Preface

The themes of quality and productivity are currently
receiving wide attention in both the technical and
business press. The two topics are closely intertwined
and are viewed by many as fundamental goals in all
our business’s plans.

The quest for quality and productivity improve-
ments in large-systems software development is an
important one to IBM and its customers. Such im-
provements are essential to sustain the growth in
function we have come to expect from computing
systems, in an environment where complexity and
diversity of interconnection seem to be ever-expand-
ing. The reliability, ease of learning, and ease of use
of system software have become ever more critical
considerations and place increasing demands on the
software developer.

The universe of solutions to these problems is large
and varied and continues to receive attention
throughout the industry. New languages and support
environments, very fast response times for devel-
opers, intelligent work stations, home terminals, and
assistance from expert systems are only samples
among a growing list of promising solutions.

There appear to be a number of factors that play a
more dominant role in the large-systems software
development process than in smaller-scale efforts.
When projects begin to involve hundreds of devel-
opers, a critical focus must be placed on the areas of
organization and structure, progression and quality
assurance of intermediate work products, training of
personnel, and supporting software tools. These
areas are the focus of this issue of the Systems
Journal. The first paper, by Humphrey, provides a
perspective of the other articles which follow.

The paper by Radice, Roth, O’Hara, and Ciarfella
takes a view of programming as a structured process
and depicts an architecture to describe the working
environment and flow of products through the proc-
ess. With this structure in place, the authors propose
that the appropriate software tools can be produced

T4 rrerace

to effectively support the quality and productivity
objectives. By contrast, it is thought that too often
in the past the nature of the supporting tools deter-
mined the programming process.

The programming process architecture was the out-
growth of an internal 1BM study described in the
paper by Radice, Harding, Munnis, and Phillips.
The investigators interviewed a number of develop-
ment groups at different locations to identify pro-
gramming tools, methodologies, and practices that
proved to be effective. The study provides insight
into programming development within 1BM, and de-
scribes with some detail how proven methodologies
can be identified and promulgated within a relatively
large development community.

Hoffnagle and Beregi take a broad look at the op-
portunities for automating software development. By
examining the developer’s needs, as well as the short-
comings of current support systems in light of an
evolved state of the art, they have developed require-
ments, direction, and an architecture for a new level
of software development environment. They address
such issues as portability, data sharing, and auto-
mated process control.

Teaching software engineering techniques through
advanced education within I1BM is described in the
paper by Carpenter and Hallman. These authors
review the needs that led to the creation of special-
ized curricula. They use a tutorial format to provide
an understanding of the topics taught in the classes.

The use of the computer to aid in the collection,
organization, analysis, and presentation of system
requirements information is developed in the paper
by Mays, Orzech, Ciarfella, and Phillips. The struc-
ture and consistency provided by the system is a
notable example of an application supporting the
program development process in which the data are
primarily narrative, with the interactive access add-
ing substantial value to the user.

The paper by Jones details efforts to analyze the
cause of program defects with the goal of defect

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985




prevention. Enhancements that incorporate the re-
sults of the analysis into an Entry-Task-Validation-
Exit (ETVX) paradigm that is used within IBM are
described.

Assessing progress in quality and productivity, as
programming languages change, depends on having
an applicable metric. Flaherty provides insight into
the use of people and lines of code as ongoing metrics
of programmer productivity, thus allowing progress
comparisons to be made against a large historical
base of productivity data.

The 18M Systems Journal has evolved gradually in
content and form since the first issue was published
almost twenty-five years ago. As the new Editor, I
wish to thank the succession of talented individuals
who have helped this journal maintain pace with our
flourishing industry. My predecessor, John Lacy,
made a special contribution to this evolution by
bringing a new design to the Journal, including color
graphics. I will do my best to carry on this heritage
of quality as we continue to explore and develop
new themes.

The spectrum of potential topics for publication in
the Journal has evolved and grown substantially
from the first issue in 1962 to encompass exciting
developments in computer graphics, communica-
tions, and intelligent workstations. The users of IBM
systems continue to expand applications of these
machines into increasingly diverse and demanding
areas, while the proximity and computing conveni-
ence provided by the Personal Computer have en-
abled this tool to augment the problem-solving proc-
ess for a new generation of computer users. To do
justice to the breadth of interests of our readers is
challenging, and we continue to value your sugges-
tions on topics and content. As always, we welcome
inquiries from prospective authors.

Gary Gershon
Editor

IBM SYSTEMS JOURNAL, VOL 24, NO 2, 1985

PREFACE [5




