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An optimizing FORTRAN  compiler with power to handle 
large applications at execution speeds comparable to 
those of large computers has been implemented on 
the IBM Personal Computer. This implementation is d e  
scribed, with emphasis on the design decisions that 
were considered in the development of the compiler. 

I t comes as  no surprise that program execution 
speed was the primary  consideration for the de- 

signers of the first FORTRAN. What is surprising is the 
reason for their  concern. They were sure  that expe- 
rienced programmers would simply reject out of 
hand  any language whose programs were substan- 
tially slower than those the  programmers were al- 
ready writing in  machine and assembly language. 
“We were convinced,” wrote John Backus, the leader 
of the original FORTRAN design group,  “that  the  kind 
of system we had in mind would be  widely  used only 
if  we could demonstrate  that it would produce  pro- 
grams  almost  as efficient as hand-coded ones.”’ 

Convincing programmers  to use  high-level languages 
is no longer a problem, but  today,  thirty years after 
Backus’ team began its work, execution speed is still 
a central concern for FORTRAN. Because  of the  nature 
of most FORTRAN programs-number-crunching ap- 
plications used in engineering and scientific work- 
almost all FORTRAN designers have to wrestle with 
the challenge of building a compiler  that produces 
code  that  can be executed at high speeds. (Readers 
not familiar with some of the basic terms and con- 
cepts used here should see the Appendix for defini- 
tions.) 

Execution speed was an especially critical issue for 
us in developing a version of FORTRAN for the IBM 
Personal Computer ( IBM PC). Our task was to build 
a language that would make  the IBM PC a powerful 
engineering and scientific workstation capable of 
handling mainframe-level FORTRAN applications. 

To be  able to  support existing FORTRAN applications 
for large machines, and  to be able to create new 
applications with the range and complexity of main- 
frame applications, the FORTRAN we designed for the 
IBM PC had to meet two requirements  in  terms of 
language features. It had to be a  complete  implemen- 
tation of the FORTRAN-77 standard, and it  had to 
incorporate the language extensions popular with 
FORTRAN programmers. 

Building such a full-featured language for a  compar- 
atively small computer presents a significant chal- 
lenge by  itself. But it was also essential to design the 
compiler so that  programs written with it could be 
executed with speeds comparable to those  attainable 
on mainframes, else users would have little incentive 
to use the smaller machine. 

Our task was helped considerably by IBM’S decision 
to make available a coprocessor to handle floating 
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point arithmetic efficiently.  But  even  with the co- 
processor,  it was necessary to build into  the compiler 
a wide  range of optimizing techniques and features 
to meet the goal of increased execution speed. 

The machine-independent optimizations we incor- 
porated into  the final product-IBM Personal Com- 
puter Professional FORTRAN (also available from 
Ryan-McFarland Corporation as RM/FORTRAN)*- 
are all fairly standard. We have been building them 
into sophisticated FORTRANS for more than twenty 
years, and they are exhaustively documented  in com- 
piler l i terat~re .~ Therefore, this paper will focus  pri- 
marily on some less  well known optimizations- 
those that  are machine- or architecture-dependent- 
and  the way these optimizations were  affected by the 
register  design, memory limitations, and floating 
point arithmetic of the IBM PC. 

Machine-independent  optimizations 

These techniques are designated as machine-inde- 
pendent not because they are totally divorced from 
the architecture of the processor  involved (in many 
cases  they are not), but because they focus on the 
code a FORTRAN programmer creates. In general, 
these techniques reorganize the structure and ele- 
ments of a programmer’s code when it is being 
compiled, so that it can be executed with increased 
efficiency. This code manipulation basically involves 
reducing the  amount of code the  computer must 
handle at execution time. It trades increased activity 
and slower speeds at compilation time for faster 
execution speeds. 

The machine-independent optimizations IBM Profes- 
sional FORTRAN utilizes include the following: 

Common subexpression elimination. Common 
subexpressions are remembered within basic 
blocks and not recalculated at each use. With the 
use of this technique, expressions such as 

A = B + C * D  

X = C * D/Y 

are compiled as 

t = C * D  
A = B * t  

... 

. . .  
x = t/Y 

Register remembering. Current  contents of ma- 
chine registers are remembered, where  possible, to 
eliminate redundant loads and stores. In the pre- 
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ceding example, the value o f t  would remain in a 
register as long as possible. 
Invariant code motion. Operations whose oper- 
ands do not change within a DO loop are moved 
out of the loop. The expression 

DO 100 I = 1, lO 
100 A(I) = X + Y 

would  be compiled as 

t = X + Y  
DO 100 I = 1,lO 

100 A(I) = t 

Strength reduction. Expressions involving only DO- 
loop invariant terms and DO induction variables 
are calculated using addition rather than multipli- 
cation. In the following expression 

DO 100 J = 1,10 
DO 100 K = 1,lo 

100 TWO (J,K) = 0 

IBM Professional FORTRAN reduces the calculation 
of the subscript (J,K) to only 100 additions instead 
of the 100 multiplications and 100 additions a 
nonoptimizing compiler would perform. 
Constant arithmetic. Constant arithmetic expres- 
sions are evaluated at compilation time. The 
expression 

A = 1.5 + 3.2 

is compiled as 

A = 4.7 

Constant folding. Variables known to contain con- 
stant values are replaced by those values. The 
expression 

J = 2  
K = J + 5  

is compiled as 

J = 2  
K = 7  

Constant  terms in subscript expressions are inte- 
grated with the array address at compilation time. 
Unnecessary arithmetic or logical operations such 
as M * 1 or I - 0 are eliminated. 
Conversion of constants from one type to another 
is performed at compilation time. 
Intrinsic functions are expanded in line, where 
possible. 
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Machine-dependent  optimizations 

Rather  than  manipulating  a programmer’s code, ma- 
chine-dependent techniques involve determining  the 
fastest way to perform a specific operation, given the 
architecture of a processor. These optimizations re- 
quire absolute familiarity with the  “terrain” of the 
target processor so that each operation is performed 

One  key to designing  an  optimizing 
compiler  is to make very  efficient 

use of registers. 

with the highest  possible  efficiency. The  intent of 
machine-dependent optimizations is figuratively to 
squeeze a microprocessor, or “chip,” for every  pos- 
sible degree  of  speed  by using all its features to 
optimum advantage and avoiding idiosyncrasies that 
might slow execution. 

Registers 

One key to designing an optimizing compiler is to 
make very  efficient  use of registers. It takes a  com- 
paratively long period of time for the  computer to 
retrieve data from memory  as opposed to retrieving 
them from registers. Therefore, we strive to maintain 
“register residency” for values used most often in a 
user’s program. 

A relatively  large number of registers are available 
on  the Intel 8088 mi~roprocessor,~ the processor of 
the IBM PC-14 or 18, depending on how four of 
them are used. Although in many respects this is an 
advantage, the registers  of the IBM PC also present a 
challenge, because in most respects each register  is 
unique. All the registers simply do not have the same 
functional capabilities: Some are faster than others 
in performing certain functions, and some simply 
cannot perform certain other  functions  at all. 

From a  compiler designer’s point of  view, most of 
the registers  in an “ideal” processor would be iden- 
tical, as they are in IBM’S 370/30XX/43XX architec- 
ture. With this kind of architecture, a compiler can 
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simply select any available register when one is  re- 
quired.  For  the processor of the IBM PC, in contrast, 
the optimizing compiler had to be designed to check 
at almost every operation to see whether the opti- 
mum register is available and if not, to determine 
whether it is cost-effective to make it available. Fig- 
ure 1 shows a comparison of the registers in the 
architectures of the IBM PC and  the 370-type com- 
puters. 

A loop instruction, for example, is best handled only 
by the  Count Register, c x ,  of the I B M  PC. The  com- 
piler goes to a great deal of trouble to make sure cx 
is open when the user program is executing the 
innermost DO loop of a given algorithm. Design 
complexity is compounded because cx is also the 
best  register for handling the repeat instructions re- 
quired for character manipulations. As a result, when 
the compiler runs  into  a character concatenation in 
the middle of a DO loop, optimization may be hand- 
cuffed  by two routines competing for the same reg- 
ister. 

In  cases like this, the  compromise is generally to use 
cx for the  innermost routine-in this example it 
would  be the character manipulation-and to use 
another, less  efficient,  register to  control  the DO loop. 
This yields results slower than those attainable if a 
second, equally fast  register  were open,  but faster 
than what would occur if cx did  not handle the 
innermost  routine,  and  much faster than what would 
result if the compiler design had not considered 
which  register should handle which routine. 

Another example of the way in which the registers 
of the 8088 vary  is that only one  data register, BX, 
can be  used as an index register to calculate the 
address of an array element. However, commonly 
occumng index expressions which involve a multi- 
plication cannot be handled directly by BX. They 
must be calculated first in A X  and DX and  then moved 
to BX. Although all four general-purpose registers, 
AX,  BX, c x ,  and DX, can perform integer arithmetic, 
only A X  and DX can do multiplication and division. 

Besides BX, three other registers can be used as index 
registers: Source Index (SI), Destination Index (DI), 
and Base Pointer (BP). In  many instances these same 
four can be  used as base  registers. But when  two of 
these registers have to be  used at the  same time, 
there are awkward limitations. 

For example, to subscript an item in an array re- 
quires both  a base and  an index. The architecture of 



Figure 1 Comparison of registers in IBM's mainframe and Personal Computer architectures 
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the 8088 requires that  one of the two must be BP or be generated to free BX.  The extra move costs time, 
BX, and  the  other  one  must be SI or DI. Because  of but less than it would cost the  compiler to use BP 
another of our optimizations (discussed later), the  and find another register to address the stack. 
compiler  permanently dedicates BP to addressing 
elements in the stack segment. Therefore, in  compli- Limitations of 64K-byte segments 
cated subscripting and  other  operations requiring 
two index registers, the  compiler-must  make sure BX Another challenge presented to  the designer of a 
is available. If it  is not,  an extra move will have to mainframe-level optimizing  compiler by the 8088 
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microprocessor is the  maximum allowable  size of 
segments, which are separate areas in memory where 
data  and instructions are stored. 

The processor is actually capable of addressing 1M 
(1 048 576) bytes of memory. Normally a processor 
with  16-bit  registers  would  be able to address only 
216 or 64K bytes  of memory. The 8088 overcomes 
this inherent limitation by generating a 20-bit ad- 
dress for the beginning of  segments. It does this by 
using the 16-bit segment register as if it had four 
zeros at its right  side,  which  has the effect of adding 
four more bits to the register.  Figure 2 illustrates this 
concept. 

While this increases the  amount of memory that can 
be  used by the 8088, obviously an essential task, it 
also adds to compiler complexity. The processor 
requires two components  to calculate memory ad- 
dresses: a segment address to indicate the beginning 
of the segment in which an item resides in memory, 
and  an offset address to indicate how  far from the 
beginning of the segment an element actually resides. 
To find an element, the processor adds together the 
contents of the two  registers holding these addresses, 
first appending four zeros to the value in the segment 
address register. 

Having to keep track of two address components for 
each data element means more work for the com- 
piler. The 8088 minimizes this complexity by assum- 
ing that  a specific  register automatically cames the 
address of a specific segment, requiring only that  an 
offset  be stipulated for an item to be  retrieved from 
memory. If,  for example, the compiler assigns the DI 
Register as the offset address of an item, the processor 
automatically adds the  contents of the DI Register to 
the  contents of the  Data Segment (DS) Register. 
Similarly, the processor assumes that any item with 
an offset address in the BP Register will have its base 
in the Stack Segment (ss)  Register. 

Registers other  than  the assumed ones can be  used 
to hold  base  addresses, but to do so requires a 
segment ovemde instruction. These instructions are 
costly for an optimizing compiler because  each takes 
about two clock  cycles  of execution time and one 
byte of code space. The compiler permanently ded- 
icates BP to addressing elements in the stack, as we 
mentioned earlier, to avoid just such a segment 
ovemde. 

Another drawback is much more significant. 
Whereas the base address is in effect 20 bits  long, the 
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Figure 2 Expansion of 64K-byte addressing  limitation 
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offset address is only 16 bits. That means that  the 
offset can normally reference items that are no more 
than 64K bytes (216 bytes) from the base. This restric- 
tion limits segment size to 64K bytes, not  a tolerable 
limit for serious FORTRAN programs. 

The 8088 processor  keeps data  and program instruc- 
tions in separate areas of memory called segments. 
Up  to four segments can be addressed at any one 
time. The Code Segment holds the program that is 
currently being executed, the  Data Segment holds 
data appropriate to the program currently being 
executed, and  the Stack Segment holds temporary 
data  and addresses. The Extra Segment (ES) is an 
alternative Data Segment used in string operations. 

The 64K limitation does not impact either the Code 
or Stack  Segment  in any significant  way.  Most ad- 
herents of structured programming agree that to be 
manageable, program modules should not exceed 
200 to 300 lines of code. At 20  bytes  of  object code 
per source line, which  is about twice the  number of 
bytes I B M  Professional FORTRAN typically generates, 
a 64K-byte code segment allows a module of about 
3300 lines.  Even at 50  bytes per source line, the 
segment can accommodate a module of 1300 lines, 
which is at least four times larger than  an effective 
module should be. 

Keep in mind also that while individual code seg- 
ments may  be no longer than 64K bytes, the proc- 
essor imposes no limits on the number of segments 
that can be linked together and executed. By making 
every  called subroutine a separate segment, the com- 
piler experiences no limit on  the  amount of  code  it 
can handle (though the current version of the IBM 
Personal Computer Disk Operating System, 3.0, can- 
not handle more than 640K bytes of total memory). 
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Stack Segments similarly are  not affected by the  64K 
limitation.  Transfers  into  and  out of the  operating 
system, for example, require only a  minimal amount 
of stack space, certainly no more  than 256 bytes. 
With respect to subroutines,  the compiler assumes 
that all calls are  made in a vertical line, calculates 
the  maximum  amount of stack space each requires, 

The  compiler  divides  the  logical  data 
segment  into  physical  data 

segments. 

and  sums their stack requirements when the  subrou- 
tines  are  linked.  This final figure  is extremely con- 
servative, since calls are rarely made all in a vertical 
line. The compiler  in fact provides an  option for the 
programmer to override this figure and have the 
linker assign  less memory to the Stack Segment. 

Though  the  limitation does not affect the  Code or 
Stack Segment, the Data Segment for a  mainframe- 
level FORTRAN must be able to  handle considerably 
more  than  64K bytes. Almost any serious FORTRAN 
application involves substantially more  than  64K 
bytes of data. 

This  limitation creates two different problems to be 
solved. The easier of the two is how to  handle logical 
data segments which themselves are greater than  64K 
bytes but  contain no individual  data  items greater 
than  64K bytes. A “logical data segment” comprises 
all the local data in  a single program unit. 

In this case the  compiler divides the logical data 
segment into what we call physical data segments, 
each of which is smaller than  the limitation imposed 
by the processor. It  was possible to allow the physical 
segments to vary in size considerably, as long as they 
remained  under  64K,  but we found  there was noth- 
ing to be gained by varying the size. We chose to 
make  them  as large as possible within the given 64K 
restraint because by keeping the segments large, we 
would keep the  number needed smaller. 
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At execution time  the  linker takes segments that 
share the  same  name  and class and assigns them to 
the  same  area in memory. In this way it is possible 
to  guarantee  that separate physical segments will  be 
contiguous in memory when the program is execut- 
ing. 

Once  the less-than-64K physical segments are con- 
tiguous, addressing a local data  item is relatively 
straightforward. The compiler  determines whether it 
is within 64K bytes of the  current segment address 
in the DS register. If so, it uses DS to access the  item. 
If not, it points ES at  the  data item (a move that costs 
at least two instructions because ES cannot be loaded 
directly from memory). 

Here again the compiler does some optimizing. It 
does not point ES directly at  the piece of data; instead 
it performs a  number of calculations to determine 
the most efficient place to point ES. For example, if 
the logical segment is about 128K bytes, the most 
efficient place for ES is right at the  64K  boundary. 
That way the  entire local data area or logical data 
segment can be covered without  further change to 
ES. 

The  compiler also takes  into  account whether the 
data  are  common or local. (A common  data block 
comprises data shared by more  than  one of the 
subroutines in a program unit; local data are used 
by only one.) DS is not available to  point to  common 
data because it is dedicated to local data, so if the 
data  element being accessed  is in  common,  the  com- 
piler must use ES. It points ES at the beginning of the 
block if the  element is within 64K bytes of the 
beginning of the block. If not,  and if the  element 
falls within the last 64K bytes of the  common block, 
the  compiler  points ES 64K bytes prior to  the end of 
the block. In subsequent  operations, ES is more likely 
to be  useful at either of these two positions, rather 
than  pointing directly at  the  data item itself. 

Figure 3 shows an example of this optimization to 
determine  the  most efficient memory address at 
which to point  a segment register. If an item to be 
accessed occurs within the first 64K bytes of a  com- 
mon  data block (address A + x in  the example), the 
compiler  points ES at  the start of the data block. If it 
occurs in the last 64K of a common  data block 
(address N + z),  it points ES at  the start of the last 
64K of that  data block. ES is more likely to  remain 
unchanged in  subsequent  operations if it is pointing 
at the beginning of 64K-byte segments. Only if the 
item does not  occur  in  either of these two locations 
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will the  compiler  point ES directly at  the item itself 
(address B + y).  Analysis showed that it was not cost- 
effective for the  compiler to make  more  than two 
attempts  to locate the beginning of the 64K-byte 
segment in which a  data item occurs. 

The second and more difficult problem the  64K 
restriction creates is how to address a  data  element, 
an array,  that is larger than  64K bytes. For main- 
frame-level FORTRANS, 64K bytes represents an  in- 
tolerable restriction on array size.  It  will accommo- 
date  a real array of only about 100 X 150 elements, 
and if double-precision numbers  are involved, the 
array can be only about half that size. 

The limiting factor, as mentioned earlier, is that  the 
offset address is normally stored in a single 16-bit 
register. The compiler erases this restriction by using 
two 16-bit registers to store  a 20-bit offset address: 
One register holds the 16 low-order bits of the  ad- 
dress, the  other holds the  four high-order bits (with 
12 zeros in the leftmost positions). 

The segment address is similarly stored in a 20-bit 
address in two 16-bit  registers. Although the  com- 
piler might have used the implicit 20-bit addressing 
of the processor for storing the segment address of 
some arrays, the  starting addresses of all dummy 
arrays  (arrays passed to subroutines)  must be calcu- 
lated at execution  time. To reduce the complexity of 
the  compiler, we chose to have the segment addresses 
of all arrays larger than  64K bytes calculated by the 
same algorithm at  execution  time.  This decision also 
gave the  compiler  a slight increase in  efficiency. 

At execution time,  the  actual 20-bit addresses of the 
beginning of an array  (the  array-pointer)  and  the 
offset  of an item within the  array  (the subscript- 
offset) are loaded into 16-bit registers by the follow- 
ing algorithm: 

M O V  BX. array-pointer load LS portion of array-pointer 
MOV A X ,  array-pointer + 2 load MS portion of array-pointer 
A D D  HX. subscript-offset add LS portion of subscript-offset 
ADC AX,  subscript-offset + 2  add with carry MS portion of sub- 

(LS = least significant. MS = most 
script-offset 

significant) 

Once loaded, the  content of these registers, which 
now represents a 20-bit address, can be converted 
into  the  standard 16-bit segment-offset address for- 
mat by the following algorithm: 

M O V  SI.BX copy LS portion of 20-bit address 
A N I )  SI.OFlI make MOD 16 = segment offset 
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Figure 3 Optimization to determine most efficient memory 
address 
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A N D  BX.OFFFOH remove offset 
OR AX.BX combine with MS portion of 20-bit address 
ROR AX.! divide 20-bit address by 16 = segment number 
ROR A X . 1  divide 20-bit address by 16 = segment  number 
ROR AX.1 divide 20-bit address by I6 = segment  number 
R O R  AX.1 divide 20-bit address by 16 = segment  number 
M O V  ES,AX move  segment  number  to segment register 

As a result, the  array  element can now be  accessed 
at ES:SI. Part A of Figure 4 illustrates how this algo- 
rithm uses the  four rightmost bits to create  the offset. 

Though efficient in converting two 20-bit actual 
addresses into  the segment-offset format,  this  code is 
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clearly not as efficient as  the way the  computer 
addresses data in an array smaller than  64K bytes. 
The  compiler uses it only with arrays that  do not 
qualify for the  standard, small-array addressing in- 
structions. (The user  also has the  option of having 
the compiler assume that  no adjustable arrays will 
be greater than  64K bytes.) 

In determining whether an array qualifies for small- 
array addressing, however, the compiler cannot sim- 
ply  test to see whether the  array is  less than 64K 
bytes. Because the  computer in effect appends four 
zeros to the right end of segment registers, segments 
can begin only at memory addresses that are multi- 
ples of 16 (any binary number  ending in four zeros 
is a multiple of 16). For  this reason, depending on 
where it begins in memory, an array that qualifies 
for small-array addressing may be up  to 15 bytes  less 
than  the full 64K bytes a 16-bit  register can address. 
Fifteen bytes, however, is hardly a significant reduc- 
tion in the 65 536 bytes that comprise 64K bytes of 
memory. 

After developing the first technique, we discovered 
that we could dramatically reduce the  amount of 
code required by the conversion routine if  we were 
willing to forego an additional 240 bytes in deter- 
mining the size  of arrays that must use the conver- 
sion routine. By limiting “small” dummy arrays to 
those no larger than  64K bytes  less 255 bytes, we 
reduced by a  third  the code in the second algorithm. 
That code now looks like this: 

XCHG A H . B H  exchange MS bytes A X  and BX 
(EX now contains the 20-bit address MOD 256: 

see accompanying diagram) 
R O R  AX.1 divide 20-bit address by  16 = segment number 
ROR AY.1 divide 20-bit address by  16 = segment number 
ROR AY.1 divide 20-bit address by  16 = segment number 
ROR AX.1 divide 20-bit address  by 16 = segment number 
MOV ES.AX move segment number to segment register 

The array element can be  accessed at ES:BX. Part B 
of Figure 4 illustrates how the new algorithm uses 
the eight rightmost bits to create the offset. 

Not only does this change the  number of instructions 
and  thus  the object code size, a crucial consideration 
in putting  a large language on  a small computer, but 
it speeds up execution time  as well. This sequence is 
almost 40 percent faster than  the  one  it replaced. 
Again, extending the 64K-byte limitation on  dummy 
arrays by another 255  bytes is insignificant in com- 
parison to the original limitation  and especially  in 
comparison to the  optimization  that results. 
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IEEE floating  point  arithmetic 

Two different areas of complexity were encountered 
in incorporating the IEEE floating point arithmetic 
standard in IBM Professional FORTRAN. One grew out 
of the  standard itself, the  other out of the actual 
implementation of the  standard  on Intel’s 8087 co- 

Two  different areas of complexity 
were  encountered  in  incorporating 
the  IEEE  floating  point  arithmetic 

standard. 

proce~sor.~ The IEEE standard was a long time in the 
making, and it appears that  some last-minute shifts 
in orientation by the design group of the  standard 
may have affected  Intel’s plans. Our design consid- 
erations reflect these shifts in a  number of  ways. 

One factor is that the IEEE standard requires the way 
arithmetic works to be able to vary at  the user’s 
option. For example, rounding had to be  designed 
to offer a  number of alternatives: a result can be 
rounded up, rounded down, rounded nearest, or 
truncated. Arithmetic precision must also be able to 
be  varied in a similar fashion. 

The handling of infinity is a good example of the 
complexities that result from the specific implemen- 
tation of the  standard by the chip. Throughout most 
of their draft proposals, the IEEE group favored treat- 
ing infinity as if it were circular. This notion is more 
useful to numerical analysts than to engineers and 
scientists, who work with a negative and positive 
infinity at  either  end of the  number line. Intel built 
its floating point chip according to IEEE working 
specifications, where the default mode is a single 
circular infinity. 

To almost everyone’s surprise, the IEEE group re- 
versed  itself at the last minute  and incorporated into 
the final standard the more traditional plus or minus 
infinity concept as  the default mode. As a result, the 
default settings on the 8087 chip  are  contrary to the 
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Fiaure 4 Conversion of actual  address  into  segment-offset  address 
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requirements of the  standard. Each time  the  com- 
piler corrects for this discrepancy, the user program 
loses a little speed because of the  extra  code it must 
execute. 

An example of  how the  standard itself causes prob- 
lems for a FORTRAN compiler is the  concept of “Not 
a  Number,” usually referred to  as  NaN. When the 
result of a  computation, such as dividing by zero, 
has no meaning, the IEEE standard requires that 
hardware give  it a special bit pattern. The bit pattern 
always propagates itself, no matter what is done  to 

it.  The result of any  computation involving NaN 
will always be NaN. 

This process clearly works better than  the way in 
which the  situation was handled in  the past. When 
an  arbitrary  number was assigned to represent a 
computation result having no meaning,  there was 
the very  real danger that  the results of a  subsequent 
calculation involving it would appear valid. 

Nevertheless, NaN poses a problem for a FORTRAN 
compiler  and for most existing FORTRAN programs 
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because it has not previously been a possible result 
of a  calculation. For example, in the  traditional 
arithmetic I F  statement  that is still part of many 
FORTRAN applications, the generated code  branches 
one way  if the operand is equal to zero, another way 
if it is greater than zero, and  a  third way  if it is  less 
than zero. Now there  ought to be a  fourth branch- 
if NaN, or, in effect, indeterminate. In these instances 
we adopt  the  commonly  encountered  solution of 
having the  compiler  immediately proceed to  the next 
statement when it finds an I F  statement involving a 
NaN . 

This difficulty is compounded by Intel’s implemen- 
tation of floating conditional  branching. Because  of 
the way the 8087 chip works with the  command  and 
control 8088 processor, it is not possible simply to 
compare  to zero and branch. The program cannot 
branch based on 8087 condition codes. The result of 
a  compare  operation  must be moved to  the 8088, 
which involves storing  the  control status. The extra 
instructions involved cost some  time. 

Once  the  status has been moved to  the 8086, bits 
can be tested, and  the branch  can  occur. But the bits 
that  indicate  whether  a floating point result is greater 
than, less than, or equal to zero do not map  onto 
the  same bits that provide the  same  information 
about a  nonfloating  point result. There  are  four 
condition  bits  that  indicate  what  happened on the 
floating point  chip. When they are  moved  into  the 
8088 chip. one of them  does  not correspond to  any 
8088 bit. To be tested, it requires a special test bit 
instruction  that sets a  condition code. All of this 
requires more  time  and increases the complexity of 
the  compiler, because it must have two separate 
conditional  branch generators. 

Another  area in which the  actual  implementation of 
the  standard forced a number of design decisions 
was denormalized  numbers. The IEEE group  added 
these numbers  to  the standard to handle  the problem 
of underflow. In traditional floating point  implemen- 
tations,  a  number becomes smaller and smaller and 
then  suddenly becomes zero,  This  gap between the 
smallest representable number  and zero can cause 
problems in certain  applications. To handle  them, 
the IEEE group  introduced the concepts of gradual 
underflow and denormalized  numbers.  The expo- 
nent of these numbers is the smallest possible value, 
but  their  mantissa may not be normalized  (may  not 
have the high-order bit set on). In the IEEE standard, 
these are considered valid numbers, which may be 
used in computations  and may in fact cease to be 
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denormalized.  When  a  denormalized  number gets 
smaller, it too will reach a  point where it suddenly 
becomes zero. In theory, however, these numbers 
provide more accuracy than was available before. 

Intel chose to implement  denormalized  numbers in 
a way that differs from the  standard. When a  denor- 
malized number is loaded into  a register, it is not 
loaded as  a  denormalized  number  but  as what Intel 
calls an  “unnormalized”  number.  Unnormalized 
numbers have characteristics different from those of 
denormalized  numbers.  In  particular, they no longer 
follow  all the IEEE rules for arithmetic.  This leads to 
several interesting quirks; for example, a  number 
divided by itself may not  be equal to one. Or if a 
denormalized  number is stored in  memory  and  then 
reloaded into  a register, its value no longer equals  its 
original value. We discovered after extensive analysis 
that  to circumvent Intel’s implementation would 
require a significant performance penalty. 

Another set of challenges resulted from Intel’s im- 
plementation of floating point registers as a true 
stack. As an element gets pushed farther down the 
stack, it gets farther from the  top of the stack. This 
causes several problems for an  optimizing  compiler 
which needs to keep  track of several partial results 
that will be  used more  than once. One problem 
occurs because certain actions  can  occur  at  the top 
of the stack only. For example, storing an element 
that is not on  the  top of the stack requires executing 
an exchange instruction. 

The exchange instruction is very  fast compared to 
other floating point  instructions, so there is no sig- 
nificant performance penalty in the user’s program. 
On the  other  hand, it is very complicated for the 
compiler itself to keep  track of what expressions are 
in what registers. A complex number, for example, 
consists of two real numbers  and therefore requires 
two different registers to represent it. Tracking these 
two registers while calculating complex expressions 
required us to build a very elaborate piece of code. 

Another  source of difficulty is that  the  chip keeps 
track of whether  a register has a value in it or not, 
and it will not allow a new value to be loaded over 
a  current value, as  traditional  architecture allows. 
Old values must  be  removed by additional code. 
Similarly, there is no convenient way  of emptying 
all the registers at  once. The most  efficient way to 
accomplish this is to reinitialize the chip, even 
though many  other items, such as  the infinity mode 
defaults, must also then be reinitialized, again with 
certain performance penalties. 
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Our decision on how to  do I * 4 (32-bit) arithmetic 
illustrates some of the conflicting factors that affect 
the choices made while building an optimizing FOR- 
TRAN compiler. The basic question was whether I * 
4 arithmetic should be handled on the floating point 
chip or by instruction sequences on the 8088 chip. 
Since there is no 32-bit arithmetic capability on the 
8088, it must be simulated by using two  16-bit 
integers. 

Our tests showed that while addition  and  subtraction 
can be done faster by simulation on  the 8088, mul- 
tiplication and division can be done faster on the 
floating point chip. We made  the design decision not 
to  do half the  arithmetic in one place and half in 
another,  and settled on doing all arithmetic on the 
floating point chip. This offered a  number of advan- 
tages, perhaps the main one being that it made the 
conversion back and forth between integers and real 
numbers very  easy. 

The trade-off between faster multiplication and di- 
vision and slower addition  and  subtraction works on 
the 8088 chip-much better than it does on the 
80286 chip. Although the 80287 floating point chip 
is about ten percent slower than  the 8087 chip (be- 
cause of a more complicated bus architecture), the 
80286 is about five to six times faster than  the 8088. 
This speeds up the addition  and  subtraction  much 
more significantly than it slows down the multipli- 
cation and division. Implementations of IBM Profes- 
sional FORTRAN specifically  for 80286-based ma- 
chines therefore handle I * 4 arithmetic on the 
control  chip rather than on the floating point chip. 
This is a good example of  how optimizations for a 
specific processor may not work in the  same way for 
all members of a  chip family. 

Concluding remarks 

Writing an optimizing compiler may be a complex 
undertaking. Testing its effectiveness  is not. It is 
simply a  matter of measuring the execution speed of 
its compiled programs and  comparing  the results to 
the same programs written in other versions of FOR- 
TRAN. Testing with our benchmark programs has 
shown that ISM Professional FORTRAN (RM/FORTRAN) 
outperforms, by a very significant margin, nonop- 
timizing FORTRAN compilers marketed for smaller 
systems such  as  the IBM Personal Computer.6 

The  end result of our design work, IBM Professional 
FORTRAN (RM/FORTRAN), shows clearly that it is  pos- 
sible to build an optimizing FORTRAN compiler small 
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enough to run on a  desktop  computer system and 
powerful enough to handle large-machine applica- 
tions  at large-machine execution speeds. 

Appendix:  Basic  definitions 

Presented here are some very basic definitions for 
readers not familiar with compilers and their opera- 
tion. At its most basic  level, a compiler is a series of 
instructions enabling a machine that can understand 
only zeros and  ones (the presence or absence of 
electrical charges) to perform a sequence of events 
described in terms  human beings  find convenient to 
work with. It does this by taking a program written 
in a language like COBOL or FORTRAN and translating 
it into  a long series of zeros and ones. When run 
through a  computer  during program execution, the 
translation prompts  the  computer to perform a se- 
quence of the simple operations  it is capable of. 

The series of instructions written in a  human-ori- 
ented computer language like FORTRAN or COBOL is 
called source code. Translation (or compilation) of 
source code results in object code, the zeros and ones 
that the machine can understand  and  that are created 
when the compiler compiles the source code. 

Because human logic and problem-solving tech- 
niques are vastly different from machine logic and 
capabilities, designing a program that will automat- 
ically translate  into executable object code any  com- 
bination of the elements of  even a simple computer 
language is a highly complex undertaking. It involves 
using only the simple operations  a machine is capa- 
ble  of to perform the following tasks: keeping track 
of an  enormous  number of data items; keeping track 
of the exact locations where  all these elements are 
stored in memory; and keeping track of the se- 
quences in  which operations  are performed and ele- 
ments  are fetched from memory into  temporary 
storage areas called registers, where they can be held, 
manipulated,  and  made available for high-speed  ac- 
cess by the central processing unit (CPU). 

All of this describes even the most basic  high-level 
language compiler on the simplest of computer proc- 
essors. The complexity increases, almost exponen- 
tially, when the language has all the sophistication 
of a high-powered FORTRAN; when the processors 
involved are  as complicated as Intel’s 8088 and 8087 
chips, which are at the heart of the IBM PC; and when 
the  aim is not  just to produce executable object code, 
but highly  efficient object code that can be executed 
as quickly as possible. 
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The key to building a compiler that creates such 
high-speed object code is a set of techniques called 
optimizations. These are routines embedded in the 
compiler which examine the source code as it is 
being compiled and reorganize it so that  the  number 
of instructions (object code) that must be  executed 
are minimized and so that  the instructions are exe- 
cuted in the fastest way possible. 
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