facility
should produce a new state of the art in software
development environments that can answer the chal-
lenges raised by both software users and producers

Most important is the use of such facilities to cause
people’s tasks to change. As the process becomes

visible, measurable, and granular, and as the view of
software development becomes more process ori-
ented and less tool oriented, people involved with a
project or process will notice at least some of the
following:

¢ People become task oriented rather than tool ori-
ented, and can move more easily among projects.

¢ Tools knowledge becomes a specialty.

* Process knowledge becomes a new and highly
automated specialty.

* Repetitious process steps that are done today to
satisfy tools that cannot share information should
disappear as steps are taken once in the process
and the information is shared by tools.

* Process responsibilities become more visible, con-
crete, and understandable.

It is not known at this time whether such a future is
more than speculation. Neither is it known whether
such breaking up will lead to single-function tools.
All possibilities await the creation and use of such
facilities and the experiences that time alone pro-
vides.

Concluding remarks

This paper has presented an architecture for a soft-
ware engineering support facility. We believe such a

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

and addressed in this paper.

Acknowledgments

The authors acknowledge the contributions to the
software development automation architecture dis-
cussed in this paper by many researchers and devel-
opers throughout the 1BM Corporation. Special
thanks go to Jerry Anderson, Sam Bailey, Dr. Dan
Chang, Len Orzech, Jess Rowland, Jim Sagawa, and
Fred Wilkes, who participated as a team with us to
define and develop the approach described in this
paper. In some cases, verbatim excerpts of their work
from other related documents are included here.

Cited references

1. Software Technology for Adaptable,

Reliable Systems
(STARS) Program Strategy, Reports AD-A128957/8 and AD/
A128918/0, Office of the Deputy Under Secretary of Defense
for Research and Engineering, Washington, DC (March 1983).

. Specification Practices, MIL-STD-490, United States Govern-
ment, Department of Defense, Washington, DC (October
1968).

. Configuration Management Practices for Systems, Equipment,
Munitions, and Computer Programs, MIL-STD-483, United
States Government, Department of Defense, U.S. Air Force,
Washington, DC (March 1979).

. 1. Nassi and B. Schneiderman, “Flowchart techniques for

structured programming,” ACM SIGPLAN Notices 8, No. 8,
12-26 (August 1973).

HOFFNAGLE AND BEREG 118

22.

23.

24,

. M. Schindler, “Today’s software tools point to tomorrow’s
tool systems,” Electronic Design 29, No. 1, 6-15 (July 23,
1981).

. D. E. McConnell, An Investigation of the State of the Art
Trends in the Life Support of Complex Embedded Computer
Systems, Naval Weapons Center, Dahlgren, VA (September
1979).

. V. J. Crandall, “Enterprise-wide information management: A
management perspective,” presented at Ken Orr’s DSSD
User’s Conference, FEEDBACK '84 (October 1984).

. D. Alberts, “The economics of software quality assurance,”
AFIPS Conference Proceedings, National Computer Confer-
ence 45, (1976).

. M. Knight, “Software quality and productivity,” Defense Sys-
tems Management Review (Autumn 1978).

. M. W. Alford, “Software requirements in the 80’s: From
alchemy to science,” Proceedings of the Annual Conference,
ACM 80, Nashville, TN, pp. 342-349 (October 27-29, 1980).

. W. E. Beregi, “Architecture prototyping in the software engi-
neering environment,” IBM Systems Journal 23, No. 1, 4-18
(1984).

. D.E. McConnell, Productivity Initiatives for Effective Lifetime
Support in the Navy’s AEGIS Program, Naval Surface
Weapons Center, Dahlgren, VA (June 1982). Copies of this
unpublished report, which was presented at the European
INDQS Project, Pisa, Italy, in 1983, may be obtained from
the author.

. R. G. Mays, L. S. Orzech, W. A. Ciarfella, and R. W. Phillips,
“PDM: A requirements methodology for software system en-
hancements,” IBM Systems Journal 24, No. 2, 134-149 (1985,
this issue).

D. J. Pearson, “The use and abuse of a software engineering
system,” AFIPS Conference Proceedings, National Computer
Conference 48, 1029-1035 (1979).

. A.J. Thadhani, “Interactive user productivity,” IBM Systems
Journal 20, No. 4, 407-423 (1981).

. K. H. Kim, “A look at Japan’s development of software
engineering technology,” Computer 16, No. 5, 26-37 (May
1983).

. E. W. Hubbard and D. W. Waugh, “Automation for the
software engineering process,” Technical Directions (IBM Fed-
eral Systems Division) 10, No. | (1984),

. R. W. McGuffin, A. E. Elliston, B. R. Tranter, and P. N.
Westmacott, “CADES—Software engineering in practice,”
Proceedings, 4th International Conference on Software Engi-
neering, IEEE, pp. 136-144 (1979).

. Common APSE Interface Set (CAIS), Proposed Military Stan-
dard, Version 1.3, Report AD-A134825/9, Office of the Sec-
retary of Defense, Ada Joint Program Office, Washington, DC
(August 1984).

. Software Engineering Environment for the Navy, Report of the
NAVMAT Software Engineering Working Group, Report AD-
A131941/7, Naval Material Command (NAVMAT), Wash-
ington, DC (March 1982).

. M. W. Alford, “A requirements engineering methodology for

real-time processing requirements,” /[EEE Transactions on

Software Engineering SE-3, No. 1, 60-69 (January 1977).

R. J. Lauber, “Development support systems,” Computer 15,

No. 5, 36-46 (May 1982).

W. Rauch-Hindin, “The software industry automates itself,”

Systems and Sofiware (October 1983).

Requirements for Ada Programming Support Environments,

Stoneman, United States Government, Department of De-

fense, Washington, DC (February 1980).

120 HOFFNAGLE AND BEREGI

25. R. A. Radice, N. K. Roth, A. C. O’Hara, Jr., and W. A,
Ciarfella, “A programming process architecture,” IBM Sys-
tems Journal 24, No. 2, 79-90 (1985, this issue).

26. D. Teichroew and A. Hershey 1II, “PSL/PSA, a computer-
aided technique for structured documentation and analysis of
information processing systems,” IEEE Transactions on Soft-
ware Engineering SE-3, No. 1, 41-48 (January 1977).

27. P. P.-S. Chen, “The entity-relationship model—toward a un-
ified view of data,” ACM Transactions on Database Systems
1, No. 1, 9-36 (1976).

Gene F. Hoffnagle IBM Information Systems and Storage Group,
P.O. Box 390, Poughkeepsie, New York 12602. Mr. Hoffnagle is
currently a senior programmer with the Programming Quality and
Process directorate in IS&SG. He joined the IBM Federal Systems
Division in 1967 and worked until 1973 on the National Airspace
System. From 1973 until 1977, Mr. Hoffnagle was part of a small
team working with IBM Fellow Dr. Harlan D. Mills on software
engineering and advanced information automation systems. He
developed software engineering education programs for the Federal
Systems Division until 1979, and subsequently for the IBM Data
Systems Division. In 1981, he joined IS&SG as a systems architect
and initiated this software development automation architecture.
Since 1983, he has been the lead architect for this architecture,
especially for its process mechanism. From 1980 until 1984, Mr.
Hoffnagle was an adjunct instructor in software engineering at the
IBM Systems Research Institute. Mr. Hoffnagle received a B.S. in
mathematics from Case Institute of Technology in 1967 and an
M.S. in computer science from The Johns Hopkins University in
1976.

William E. Beregi /BM Information Systems and Storage Group,
P.O. Box 390, Poughkeepsie, New York 12602. Mr. Beregi is
currently a development programmer on the Programming Qual-
ity and Process directorate staff in IS&SG. After graduating from
Carnegie-Mellon University with a B.S. in mathematics in 1974,
Mr. Beregi joined 1BM at Kingston, New York. He managed
software engineering and reliability, availability, and serviceability
groups there. He also had technical assignments in system design,
planning, and product quality assurance. His most recent respon-
sibility was managing the Software Engineering Process Technol-
ogy group, where he was responsible for the invention and devel-
opment of system design and rapid prototyping tools. Mr. Beregi
joined IS&SG as a systems architect in 1984 and established and
directed the development team for this software development
automation architecture. Mr. Beregi was lead architect for the
architecture’s common tool interface. He has published articles in
the IBM Systems Journal and in the IEEE conference proceedings
on software engineering and rapid prototyping. He received an
M.S. in computer and information science from Syracuse Univer-
sity in 1977,

Reprint Order No. G321-5242.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

