An APL system for the IBM
Personal Computer

This paper discusses the design and building of an
APL interpreter for the IBM Personal Computer. Dis-
cussed is the writing of the interpreter itself, which
required the use of an intermediate language designed
by the authors. This machine-independent language
also made possible the development of APL inter-
preters for two other systems—System/370 and Se-
ries/1. The particularizing of the interpreter required a
compiler, which in the case of the Personal Computer
produced Intel 8088 and 8087 assembly language
code. The matching of the APL interpreter to the oper-
ating system (DOS) required an APL supervisor, which
is also discussed in this paper. The provision of the
APL character set presented problems, the solutions of
which are also presented. Other topics discussed are
the display, the keyboard, and the session manager.

he programming language APL is a powerful

general-purpose interactive language that han-
dles scalars and n-dimensional arrays of numeric
and literal data in a very flexible way via a large set
of primitive functions. These are used to form ApL
sentences, which can be grouped in defined functions
that make it possible to write very complex applica-
tions in APL. The APL language is also a mathematical
notation that can be used as such without involving
a computer. To execute APL programs, it is necessary
to write both an interpreter that runs in a particular
machine and an APL supervisor consisting of a set of
routines that interface the interpreter with the oper-
ating system of the machine.

The APL language itself is hardware independent.
Successive 1BM implementations of the language have
adhered to the APL language standard, so that appli-

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

by M. L. Tavera
M. Alfonseca
J. Rojas

cations that use only the APL notation are portable
between different APL systems. However, that does
not mean that the APL systems neglect machine
hardware. To the contrary, the standard makes pro-
vision for a tool to make machine hardware acces-
sible to ApL without modifying the language. This
tool, called the Shared Variable Processor, is an
interface between the APL interpreter and the outside
world. If a piece of hardware is to be related to the
APL system, an auxiliary processor has to be written.
The communication between the APL system and
the auxiliary processors is established via the Shared
Variable Processor, using shared variables that can
be set and referenced by both the ApL system and
the auxiliary processor. Usually an IBM APL system
includes several auxiliary processors to perform the
most useful 1/0 operations, but most of them, in-
cluding the one discussed in this paper, give the users
the information and the tools needed to build their
own auxiliary processors.

Having an APL interpreter in a machine increases
the system power. The building of an APL interpreter,
however, is a long and difficult task because it has to
be written in a low-level language, usually assembly
language. After an APL interpreter has been written,
obtaining a second interpreter presents little diffi-
culty unless the machine is special in some way.

© Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

TAVERA, ALFONSECA, AND ROJAS 1




Although the algorithms do not have to be rede-
signed, writing a second interpreter is time-consum-
ing because everything has to be rewritten in a dif-

We designed the ad hoc language
that we called intermediate language
(IL).

ferent assembly language. The only part that has to
be specially created in every case is the APL supervi-
sor.

In 1976, these considerations convinced us that we
needed a method to speed up the construction of an
APL interpreter after the first one had been written.
This observation was based on our experience in
developing APL/7, an APL interpreter for the IBM
System/7.!

To solve the problem, we developed? the following
three-step process:

1. We wrote an APL interpreter (IAPL) in an inter-
mediate machine-independent language (IL).

2. We write a compiler to translate IL programs into
the assembly language of a given machine, e.g.,
the 1BM System/370.

3. We compile the IL interpreter only once per ma-
chine. The generated code is an APL interpreter
written in the chosen language, e.g., that of Sys-
tem/370.

To obtain the first APL interpreter using this tech-
nique, we used all three steps. To obtain other APL
interpreters for different machines, we now rewrite
only the code generator of the compiler in step 2 and
repeat step 3.

In any case, the final product we obtain is an APL
interpreter written in the assembly language of the
chosen machine. To make it directly executable in
that machine, we have to assemble the APL inter-
preter and link it with the corresponding APL super-
visor.

We want to stress the fact that we have developed
the procedure just mentioned to speed up the con-
struction of APL interpreters. The user of the APL

02 TAVERA, ALFONSECA, AND ROJAS

interpreter thus generated is not aware of that pro-
cedure.

To choose the most convenient intermediate lan-
guage, we studied the possibilities that were available
in the mid-1970s, such as systems programming
languages, macrolanguages, and high-level lan-
guages. Because none of these languages fully suited
our needs, we designed the ad hoc language that we
called intermediate language (IL).

Using this methodology, we developed three APL
interpreters: (1) for the 1BM System/370, which we
used as a test case; (2) for the 1BM Series/1; and (3)
for the 1BM Personal Computer. The 1BM Personal
Computer APL is an 1BM product that was announced
in the United States and Europe in June 1983.

The IBM Personal Computer

The 1BM Personal Computer (pC) is a powerful small
computer that offers a wide variety of options to give
the user the ability to tailor his system to meet his
present needs while providing growth potential for
the future.® The pc has two major elements, a system
unit and a keyboard.

The system unit contains an Intel 8088 microproc-
essor, read-only memory (ROM), read/write memory
(rRaM), power supply, audio speaker, and system
expansion slots for the attachment of options. The
PC also contains the necessary hardware to support
the Intel 8087 math coprocessor. Input to the system
unit is by way of an 83-key keyboard that also
includes a numeric keypad and ten function keys.

The Intel 8087 math coprocessor* is an adjunct to
the 8088 processor and performs arithmetic and
comparison operations on a variety of numeric data
types. The math coprocessor also executes numerous
built-in transcendental functions (e.g., tangent and
logarithm functions). The 8087 expands the register
and instruction set of the host 8088 and adds several
new data types as well. The programmer does not
perceive the 8087 as a separate processor. Instead,
the computational capabilities of the 8088 appear to
be greatly expanded. The 8087 supports the follow-
ing data types: (1) three different kinds of integers
(16, 32, and 64 bits long); (2) a packed decimal (80
bits long); and (3) three different kinds of floating
point data (32, 64, and 80 bits long). Its main instruc-
tions include several kinds of operations, such as
data transfer, arithmetic, comparison (compare, ex-
amine, test), transcendental (tangent, arctangent, ex-
ponentiation, logarithm), and processor control.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




In addition, a variety of options are offered, including
one or two diskette drives with adapter, which to-
gether can be housed inside the system unit, a fixed
disk (in the 1BM Personal Computer XT or in the
expansion unit), an 1BM monochrome display, an
1BM color display, an iBM 80-character-per-second
graphics printer, two display adapters, storage incre-
ments to 640K bytes, an asynchronous communi-
cations adapter, a printer adapter, a game control
adapter, and a prototype card.

There is a monochrome display and printer adapter

that supports the monochrome display and the
graphics printer. The monochrome display is sup-

Both BIOS and DOS interrupts can
be dynamically called from the user
program.

ported in text mode only. It has a RoM chip with the
character set definition programmed in it. Every
character has a resolution of 14 by 9 picture elements
(pixels).

The graphics adapter supports the 1BM color graphics
display in both text and graphics mode. In text mode,
the definition of the character set is stored in a ROM
chip. Every character is given a resolution of 8 by 8
pixels. In graphics mode, the definition of the char-
acters with an ascui code smaller than 128 is stored
in the ROM basic input/output system (BIOS) de-
scribed below. The rest of the characters are not
defined. The BIOS provides a pointer to allow the
user to point to the zone in read/write memory
where he has previously defined those characters.

The software is also very powerful. The computer
comes with a RoM-programmed basic input/output
system (BIOS) that handles the system 1/0 at a very
low level by means of interrupts. Since the BIOS is
programmed in ROM, it cannot be changed. How-
ever, the interrupt vector is in read/write storage.
Therefore, if a particular BIOS interrupt does not suit
the programmer’s needs, its address can be changed
to point to a user-defined routine. The BIOS also
bootstraps the system.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

The most used software operating system is the disk
operating system (pos),” which provides a set of
commands that handle the system interactively. It
also has a debugger, a line editor, and a set of
interrupts that support 1/0 at a higher level than BiOS.
Both BIOS and DOS interrupts can be dynamically
called from the user program.

The IBM Personal Computer APL. system

Working with a fully available machine is very dif-
ferent from working with a machine that is still under
development. Fortunately, a development system
was not needed, because the machine was provided
from the beginning with an editor, assembler, linker,
debugger, and operating system. The system could
also work in a stand-alone mode. The following is a
summary of the procedure we followed in studying
the 1BM PC hardware and software configuration
needed.®

* We compiled the IAPL interpreter into 8088 assem-
bly language code. Because this operation took
place in the 1BM System/370 where the source
code was stored, we wrote a compiler for translat-
ing 1L code to 8088 assembly language. Also, be-
cause the 1AL makes heavy use of floating point
operations, we needed some kind of floating point
management, a fact that became a point of issue.

e After we had compiled the I1APL, the object code
had to be downloaded from the System/370 to the
pC. Thus, a communication adapter and the soft-
ware to support it were needed. This also made it
possible to write auxiliary processors to commu-
nicate between PC APL and vM/370 later on.

e The APL supervisor, together with the auxiliary
processors—all of them fully machine depend-
ent—had to be written. Therefore, some macros
or interrupts were needed to provide an interface
between the APL interpreter and the operating
system, as well as to manage the peripherals.

e Finally, everything had to be assembled and
linked, which made necessary an assembler and a
hinker.

e To fit the full APL interpreter, the APL supervisor,
a sizable workspace, and the operating system into
the 1BM Pc, we needed a minimum of 128K bytes
of read/write memory.

* Because files of several types are a very important
part of an APL system, a fast auxiliary storage
device was needed to load the APL-executable
module and to manipulate user-created files, APL
workspaces, transfer files, etc.

TAVERA, ALFONSECA, AND ROJAS 63




64

o The APL language has a special character set not
supported by the 1BM pc. Thus, we needed a graph-
ics display where the special ApL character set
could be generated.

« In the case of the printer, we also had the problem
of the APL character set representation, which
required the use of a graphics printer.

The compiler

The compiler for translating 1L code was written in
APL. Compiler speed was not an important factor
because we executed it only once. We had already
written most of the parts of the compiler (the lexical
and the syntax analyzers). Only the code generator
remained to be written again. The object code was
to be that of the 8088. This objective, although
simply stated, introduced two issues that affected the
design of the whole interpreter: floating point man-
agement and the 8088 address space. Floating point
management affected mainly the compiler design,
and we discuss that in this section. Address space,
which affected both the compiler and the supervisor,
is discussed later.

Floating point management. The intermediate lan-
guage (IL), in which the APL interpreter (IAPL) is
written, handles the following four data types: bool-
ean (one bit per element), character (one byte per
element), integer (16 or 32 bits per element), and
floating point (eight bytes per element). The APL
system performs data-type conversion automatically,
whenever possible, to minimize storage space.

Floating point operations form a very important part
of an APL interpreter. These operations include ad-
dition, subtraction, multiplication, division, modu-
lus, absolute value, change of sign, integer part,
conversion to and from integer, conversion to and
from boolean, and six different types of comparison
relations. In addition, several of the APL language
primitive functions nearly always apply to floating
point data.

From the very beginning, our plan was twofold. First,
we would translate the 1L floating point primitives
into 8087 instructions directly, using the compiler.
Second, we would design the APL primitives just
mentioned from scratch using the full power of the
8087 primitives. We would not compile the corre-
sponding 1APL modules because they use primitives
of much lower level.

In general, the pC ApL floating point management
could be designed in either of two ways. One possi-

TAVERA, ALFONSECA, AND ROJAS

bility, that of using the 8087 math coprocessor,
offered the advantage that the final performance of
the APL system would be greatly improved. However,
at the time we were doing our planning no 8087
instruction assembler was available to us. The other
possibility involved emulating the 1L floating point
instructions by means of 8088 instructions. This
involved three disadvantages. The design of the IL
floating point instruction emulation would require

It was easy to emulate the assembly
of these instructions by means of
the 8088 macroassembler macro

language.

between six and eight weeks. The code would require
about 6K bytes of storage. There would be a loss in
performance, mainly in those applications such as
mathematical calculations that use many apL float-
ing point primitives.

We chose the first solution because it was the faster
and the more efficient of the two alternative meth-
ods. It was possible to design the floating point part
of the compiler in such a way that—without loss of
efficiency—the set of 8087 instructions it used was
very small. Therefore, it was easy to emulate the
assembly of these instructions by means of the 8088
macroassembler macro language. Of the seven dif-
ferent data types supported by the 8087 we needed
only the 16-bit integer and the 64-bit and 80-bit
floating point data types. Also, the assembly and
debugging of the specially designed transcendental
APL functions could be postponed because the rest
of the system did not depend on them.

During the design stage we overcame two problems.
Neither the assembler nor the debugger supported
8087 instructions. We solved the first problem by
writing a set of macros for the 8088 macro assem-
bler.” This solution made the assembly of the mod-
ules very slow. It was also a source of errors, because
we had to debug the 8087 macros at the same time
we debugged the code. The difficulty with the debug-

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




ger was that it did not support 8087 instructions.
Each time we wanted to read the 8087 registers, with
no computer help we had to insert a series of 8087
instructions to dump its stack on memory, read from
it, and interpret the result by hand.

The APL supervisor

The APL supervisor is the machine-dependent inter-
face between the APL interpreter and the operating
system DOS that manages connection, initialization,
and disconnection. It also handles the floating point
interrupts (underflow, overflow, etc.), system error
recovery, and execution interrupt. Other functions
of the APL supervisor are 1/0 (from the display,
keyboard, printer, etc.) and file management. These
functions have been implemented using BiOs and
Dos interrupts. When designing those routines we
were faced with several issues that we now discuss.

APL workspace size. The size of the pC APL work-
space was greatly affected by the way the 8088 mi-
croprocessor handles its address space.® The 8088 is
a 16-bit addressing microprocessor; it can directly
access only a maximum of 64K bytes of memory,
called a segment. To overcome this condition, the
processor was provided with segment registers that
allow it to access up to one million bytes.

Every memory location can be considered to have a
physical address and a logical address. A physical
address is the 20-bit value that uniquely identifies
every byte location and can range from hexadecimal
00000 to hexadecimal FFFFF. Every time memory
1s accessed, the physical address is used. To map
physical addresses onto 16-bit registers, the micro-
processor deals with logical addresses. A logical ad-
dress consists of a segment value and an offset, where
the former locates the first byte of the segment, and
the latter shows the distance in bytes from the origin
of the segment to the target location. The segment
value is stored in a segment register, and the offset is
stored in an index register.

To obtain the physical address from the logical ad-
dress, the segment value is left-shifted 4 bits and then
added to the offset. For example, if the segment
value is hexadecimal 1234 and the offset is hexa-
decimal 5678, the physical address is the result of
adding 12340 to 05678, which gives hexadecimal
179B8. All of this is performed automatically by the
hardware microprocessor. When the segment and
the index registers have been set, the physical address
is fixed.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

The problem arises when the value in the index
register is incremented or decremented. In the incre-
mented case, if an overflow occurs, the correspond-
ing segment register is not incremented accordingly.
Therefore, the addressing wraps around within the
64K -byte segment pointed to by the segment register.

To use all available memory in the
machine, we devised an elastic
workspace.

That is, when the index register value is hexadecimal
FFFF (pointing to the last byte in the segment), and
it is incremented by one, its next value is 0000.
However, because the segment register value has not
been modified accordingly, the target location of the
physical address is the first byte of the same segment,
instead of being the first byte of the next sequential
segment. The same happens when the index register
is decremented and an underflow occurs.

When we wrote our machine-independent APL inter-
preter, the only condition we imposed was that the
machine memory addresses had to be sequential,
e.g., that address hexadecimal OFFFF precede hex-
adecimal 10000 and follow hexadecimal OFFFE.
That simple condition was not fulfilled by the 1BM
PC, if we were to consider workspaces greater than
64K bytes. Thus, any time we changed the value of
an index register, we had to ask whether an overflow
or underflow had occurred, so as to modify the
segment register accordingly, if necessary. Because
this would increase the size of the interpreter and
decrease its performance, we decided to limit the
workspace size to 64K bytes.

To use all available memory in the machine, we used
an idea that we had devised for and implemented in
the APL interpreter for the 1BM Series/1. We called
that idea the “elastic workspace.”

The elastic workspace. The elastic workspace ap-
proach consists in the following. The workspace (ws)
is split into two parts, the main ws (Mws), where all

TAVERA, ALFONSECA, AND ROJAS §5




computations take place, and an extension called the
elastic ws (Ews), where objects not needed in the
MWSs may be stored. Whenever a computation needs
space greater than that available in the Mws, objects
not currently needed are sent to the Ews and are
erased from the Mws. This increases the size of the

The elastic workspace does not
decrease the performance.

free space in the Mws. If an object in the Ews is
needed in the MWws, it is moved back again. The
space in both workspaces is dynamically managed
in a manner that is transparent to the user.

Whenever the memory size allows it, we assign 64K
bytes to the Mws and the rest of the available mem-
ory (with no limit of size) to the Ews. If the memory
available is less than 64K bytes, it is all assigned to
the Mws.

Every APL object has a pointer to its location in the
Mws and another to its location in the Ews. Both
pointers are 16 bits long, the Mws one because the
MWS maximum size is 64K bytes, and the Ews one
because the APL objects are stored in the Ews on 16-
byte boundaries. Thus, the least significant hexa-
decimal digit in the Ews physical address is always
0, and only 16 bits are needed to store the four most
significant hexadecimal digits.

The elastic workspace does not decrease the perform-
ance because it is placed in main memory, and the
8088 microprocessor is provided with very efficient
string manipulation primitives.

Summing up, we have designed the workspaces to
be (1) independent of machine configuration because
PC APL can work with a minimum of 128K bytes of
main memory, and (2) as large as possible, through
the use of elastic workspace.

The APL character set. The ApL language has its
own set of 135 characters that can be divided into
the following four main classes:

66 TAVERA, ALFONSECA, AND ROJAS

 Alphabetic, consisting of the Roman alphabet in
uppercase and uppercase underlined form, delta,
and delta underlined.

¢ Numeric, including the digits O through 9.

¢ Blank.

e Special APL characters, seventy in all.

Over one third of these characters are not included
in the extended Asci character set supported by the
1BM PC. Because there are currently 256 characters—
the maximum allowed—there is no room to add
new ones. Therefore, some of the existing characters
had to be replaced to accommodate the APL charac-
ters. Thus, the issue presented two different aspects:
(1) How many characters should be replaced, and
which characters should they be; and (2) How do we
implement a replaced character set?

The ideal solution would be to do without replacing
any of the characters. In this way, APL could support
either the monochrome or the color display and the
printer straightforwardly. This solution was not fea-
sible because a large number of the APL characters
do not resemble any of the existing characters. We
decided, however, to reduce as much as possible the
number of characters to be replaced by making
compromises and using as APL characters those that
are similar to them. For example, the logarithm is
represented in APL as a star inside a circle. We used
instead ascu character 15, which is represented by a
circle inside a star. Another important reduction
occurred when we decided to use the lowercase al-
phabetic characters (a through z) instead of the stand-
ard APL uppercase underlined characters. Finally, we
were left with thirty characters for which we had no
compromise solution. We used the following condi-
tions for these characters:

e The first 128 characters were not used, because
when the graphics display is working in graphics
mode, the descriptions of these characters are read
from BIOS, which itself cannot be changed.

e The character sets of the five most widely used
European languages, i.e., English, French, Ger-
man, Italian, and Spanish, were not modified.

* The graphics line-drawing characters were also left
intact.

The characters taken out were AsCll 144, 145, 146,
152, 157, 159, 172, 174, 175, 226 through 231, 234
through 237, 240, 241, 244, 245, 247, and 249
through 254, Most of these characters correspond to
Greek characters and special mathematical symbols.
Next we had to implement the replaced characters
both in the display and in the printer.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




In the display. We could implement the APL char-
acter set on the monochrome display, providing a
hardware solution, or on the graphics display, pro-
viding a software solution.

At first sight, the easier solution seemed to be to use
the graphics display in graphics mode. In this way
the characters with Asci code equal to or greater
than 128 could be graphically represented by soft-
ware. One difficulty with this was that the resolution
of every character is 8 by 8 picture elements (pixels),
which yields very poor resolution for the APL char-
acter set. Many of the APL characters are similar, and
it is important to distinguish one from another easily.
Also, the graphics display working in graphics mode
does not show a cursor, an indispensable feature in
an interactive system such as APL.

By using the monochrome display, we would have a
much better resolution for the ApL characters, i.e.,
14 by 9 pixels each. This solution would involve
hardware because the monochrome display and
printer adapter that controls the monochrome dis-
play does not work in graphics mode. The Image
Processing Department in the Madrid Scientific Cen-
ter studied the logic diagrams of the monochrome
display and printer adapter and found that the RoM
where the character set is defined is not welded to
the board, but rather inserted into a socket, and thus
easy to remove. In place of the original RoM they
used a compatible Erasable Programmable Read-
Only Memory (EPROM) with the new character set
definition programmed in it. Thus the APL characters
could be displayed on the monochrome display. The
EPROM was programmed in the Madrid Scientific
Center. Parenthetically, we published this solution,
and people found it so useful that we were asked to
program EPROMS with other character sets. To men-
tion but a few, we have programmed Hebrew, East-
ern European languages, Scandinavian languages,
and Portuguese.

Our original idea was to support both displays, each
one with its own solution, so that people could work
in APL with either display or with both. It was
decided, however, that the apL pPC should support
only the APL character set in the graphics display.
The monochrome display is supported with the orig-
inal character set.

APL PC can work sequentially (without leaving APL)
with both monitors in the same session. In the graph-
ics monitor, it can display 80 and 40 characters per
line. The APL system can switch modes either inter-
actively, by pressing function keys, or dynamically,
using the AP205 auxiliary processor.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

In the printer. The ApL character set could be in-
cluded for the printer via either hardware or software.
The hardware solution consisted in replacing the
chip with the printer character set by another chip
that included the APL character set. The software
solution consisted in directly printing the characters
that were originally in the ascr set (text mode) and
the remaining characters in graphics mode. We
adopted the software solution as an easter one to
implement. Experience and time have proved this to
be the preferable solution.

Printing in the graphics mode has three drawbacks

that affect the printing of APL programs. For one
thing, it is very slow. Also, every time the printer

When we speak of a keyboard, we
are referring to the software that
translates the keystrokes to ASCII
codes.

switches from text mode to graphics mode, the print-
ing head moves back to the beginning of the line.
Not only the APL characters but also those characters
with an ascii code less than 32 have to be printed in
graphics mode, because the printer takes the latter
as control codes.

To speed up the printing of a line, we do the follow-
ing;

e If the line contains only characters that can be
printed either in text mode or in graphics mode,
it is printed in one pass.

e If the line contains characters of both types, it is
printed in two passes. The characters to be printed
in graphics mode are printed from left to right,
leaving blank gaps that will be filled in when the
remaining characters are printed in the second
pass from right to left.

The printer is handled from APL through the APso
auxiliary processor in three different ways: (1) to
print the contents of the currently active screen; (2)
as a log of the session; and (3) to print selected APL
objects dynamically.

TAVERA, ALFONSECA, AND ROJAS 67




The APL keyboard. Nearly every country has a
keyboard of its own. When we speak of a keyboard,
we do not mean simply the physical 83-key device.
We are referring to the software that translates the
keystrokes, either single or combined with shift keys,
to asci codes. The differences between the key-
boards lie in the fact that the character obtained
when a particular key or key combination is de-
pressed in every keyboard does not have to be the
same. The 1BM PC BIOS supports the United States
keyboard, and Dos brings with it one keyboard pro-
gram for each of the following European countries:
France, Germany, Italy, Spain, and the United King-
dom. Each of these programs is called a national
keyboard. The APL systems also have a special key-
board.

The pc APL system has been designed to support the
APL keyboard program, the United States keyboard,
and the national keyboard programs at the same
time. A national keyboard is supported only if it has
been previously loaded by the user. When the aPL
system is loaded, the APL keyboard becomes active.
To switch to a national keyboard and back, the Ctrl-
Bksp combination of keys has to be pressed. To pass
from this keyboard to the United States keyboard
and back, the standard combination of keys, Alt-
Ctrl-F1 and Alt-Ctrl-F2, respectively, must be used.
Finally, to return to the APL keyboard, the Ctrl-Bksp
combination is pressed. If a national keyboard has
not been loaded, the Ctrl-Bksp combination toggles
between the APL and the United States keyboards.

The pPC APL system supports every keyboard program
that fulfills the following conditions. It must trap the
BIOS interrupt number 9, and in byte number 3 in
the keyboard program there must be a switch to
indicate whether the national or the United States
keyboard is active.

The session manager. We have designed a session
manager in which every line of the screen can be
active. The input lines have a maximum length of
79 characters. The cursor is moved by the keys in
the numerical keyboard. A line becomes active when
the cursor is on it. To execute the active line, only
the Enter key has to be pressed. When a line is
executed, it is copied at the bottom of the screen
(unless it is the last one), and it is passed to the APL
interpreter. The screen contents scroll up.

Both screens work in the same fashion. Both support
the Insert and Delete keys. In the graphics display
we had to simulate a blinking cursor, because the

68 TAVERA, ALFONSECA, AND ROJAS

graphics adapter does not support a cursor when
working in graphics mode. When the cursor is on a
character, it is seen in reverse, black pixels on bright
background.

The Insert key toggles between the insert and replace

states. When the APL system is in the insert state and
the monochrome display is active, the cursor fills up

The IAPL interpreter and the PC APL
interpreter follow closely the VS APL
interpreter.

the space assigned to the character it is on. When
the graphics display is active, the cursor blinks twice
as fast as it does in the replace state.

Extensions to the APL interpreter

We designed the 1APL interpreter and, therefore, the
PC APL interpreter, to follow closely the vs ApL
interpreter, which is a kind of standard for the lan-
guage. In May 1982, we were asked to add new
features to the pc APL system, some of which had
been included in vs APL,'® and other features belong-
ing to the ApL2 language.'' We added these features
in both the 1APL and the pc APL interpreters. These
features are as follows:

e Execute alternate is used for error trapping and
can be very useful in system design and emulation.

 Dyadic grades sort character arrays according to a

collating sequence that the user provides.

Picture format is a powerful formatter of figures.

e Execution of machine-code subroutines can be
used to make APL perform at a very low machine
level.

e A command termed )RESET cleans the execution
stack in one operation.

» Ambivalent dyadic functions, which are dyadic
defined functions that can be called either monad-
ically or dyadically, are useful to define options by
default. When the function is executed, the class
of the left argument can be used to distinguish
whether the function has been called with one or
two arguments.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




APL workspace data interchange

To make possible the interchange of data between
two APL systems, a system function, the transfer
form, and two commands—)ouT and )IN—have

An auxiliary processor is an
interface between the APL system
and external hardware or software.

been added to the APL pC. The transfer form changes
an APL object from its workspace internal form to
the transfer form common to all APL systems.

The )out command takes an ApPL workspace or a
subset of it, translates it to the transfer form, and
stores the result in a DoOs file. The name of the file is
given by the user. Later, the whole file or a subset of
the objects contained in the file can be copied into
the apL workspace using the )IN command.

These commands are very useful because they allow
data interchange between different APL systems.
They also are a substitute for the )cOPY command,
which is very difficult to implement.

Auxiliary processors

An auxiliary processor (AP) is an interface between
the APL system and external hardware or software.
In our APL system, both the shared variable processor
and the Aps are modules that are different from the
interpreter. Thus, they can be separately loaded.
Also, the user can have as many APs as desired from
which he can choose the ones that he is going to use
during an APL session. The Aps used during a work-
ing session are invoked when the APL system is
loaded. A maximum of six APs can be used at the
same time. At load time, the APL system is loaded in
the low end of main memory. The APL supervisor
then loads the chosen Aps in the high end. The
remaining memory is assigned to the workspace.

The pc APL system is distributed with six auxiliary
processors:

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

¢ AP80 handles the printer.

¢ AP100 provides an interface to generate BIOS or DOS
interrupts or function calls.

* AP205 is a full-screen auxiliary processor for both
the monochrome and graphics displays.

s AP210 is used to handle Dos files.

« AP232 provides an interface for communications
between the 1BM Personal Computer and a host
(e.g., 1BM System/370).

* AP440 produces music through the attached loud-
speaker.

Each auxiliary processor is accompanied by an ap-
plication showing the use of its shared varniables and
commands.

Concluding remarks

We make one final observation on our experience in
programming the pC APL system. The theoretically
greatest part of the work was estimated at the outset
to be the design and implementation of the APL
interpreter. Actual experience proved this to be the
least part, requiring only five months, because we
used the machine-independent APL interpreter that
we had devised. Thus, this procedure has fully
proved its usefulness.

Acknowledgments

We have received help from many people at many
iBM locations, and we would like to acknowledge
each one individually. In doing so, however, we risk
neglecting someone whose contributions we espe-
cially value. Therefore, let us simply say that we are
fortunate to be able to honor you all in the system
that embodies your thoughts and work.

Cited references

1. M. Alfonseca, M. L. Tavera, and R. Casajuana, “An APL
interpreter and system for a small computer,” IBM Systems
Journal 16, No. 1, 18-40 (1977).

2. M. Alfonseca and M. L. Tavera, “A machine-independent
APL interpreter,” IBM Journal of Research and Development
22, No. 4, 413-421 (1978).

3. IBM Personal Computer Technical Reference, 6936895, IBM
Corporation; available through IBM branch offices.

4, The INTEL 8086 Family User’s Manual, Numerics Supple-
ment, 121586-001, Intel Corporation (July 1980); available
through the Intel Corporation, 3065 Bowers Avenue, Santa
Clara, CA 95051.

5. IBM Personal Computer Disk Operating System, 6936836,
IBM Corporation; available through IBM branch offices.

6. IBM Personal Computer APL Interpreter, 6024077, IBM Cor-
poration; available through IBM branch offices.

TAVERA, ALFONSECA, AND ROJAS 69




7. IBM Personal Computer Macro Assembler, 6024002, IBM
Corporation; available through IBM branch offices.

8. The INTEL 8086 Family User's Manual, 9800722-03, Intel
Corporation (October 1979); available through the Intel Cor-
poration, 3065 Bowers Avenue, Santa Clara, CA 95051,

9. M. L. Tavera and M. Alfonseca, “Elastic work space for an
APL system,” IBM Technical Disclosure Bulletin TDB04-81,
No. SZ8800004, 51475148 (April 1981).

10. APL Language, G(C26-3847, IBM Corporation; available
through IBM branch offices.

11. APL2 Programming, Language Reference, SH20-9227, IBM
Corporation; available through IBM branch offices.

Reprint Order No. G321-5238.

Maria L. Tavera IBM Madrid Scientific Center, P. Castellana,
4.28046 Madrid, Spain. Since joining IBM in 1974, Dr. Tavera
has worked at the Madrid Scientific Center. Prior to that, she
worked at the International Telephone and Telegraph Laboratory
of Spain in the fields of computer design and computer-controlled
digital exchanges. At the Scientific Center, she has worked on
projects related to compilation, language design, and data struc-
tures. She received an industrial engineering degree from the
Madrid Polytechnical University in 1968, an M.S. degree in com-
puter science from the University of London in 1973, and a Ph.D.
degree in industrial engineering in 1980, also from the Madrid
Polytechnical University. Dr. Tavera was awarded the Pilar Carega
Prize from the Civil Engineering Association in Spain. She also
received an IBM Outstanding Technical Achievement Award for
the work described in this paper.

Manuel Alfonseca IBM Madrid Scientific Center, P. Castellana,
4.28046 Madrid, Spain. Dr. Alfonseca joined IBM at the Madrid
Scientific Center in 1972. There he has worked on a number of
computer-related projects, including computer language transla-
tors, continuous simulation, and computer graphics. Prior to join-
ing IBM, he worked at the Computing Center of the Universidad
Computense of Madrid from 1970 to 1972. Dr. Alfonseca received
an electronics engineering degree and a Ph.D. degree from Madrid
Polytechnical University in 1970 and 1971, and the computer
science Licenciature in 1972. Since 1977, he has lectured on formal
languages at the postgraduate level as a member of the Computer
Science Faculty of the Madrid Polytechnical University. He was
awarded the National Graduation Award in 1971. He also received
an IBM Outstanding Technical Achievement Award for the work
described in this paper.

Juan Rojas /BM Madrid Scientific Center, P. Castellana, 4.28046
Madrid, Spain. Before joining IBM in 1977, Mr. Rojas worked at
the Compaiiia Espafiola de Petroleos, Sociedad Andnima, in the
Department of Computer Science. In 1981, he became a member
of the Madrid Scientific Center, where he has worked in the fields
of compilation, databases, and microcomputer operating systems.
He obtained a Licenciature in physics from the University of
Seville in 1969 and a degree in industrial engineering, also from
the University of Seville, in 1973. Mr. Rojas was awarded an IBM
Outstanding Technical Achievement Award for the work described
in this paper.

70 TAVERA, ALFONSECA, AND ROJAS IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




