A programming process
architecture

The Programming Process Architecture is a framework
describing required activities for an operational proc-
ess that can be used to develop system or application
software. The architecture includes process manage-
ment tasks, mechanisms for analysis and development
of the process, and product quality reviews during the
various stages of the development cycle. It requires
explicit entry criteria, validation, and exit criteria for
each task in the process, which combined form the
“essence” of the architecture. The architecture de-
scribes requirements for a process needing no new
invention, but rather using the best proven methodolo-
gies, techniques, and tools available today. This paper
describes the Programming Process Architecture and
its use, emphasizing the reasons for its development.

In IBM’s large-system programming laboratories
there are hundreds of diverse software products
being developed. The Programming Process Archi-
tecture provides one common process management
view across all of the products while allowing for
specific product differences and improvements,

Although there have been many efforts to describe a
software engineering environment (SEE), none has
used an operational process as its focus and driving
force to the extent done in the Programming Process
Architecture. Rather, the SEEs have primarily focused
on tools and methodologies as the drivers. It is only
recently that the solutions for software engineering
tools and environments have been understood to
require “a solid and formal theoretical base, a unify-
ing conceptual framework, and a coherent program-
ming process.”!

This focus on defining an architecture for the process
first, then bringing in the tools and methodologies,

IBM SYSTEMS JOURNAL, VOL 24, NO 2. 1985

by R. A. Radice

N. K. Roth

A. C. O’Hara, Jr.
W. A. Ciarfella

marks a key difference in the Programming Process
Architecture and in the definition of a future pro-
gramming environment. Without a clearly defined
and accepted architecture for the process, the tools
and methodologies can only come together in a
loosely coupled manner, with reduced effectiveness.
The primary focus on the process allows for a tightly
coupled process-tools-methodologies-practices struc-
ture on which an SEE can be built and its evolution
toward a future programming environment can take
place.

The Programming Process Architecture is the basis
for this future programming environment, called the
Target Architecture, which is the ultimate goal and
which will describe a process directing and utilizing
future tools and methodologies. The Programming
Process Architecture defined in this paper, hereafter
referred to as the Process Architecture, is a necessary
and orderly step in progressing toward the goal of
the Target Architecture.

The first version of this architecture, called the Cur-
rent Architecture, provides a well-defined homoge-
neous process for use across many I1BM large-system
programming sites to

1. Accommodate easier transfer of product devel-
opment across sites

© Copyright 19835 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copvright
notice are included on the first page. The title and abstract. but no
other portions. of this paper may be copied or distributed rovalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

RADICE. ROTH, O'HARA AND CIARFELLA 9

Figure 1 Improvement progression

DEFECTS PER 10
THOUSAND LINES
OF CODE
(NORMALIZED)
0
TODAY'S CURRENT FIRST nth TARGET
AVERAGE ARCHITECTURE INTERMEDIATE ARCHITECTURE ARCHITECTURE
PRODUCTIVITY IN 1.0
THOUSANDS OF
LINES OF CODE
PER PROGRAMMER

MONTH (NORMALIZED)

0

TODAY'S CURRENT
AVERAGE ARCHITECTURE

FIRST
INTERMEDIATE

nth TARGET
ARCHITECTURE ARCHITECTURE

LENGTH OF 1.0
PROJECT
(NORMALIZED)

0

TODAY'S CURRENT
AVERAGE ARCHITECTURE

FIRST nth TARGET
INTERMEDIATE ARCHITECTURE ARCHITECTURE

2. Assist in the process management of the product

3. Aid in a set of development practices

4. Most important, increase both quality and pro-
ductivity in our products

It was decided, therefore, that within the area of
large-system programs a well-defined homogeneous
view of the process would be stated. Once this was
accomplished and the sites and projects agreed to
use the Process Architecture as a common structure,
a full-scale evolution could be pursued to culminate
in a final Target Architecture by progressing through
a series of intermediate improvements to the Process
Architecture. The goal of the Target Architecture for

80 RADICE. ROTH, O'HARA, AND CIARFELLA

quality is zero defects, with a defect defined as any
deviation from the specification. For productivity,
the Target Architecture addresses magnitudes of 10
to 20 times today’s average productivity rates (see
Figure 1).

Thus, the Process Architecture is defining a position
from which an orderly evolution of the business of
developing software can begin. In order to achieve
this, the architecture (1) ensures a repeatable and
simple paradigm at all levels of the software process,
(2) contains the essence of self-improvement by bas-
ing itself on the need for statistical quality control,
(3) requires a validation mechanism for any work

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

elements produced during the development cycle,
(4) is based on what is already existent in the software
industry, but draws only from the best proven alter-
natives, (5) addresses the complete life cycle of soft-
ware production, and (6) is independent of tools in
its first iteration.

Need for a process architecture

The product set for which this Process Architecture
is primarily intended is the Operating System/370
(0s/370) software, which is exemplified by products
such as I1BM’s Multiple Virtual Storage (Mvs), Virtual
Machine/System Product (vm/sp), Customer Infor-
mation Control System/Virtual Storage (CICS/Vs),
and Virtual Telecommunications Access Method
(vTaM). Most of the products produced within this
set are functional updates to previous levels. In many
instances, multiple releases of a product are being
developed concurrently. The code is written either
in an in-house high-level language called PLS or in
Basic Assembler Language (BAL). A fair amount of
the code base has been around since the beginnings
of 0s/360. In addition, there are new products being
developed in the same software laboratories. There-
fore, all forms and variations of programming meth-
odologies exist in this product set, including top-
down, structured, functional, and data abstractions.

Although there was evidence that there existed, at a
high level, a homogeneous software development
process across all of IBM’s eight large-system product
sites, there still were many differences at lower levels.
To understand these differences, a Site Study pro-
gram had been instituted to gather information.’
While these studies were occurring, all available
processes being used by different product groups at
the various sites were factored into the initial process
model used by the Site Study team. This model, with
the actual process performance information from
the programming sites integrated with other industry
and academic process definitions, eventually became
the Process Architecture. In fact, this input flow of
actual process performance information continues
as the architecture moves through its intermediate
states toward its goal.

Acceptance of the architecture

The objectives for establishing a current version of
the Process Architecture were to

1. Determine the best available generic process for
the eight programming environments developing
0s/370 software

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

[\

. Achieve approval across the eight sites for a com-
mon process model for process evolution
Provide a model against which the sites could
map more detailed product-specific process defi-
nitions

(98]

Trying to get eight different sites to agree on these
objectives was not an easy task, as each site had a
different perspective of what the architecture should
be. Among the sites, some product groups

+ Wanted more specifics

«~ Thought it was too specific

» Thought it was too restrictive

% Thought it was too costly to implement

% Questioned its applicability to new products as
well as to incrementally changed products

These differences could only be resolved by having
the programmers who would have to live with the

Process management techniques
apply to all systems software
development.

Process Architecture take charge of, or “own,” it.
This was accomplished by taking a bottom-up ac-
ceptance route prior to asking for site approvals.

Thus, the Current Architecture was based on (1)
existent and “proven” subprocesses, practices, and
methodologies, (2) the experiences of the Site Stud-
ies, and (3) a bottom-up acceptance of versions of
the Process Architecture. All eight programming sites
have approved the architecture and use it as the basis
for their process implementations.

What was learned

Much was learned during the development of the
Process Architecture. First, many process elements
and concepts were broadly applicable across a diverse
product set such as exists in the eight programming
sites. One example is the Entry-Task-Validation-Exit
(eTvx) paradigm, or concept, which is described in
detail later. (See also Figure 2, shown later.)

RADICE, ROTH, O'HARA. AND CiARFELLA §1

It was also demonstrated that process management
techniques apply to all systems software develop-
ment. Indeed, 10 achieve consistently improving
quality, the management practices of goal setting,
measurement, evaluation, and feedback are an ab-
solutely essential part of the process. Defining the
process and getting it accepted from the bottom up
were the two essential parts of the solution. Estab-

The architecture would not contain
the detail necessary for daily
operational process activities.

lishing goals and the capture, analysis, and feedback
of data against these goals were the necessary next
steps in the evolutionary process development. As a
result, this foundation was integrated into the archi-
tecture.

Additionally, it became clear that no one static proc-
ess could satisfy the needs of all our programming
development organizations because of product dif-
ferences. For this reason, the architecture started
with the principle of defining “what” must be done
during software development. The “how” of the
process was defined in the site or product process
documents, which are implementations of the archi-
tecture.

It was further understood that the site or product
processes should not be trapped into static one-of-a-
kind definitions. They should be constantly improv-
ing and changing their definitions in the interest of
quality and productivity. As a result, process evalu-
ation meetings, known as postmortem meetings,
were included in the architecture within the exit
criteria to serve as a built-in self-improvement mech-
anism for the site or product-specific process defini-
tions.

The Current Architecture now represents the best set
of proven alternatives for developing systems soft-
ware under conditions available in today’s large-

82 RADICE, ROTH, O'HARA, AND CIARFELLA

system programming environments in 1BM. It is a
structured framework of activities that can be
adopted immediately by development groups to de-
liver high-quality systems software. It is a process
that can be adopted without having to depend on
invention or untested new technology.

Architectural considerations

As previously stated, it was decided at the outset that
the Process Architecture should emphasize what was
to be accomplished during each segment of the proc-
ess, not how it was to be done. The applicability of
the architecture was intended to be as broad as
possible. The architecture was not to contain specific
tools or methodologies, but was to remain valid and
independent of tools, methodology, and technology
changes in order to establish a workable and proven
base.

The architecture also would not contain the detail
necessary for daily operational process activities. The
defined detail was to be provided through either a
site process guideline or a product-specific opera-
tional process guide.

The structure of the architecture had to enable man-
agement to track and control the development proc-
ess and the quality of the product.

Process management

The Process Architecture has been defined to support
the following process management principles:

e The process must be actively, continually, and
consistently managed to achieve consistently im-
proving quality and increasing productivity.

e Consistent management requires that the process
1. Be decomposed into parts (process stages)

2. Have entry criteria, validation, and exit criteria
defined for each task

3. Have process data regularly reviewed, ana-
lyzed, and used for process improvement (sta-
tistical control)

e Each work item must be validated before being
included in the product or its associated informa-
tion.

e Problems with the product or process must be
recorded and analyzed for cause, effect, and im-
provement.

¢ Changes to the product or process must be con-
trolled. They should be recorded, tracked, and
evaluated for effectiveness.

BM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Figure2 The ETVX paradigm

_> TASKS
ENTRY
CRITERIA
e — V
VALIDATIONS

X

EXIT
CRITERIA

<
—>

e Goal setting, data capture, analysis, and feedback
are essential for improvement of both the product
and the process.

Essence of the architecture—ETVX

The Process Architecture requires a structured
method of process control for each activity within a
viewpoint of a stage of the process. This structure,
or subprocess, is the “essence of the architecture”
and calls for a checklist of entry criteria, tasks, vali-
dations, and exit criteria for each activity or stage.
The recurring subprocess of entry criteria, tasks,
validations, and exit criteria (the ETvX paradigm) is
formally defined as an activity in the architecture
and is illustrated in Figure 2.

Although the ETvx model is used at a stage level, it
does not imply that all activities or tasks in a later
stage must wait for completion of predecessor stages.
The later stages may be functioning in parallel with
previous stages. However, in order for a stage to have
all activities and tasks exit from it fully, all exit
criteria must be satisfied at some point in the product
life cycle.

For a given activity, the following are predefined: (1)
a list of entry criteria that should be satisfied before
beginning the tasks, (2) a set of task descriptions that
indicate what is to be accomplished, (3) a validation
procedure to verify the quality of the work items
produced by the tasks, and (4) a checklist of exit
criteria that should be satisfied before the activity is
viewed as compilete.

IBM SYSTEMS JOURNAL VOL 24, NO 2, 1985

The ETVX paradigm indicates the relationships and
flow among the four aspects of an activity. If a
validation procedure indicates that change or rework
is required within a task, the iterative loop of task
and validation is followed until it is verified that the
items produced by the task are satisfactorily com-
pleted.

The paradigm displayed with ETVX can be applied to
as fine a level of detail as is required to control a
process, e.g., the lowest-level task. It can also be
applied at the process stage level. Thus, it is a control
structure to prevent problems or defects from mov-
ing forward from one stage of the process to another.

An underlying theme of the architecture essence is a
focus on process control through process manage-
ment activities. Each stage of the process includes
explicit process management activities that empha-
size product and process data capture, analysis, and
feedback. Through a required quality plan and qual-
ity reviews, the product is monitored at every stage
of the process. Through process evaluation meetings,
the process is also monitored at the end of each stage.
This monitoring allows a high degree of control,
including corrective action as the product evolves,
rather than waiting until testing is completed to
determine the probable quality level.

Process stages

The Process Architecture requires that the process
be partitioned into stages. Each of these stages may
be viewed as a state of evolution of a product. Each

RADICE, ROTH, O'HARA, AND CIARFELLA 83

Figure 3 Process stages

FAMILY STAGE
REQUIREMENTS REQUIREMENTS & PLANNING
& PLANNING
DESIGN PRODUCT LEVEL DESIGN
COMPONENT LEVEL DESIGN
MODULE LEVEL DESIGN
IMPLEMENTATION CODE
UNIT TEST
TESTING FUNCTIONAL VERIFICATION TEST
PRODUCT VERIFICATION TEST
SYSTEM VERIFICATION TEST
PACKAGING PACKAGE AND RELEASE
& VALIDATION
EARLY SUPPORT PROGRAM
GENERAL GENERAL AVAILABILITY
AVAILABILITY

stage is named for the major activity that occurs
during that time frame. However, many other activ-
ities also occur in the same time frame. For example,
although a stage is named “Code,” it contains tasks
for activities in testing, marketing, service, publica-
tions, process management, and other aspects of
program development. The 12 process stages de-
scribed in the architecture are shown in Figure 3,
together with a grouping into families.

Implementation of the architecture at a development
site might result in variations from the version shown
in Figure 3. For example, the development of a
particular product might show that two design stages
are being used rather than three. Nonetheless, the
essential tasks within the three stages would be per-
formed under the definition of two stages. Therefore,
the work specifics are not different, only the segmen-
tation and the stage names.

The segmentation of the process into 12 stages in
the architecture is primarily meant to demonstrate
how partitioning of the process is accomplished and
not to restrict site process guidelines or operational
processes to exactly 12 stages. A brief description of
each stage follows:

84 RADICE, ROTH, O'HARA, AND CIARFELLA

1. Requirements and Planning (RP): During this

period two sets of activities occur: (a) Product
and system level requirements are documented
and entered into a tracking system, and (b)
Project planning is begun with appropriate proc-
ess and product activities, including creation of
a product quality plan.

In the first set, the architecture refers to a specific
methodology wherein requirements are gathered
and problem analysis is carried out, docu-
mented, and used to create solutions that de-
scribe new or enhanced function as a response
to the problems. These solutions are then coor-
dinated into high-level design. This procedure is
carried out first at the system level and then for
specific products.

In the second, project planning consists of many
activities including the completion of an Initial
Business Proposal, which is a formal document
required early in a development project, the
picking and documentation of the process to be
used, and the selection and implementation of
a management support system for collecting
process data, planning and tracking, and analy-
sis, evaluation, and feedback of process and
product data.

. Product Level Design (PLD): A definition of the

product functions that will satisfy the require-
ments is produced during this stage. This stage
is the first or highest level of a design statement
which is developed as part of the product solu-
tion. Performance and usability objectives are
identified, and publications planning begins.

. Component Level Design (CLD). Functions are

partitioned and placed in substructures and hi-
erarchical relationships representing the prod-
uct. These substructures represent an interme-
diate decomposition of the Product Level Design
statement but do not include the level of defi-
nition that exists in Module Level Design. The
set of module names is defined. The principal
data structures and control paths specified for
each module in the hierarchy are also defined.

. Module Level Design (MLD): This stage includes

the detailing of each module into a specific logic
solution. Each logic path is detailed to denote
specific processing activities. Data structures are
defined to the lowest level of detail. Installability
and serviceability walkthroughs are held; that is,

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

sessions are held with various members of the
organizations that will install and service the
product to inspect the materials to be used by
these groups. The Translation Plan, a document
for the product programming community that
defines standard ways in which to translate pro-
gram messages from English into foreign lan-
guages, is completed, and the first drafts of prod-
uct documentation are available.

5. Code (¢): The transformation of the Module
Level Design representation into a compilable
language with resultant object code is com-
pleted. All test plans are completed, and test
cases for the Function Vernification Test and
Product Verification Test are completed.

6. Unit Test (UT): The testing of the logic of each
module occurs here to ensure that all logic paths
are covered and operate according to the Module
Level Design specifications. In some cases,
groups of modules may be executed.

7. Functional Verification Test (FvT): The execu-
tion of all product functions in an integrated
product with respect to the product specification
is completed. At completion of this level of
testing, the product functions have been proved
to work in a simulated and constrained environ-
ment.

8. Product Verification Test (PvT): This stage in-
cludes execution of all product functions in a
real and unconstrained environment. This test
will be executed from a user’s perspective, but it
will not necessarily force the functions to execute
1n a stressed environment. Performance and us-
ability capabilities are measured as a total prod-
uct set. When this test is complete, the product
can be announced to the market.

9. System Verification Test (SvT): This stage is the
execution of all product functions from the
user’s perspective in an integrated hardware and
software environment which will stress the sys-
tem from performance, reliability, availability,
usability, and capability viewpoints. When this
test is complete, the product will successfully
perform to the requirements from the user’s
perspective.

10. Package and Release (PR): During this stage, the
various parts that define the full product set,
including product tapes, tapes of the optional
features available, product publications, and in-

IBM SYSTEMS JOURNAL, VOL 24, NO 2. 1985

stallation guides, are brought together as a uni-
fied product to perform as the users will see
them. The results of this test will demonstrate
that a user can install the product and have it
operate successfully.

11. Early Support Program (esp): This stage calls for
execution of the product in a set of actual cus-
tomer or user environments prior 1o release of
the product for general availability. This stage is
a verification of the marketing and field support
interfaces for the product, and additionally dem-
onstrates that the product functions to the users’
expectations in their environments.

12. General Availability (Ga): This stage starts with
delivery of the product to the marketplace. All
manuals, associated products, field service, mar-
ket education materials, and support and distri-
bution channels must be in place and working
satisfactorily.

Stage overlap activity and rework. Even though the
architecture segments the process into stages, which
are described serially, the actual work occurs in
parallel to various degrees across the product hfe
cycle. For example, suppose a problem is found
during a test within the Functional Verification Test
stage, and it requires rework starting in the Compo-
nent Level Design stage. The architecture calls for
the various unaffected activities of the test stage to
continue uninterrupted, while the required activities
of the design stage resume to resolve the problem.
This overlap of activities from different stages is
natural and necessary. The design stage activities
then lead to those required in the Module Level
Design, Code, Unit Test, and Functional Verifica-
tion Test stages. This parallelism allows for a smooth,
managed, change-controlled process to resolve the
problem while other process activities continue un-
disturbed by the flow of activities from the earlier
stages.

Another example would be the parallelism of design,
code, and testing at the product level. Although this
level of parallelism is necessary for efficiency, the
design, code, and test will, of course, be serial for
any one module.

Viewpoints

There are many aspects in the development of a
product that occur concurrently during each of the
stages. These aspects, called viewpoints, include the
following:

RADICE. ROTH, O'HARA, AND CIARFELLA 8§59

Program development

Testing

Publications and related material
Build and integration

Marketing and Service

Process management

S kD=

See Figure 4 for a representation of the relationship
of tasks with stages and viewpoints.

An example of viewpoints within a stage. An example
of what may occur in these viewpoints is analyzed
for the Functional Verification Test stage:

1. Program development—Problems found during
formal testing are reported and documented with
an appropriate data base. A programmer then
analyzes each problem and works with others to
determine a solution. The analysis and resolution
determine at which stage in the development
cycle rework should start. While other testing
continues, the activities of the earlier stages re-
quired to resolve the problem are formally exe-
cuted until the problem is closed out. If the so-
lution involves design and code changes, appro-
priate design documents are updated, and code is
written, inspected, and put through unit test prior
to integrating it into the driver being used for the
functional verification test. All of this is done
using a defined automated change control proc-
ess. Documentation is updated and kept current
for all changes.

2. Testing—Running the functional verification test
cases is the key test activity at this time. Concur-
rently, a usability test appropriate for this part of
the development cycle takes place. Any problems
or suggested changes are documented as the first
step in a formal configuration management proc-
ess. Preparation for Product Verification Test is
completed. This preparation includes the writing,
inspecting, and testing of test cases as well as the
organization and training of test team and prob-
lem determination team personnel.

3. Publications and related material—Drafts of as-
sociated publications and any other such mate-
rials continue to be refined. Reviews of any lan-
guage support materials for nondomestic markets
are completed.

4. Build and integration—The Build Plan, a dy-
namic document detailing the management and
control of all the product parts, is kept current,
and test drivers are built and regression-tested to
support the testing efforts.

86 RADICE, ROTH, O'HARA, AND CIARFELLA

5. Marketing and service—The final Early Support
Program Plan is created and the Distribution and
Support Plan is refined to reflect any changes.
The Release for Announcement package is dis-
tributed for review. A check on serviceability
aspects is completed.

6. Process management—Several process manage-
ment activities occur during this and every stage.
Refinement of the Quality Plan and continual
monitoring and assessment of the Functional
Verification Test process are, of course, key activ-
ities here. Others include the product quality re-
view and process evaluation meeting mentioned
earlier. They each have specific tasks that are
directed by the data gathered during this stage of
the process when they are compared to the prod-
uct and process goals established earlier in the
project cycle.

Streamlining

The architecture was developed with an orientation
toward improving 1BM’s large-system software devel-
opment. However, projects with a short development
schedule or with fewer programmers may elect to
use a streamlined process. For those projects that
may qualify for a streamlined approach, there are
key aspects of the architecture which apply to all
software development projects and which are re-
quired, as follows:

% Segment the process into well-defined stages.

«» Segment the different viewpoints necessary to pro-
duce a finished product set.

* Adhere to the essence of the architecture at the
stage and activity level by defining task descrip-
tions, entry criteria, validation procedures, and
exit criteria.

* Establish appropriate process management activi-
ties, including a quality plan, periodic quality
reviews, and process evaluation meetings.

Quality and product excellence

The Process Architecture calls for a Quality Plan to
be established during the Requirements and Plan-
ning stage. This plan relates the targeted, deliverable
quality of the product to the individual goals for
each work item in each activity in every stage. The
product manager determines which attributes of
quality are to be addressed at each point in the
process, and their relative priority. These individual
quality subgoals, once set, are continually refined
throughout the process as new information sharpens

IBM SYSTEMS JOURNAL. VOL 24, NO 2, 1985

Figure 4 Work flow across stages by viewpoint

WORK FLOW ACROSS STAGES BY VIEWPOINT

RP PLD CLD MLD C ut FVT PVT SVT PR ESP GA

PROGRAM DEVELOPMENT:

INITIAL BUS. PROPOSAL
PROGRAMMING OBJECTIVES
PERFORMANCE OBJECTIVES
INITIAL PROGRAMMING SPECS
PROG. SYSTEM STRUCTURE
FINAL PROGRAMMING SPECS
PROGRAM LOGIC SPECS

——
—
—
—
PRODUCT WORKBOOK e ——————————————
I

TESTING:

COMPREHENSIVE TEST PLAN
INSTALLABILITY CKPT PLAN E——— —

PERFORMANGE TEST PLAN ———

UNIT TEST PLAN premn

FVT PLAN ——

PVT PLAN —

SVT PLAN ——

CREATE UNIT TEST CASES S

CREATE FVT CASES —
CREATE PVT CASES E—

CREATE SVT CASES — ——

PUBLICATIONS & RELATED MATERIAL:

INFORMATION OBJECTIVES .
INFORMATION SPECS .
INFO. MEASUREMENT PLAN]
NAT'L. LANG. SUPPORT PLAN]
INFORMATION PRODUCTS L]
. |

BUILD & INTEGRATION:
BUILD PLAN

MARKETING & SERVICE:

SERVICE ED. TRAIN. REQ.] T
SERVICE PLAN I I
SERVICE TRAINING PLAN] A

DIST & SUPPORT PLAN]]
CUSTOMER ED. MATERIALS []

INITIAL ESP PLAN |

FINAL ESP PLAN |

PROCESS MANAGEMENT:

PROCESS DEFINITION I
CONCURRENCES LIST A
DISASTER RECOVERY PLAN I
PROJECT PLAN
QUALITY PLAN

I/S SUPPORT PLAN

HIGH RISK MODULE LIST
PROCESS EVALUATION

the view. In this manner, quality is managed Statistical quality control of a programming process
throughout the product development cycle, rather requires that measures taken of the quality of each
than only assessed at its end. work item be frequently compared with project

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985 RADICE. ROTH, O'HARA, AND CIARFELLA 87

goals. Adjustments to work activities are made by
management and staff to correct any deviations that
become significant. Data collection is an essential
activity in every part of the process from the Product
Level Design stage to the General Availability stage.

Just as timely data are needed to manage the quality
of the developing product, historical data are re-
quired to evaluate and correct weaknesses in the
process over a succession of projects. Groups that

The issue of quality is concerned
with more than defects.

collect data to manage the product are encouraged
to enter those data into a data base for later study,
analysis, and improvement of the process. Successful
accomplishment of this is both a management focus
and a technical responsibility.

For the Current Architecture, the emphasis is pri-
marily on defect detection and correction. The focus
on entry criteria will additionally lead to the preven-
tion of defects that are caused by inadequate and
incomplete input to any stage, activity, or task.

The issue of quality is concerned with more than
defects. To focus on the subject one needs priorities
and measurable goals. These items are almost always
product-specific and cannot be successfully dictated
by any generalized process or the Process Architec-
ture.

Productivity and process efficiency

When quality is managed in a statistically controlled
and predictable manner, the resulting stability pro-
duces many additional benefits. For example, pro-
ductivity gains result from decreased rework, which
in turn is directly traceable to earlier defect removal.
This productivity gain is caused both by less rework
and by fewer iterations on each work item. In addi-
tion, when risk is better estimated and contained,
improved use of key personnel results from the re-

88 RADICE. ROTH, O'HARA, AND CIARFELLA

duced level of “fire fighting.” Finally, historical data
for predicting new project milestones can be used
more confidently when the relationship between
measured quality and productivity is better under-
stood. The Process Architecture emphasizes quality
over productivity, with the understanding that as
quality improves, productivity will follow.

Development schedules

Early quality goal setting and evaluations can lead
to an earlier focus on areas of initial high difficulty.
As a result, better initial allocation of key personnel
and other resources can follow. Fewer iterations on
a given work item can result in less overall calendar
time. This reduction in time is achieved from the
obvious savings in actual work time and from the
reduction in the “queuing effect,” in which rework
cannot always be performed immediately, but rather
must enter a queue in which it competes for attention
with other required activities.

Managed entry criteria and exit criteria called for
within the Process Architecture means fewer sched-
ule holdups because of wrong or missing task prereq-
uisites. Finally, successful attainment of these entry
and exit criteria gives a very visible indication of
development schedule progress measured against
projected milestones. This implies that the formal
sets of stage exit criteria define the major schedule
checkpoints and are used in the initial establishment
of these milestones.

Intermediate Architecture

While the Current Architecture is meant to serve
primarily as the structure from which the common
process evolution will begin, the Intermediate Ar-
chitecture represents the stepping stone to the Target
Architecture. This Intermediate Architecture is an
evolution of the Current Architecture.

The Intermediate Architecture shows a convergence
of existing and nearly developed tools and method-
ologies with the process. Subsequent architectures,
which are additional Intermediate Architectures,
may be necessary prior to the resolution of a Target
Architecture, and as such they represent a technology
roadmap linking the Current Architecture to the
Target Architecture. This technology roadmap will
show how the process, tools, methodologies, and
practices fit together and will map the controlled
evolution of a Process Architecture toward a Target
Architecture over the next few years.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Summary

The Current Architecture provides for a homogene-
ous view of the software process and is based on the
best available, proven alternatives. Its implementa-
tion allows for an immediate improvement in quality
and productivity. The users do not have to wait for
improvements in methodologies, subprocesses, tools,
or practices before using the Current Architecture.
The Current Architecture is the essential first step in
the evolution toward a Target Architecture.

The Process Architecture leads to a consistent way
of producing software while acknowledging that each
product will employ the process definition differ-
ently, on the basis of individual business judgment.
The differences are defined in the process definitions
for each product, which are implementations of the
approved architecture.

The architecture requires that data be gathered about
the process itself, so that the process can be con-
trolled to manage to predefined goals and can be
improved from release to release of its use.

The Current Architecture and the Intermediate and
Target Architectures are based on the Entry-Task-
Validation-Exit (ETvX) paradigm. This model is the
essence of the architecture, from the smallest task to
the most encompassing stage in the development
process.

The Process Architecture was developed from initial
input from a number of sources inside and outside
of 1BM, but more importantly, it was completed using
a bottom-up approach with the assistance of the
programmers who would live with it. In this sense,
the programmers not only helped define the archi-
tecture, they own it.

Finally, although this Process Architecture was de-
fined for large-system programming environments,
it should apply to any software project employing a
number of programmers, whether for systems or
application programs.

Acknowledgments

We acknowledge the efforts of Jim Anderson, Hobart
Armstrong, Gussie Bailey, Neil Baitenger, Lou Ci-
cilioni, Dick Conklin, Dave Desormeau, Bill Dub-
beling, Kusum Gupta, John Henderson, Paul Hutch-
ings, Marv Kaplan, Ken Knapp, Robert Mays, Dick
Mikolajczak, Bill O’'Neill, Len Orzech, Carol
Schneier, Jim Tomsic, Jack Toulan, and Robert

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

Young. Many others, too many to mention individ-
ually, especially those reviewers at the programming
sites whose comments added considerably to the
content, clarity, and brevity of style and ultimate
usability and acceptance of the architecture docu-
mentation, are also gratefully acknowledged here.
The list would not be complete without singular
mention of the members of the Site Study team, who
took time from very busy schedules to add consid-
erably to our understanding of the process. Finally,
we would like to thank Norman C. (Skip) Folden,
the original technical team leader of the architecture
development.

Cited references

1. M. M. Lehman, “A further model of coherent programming
processes,” Proceedings Workshop, Runnymede, England (Feb-
ruary 1984).

2. R. A. Radice, J. T. Harding, P. E. Munnis, and R. W. Phillips,
“A programming process study,” IBM Systems Journal 24, No.
2,91-101 (1985, this issue).

General references

J. Aron, The Program Development Process—The Programming
Team, Part 2, Addison-Wesley Publishing Co., Reading, MA
(1983).

V. R. Basili and D. M., Weiss, “A methodology for collecting valid
software engineering data,” IEEE Transactions on Software En-
gineering SE-10, No. 6, 728-738 (November 1984).

E. H. Bersoff, “Elements of software configuration management,”
1EEE Transactions on Software Engineering SE-10, No. 1, 79-87
(January 1984).

B. W. Boehm, “Software and its impact: A quantitative assess-
ment,” Datamation 19, No. 5, 48-59 (May 1973).

B. W. Boehm, Sofiware Engineering Economics, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1981).

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley
Publishing Co., Reading, MA (1975).

P. B. Crosby, Quality is Free, McGraw-Hill Book Co., Inc., New
York (1979).

W. E. Deming, Quality, Productivity, and Competitive Position,
Center for Advanced Engineering Study, Massachusetts Institute
of Technology, Cambridge, MA (1982).

M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Systems Journal 15, No. 3, 182-211
(1976).

T. Gilb, Sofiware Metrics, Winthrop Publishers, Cambridge, MA
(1977).

Z. Jelinski and P. Moranda, “Software reliability research,” Statis-
tical Computer Performance Evaluation, W. Freiberger, Ed., Aca-
demic Press, Inc., New York (1972), pp. 465-484.

T. C. Jones, “Measuring programming quality and productivity,”
1BM Systems Journal 17, No. 1, 39-63 (1978).

N. Kleid, “IBM’s information quality measurement program,”
Proceedings of the 31st International Technical Communication
Conference, Society for Technical Communication, Seattle, WA
(April 29-May 2, 1984), pp. MPD.62-MPD.65.

RADICE, ROTH, OHARA, AND ClaRFELLA §O

R. C. Linger, H. D. Mills, and B. . Witt, Structured Programming,
Theory and Practice, Addison-Wesley Publishing Co., Reading,
MA (1979).

W. A. Madden and K. Y. Rone, “Design, development, integra-
tion: space shuttle primary flight software system,” Communica-
tions of the ACM 27, No. 9, 914-925 (September 1984).

R. G. Mays, L. S. Orzech, W. A. Ciarfella, and R. W. Phillips,
“PDM—A requirements methodology for software system en-
hancements,” IBM Systems Journal 24, No. 2, 134-149 (1985,
this issue).

H. D. Mills, D. O’Netill, R. C. Linger, M. Dyer, and R. E. Quinnan,
“The Management of Software Engineering,” IBM Systems Jour-
nal 19, No. 4, 414-477 (1980).

G. E. Murine, “The application of software quality metrics,”
Proceedings of the IEEE 1983 Phoenix Conference on Computers
and Communications, IEEE Computer Society Press, Piscataway,
NJ (1983), pp. 185-188.

M. Ohba, “Software reliability analysis models,” IBM Journal of
Research and Development 28, No. 4, 428-443 (July 1984).

D. O’Neill, “The management of software engineering, Part 1I:
Software engineering program.” IBM Systems Journal 19, No. 4,
421-431 (1980).

R. A. Radice, “Large Systems Software Implementation,” Eigh-
teenth IBM Computer Science Symposium, Shimoda, Japan (Sep-
tember 1984); available from author.

M. L. Shooman, Sofiware Engineering, McGraw-Hill Book Co.,
Inc., New York (1983).

D. Teichrow, P. Macasovic, E. A. Hershey 111, and Y. Yamamoto,
“Application of the entity-relationship approach to information
processing systems modelling,” Entity-Relationship Approach to
Svstems Analysis and Design, P. P. Chen (ed.), North-Holland
Publishing Company, Amsterdam (1980), pp. 15-30.

C. E. Walston and C. P. Felix, “A method of programming
measurement and estimation,” IBM Systems Journal 16, No. 1,
54-73 (1977).

G. M. Weinberg, The Psychology of Computer Programming, Van
Nostrand-Reinhold, New York (1971).

G. M. Weinberg, Rethinking Systems Analysis and Design, Little,
Brown and Co., Boston (1982).

N. Wirth, “Program development by stepwise refinement,” Com-
munications of the ACM 14, No. 4, 221-227 (1971).

Ronald A. Radice /BM Information Systems and Storage Group,
P.O. Box 390, Poughkeepsie, New York 12602. Mr. Radice re-
ceived his bachelor’s degree from Upsala College in 1966 and
joined IBM as a programmer immediately upon graduation. He
held a vanety of technical jobs in design, development, and testing
of systems software products. In 1972, with M. E. Fagan, he began
his work with software engineering which resulted in the inspection
process for software design. Mr. Radice began his management
career in 1974. Today he is the Information Systems and Storage
Group Manager of Programming Process and is responsible for
two groups that developed the Site Studies and the Process Archi-
tecture. He is a member of IEEE, ACM, and ASQC and is an
Adjunct Associate Professor of software engineering at Rensselaer
Polytechnic Institute, where he teaches software engineering
courses in the graduate program.

Norman K. Roth /BM [nformation Systems and Storage Group,
P.O. Box 390, Poughkeepsie, New York 12602. Dr. Roth received
his doctorate in mathematics from the University of Massachusetts

90 RADICE, ROTH, O'HARA, AND CIARFELLA

at Amherst in 1971. In 1968, he joined the Mathematics Depart-
ment at the State University of New York College at New Paltz
and was Chairman of the Mathematics and Computer Science
Department there from 1978 to 1981. He received the State
University of New York Chancellor’'s Award for Excellence in
Teaching in 1975. Dr. Roth joined IBM in 1981 and worked in
the VTAM Development group on the SNA Network Interconnect
project. For that effort he received a Communications Product
Division Award. In 1983 he joined the Quality and Process group
of IBM’s Information Systems and Storage Group to work on its
Programming Process Architecture project. His interests are in
groups, fields, graph theory, and software engineering as it applies
to large-system software development.

Almerin C. O’Hara, Jr. IBM Information Syvstems and Storage
Group, P.O. Box 390, Poughkeepsie, New York 12602. Mr. O’'Hara
obtained a B.E.E. from Union College in 1959. For the past twenty-
six years he has worked in technical and management capacities
in engineering, programming, and systems analysis and planning.
He wrote one of the first interactive graphic programs for the
analysis of electronic circuits. In addition, he has done extensive
application development and user support, as well as information
resource management, data analysis, and process modeling. Cur-
rently Mr. O’Hara works with other IBM locations to help define
and understand programming process architecture, methodologies,
and models of the programming process. His research interests are
in the areas of abstraction and modeling of management aspects
of development processes, modeling of man-machine processes,
the quantification of relationships between measures of productiv-
ity and measures of quality, exploring those factors which limit
the attainment of defect-free work products, and the prediction of
systems performance.

William A. Ciarfella /BM Information Systems and Storage
Group, P.O. Box 100, Kingston, New York 12401. Mr. Ciarfella
joined IBM in June 1980 and is currently a member of the Software
Engineering function at the Kingston Programming Center. Since
joining IBM, he has worked on software requirements and design
systems. Most recently, he was a member of the team that devel-
oped the IBM Information Systems and Storage Group Program-
ming Process Architecture. He received a B.S. degree in mathe-
matics and computer science from the State University of New
York College at Brockport.

Reprint Order No. G321-5240.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

