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In the last  few  years, the C programming  language has 
become  one of the most widely  used  languages for 
applications and  systems software on microcomputer 
systems.  This paper describes the C language and  its 
history.  It then presents a specific  implementation of 
C, the Microsoft C Compiler, which runs  on the IBM 
Personal Computer. 

I n 1970, Thompson, while working on the earliest 
version of the UNIX operating system at the Bell 

Telephone Laboratories, Inc., wrote an interpreter 
for a language patterned on BCPL, which he called 
B.’ Ritchie then wrote a  compiler for a derivative of 
B that  he called c. Thompson  and Ritchie wrote the 
next version of the U N I X  operating system in the c 
language. Until  that  time, most operating systems 
had been written in assembly language, but  Thomp- 
son and Ritchie found it so much easier working in 
c that they were able to  add many new functions to 
UNIX.  The first version of c was  used to generate 
code for the  then-new DEC PDP-I I .  The compiler was 
small and fast and  did  not  attempt  any  ambitious 
optimizations. Instead, the c language provided reg- 
ister variables and low-level operations  that allowed 
the  programmer  to guide the  compiler in generating 
useful code. 

Through  the 1970s, c remained closely associated 
with UNIX. Most of the system is written in the c 
language. Compilers were written for c for use on 
the IBM System/370 and  the  Interdata 32, as well as 
a large number  of  portable programs written in the 
c language.2 AT&T began to use c to develop their 

switching systems, and eventually it became the 
main  development language at Bell Laboratories. In 
the  mid-l970s, UNIX was introduced  into  the aca- 
demic  environment  at  a  number of universities, and 
the popularity of c started to spread. By the late 
197Os, c compilers were becoming available for a 
large number of processors and  operating systems, 
and  papers began to appear  comparing c with other 
languages for various  application^."^ 

In the original language, there was little in the way 
of type checking and few restrictions as  to type. The 
c language was invented by experienced program- 
mers for their own use, and it provided them with a 
great deal of power but very little protection from 
data-type errors. A program called “lint”2 for check- 
ing types in c programs was the only way to provide 
such protection. As the language has evolved, more 
attention has been paid to types and  to type checking 
within both  the language and  the compilers, but  the 
philosophy of c remains unchanged. Even as  the 
language has incorporated stronger type checking, 
there has continued to be a  mechanism  to ovemde 
its restrictions. 

At first, the typical c user was a systems programmer 
who needed to be close to  the machine and who 
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required  the efficient code  generation of assembly 
language. At the  same  time, such programmers 
wanted the fluency of expression inherent  in  a high- 
level language. However, they were doing  their  de- 
velopment on the target machine, which was a min- 

C is a  popular  choice of applications 
programmers,  although  it is rarely 
one’s  first  programming  language. 

icomputer  and  thus  not large enough to support 
large optimizing compilers. Therefore, the early c 
compilers saved space by allowing the  programmer 
to  do some of the  optimization. 

The 16-bit personal computers of today  are  about 
the  same size as  the  minicomputers of the early days 
of c. Application writers working on personal com- 
puters  are  under very much  the  same  constraints  as 
systems programmers using c in  the early 1970s. 
Because  of this, c has proved to be a  popular choice 
among  applications  programmers,  although  it is 
rarely one’s  first programming language. Experi- 
enced programmers  appreciate  the ability to write 
powerful programs economically in c. 

In 1983, an ANSI standards  committee ( X ~ J I I )  for c 
was formed.  Kernighan and Ritchie6 had earlier 
written a reference manual, which was the closest 
thing to a  standard. However, the  manual was not 
precise and  did  not  contain later features in  the 
language, nor did it document  the  standard library. 
The major job of the  committee has been to codify 
common understanding, because the c language has 
had remarkably few local extensions added over the 
years. Among  those few extensions are  argument 
checking, struct’ure copying, and  an enumerated 
type.’ There has also been an effort by UNIFORUM, a 
U N I X  users’ organization, to create  a  standard for the 
c library.x Although this  standard is oriented toward 
U N I X ,  most of it is sufficiently general that  the ANSI 
committee is using it as a basis for their library 
standard. 
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Concepts of the C  language 

The c programming language6 is expression-ori- 
ented, with a rich set of operators and a block 
structure, encouraging well-structured programs. It 
includes constructs for decision making (if state- 
ments), several types of looping (for, while, and do- 
while), and selection of cases (switch). In keeping 
with the spirit of low-level languages, there is also 
support for goto. 

The c language is relatively low-level, providing a 
set of operators  that work on the  same  kinds of 
objects that  most  computers  do.  This allows the 
programmer to work close to  the underlying ma- 
chine. Yet c is of a sufficiently high  level to make 
programs  portable across a wide variety of machines. 
The language views the underlying machine as a 
single monolithic array, allowing objects to be  ref- 
erenced anywhere  in  that  array.  Pointer  arithmetic 
and array subscripting both  manipulate  the  same 
kind of  object-a memory address. 

The  fundamental  data types that c supports  are 
characters, integers of several sizes, and floating point 
numbers of both single and  double precision. 
Pointers  can be declared to all data types, including 
derived data types and functions. New data types 
can be derived through  the use of arrays, pointers, 
structures,  unions, and functions. 

c is a relatively simple language that provides few 
mechanisms for dealing directly with complex data 
structures such as strings, lists, and arrays. Similarly, 
there is no direct language support for dealing with 
the  environment  (no  input-output, no memory al- 
location, etc.). Instead, these capabilities are  pro- 
vided through  function calls. In the  evolution of the 
c language, a  particular set of function calls (the so- 
called standard library) has come to be considered 
part of the language. But because the language com- 
piler does  not recognize anything special about these 
function calls, a  programmer  can replace standard 
functions with special implementations if necessary. 

Another powerful feature of the language is a  text 
processor, called the cpreprocessor, which allows the 
use  of macros, conditional  compilation,  and  the 
inclusion of other text files. These features facilitate 
the writing of c programs  that  are  portable to a 
variety of machines and operating systems. 

The simplicity of the language has allowed compilers 
to be written easily and quickly. The expression 

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985 



orientation of the language and  the rich set of oper- 
ators enable the programmer to create efficient pro- 
grams using simple compilers. 

Two examples 

c is attractive to systems programmers because  of 
the number of  low-level operators and  data types 
provided. One task these low-level operators are 
especially suited to is manipulating linked lists. The 
following are two somewhat dense examples illus- 
trating a  number of the operators used in initializing 
and scanning a linked list. The function is presented 
in c, followed by a discussion  of the operators in- 
volved. Note that anything occurring between /* . . . 
and . . . */ is a  comment. 

Example 1. The following are some basic functions 
of the c language. 

/* Preprocessor directives-replace  all occurrences 
of */ 

#define SIZE 100 /* ‘SIZE’  with  100 */ 
#define NULL 0 /* ‘NULL’ with 0 */ 

struct thing { /* Declare a structure 
type, ‘thing’, */ 

to  a ‘thing’ */ 

integer */ 

struct thing *link; /* consisting of a pointer 

char Val; /* and  an 8-bit signed 

1; 
struct thing Table[s~z~]; /* declare an array of 

struct thing *Freething; /* a pointer to  a thing */ 

/* initialize a freelist of 

init() 
I 

‘things’ */ 

things */ 

register struct thing /* declare a local  register 
*P; pointer variable */ 

for(p = Table; p < &Table[s~z~];  p+=l) 
{ /* make each element */ 

element */ 
p - >link = p- I ;  /* point to the previous 

p - >Val = 0; 
I 
Freething = p- 1 ; /* initialize freelist head */ 
Table[O].link = NULL; /* and tail */ 

1 
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A register declaration instructs the compiler that  the 
variable should be  placed in a register if possible. 
Registers are allocated in the order declared as long 

Code  produced  using  register 
variables  is  almost always smaller 

and  faster  than  that using  local 
variables. 

~ _ _ _ _ _ _ _ _ ~ ~  _____ ~~ ~ 

as they are available; otherwise, they are treated as 
local  variables. Our implementation for the Intel 
8086/80286 provides two register  variables, SI and 
DI; other processors may have more or fewer. The 
code produced using  register variables is almost al- 
ways smaller and faster than  that using ordinary 
local  variables. 

A for-loop is of the form 

for (expression 1 ; expression2; expression3) 
BODY OF LOOP 

which can be expressed in a pseudocode as  follows: 

evaluate expression 1 
while (expression2 is TRUE) 

evaluate expression3 
end-of-loop 

BODY OF LOOP 

The for-loop in the initialization example just given 
illustrates several features of c. The first clause sets 
a pointer p  to point to  the base of the array Table. 
In c, the  name of an array is synonymous with the 
address of the first element. A pointer is a variable 
containing an address. 

Following the first semicolon is the for-loop’s end 
condition. In this case, the value of the pointer is 
being tested against the address of the  end of the 
array. Following the second semicolon there is an 
expression to be evaluated as the last action each 
time through the loop. Any  expression  can  be put 
there. 
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In Example 1, expression3 of the for-loop uses the 
+= operator, which has the following form: 

expression 1 += expression’? 

is equivalent to 

expression 1 = expression 1 + expression2 

with the exception that expression1  is evaluated only 
once; thus any side effects occur only once. In this 

Pointer  arithmetic is machine 
independent. 

case, the += operator is adding a constant value to 
the pointer. In c, pointer arithmetic is  scaled to the 
size  of the object pointed to. Because we are adding 
to  a pointer to  a  “thing” in the example, the constant 
1 is scaled to  the size of the  “thing.” 

Doing this scaling  based on pointer type has an 
interesting and useful  effect.  Because an array name 
is equivalent to  a pointer to  the base of the array, 
and adding an index to a pointer causes the index to 
be  scaled by the element size, the resulting operation 
is the same arithmetic used for array subscripting. 
Incidentally, this means that array subscripting is 
commutative (Le., array [i] == i[array]) because 
addition is commutative. This makes pointer arith- 
metic machine independent. 

The braces I . . . ) delimit a  compound statement 
that is to be executed each pass through the loop. 
The first statement assigns the address of the previous 
element to its own link field, thereby taking advan- 
tage  of the pointer scaling operation. The -> oper- 
ator references a field  of the  structure pointed to. 

The second statement inside the braces initializes 
the integer field. The two statements after the for- 
loop clean up the boundary conditions. This is not 
intended  to be a stylistically “nice” routine  but rather 
a dense illustration. 
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Example 2. The following example illustrates further 
expressions, using the same data  structure as that in 
Example 1: 

/* Return  the  nth element of the list, or NULL if 
* there aren’t that  many.  The function is de- 
* clared to return  a  pointer  to  a ‘thing’ 
*/ 

struct thing *nth(]&, n) 
register struct *list; 
register int  n; 

while(list && n--) /* while there is  list  left, 
count  out elements */ 

I 

list = list->next; 
return(n>=O ? NULL : list); /* use count  to de- 

cide if too many 
*/ 

1 

In c, the value 0 is treated as a boolean false; anything 
else  is true. Thus, the statement while(expr) is the 
same as the statement while(expr != 0). (The symbol 
!= means “not equals.”) 

The && operator is a  short circuit logical AND. If the 
condition before the && is  false, the  truth value is 
known and evaluation is stopped. This has a benefit 
other  than performance in that it can be used to 
protect illegal evaluations from being made. Thus, 
for example, if(1ist && list->Val. . . does not try to 
dereference a null pointer. 

The expression n-- is a use  of the post-decrement 
operator that has the same effect as  a function con- 
taining 

temp = n 

n = n -  1 

return(temp) 

Thus,  in Example 2, the value tested is the value 
before the variable is decremented. Like many of the 
special  low-level operators in c, this gives the com- 
piler a very good hint about generating good code, 
especially  because many machines have an address- 
ing mode that does exactly this. An idiom which is 
often seen  is the following: 

while(*p++ = *q++) 
3 
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This copies a null-terminated string. On some ma- 
chines, it is  easy for the compiler to recognize this 
idiom and produce an optimal machine instruction 
sequence. 

The return statement sets the return value of the 
function. In this case, the  return  statement is  using 

Sharing  compiler  technology  across 
languages  and  processors  both 

lowers  the  cost  and  increases  the 
overall  quality. 

a ternary conditional operator, a c language con- 
struct of the following form: 

expression 1 ? expression2 : expression3 

which  is equivalent to 

if (expression 1 is TRUE) 
evaluate expression2 

else 
evaluate expression3 

The result of the whole  expression  is the value of 
whichever  expression has been evaluated. 

Microsoft C compiler 

The Microsoft c compiler is part of a project of the 
Microsoft Corporation to create a set  of common 
compiler phases for  several  languages and machines. 
Like many language producers, we realized that writ- 
ing good compilers is expensive and  that sharing 
compiler technology across languages and processors 
both lowers the cost and increases the overall quality. 
Thus, we designed an intermediate language ( I L )  that 
allows  language  processors to  communicate with a 
machine-independent optimizer, which in turn com- 
municates through another I L  to  the machine-de- 
pendent portions of the compiler. At present we have 
language front ends for c, Pascal, FORTRAN, and 
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BASIC. Code generators have  been written for the 
Intel 8088/8086/286,9 as well as for other machines. 
Written in c, the compilers are very portable and 
run on IBM pes and  other systems. 

Because c continues to be an evolving  language, the 
first question we asked  was  which c we should im- 
plement. We started with the UNIX System-v c com- 
pilers,  which we used as a base language definition. 
When the ANSI standards effort  began, we reviewed 
the extensions proposed by the  committee  and  in- 
corporated the ones that seemed  likely to become 
part of the eventual standard. 

It has been important  to keep the compilers consis- 
tent across machines and operating systems and  to 
provide strong cross-development tools. For exam- 
ple, the relocatable object format is identical for PC 
DOS and for XENIX on  the 8086 and 286. 

Memory models. One of the difficulties  of creating a 
c compiler for the 8088/8086/286 is the segmented 
architecture of the processor. The fact that  the c 
language views the underlying machine as a flat 
address space creates a conflict. The usual approach 
to this problem is to construct the following memory 
models to  approximate  the c assumptions: 

Small. All code and  data addresses are 16 bits. 
This limits the program to two 64K-byte segments, 
one for code and one for data. 
Medium. Code addresses are 32 bits, but  data 
addresses are 16 bits. This model allows an arbi- 
trary number of code segments, but it  is limited 
to  a single data segment. 
Compact. The inverse of the medium model, the 
code addresses of the compact model are 16 bits 
and  data addresses are 32 bits. A single code 
segment can access an arbitrary number of data 
segments. 
Large. Both code and  data addresses are 32 bits, 
and both can have an arbitrary number of  seg- 
ments. 

The major problem with pure memory models is 
that  a program must pay a severe performance pen- 
alty to access  large quantities of code or  data. It is 
more expensive to manipulate 32-bit pointers than 
16-bit pointers. The problem is inherent in the ar- 
chitecture, which  is  really that of a 16-bit machine. 
For many applications, the ability to address large 
amounts of memory is not needed for the whole 
program but only for selected portions. To address 
this need, we have added the following  two key words 
to  the language: 
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Figure 1 General  architecture of the C compiler 

XACC GRAMMAR + 

ASSEMBLL 

LISTING 

OBJECT 
LINKABLE 

MODULE 

near denotes an item with a 16-bit address. 
fur denotes an item with a 32-bit address. 

Regardless  of the memory model, an object declared 
with a near or far attribute is  given the appropriate 
allocation. The programmer now has a way to escape 
from the memory model. Realistically, programmers 
tend to compile programs using the small or medium 
model and  then use  far data pointers to access the 
few data structures that need to extend beyond the 
size  of a segment. The converse is  less useful, but it 
is nonetheless available to provide near calls to local 
procedures in middle-model programs or access to 
near data in large-model programs. 

General  architecture. The Microsoft c compiler con- 
sists  of three phases-PI, ~ 2 ,  and ~ 3 - a ~  shown in 
Figure 1. The PI  phase or front end reads the source 
program and does the c language  preprocessing. This 
includes macro substitution, conditional compila- 
tion,  and inclusion of named files. P I  then translates 
the program into expression trees, doing semantic 
analysis, checking for syntax and type correctness, 
and writes an intermediate language (IL) temporary 
file. This intermediate language is both machine- 
and language-independent and  contains information 
about such things as control structures, expressions, 
symbols, and  data initialization. P I  also emits DIL, 
which contains data-type information  to be  used by 
a symbolic debugger. 

~2 is the first  pass  of the back end. It translates the 
intermediate language (IL) to a form of machine 
instruction. It first reads the IL and builds expression 
trees. Thus PZ assigns  specific  storage to data  and 
does various optimizations: constant folding, 
strength reduction (e.g., converting a multiplication 
by a power of two into a shift), type optimizations 
(e.g., changing a 32-bit addition  to  a 16-bit addition, 
if that is the precision required in  the result), com- 
mon subexpression elimination, and value propaga- 
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tion. Aho and Ullman'' describe these optimizations 
in more detail. After PZ has done these optimizations, 
the expression trees are processed by the code gen- 
erator. This part of ~2 is generated automatically 
from a  pattern language processor  called XACC and 
is described further in  the next section. PZ translates 
the optimized expression trees into Assembly Inter- 

' mediate Language (AIL), also described further in the 
next section. AIL is  very similar to assembly  language 
but  in  a form that is more useful to the rest  of the 
compiler. 

The AIL is  read  in by ~ 3 ,  the last part of the back 
end. Based on command line switches, ~3 optionally 
passes the code through the Post-Generation Opti- 
mizer ( PGO), which does further code improvement. 
The PGO is described in a later section of this paper. 
After it has completed its optimizations, ~3 builds 
instructions and emits one  or more of the following: 

Link text for the 8086/80286. This relocatable 
format is  based on  the Intel Object Module For- 
mat (OMF). 
Assembly language source for the code being  gen- 
erated. 
A listing that looks like the listing file  of the typical 
assembler. The listing contains the offsets and 
binary values of the emitted instructions, as well 
as the assembly  language. 

Phase PI ,  the early phases of ~ 2 ,  and much of ~3 are 
fairly conventional. Aho and Ullman" and many of 
the  other compiler construction textbooks are good 
references for most of these processes. The Code 
Generator  and  the PGO,  which are more interesting, 
are now presented in greater detail. 

Code generation. The code generator translates in- 
termediate language (IL) into an assembly  language 
(AIL). The IL  consists of trees representing the various 
expressions from the source program, and  the AIL is 
a set  of instructions and addressing modes for the 
target machine. Because the translation is usually 
complex, writing high-quality code generators is a 
difficult task. The problem is  largely one of recogniz- 
ing patterns in the  input representation and translat- 
ing them to  the  output representation in  an optimal 
way. Glanville'' observed that since the code gener- 
ator, like the front end, is a translator, much of the 
theoretical work on pattern matching for front ends 
can be applied to  the code generator. 

The Glanville approach uses a tool called a LALR 
parser generator, which takes a formal description of 
the  input language and produces a parsing program 
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that recognizes patterns in the  input language and 
makes them available for translation." When a pat- 
tern is recognized,  it  is a simple matter to write out 
the  appropriate  output language. Much of the power 
of the Glanville technique comes from the ability to 
have the parser recognize arbitrary patterns  that 
correspond to machine instructions. 

However, a  number of workers  have  discovered that 
register targeting is a problem with this approach 
and have  used various techniques to deal with it.I2-I5 
That is, if an intermediate calculation is  needed for 
some purpose-say as a pointer-it may be  neces- 
sary to perform the calculation in a special-purpose 
register. Glanville's approach recognizes patterns by 

A pattern  can consist of terminal 
symbols,  other  productions, 

conditions  to be met, or actions to 
be taken. 

collecting smaller patterns into larger ones (i.e., in a 
bottom-up  manner). Thus, it does not recognize the 
context in which a pattern is  used. 

Our approach also  uses a parser built by a parser 
generator, but  the matching process  is  steered by the 
eventual use  of the pattern, in addition to  the com- 
ponent patterns (i.e., a top-down approach). We now 
illustrate how our code generator works by stepping 
through the translation of a c program fragment. 

The pattern description language  is  of the following 
form: 

production : pattern 
I optional alternate pattern 

2 

A pattern can consist of terminal symbols, other 
productions, conditions to be met, or actions to be 
taken. If the first pattern fails to match, the second 
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is tried, and so on. A pattern description is processed 
by the XACC pattern language  processor,  which pro- 
duces a parser that is part of ~ 2 .  In the following 
example, each time  a pattern is recognized a code 
template is  associated  with the pattern. This template 
has the following three parts: 

CODE represents some number of machine instruc- 
tions (possibly zero). Code templates look much 
like  assembly  language, but have substitution ma- 
cros (indicated in the example by a leading % 
symbol) and  other operators imbedded in them. 

DEFER is analogous to  the return value of a func- 
tion. The deferred strings allow us to build up  a 
single machine instruction out of component pat- 
terns. As an example, an instruction typically  uses 
the deferred strings of its subpatterns for operand 
addressing modes. The addressing modes have, in 
turn, been built up from simpler components such 
as register names and constants. 

ATTRIB contains miscellaneous attributes of the 
template. 

1. The first  field contains  the  number of child 
templates or subpatterns. 

2. The second field consists of the following two 
parts: 

Rewrite rule. Whenever the actions of a tem- 
plate are complete and AIL has been generated, 
the original expression tree is rewritten to re- 
flect the  current state, most commonly as 
REREG (in  a register) or REFAD (an effective 
address). 

Path. When machine code is eventually emit- 
ted, the lower  regions of the tree come  out first. 
Each template in the code sequence may have 
some restrictions on allowed  registers. This at- 
tribute, termed the path, is  used to pass  register 
constraint information downward. These con- 
straints are accumulated so that  the eventual 
selection of a register  satisfies the tightest con- 
straint on its use along a path. 

3. The  third field contains operators that deter- 
mine  the order in which code is emitted. This 
is described in more detail later in this paper. 

4. The remaining fields contain register allocation 
information. Each of these fields has three sub- 
fields: 
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Link attaches  the  other two subfields to a par- 
ticular child template. 

Constraint places restrictions on which registers 
may be selected. CAREG, for example, states 
that  there  must be an address register. Note 
that  the child template  can  further propagate 
this  constraint using the path parameter previ- 
ously described. 

Allocation attributes declare what to do with a 
register: NEW to allocate a new  register; FREE to 
free all  registers  used  by the  subpattern  or 
others. 

Usually there are only one  or two  of these subfields 
that are nonzero. The following  is the example for 
which we have been setting the stage.  We  first  give 
an example of an XACC input  grammar. Although it 
is not complete, it is sufficient to compile  the c 
expression that follows it. 

start : ASSIGN address reg 
I 
CODE("m0V %bw % 1, %2"); 

DEFER ('"'); 
ATTRIB("2, 0, 0 ,  IIOIFREE,  2101FREE, 

/* template 1 */ 

0,077; 
I 

5 

reg : EXTRACT address 
I 
CODE("m0V %bw % 1, %2"); 

/* template 2 */ 
DE FER("%^"); 
ATTRIB("~,  RE REG^ 1, SUSCR, OIOINEW, 

1 Io 1 FREE, 0,o"); 
I 

I 
I PLUS reg constant 

coDE("add %bw % 1, %2"); 
/* template 3 */ 

DEFER("% 1"); 
A T T R I B ( " ~ ,  RE REG^ 1, SUSCR, 01010, 

1 
1 10 I FREE, 0,o"); 

> 

address : N A M E  

{ 
CODE(""); /* template 4 */ 

ATTRIB("O,O,O, O,O,O,O"); 
1 

DEFER("[%S]"); 
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I PLUS addr-reg constant 
{ 
CODE(""); /* template 5 */ 
DEFER("[%regl + %2]"); 
ATTRIB("2, REFADIO, SU-ADR, 

I 
1 I CAREG IO, 2 IO IO, 0,O"); 

9 

constant: CONSTANT 

{ 
CODE(""); /* template 6 */ 
DEFER("%C"); 
ATTRIB("O,O,O, o,o,o,o~~); 
1 

, 
addr- : EXTRACT address 

reg 
I 
CODE("m0V %bw % 1, %2"); 

/* template 7 */ 
DEFER("% I"); 
ATTRIB(" 1, REREG I 1, SU-ADR, 

I 
I reg 

O ~ N E W ~ C A R E G ,  1 I F R E E ,  0,O"); 

5 

The macros used in the example are defined as 
follows: 

?& 1 Replace with the results of the first link field 
in the ATTRIB. This could be either  the DE- 
FER string of a subpattern or the result of 
allocating a new  register. 

%2 Similarly, replace with the results of the 
second link field. 

%c Substitute  the value of the  constant in the 
associated expression tree. 

%s Substitute  the symbol name from the asso- 
ciated expression tree. 

%reg1 Replace with the register name returned in 
the first link field. 

Here is an example c expression to be compiled: 

i = p->x + 3; 

This expression means to get the value of the x field 
of the  structure pointed to by p, add 3, and assign to 
the variable i. 

After P I  and  the  optimizer stage  of ~2 are  done,  the 
expression tree looks as shown in Figure 2. 
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Note that  the N A M E  node represents a memory ad- 
dress. The EXTRACT node is  used to get the contents 
of that address. The parser generated from the pat- 
tern grammar given  previously tries to match this 
tree by doing a preorder or forward Polish walk of 
this tree. This is written as follows: 

ASSIGN NAME(i) PLUS EXTRACT PLUS EXTRACT 
NAME(p)  CONSTANT(0ffSet X) CONSTANT(3) 

In the pattern to be matched, start consists of ASSIGN 
(which matches), and two subpatterns: address and 
reg. The address pattern matches the NAME node. 
Similarly, the rest  of the  input matches the reg 
pattern and its associated subpatterns. Each time  a 
pattern is  recognized, the associated template (if it 
exists)  is pushed onto  a stack. When the entire 
matching process is complete, a new tree is created 
parallel to  the original expression tree. Figure 3 
shows the parallel tree for this example. The instruc- 
tions from the CODE fields are used to identify all the 
operands. The  number in parentheses is the  number 
of the template producing the node. 

To generate AIL from this parallel tree, we must 
determine the optimal order in which to walk the 
tree, and we must assign  registers  where required. 
The first  walk  of the parallel tree analyzes the order 
operators (the third field in each ATTRIB record). 
These operators have the prefix su-, after Sethi and 
Ullman, who created an ancestor of the technique;16 
such operators are used to decide the order in which 
to walk the tree. The ordering heuristic deals with 
overlapping and conflicting register  classes. For each 
node in the parallel tree, a held  vector (the registers 
left  busy from this calculation) and  a used vector (the 
total set  of  registers  used by this entire subtree) are 
computed on the basis  of the su- operator. Each 
component of the vector contains  the  number of 
registers  held or used in  that register  class  by the 
expression. The sum of  held and used  registers in 
each class predicts where the register allocator will 
run  out of registers and spill code will have to be 
generated. The ordering phase attempts  to minimize 
the  number of spills by considering whether there 
are fewer  spills in first  walking the left  side  of the 
tree in Figure 3, then the right  side, or vice  versa.  In 
the example, there are no conflicts, so that any order 
is as good as any  other order. 

After deciding the order in which to generate code 
for the parallel tree nodes, we do another walk in the 
established order, passing  register constraints from 
the ATTRIB fields down the tree. These constraints 
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Figure 2 Example  expression  tree  after P1 and P2 
processing 

are accumulated so that  the  ultimate selection of a 
register  satisfies the strictest constraint used in the 
expression. In the example, the addressing mode 
template ( 5 )  constrains its first child to CAREG (Con- 
strain to Address REGister), which, on the 8086, 
forces one of BX,  SI,  or DI to be chosen. If there had 
been other constraints, say, that  the register must be 
convertible to  a byte register, we would have re- 
stricted it further to  the intersection of the two sets. 
That is, the intersection of (AX,CX,DX,BX)  and 
(BX,SI,DI) is (BX]. 

As the leaf nodes are reached, we back out of the 
tree, allocating registers on  the fly according to  the 
accumulated constraints and emitting code to the 
AIL stream. The original expression trees are rewrit- 
ten according to  the rewrite field  of the ATTRIB in 
the template in preparation for potential spills  (dis- 
cussed  below). 

Here is the example in c again: 
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Figure 3 New  expression tree after  completion of the 
matching  process 

. .  

i = p - > x + 3 ;  

and  the code produced is the following: 

mov bx,p move the  contents of p into 
BX 

template 2 with operand from 
template 4 

mov ax,[bx+x] move the  contents of address 
BX+X into AX 

template 2 with operand from 
template 5 (which  was built 
from 2 and 6 )  

add ax,3 add  3  to AX 
template 3 with operands 

from 2 and 6 

mov i,ax move the  contents of AX into  i 
template 1 ,  with operands 

from 4 and 3 
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When there are unresolvable register  conflicts, it is 
necessary to spill an intermediate value from the 
demanded register to  another location in order to 
proceed  with the calculation. On machines like the 
8086, it is often more effective to spill to  a different 
register than  to spill to memory. Regardless  of the 
choice, the spill  sufficiently changes the pattern of 
code to be generated that  a reanalysis  is in order. 
Thus, we emit code to make the required register 
available, rewrite the original tree to represent the 
current state of the evaluation, and  run  the whole 
grammar/order/register allocation algorithm again. 

The  Post-Generation  Optimizer. The Post-Genera- 
tion Optimizer (PGO) is  based  largely on  the FINAL 
phase of the Bliss compiler.” The PGO performs a 
variety  of optimizations that  the code generator can- 
not do  or does not do because the PGO can do a 
better job. These include peephole optimizations, 
which involve replacing sequences of code with more 
efficient sequences that produce the same result. The 
PGO also performs a simple flow analysis to eliminate 
redundant register loads. Branches are shortened 
where  possible, and several simple code movement 
optimizations are applied. One of the more interest- 
ing of these code movement optimizations, which  is 
called cross-jurnping, involves sharing the instruc- 
tions of a  common sequence before a  common label. 

Consider the following c statements: if (x) then x = 
y+z;  else x = w+z. ~2 generates the following 8086 
instructions. The  comments after each line describe 
each instruction rather than explaining the general 
flow. 

cmp x,O ; compare x and 0 
je L I  ; branchifx == 0 
mov ax,y; load y into register  ax 
add ax,z ; add  z  to register  ax 
mov x,ax; store register  ax into x 
j ~2 ; unconditional branch 

L I :  mov ax,w ; load w  into register ax 
add ax,z ; add  z  to register  ax 
mov x,ax; store register  ax into  x 

L2: 

Observe that  the last two instructions of each path 

add ax,z ; add z to register ax 
mov x,ax ; store register  ax into x 

are  the same. Cross-jumping takes advantage of this 
and rewrites the whole sequence as 
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cmp x,O ; compare x and 0 
je LI ; branchifx == 0 
mov ax,y; load y into register  ax 
j ~2 ; branch 

L I : mov ax,w ; load w into register  ax 
~ 2 :  add ax,z ; add z to register  ax 

mov x,ax; store register  ax into x 

Because our target machines are small, our objective 
has been to concentrate on generating small code. 
Small code is usually  fast code. Cross-jumping does 
not change execution speed, but it reduces code size. 
Such sequences are surprisingly common in gener- 
ated code. 

P1 passes line numbers to ~ 2 ,  which  passes them on 
to ~ 3 .  This allows the creation of code offset-line- 
number tables in the object module. Data allocation 
information is  passed from ~2 to ~3 in the AIL, and 
~3 merges it with the type information from the DIL 
to create a symbol table in the object module. A 
symbolic debugger capable of  using this information 
is currently being studied. 

Concluding  remarks 

In the past two years, there have been over ten new 
c compilers offered for the PC. The availability of so 
many compilers has made more people  aware of the 
language. The hardware requirements are basic. A 
programmer can adequately use microsoft c on  the 
PC with two floppy disks and as little as 192K bytes 
of memory. For a realistic development environ- 
ment, a minimum of 256K bytes  of memory and a 
hard disk are preferable. A growing number of de- 
velopment tools are becoming available for use with 
c-special-purpose libraries, symbolic debuggers, 
and program-oriented editors. c has proved to be a 
fine systems and applications language for small 
computers. The greatest advantage of c stems from 
its original concept, which  is to give the programmer 
both low-level control of the machine and high-level 
expression  of programming concepts. 
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