Design considerations for
IBM Personal Computer
Professional FORTRAN,

an optimizing compiler

An optimizing FORTRAN compiler with power to handile
large applications at execution speeds comparable to
those of large computers has been implemented on
the IBM Personal Computer. This implementation is de-
scribed, with emphasis on the design decisions that
were considered in the development of the compiler.

It comes as no surprise that program execution
speed was the primary consideration for the de-
signers of the first FORTRAN. What is surprising is the
reason for their concern. They were sure that expe-
rienced programmers would simply reject out of
hand any language whose programs were substan-
tially slower than those the programmers were al-
ready writing in machine and assembly language.
“We were convinced,” wrote John Backus, the leader
of the original FORTRAN design group, “that the kind
of system we had in mind would be widely used only
if we could demonstrate that it would produce pro-
grams almost as efficient as hand-coded ones.™

Convincing programmers to use high-level languages
is no longer a problem, but today, thirty years after
Backus’ team began its work, execution speed is still
a central concern for FORTRAN. Because of the nature
of most FORTRAN programs—number-crunching ap-
plications used in engineering and scientific work—
almost all FORTRAN designers have to wrestle with
the challenge of building a compiler that produces
code that can be executed at high speeds. (Readers
not familiar with some of the basic terms and con-
cepts used here should see the Appendix for defini-
tions.)
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Execution speed was an especially critical issue for
us in developing a version of FORTRAN for the 1BM
Personal Computer (1BM pC). Our task was to build
a language that would make the 1BM PC a powerful
engineering and scientific workstation capable of
handling mainframe-level FORTRAN applications.

To be able to support existing FORTRAN applications
for large machines, and to be able to create new
applications with the range and complexity of main-
frame applications, the FORTRAN we designed for the
IBM PC had to meet two requirements in terms of
language features. It had to be a complete implemen-
tation of the FORTRAN-77 standard, and it had to
incorporate the language extensions popular with
FORTRAN programmers.

Building such a full-featured language for a compar-
atively small computer presents a significant chal-
lenge by itself. But it was also essential to design the
compiler so that programs written with it could be
executed with speeds comparable to those attainable
on mainframes, else users would have little incentive
to use the smaller machine.

Our task was helped considerably by 1BM’s decision
to make available a coprocessor to handle floating
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point arithmetic efficiently. But even with the co-
processor, it was necessary to build into the compiler
a wide range of optimizing techniques and features
to meet the goal of increased execution speed.

The machine-independent optimizations we incor-
porated into the final product—IBmM Personal Com-
puter Professional FORTRAN (also available from
Ryan-McFarland Corporation as RM/FORTRAN)*—
are all fairly standard. We have been building them
into sophisticated FORTRANS for more than twenty
years, and they are exhaustively documented in com-
piler literature.? Therefore, this paper will focus pri-
marily on some less well known optimizations—
those that are machine- or architecture-dependent—
and the way these optimizations were affected by the
register design, memory limitations, and floating
point arithmetic of the 1BM PC.

Machine-independent optimizations

These techniques are designated as machine-inde-
pendent not because they are totally divorced from
the architecture of the processor involved (in many
cases they are not), but because they focus on the
code a FORTRAN programmer creates. In general,
these techniques reorganize the structure and ele-
ments of a programmer’s code when it is being
compiled, so that it can be executed with increased
efficiency. This code manipulation basically involves
reducing the amount of code the computer must
handle at execution time. It trades increased activity
and slower speeds at compilation time for faster
execution speeds.

The machine-independent optimizations IBM Profes-
sional FORTRAN utilizes include the following:

o Common subexpression elimination. Common
subexpressions are remembered within basic
blocks and not recalculated at each use. With the
use of this technique, expressions such as

A=B+Cx+D
X=C=x*D/Y
are compiled as

t=Cx+D
A=B=xt

X=tY

o Register remembering. Current contents of ma-
chine registers are remembered, where possible, to
eliminate redundant loads and stores. In the pre-
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ceding example, the value of t would remain in a
register as long as possible.

Invariant code motion. Operations whose oper-
ands do not change within a Do loop are moved
out of the loop. The expression

po 1001 = 1,10
1000AD=X+Y

would be compiled as

t=X+Y
po 1001 = 1,10
100 A() =t

Strength reduction. Expressions involving only bo-
loop invariant terms and DO induction variables
are calculated using addition rather than multipli-
cation. In the following expression

po 100 J = 1,10
po 100 K = 1,10
100 Two (JLK) =0

1BM Professional FORTRAN reduces the calculation
of the subscript (J,K) to only 100 additions instead
of the 100 multiplications and 100 additions a
nonoptimizing compiler would perform.
Constant arithmetic. Constant arithmetic expres-
sions are evaluated at compilation time. The
expression

A=15+3.2
is compiled as
A=47

Constant folding. Variables known to contain con-
stant values are replaced by those values. The
expression

J=2
K=J+5

is compiled as

J=2
K=7

Constant terms in subscript expressions are inte-
grated with the array address at compilation time.
Unnecessary arithmetic or logical operations such
as M * 1 or I — 0 are eliminated.

Conversion of constants from one type to another
is performed at compilation time.

Intrinsic functions are expanded in line, where
possible.
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Machine-dependent optimizations

Rather than manipulating a programmer’s code, ma-
chine-dependent techniques involve determining the
fastest way to perform a specific operation, given the
architecture of a processor. These optimizations re-
quire absolute familiarity with the “terrain” of the
target processor so that each operation is performed

One key to designing an optimizing
compiler is to make very efficient
use of registers.

with the highest possible efficiency. The intent of
machine-dependent optimizations is figuratively to
squeeze a microprocessor, or “chip,” for every pos-
sible degree of speed by using all its features to
optimum advantage and avoiding idiosyncrasies that
might slow execution.

Registers

One key to designing an optimizing compiler is to
make very efficient use of registers. It takes a com-
paratively long period of time for the computer to
retrieve data from memory as opposed to retrieving
them from registers. Therefore, we strive to maintain
“register residency” for values used most often in a
user’s program.

A relatively large number of registers are available
on the Intel 8088 microprocessor,* the processor of
the 1BM pc—14 or 18, depending on how four of
them are used. Although in many respects this is an
advantage, the registers of the IBM PC also present a
challenge, because in most respects each register is
unique. All the registers simply do not have the same
functional capabilities: Some are faster than others
in performing certain functions, and some simply
cannot perform certain other functions at all.

From a compiler designer’s point of view, most of
the registers in an “ideal” processor would be iden-
tical, as they are in 1BM’s 370/30XX/43XX architec-
ture. With this kind of architecture, a compiler can
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simply select any available register when one is re-
quired. For the processor of the 1BM PC, in contrast,
the optimizing compiler had to be designed to check
at almost every operation to see whether the opti-
mum register is available and if not, to determine
whether it is cost-effective to make it available. Fig-
ure 1 shows a comparison of the registers in the
architectures of the 1BM pC and the 370-type com-
puters.

A loop instruction, for example, is best handled only
by the Count Register, cx, of the 1BM pC. The com-
piler goes to a great deal of trouble to make sure Cx
is open when the user program is executing the
innermost DO loop of a given algorithm. Design
complexity is compounded because CX is also the
best register for handling the repeat instructions re-
quired for character manipulations. As a result, when
the compiler runs into a character concatenation in
the middle of a po loop, optimization may be hand-
cuffed by two routines competing for the same reg-
ister.

In cases like this, the compromise is generally to use
cx for the innermost routine—in this example it
would be the character manipulation—and to use
another, less efficient, register to control the Do loop.
This yields results slower than those attainable if a
second, equally fast register were open, but faster
than what would occur if ¢x did not handle the
innermost routine, and much faster than what would
result if the compiler design had not considered
which register should handle which routine.

Another example of the way in which the registers
of the 8088 vary is that only one data register, BX,
can be used as an index register to calculate the
address of an array element. However, commonly
occurring index expressions which involve a multi-
plication cannot be handled directly by Bx. They
must be calculated first in Ax and DX and then moved
to BX. Although all four general-purpose registers,
AX, BX, CX, and DX, can perform integer arithmetic,
only Ax and DX can do multiplication and division.

Besides BX, three other registers can be used as index
registers: Source Index (s1), Destination Index (Dr1),
and Base Pointer (BP). In many instances these same
four can be used as base registers. But when two of
these registers have to be used at the same time,
there are awkward limitations.

For example, to subscript an item in an array re-
quires both a base and an index. The architecture of
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Figure 1 Comparison of registers in IBM’s mainframe and Personal Computer architectures

IBM's 370/30XX/43XX
ARCHITECTURE
32-BIT REGISTERS
RO
DATA
— REGISTERS
R1
R2
OFFSET
REGISTERS
R3
DATA
REGISTERS
INDEX
OR
BASE _
REGISTERS| [ R4
SEGMENT
REGISTERS
R15

INTEL'S 8088
ARCHITECTURE

16-BIT REGISTERS 8BITS

88ITS

ACCUMULATOR

BASE

COUNT

DATA

STACK POINTER

BASE POINTER
SOURCE INDEX
DESTINATION INDEX
CODE SEGMENT

DATA SEGMENT

STACK SEGMENT
EXTRA SEGMENT
INSTRUCTION POINTER

STATUS FLAGS

]
j—

the 8088 requires that one of the two must be BP or
BX, and the other one must be sI or DI. Because of
another of our optimizations (discussed later), the
compiler permanently dedicates BP to addressing
elements in the stack segment. Therefore, in compli-
cated subscripting and other operations requiring
two index registers, the compiler must make sure BX
1s available. If it is not, an extra move will have to
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be generated to free BX. The extra move costs time,
but less than it would cost the compiler to use BP
and find another register to address the stack.

Limitations of 64K-byte segments

Another challenge presented to the designer of a
mainframe-level optimizing compiler by the 8088
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microprocessor is the maximum allowable size of
segments, which are separate areas in memory where
data and instructions are stored.

The processor is actually capable of addressing 1M
(1 048 576) bytes of memory. Normally a processor
with 16-bit registers would be able to address only
2'¢ or 64K bytes of memory. The 8088 overcomes
this inherent limitation by generating a 20-bit ad-
dress for the beginning of segments. It does this by
using the 16-bit segment register as if it had four
zeros at its right side, which has the effect of adding
four more bits to the register. Figure 2 illustrates this
concept.

While this increases the amount of memory that can
be used by the 8088, obviously an essential task, it
also adds to compiler complexity. The processor
requires two components to calculate memory ad-
dresses: a segment address to indicate the beginning
of the segment in which an item resides in memory,
and an offset address to indicate how far from the
beginning of the segment an element actually resides.
To find an element, the processor adds together the
contents of the two registers holding these addresses,
first appending four zeros to the value in the segment
address register.

Having to keep track of two address components for
each data element means more work for the com-
piler. The 8088 minimizes this complexity by assum-
ing that a specific register automatically carries the
address of a specific segment, requiring only that an
offset be stipulated for an item to be retrieved from
memory. If, for example, the compiler assigns the DI
Register as the offset address of an item, the processor
automatically adds the contents of the DI Register to
the contents of the Data Segment (DS) Register.
Similarly, the processor assumes that any item with
an offset address in the BP Register will have its base
in the Stack Segment (Ss) Register.

Registers other than the assumed ones can be used
to hold base addresses, but to do so requires a
segment override instruction. These instructions are
costly for an optimizing compiler because each takes
about two clock cycles of execution time and one
byte of code space. The compiler permanently ded-
icates BP to addressing elements in the stack, as we
mentioned earlier, to avoid just such a segment
override.

Another drawback is much more significant.
Whereas the base address is in effect 20 bits long, the
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Figure 2 Expansion of 64K-byte addressing limitation
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offset address is only 16 bits. That means that the
offset can normally reference items that are no more
than 64K bytes (2'¢ bytes) from the base. This restric-
tion limits segment size to 64K bytes, not a tolerable
limit for serious FORTRAN programs.

The 8088 processor keeps data and program instruc-
tions in separate areas of memory called segments.
Up to four segments can be addressed at any one
time. The Code Segment holds the program that is
currently being executed, the Data Segment holds
data appropriate to the program currently being
executed, and the Stack Segment holds temporary
data and addresses. The Extra Segment (ES) is an
alternative Data Segment used in string operations.

The 64K limitation does not impact either the Code
or Stack Segment in any significant way. Most ad-
herents of structured programming agree that to be
manageable, program modules should not exceed
200 to 300 lines of code. At 20 bytes of object code
per source line, which is about twice the number of
bytes 1BM Professional FORTRAN typically generates,
a 64K-byte code segment allows a module of about
3300 lines. Even at 50 bytes per source line, the
segment can accommodate a module of 1300 lines,
which is at least four times larger than an effective
module should be.

Keep in mind also that while individual code seg-
ments may be no longer than 64K bytes, the proc-
essor imposes no limits on the number of segments
that can be linked together and executed. By making
every called subroutine a separate segment, the com-
piler experiences no limit on the amount of code it
can handle (though the current version of the 1BM
Personal Computer Disk Operating System, 3.0, can-
not handle more than 640K bytes of total memory).
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Stack Segments similarly are not affected by the 64K
limitation. Transfers into and out of the operating
system, for example, require only a minimal amount
of stack space, certainly no more than 256 bytes.
With respect to subroutines, the compiler assumes
that all calls are made in a vertical line, calculates
the maximum amount of stack space each requires,

The compiler divides the logical data
segment into physical data
segments.

and sums their stack requirements when the subrou-
tines are linked. This final figure is extremely con-
servative, since calls are rarely made all in a vertical
line. The compiler in fact provides an option for the
programmer to override this figure and have the
linker assign less memory to the Stack Segment.

Though the limitation does not affect the Code or
Stack Segment, the Data Segment for a mainframe-
level FORTRAN must be able to handle considerably
more than 64K bytes. Almost any serious FORTRAN
application involves substantially more than 64K
bytes of data.

This limitation creates two different problems to be
solved. The easier of the two is how to handle logical
data segments which themselves are greater than 64K
bytes but contain no individual data items greater
than 64K bytes. A “logical data segment” comprises
all the local data in a single program unit.

In this case the compiler divides the logical data
segment into what we call physical data segments,
each of which is smaller than the limitation imposed
by the processor. It was possible to allow the physical
segments to vary in size considerably, as long as they
remained under 64K, but we found there was noth-
ing to be gained by varying the size. We chose to
make them as large as possible within the given 64K
restraint because by keeping the segments large, we
would keep the number needed smaller.
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At execution time the linker takes segments that
share the same name and class and assigns them to
the same area in memory. In this way it is possible
to guarantee that separate physical segments will be
contiguous in memory when the program is execut-
ing.

Once the less-than-64K physical segments are con-
tiguous, addressing a local data item is relatively
straightforward. The compiler determines whether it
is within 64K bytes of the current segment address
in the DS register. If so, it uses DS to access the item.
If not, it points ES at the data item (a move that costs
at least two instructions because ES cannot be loaded
directly from memory).

Here again the compiler does some optimizing. It
does not point ES directly at the piece of data; instead
it performs a number of calculations to determine
the most efficient place to point ES. For example, if
the logical segment is about 128K bytes, the most
efficient place for ES is right at the 64K boundary.
That way the entire local data area or logical data
segment can be covered without further change to
ES.

The compiler also takes into account whether the
data are common or local. (A common data block
comprises data shared by more than one of the
subroutines in a program unit; local data are used
by only one.) DS 1s not available to point to common
data because it is dedicated to local data, so if the
data element being accessed is in common, the com-
piler must use ES. It points ES at the beginning of the
block if the element is within 64K bytes of the
beginning of the block. If not, and if the element
falls within the last 64K bytes of the common block,
the compiler points ES 64K bytes prior to the end of
the block. In subsequent operations, ES is more likely
to be useful at either of these two positions, rather
than pointing directly at the data item itself.

Figure 3 shows an example of this optimization to
determine the most efficient memory address at
which to point a segment register. If an item to be
accessed occurs within the first 64K bytes of a com-
mon data block (address A + x in the example), the
compiler points ES at the start of the data block. If it
occurs in the last 64K of a common data block
(address N + z), it points ES at the start of the last
64K of that data block. Es is more likely to remain
unchanged in subsequent operations if it is pointing
at the beginning of 64K-byte segments. Only if the
item does not occur in either of these two locations
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will the compiler point ES directly at the item itself
(address B + y). Analysis showed that it was not cost-
effective for the compiler to make more than two
attempts to locate the beginning of the 64K-byte
segment in which a data item occurs.

The second and more difficult problem the 64K
restriction creates is how to address a data element,
an array, that is larger than 64K bytes. For main-
frame-level FORTRANS, 64K bytes represents an in-
tolerable restriction on array size. It will accommo-
date a real array of only about 100 X 150 elements,
and if double-precision numbers are involved, the
array can be only about half that size.

The limiting factor, as mentioned earlier, is that the
offset address is normally stored in a single 16-bit
register. The compiler erases this restriction by using
two 16-bit registers to store a 20-bit offset address:
One register holds the 16 low-order bits of the ad-
dress, the other holds the four high-order bits (with
12 zeros in the leftmost positions).

The segment address is similarly stored in a 20-bit
address in two 16-bit registers. Although the com-
piler might have used the implicit 20-bit addressing
of the processor for storing the segment address of
some arrays, the starting addresses of all dummy
arrays (arrays passed to subroutines) must be calcu-
Jated at execution time. To reduce the complexity of
the compiler, we chose to have the segment addresses
of all arrays larger than 64K bytes calculated by the
same algorithm at execution time. This decision also
gave the compiler a slight increase in efficiency.

At execution time, the actual 20-bit addresses of the
beginning of an array (the array-pointer) and the
offset of an item within the array (the subscript-
offset) are loaded into 16-bit registers by the follow-
ing algorithm:

MOV BX, array-pointer load LS portion of array-pointer
MOV AX, array-pointer + 2 load Ms portion of array-pointer
ADD BX, subscript-offset add s portion of subscript-offset
ADC AX, subscript-offset + 2 add with carry Ms portion of sub-
script-offset
(LS = least significant, Ms = most
significant)

Once loaded, the content of these registers, which
now represents a 20-bit address, can be converted
into the standard 16-bit segment-offset address for-
mat by the following algorithm:

MOV SI.BX
AND SILLOFH

copy Ls portion of 20-bit address
make MOD 16 = segment offset
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Figure 3 Optimization to determine most efficient memory
address

64K BYTES
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64K BYTES

AND BX.OFFFOH remove offset

OR  AX.BX combine with Ms portion of 20-bit address
ROR AX,] divide 20-bit address by 16 = segment number
ROR AX,l divide 20-bit address by 16 = segment number
ROR AX,l divide 20-bit address by 16 = segment number
ROR AX.1 divide 20-bit address by 16 = segment number
MOV ES,AX move segment number to segment register

As a result, the array element can now be accessed
at s:s1. Part A of Figure 4 illustrates how this algo-
rithm uses the four rightmost bits to create the offset.

Though efficient in converting two 20-bit actual
addresses into the segment-offset format, this code is
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clearly not as efficient as the way the computer
addresses data in an array smaller than 64K bytes.
The compiler uses it only with arrays that do not
qualify for the standard, small-array addressing in-
structions. (The user also has the option of having
the compiler assume that no adjustable arrays will
be greater than 64K bytes.)

In determining whether an array qualifies for small-
array addressing, however, the compiler cannot sim-
ply test to see whether the array is less than 64K
bytes. Because the computer in effect appends four
zeros to the right end of segment registers, segments
can begin only at memory addresses that are multi-
ples of 16 (any binary number ending in four zeros
1s a multiple of 16). For this reason, depending on
where it begins in memory, an array that qualifies
for small-array addressing may be up to 15 bytes less
than the full 64K bytes a 16-bit register can address.
Fifteen bytes, however, is hardly a significant reduc-
tion in the 65 536 bytes that comprise 64K bytes of
memory.

After developing the first technique, we discovered
that we could dramatically reduce the amount of
code required by the conversion routine if we were
willing to forego an additional 240 bytes in deter-
mining the size of arrays that must use the conver-
sion routine. By limiting “small” dummy arrays to
those no larger than 64K bytes less 255 bytes, we
reduced by a third the code in the second algorithm.
That code now looks like this:

XCHG AH,BH exchange Ms bytes aAx and BX
(BX now contains the 20-bit address MOD 256;
see accompanying diagram)

ROR AX,1 divide 20-bit address by 16 = segment number
ROR AX.l divide 20-bit address by 16 = segment number
ROR AX,1 divide 20-bit address by 16 = segment number
ROR AX.1 divide 20-bit address by 16 = segment number
MOV ES.AX move segment number to segment register

The array element can be accessed at ES:BX. Part B
of Figure 4 illustrates how the new algorithm uses
the eight rightmost bits to create the offset.

Not only does this change the number of instructions
and thus the object code size, a crucial consideration
In putting a large language on a small computer, but
it speeds up execution time as well. This sequence is
almost 40 percent faster than the one it replaced.
Again, extending the 64K-byte limitation on dummy
arrays by another 255 bytes is insignificant in com-
parison to the original limitation and especially in
comparison to the optimization that results.
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IEEE floating point arithmetic

Two different areas of complexity were encountered
in incorporating the I1EEE floating point arithmetic
standard in 1BM Professional FORTRAN. One grew out
of the standard itself, the other out of the actual
implementation of the standard on Intel’s 8087 co-

Two different areas of complexity
were encountered in incorporating
the IEEE floating point arithmetic
standard.

processor.’ The iEEE standard was a long time in the
making, and it appears that some last-minute shifts
in orientation by the design group of the standard
may have affected Intel’s plans. Our design consid-
erations reflect these shifts in a number of ways.

One factor is that the 1EEE standard requires the way
arithmetic works to be able to vary at the user’s
option. For example, rounding had to be designed
to offer a number of alternatives: a result can be
rounded up, rounded down, rounded nearest, or
truncated. Arithmetic precision must also be able to
be varied in a similar fashion.

The handling of infinity is a good example of the
complexities that result from the specific implemen-
tatton of the standard by the chip. Throughout most
of their draft proposals, the 1EEE group favored treat-
ing infinity as if it were circular. This notion is more
useful to numerical analysts than to engineers and
scientists, who work with a negative and positive
infinity at either end of the number line. Intel built
its floating point chip according to IEEE working
specifications, where the default mode is a single
circular infinity.

To almost everyone’s surprise, the IEEE group re-
versed itself at the last minute and incorporated into
the final standard the more traditional plus or minus
infinity concept as the default mode. As a result, the
default settings on the 8087 chip are contrary to the
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Figure 4 Conversion of actual address into segment-offset address
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requirements of the standard. Each time the com-
piler corrects for this discrepancy, the user program
loses a little speed because of the extra code it must
execute.

An example of how the standard itself causes prob-
lems for a FORTRAN compiler is the concept of “Not
a Number,” usually referred to as NaN., When the
result of a computation, such as dividing by zero,
has no meaning, the IEEE standard requires that
hardware give it a special bit pattern. The bit pattern
always propagates itself, no matter what is done to
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it. The result of any computation involving NaN
will always be NaN.

This process clearly works better than the way in
which the situation was handled in the past. When
an arbitrary number was assigned to represent a
computation result having no meaning, there was
the very real danger that the results of a subsequent
calculation involving it would appear valid.

Nevertheless, NaN poses a problem for a FORTRAN
compiler and for most existing FORTRAN programs
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because it has not previously been a possible result
of a calculation. For example, in the traditional
arithmetic IF statement that is still part of many
FORTRAN applications, the generated code branches
one way if the operand is equal to zero, another way
if it 1s greater than zero, and a third way if it is less
than zero. Now there ought to be a fourth branch—
if NaN, or, in effect, indeterminate. In these instances
we adopt the commonly encountered solution of
having the compiler immediately proceed to the next
statement when it finds an IF statement involving a
NaN.

This difficulty is compounded by Intel’s implemen-
tation of floating conditional branching. Because of
the way the 8087 chip works with the command and
control 8088 processor, it is not possible simply to
compare to zero and branch. The program cannot
branch based on 8087 condition codes. The result of
a compare operation must be moved to the 8088,
which involves storing the control status. The extra
instructions involved cost some time,

Once the status has been moved to the 8086, bits
can be tested, and the branch can occur. But the bits
that indicate whether a floating point result is greater
than, less than, or equal to zero do not map onto
the same bits that provide the same information
about a nonfloating point result. There are four
condition bits that indicate what happened on the
floating point chip. When they are moved into the
8088 chip, one of them does not correspond to any
8088 bit. To be tested, it requires a special test bit
instruction that sets a condition code. All of this
requires more time and increases the complexity of
the compiler, because it must have two separate
conditional branch generators.

Another area in which the actual implementation of
the standard forced a number of design decisions
was denormalized numbers. The 1EEE group added
these numbers to the standard to handle the problem
of underflow. In traditional floating point implemen-
tations, a number becomes smaller and smaller and
then suddenly becomes zero. This gap between the
smallest representable number and zero can cause
problems in certain applications. To handle them,
the 1EEE group introduced the concepts of gradual
underflow and denormalized numbers. The expo-
nent of these numbers is the smallest possible value,
but their mantissa may not be normalized (may not
have the high-order bit set on). In the 1EEE standard,
these are considered valid numbers, which may be
used in computations and may in fact cease to be
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denormalized. When a denormalized number gets
smaller, it too will reach a point where it suddenly
becomes zero. In theory, however, these numbers
provide more accuracy than was available before.

Intel chose to implement denormalized numbers in
a way that differs from the standard. When a denor-
malized number is loaded into a register, it is not
loaded as a denormalized number but as what Intel
calls an “unnormalized” number. Unnormalized
numbers have characteristics different from those of
denormalized numbers. In particular, they no longer
follow all the 1EEE rules for arithmetic. This leads to
several interesting quirks; for example, a number
divided by itself may not be equal to one. Or if a
denormalized number is stored in memory and then
reloaded into a register, its value no longer equals its
original value. We discovered after extensive analysis
that to circumvent Intel’s implementation would
require a significant performance penalty.

Another set of challenges resulted from Intel’s im-
plementation of floating point registers as a true
stack. As an element gets pushed farther down the
stack, it gets farther from the top of the stack. This
causes several problems for an optimizing compiler
which needs 1o keep track of several partial results
that will be used more than once. One problem
occurs because certain actions can occur at the top
of the stack only. For example, storing an element
that is not on the top of the stack requires executing
an exchange instruction.

The exchange instruction is very fast compared to
other floating point instructions, so there is no sig-
nificant performance penalty in the user’s program.
On the other hand, it is very complicated for the
compiler itself to keep track of what expressions are
in what registers. A complex number, for example,
consists of two real numbers and therefore requires
two different registers to represent it. Tracking these
two registers while calculating complex expressions
required us to build a very elaborate piece of code.

Another source of difficulty is that the chip keeps
track of whether a register has a value in it or not,
and it will not allow a new value to be loaded over
a current value, as traditional architecture allows.
Old values must be removed by additional code.
Similarly, there is no convenient way of emptying
all the registers at once. The most efficient way to
accomplish this is to reinitialize the chip, even
though many other items, such as the infinity mode
defaults, must also then be reinitialized, again with
certain performance penalties.
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Our decision on how to do I * 4 (32-bit) arithmetic
illustrates some of the conflicting factors that affect
the choices made while building an optimizing FOR-
TRAN compiler. The basic question was whether I »
4 arithmetic should be handled on the floating point
chip or by instruction sequences on the 8088 chip.
Since there 1s no 32-bit arithmetic capability on the
8088, it must be simulated by using two 16-bit
integers.

Our tests showed that while addition and subtraction
can be done faster by simulation on the 8088, mul-
tiplication and division can be done faster on the
floating point chip. We made the design decision not
to do half the arithmetic in one place and half in
another, and settled on doing all arithmetic on the
floating point chip. This offered a number of advan-
tages, perhaps the main one being that it made the
conversion back and forth between integers and real
numbers very casy.

The trade-off between faster multiplication and di-
vision and slower addition and subtraction works on
the 8088 chip—much better than it does on the
80286 chip. Although the 80287 floating point chip
is about ten percent slower than the 8087 chip (be-
cause of a more complicated bus architecture), the
80286 is about five to six times faster than the 8088.
This speeds up the addition and subtraction much
more significantly than it slows down the multipli-
cation and division. Implementations of 1BM Profes-
sional FORTRAN specifically for 80286-based ma-
chines therefore handle 1 * 4 arithmetic on the
control chip rather than on the floating point chip.
This is a good example of how optimizations for a
specific processor may not work in the same way for
all members of a chip family. ’

Concluding remarks

Writing an optimizing compiler may be a complex
undertaking. Testing its effectiveness is not. It is
simply a matter of measuring the execution speed of
its compiled programs and comparing the results to
the same programs written in other versions of FOR-
TRAN. Testing with our benchmark programs has
shown that 1BM Professional FORTRAN (RM/FORTRAN)
outperforms, by a very significant margin, nonop-
timizing FORTRAN compilers marketed for smaller
systems such as the 1BM Personal Computer.®

The end result of our design work, 1BM Professional

FORTRAN (RM/FORTRAN), shows clearly that it is pos-
sible to build an optimizing FORTRAN compiler small
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enough to run on a desktop computer system and
powerful enough to handle large-machine applica-
tions at large-machine execution speeds.

Appendix: Basic definitions

Presented here are some very basic definitions for
readers not familiar with compilers and their opera-
tion. At its most basic level, a compiler is a series of
instructions enabling a machine that can understand
only zeros and ones (the presence or absence of
electrical charges) to perform a sequence of events
described in terms human beings find convenient to
work with. It does this by taking a program written
in a language like COBOL or FORTRAN and translating
it into a long series of zeros and ones. When run
through a computer during program execution, the
translation prompts the computer to perform a se-
quence of the simple operations it is capable of.

The series of instructions written in a human-ori-
ented computer language like FORTRAN or COBOL is
called source code. Translation (or compilation) of
source code results in object code, the zeros and ones
that the machine can understand and that are created
when the compiler compiles the source code.

Because human logic and problem-solving tech-
niques are vastly different from machine logic and
capabilities, designing a program that will automat-
ically translate into executable object code any com-
bination of the elements of even a simple computer
language is a highly complex undertaking. It involves
using only the simple operations a machine is capa-
ble of to perform the following tasks: keeping track
of an enormous number of data items; keeping track
of the exact locations where all these elements are
stored in memory; and keeping track of the se-
quences in which operations are performed and ele-
ments are fetched from memory into temporary
storage areas called registers, where they can be held,
manipulated, and made available for high-speed ac-
cess by the central processing unit (CPU).

All of this describes even the most basic high-level
language compiler on the simplest of computer proc-
essors. The complexity increases, almost exponen-
tially, when the language has all the sophistication
of a high-powered FORTRAN; when the processors
involved are as complicated as Intel’s 8088 and 8087
chips, which are at the heart of the 1BM PC; and when
the aim is not just to produce executable object code,
but highly efficient object code that can be executed
as quickly as possible.
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