The IBM large-systems
software development
process: Objectives and
direction

This paper introduces a special issue of the IBM Sys-
tems Journal on the IBM large-systems software devel-
opment process. The issue provides an overview of the
subject and a summary of the key principles of the IBM
software quality and productivity efforts in large-scale
systems programming. The major topics addressed in
this issue are the software development process, soft-
ware development tools and methodologies, quality
and productivity measurements, and programmer edu-
cation.

he enormous growth of data processing in the

last thirty years has been made possible by im-
pressive improvements in the function and perform-
ance of both hardware and software. Hardware speed
has grown three orders of magnitude during those
thirty years, a factor of ten each decade. This has
resulted in a steady growth in programming work-
load to meet the escalating needs for system function.
Today, the iBM large-systems organizations produce
several million lines of new or changed code every
year. The annual output now exceeds the total size
of the large operating systems of only a few years
ago. Even this rate of development, however, does
not approach the demand.

There is no foreseeable limit to the amount of pro-
gramming needed, and there is, as yet, no slackening
of demand. The primary limit on the functional
capability of programming systems today is the avail-
ability of skilled and trained programmers and the
environment that supports them. The fundamental
issue is an economic imperative: Produce function

76 HuvPHREY

by W. S. Humphrey

at a cost, quality, and schedule that meet users’
needs. This can best be done in a development
environment that is staffed with well-trained people,
properly structured, and fully instrumented. This
process is the subject of this issue of the 18M Systems
Journal.

Status and challenge

Programming is a people-intensive discipline, and
personal work habits require time to change. Even
so, there has been great progress in the last twenty
years. Programming has evolved from a highly in-
dividualistic profession into an orderly engineering
process. Programmers once had trouble producing
or meeting responsible plans, and cost estimates were
often little more than guesses. Today, however, pro-
gramming estimates are as accurate as those in en-
gineering, where cost deviations are typically only a
few percentage points. Whereas initial program line-
of-code estimates are often optimistic by twenty
percent or more, manpower estimates are within ten
percent, and dollar costs are typically in error by less
than five percent over the full development life cycle.
This level of predictability is a dramatic improve-
ment over that of the past.

© Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985




The first step in improving the programming devel-
opment process was learning how to make and meet
schedules and estimates. Having acquired the ability
to predict resources and produce consistent results,
programming is now in a position to make significant
further advances.

With schedules and estimates under better control,

programming is entering an age of process manage-
ment, which is the theme of this introductory paper.

In the last eight years, the overall
size of large IBM operating systems
has nearly doubled.

While this has been a recent management focus,
enormous progress has already been made. For ex-
ample, in the last eight years, the overall size of large
1BM operating systems has nearly doubled. At the
same time, the total number of their reported defects
has decreased by nearly twenty percent. Thus, on a
defects-per-line-of-code basis, quality has improved
by a factor of approximately two. In programs now
completing development, quality is three to five
times better than it was only eight years ago.

Our experience with programmer productivity dur-
ing the last eight years has also been very positive.
During that time, 1BM’s large-systems programming
staff has grown less than ten percent per year. Code
shipments, however, have increased at nearly twice
the rate of the staff growth. Although productivity
improvements in individual programs and even en-
tire laboratories may fluctuate widely about this
trend, the average rate of productivity improvement
has held for nearly a decade for a population of
several thousand programmers. This is a reflection
of improved programmer skill levels, improved
methods, and better tools. We also believe these
improvements will continue for the foreseeable fu-
ture.

At the same time, the skills of programming man-
agers have continued to improve. Our managers

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

today have generally worked previously as program-
mers, and they have grown in their appreciation for
business and marketing issues. The typical program-
ming manager has a technical education and often
has an advanced degree. Managers now have an
understanding of programmers and their jobs, have
extensive management training, know the products,
and have a technical as well as an intuitive sense of
the programming process and how to improve it.

This intuition is being further augmented by an
increasingly quantitative understanding of the man-
agement process. The evolution from a nonquanti-
tative to a quantitative and statistical basis for pro-
gramming process management is already showing
excellent results.

The quality software process

Significant progress toward the goal of a zero-defect
development process will require advances in tools,
methods, and process. Of these three, process is the
key, for the effectiveness of tools and methods can
be ensured only through an orderly process.

Much of the work in 1BM toward improving program-
ming productivity and quality is based on principles
of process management that have been successfully
used in several fields. Remarkable advances in semi-
conductor technology, for example, have been
achieved largely through process analysis and im-
provement. These advances involve process mea-
surements, statistical analysis, and process control
via data feedback.

In systems programming, significant quality im-
provements have been achieved with traditional
methods, but this trend has slowed. We are now
focusing on the programming process by defining
and documenting the steps in the process itself and
by educating the people. Key measurements are
established, data are gathered and analyzed, and
corrective actions are implemented. We use the fol-
lowing set of process management principles:

People management

s Professionals are the key to the programming
process, and they must be intimately involved in
1ts improvement.

¢ Management must focus on defects not as per-
sonal issues but as process problems.

HuMPHREY [T




Process methodology

~ The process is formally defined.

~ Goals and measurements are established.

» Statistical data are gathered and analyzed to iden-
tify problems and determine causes.

Process control

~ Management practices are established to control
change.

~ Periodic process assessments are planned to mon-
itor effectiveness and identify needed improve-
ments.

~ Procedures are established to certify product qual-
ity and implement corrective actions.

Process support

« Special process groups are established.

~ Needed management and professional education
is provided.

» The best tools and methods are obtained and used.

The future

The goal of a zero-defect programming development
process is to produce large-scale systems with the
assurance that they are defect-free. This quality goal
1s important for several reasons. Since defects are
disruptive and expensive to our customers and to
IBM, quality improvements are an €Conomic neces-
sity. Of even greater importance is the improved
usability of our programs. Although significant ad-
vances in usability have been made, another of our
continuing goals is to deliver sophisticated functions
to untrained users. These users might benefit from
more automatic and error-free operation, but the
need for simpler and more automatic systems that
provide increasing function involves a basic conflict.
Resolution of this conflict will require enormous
increases in the amounts of code delivered. To be
effective, usability advances must be built on a foun-
dation of quality, and if the code is to be trouble-
free, its quality must improve at a far greater rate
than it has to date. The scale of large systems has
grown by three orders of magnitude in the last thirty
years, and this rate of growth is likely to continue or
even increase in the future.

An orderly and structured process addresses pro-
gramming quality by providing an environment that
fosters predictable results and eliminates mistakes.
To use the analogy of advanced medical research,
for example, it is understood that a controlled envi-

78 HumpHREY

ronment is essential for competent work. A similar
environmental discipline is now recognized as an
important element in good programming. Without
change control, test-case tracking, statistical data
bases, and structured requirements, the program-
mers often repeat past mistakes or re-solve the same
probiems. Process discipline reduces such waste, per-
mits more orderly learning, and allows the profes-
sionals to build on the experiences of others. That
discipline also provides the essential foundation for
increased mechanization of the programming job
itself.

There is no magic route to process discipline. It
requires our dedication to continuous growth and
improvement. Gains, once made, must be retained,
and the ingenuity of our people must not be lost
solving problems that have already been solved. Al-
though many technical hurdles lie ahead, our contin-
uing challenge is the fostering of an orderly and
reproducible programming process. Upon this foun-
dation continued improvements in programming
quality can be built.

Watts S. Humphrey IBM Information Systems and Technology
Group, Financial Plaza, Box 390, Poughkeepsie, New York 12602.
Mr. Humphrey is Director of Programming Quality and Process.
He joined IBM in 1959 and began his career with the Advanced
Systems Development Division. Among the positions he has held,
Mr. Humphrey has been Director of Programming in the Systems
Development Division, Director of the Endicott Laboratory, and
Director of Policy Development on the IBM Corporate Staff. In
November 1982, he was appointed to his present position, report-
ing to George F. Kennard, Group Director of Quality and Assur-
ance. Mr. Humpbhrey is the author of the book Switching Circuits
with Computer Applications, published by the McGraw-Hill Book
Co.. New York (1958). He has also written a number of technical
and management papers, the most recent of which, on the subject
of Japanese management. was published in Manufacturing Engi-
neering in April 1982. He is currently writing a book on technical
management. Mr. Humphrey received a B.S. in physics from the
University of Chicago in 1949, an M.S. in physics from the Illinois
Institute of Technology in 1950, and an M.B.A. from the Univer-
sity of Chicago in 1951. He holds a number of patents in computer
design. Mr. Humphrey is a member of the ACM and is an IEEE
Fellow.

Reprint Order No. G321-5239.

IBM SYSTEMS JOURNAL, VOL 24. NO 2, 1985




