The C programming
language and a C compiler

In the last few years, the C programming language has
become one of the most widely used languages for
applications and systems software on microcomputer
systems. This paper describes the C language and its
history. It then presents a specific implementation of
C, the Microsoft C Compiler, which runs on the IBM
Personal Computer.

In 1970, Thompson, while working on the earliest
version of the UNIX operating system at the Bell
Telephone Laboratories, Inc., wrote an interpreter
for a language patterned on BCPL, which he called
B.! Ritchie then wrote a compiler for a derivative of
B that he called c. Thompson and Ritchie wrote the
next version of the UNIX operating system in the c
language. Until that time, most operating systems
had been written in assembly language, but Thomp-
son and Ritchie found it so much easier working in
C that they were able to add many new functions to
UNIX. The first version of ¢ was used to generate
code for the then-new DEC ppP-11. The compiler was
small and fast and did not attempt any ambitious
optimizations. Instead, the ¢ language provided reg-
ister variables and low-level operations that allowed
the programmer to guide the compiler in generating
useful code.

Through the 1970s, ¢ remained closely associated
with UNIX. Most of the system is written in the ¢
language. Compilers were written for c for use on
the 1BM System/370 and the Interdata 32, as well as
a large number of portable programs written in the
¢ language.” AT&T began to use C to develop their
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switching systems, and eventually it became the
main development language at Bell Laboratories. In
the mid-1970s, UNIX was introduced into the aca-
demic environment at a number of universities, and
the popularity of ¢ started to spread. By the late
1970s, ¢ compilers were becoming available for a
large number of processors and operating systems,
and papers began to appear comparing C with other
languages for various applications.>*

In the original language, there was little in the way
of type checking and few restrictions as to type. The
C language was invented by experienced program-
mers for their own use, and it provided them with a
great deal of power but very little protection from
data-type errors. A program called “lint™? for check-
ing types in C programs was the only way to provide
such protection. As the language has evolved, more
attention has been paid to types and to type checking
within both the language and the compilers, but the
philosophy of ¢ remains unchanged. Even as the
language has incorporated stronger type checking,
there has continued to be a mechanism to override
its restrictions.

At first, the typical ¢ user was a systems programmer
who needed to be close to the machine and who
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required the efficient code generation of assembly
language. At the same time, such programmers
wanted the fluency of expression inherent in a high-
level language. However, they were doing their de-
velopment on the target machine, which was a min-

C is a popular choice of applications
programmers, although it is rarely
one’s first programming language.

tcomputer and thus not large enough to support
large optimizing compilers. Therefore, the early ¢
compilers saved space by allowing the programmer
to do some of the optimization.

The 16-bit personal computers of today are about
the same size as the minicomputers of the early days
of c. Application writers working on personal com-
puters are under very much the same constraints as
systems programmers using C in the early 1970s.
Because of this, ¢ has proved to be a popular choice
among applications programmers, although it is
rarely one’s first programming language. Experi-
enced programmers appreciate the ability to write
powerful programs economically in C.

In 1983, an aNsI standards committee (x3J11) for C
was formed. Kernighan and Ritchie® had earlier
written a reference manual, which was the closest
thing to a standard. However, the manual was not
precise and did not contain later features in the
language, nor did it document the standard library.
The major job of the committee has been to codify
common understanding, because the ¢ language has
had remarkably few local extensions added over the
years. Among those few extensions are argument
checking, structure copying, and an enumerated
type.” There has also been an effort by UNIFORUM, a
UNIX users’ organization, to create a standard for the
¢ library.® Although this standard is oriented toward
UNIX, most of it is sufficiently general that the ANsI
committee is using it as a basis for their library
standard.
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Concepts of the C language

The ¢ programming language® is expression-ori-
ented, with a rich set of operators and a block
structure, encouraging well-structured programs. It
includes constructs for decision making (if state-
ments), several types of looping (for, while, and do-
while), and selection of cases (switch). In keeping
with the spirit of low-level languages, there is also
support for goto.

The ¢ language is relatively low-level, providing a
set of operators that work on the same kinds of
objects that most computers do. This allows the
programmer to work close to the underlying ma-
chine. Yet c is of a sufficiently high level to make
programs portable across a wide variety of machines.
The language views the underlying machine as a
single monolithic array, altowing objects to be ref-
erenced anywhere in that array. Pointer arithmetic
and array subscripting both manipulate the same
kind of object—a memory address.

The fundamental data types that ¢ supports are
characters, integers of several sizes, and floating point
numbers of both single and double precision.
Pointers can be declared to all data types, including
derived data types and functions. New data types
can be derived through the use of arrays, pointers,
structures, unions, and functions.

C is a relatively simple language that provides few
mechanisms for dealing directly with complex data
structures such as strings, lists, and arrays. Similarly,
there is no direct language support for dealing with
the environment (no input-output, no memory al-
location, etc.). Instead, these capabilities are pro-
vided through function calls. In the evolution of the
¢ language, a particular set of function calls (the so-
called standard library) has come to be considered
part of the language. But because the language com-
piler does not recognize anything special about these
function calls, a programmer can replace standard
functions with special implementations if necessary.

Another powerful feature of the language is a text
processor, called the ¢ preprocessor, which allows the
use of macros, conditional compilation, and the
inclusion of other text files. These features facilitate
the writing of ¢ programs that are portable to a
variety of machines and operating systems.

The simplicity of the language has allowed compilers
to be written easily and quickly. The expression
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orientation of the language and the rich set of oper-
ators enable the programmer to create efficient pro-
grams using simple compilers.

Two examples

C is attractive to systems programmers because of
the number of low-level operators and data types
provided. One task these low-level operators are
especially suited to is manipulating linked lists. The
following are two somewhat dense examples illus-
trating a number of the operators used in initializing
and scanning a linked list. The function is presented
in ¢, followed by a discussion of the operators in-
volved. Note that anything occurring between /* . . .
and ... */ is a comment.

Example 1. The following are some basic functions
of the C language.

/* Preprocessor directives—replace all occurrences
of ¥/

#define size 100
#define NULL O

/* ‘S1zE” with 100 */

/* ‘NULL’ with 0 */

struct thing { /* Declare a structure
type, ‘thing’, */

/* consisting of a pointer
to a ‘thing’ */

/* and an 8-bit signed
integer */

struct thing *link;

char val;
5
struct thing Table[s1zE]; /* declare an array of

‘things’ */

struct thing *Freething; /* a pointer to a thing */
/* initialize a freelist of

things */
init()
{

register struct thing /* declare a local register
*; pointer variable */

for(p = Table; p < &Table[sIZE]; p+=1)
{ /* make each element */
p — >link = p—1; /* point to the previous
element */
p — >val = 0;

|

Freething = p—1;
Table[0).link = NULL;

/* initialize freelist head */
/* and tail */
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A register declaration instructs the compiler that the
variable should be placed in a register if possible.
Registers are allocated in the order declared as long

Code produced using register
variables is almost always smaller
and faster than that using local
variables.

as they are available; otherwise, they are treated as
local variables. Our implementation for the Intel
8086/80286 provides two register variables, s1 and
DI; other processors may have more or fewer. The
code produced using register variables is almost al-
ways smaller and faster than that using ordinary
local variables.

A for-loop is of the form

for (expressionl; expression2; expression3)
BODY OF LOOP

which can be expressed in a pseudocode as follows:

evaluate expression |

while (expression2 is TRUE)
BODY OF LOOP

evaluate expression3

end-of-loop

The for-loop in the initialization example just given
illustrates several features of c. The first clause sets
a pointer p to point to the base of the array Table.
In ¢, the name of an array is synonymous with the
address of the first element. A pointer is a variable
containing an address.

Following the first semicolon is the for-loop’s end
condition. In this case, the value of the pointer is
being tested against the address of the end of the
array. Following the second semicolon there is an
expression to be evaluated as the last action each
time through the loop. Any expression can be put
there.
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In Example 1, expression3 of the for-loop uses the
+= operator, which has the following form:

expressionl += expression2
is equivalent to
expressionl = expressionl + expression2

with the exception that expression] is evaluated only
once; thus any side effects occur only once. In this

Pointer arithmetic is machine
independent.

case, the += operator is adding a constant value to
the pointer. In ¢, pointer arithmetic is scaled to the
size of the object pointed to. Because we are adding
to a pointer to a “thing” in the example, the constant
1 is scaled to the size of the “thing.”

Doing this scaling based on pointer type has an
interesting and useful effect. Because an array name
is equivalent to a pointer to the base of the array,
and adding an index to a pointer causes the index to
be scaled by the element size, the resulting operation
is the same arithmetic used for array subscripting.
Incidentally, this means that array subscripting is
commutative (i.e., array [i] == i[array]) because
addition is commutative. This makes pointer arith-
metic machine independent.

The braces {...} delimit a compound statement
that 1s to be executed each pass through the loop.
The first statement assigns the address of the previous
element to its own link field, thereby taking advan-
tage of the pointer scaling operation. The —> oper-
ator references a field of the structure pointed to.

The second statement inside the braces initializes
the integer field. The two statements after the for-
loop clean up the boundary conditions. This is not
intended to be a stylistically “nice” routine but rather
a dense illustration.
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Example 2. The following example illustrates further
expressions, using the same data structure as that in
Example 1:

/* Return the nth element of the list, or NULL if
* there aren’t that many. The function is de-
* clared to return a pointer to a ‘thing’

*
/

struct thing *nth(list, n)

register struct *list;
register int n;

while(list && n—-) /* while there is list left,
count out elements */
list = list—>next;
return(n>=0 ? NULL : list); /* use count to de-
cide if too many
*/
!

In ¢, the value 0 is treated as a boolean false; anything
else is true. Thus, the statement while(expr) is the
same as the statement while(expr = 0). (The symbol
= means “not equals.”)

The && operator is a short circuit logical AND. If the
condition before the && is false, the truth value is
known and evaluation is stopped. This has a benefit
other than performance in that it can be used to
protect illegal evaluations from being made. Thus,
for example, if(list && list—>val. .. does not try to
dereference a null pointer.

The expression n—— is a use of the post-decrement
operator that has the same effect as a function con-
taining

temp =n
n=n-1
return(temp)

Thus, in Example 2, the value tested is the value
before the variable is decremented. Like many of the
special low-level operators in C, this gives the com-
piler a very good hint about generating good code,
especially because many machines have an address-
ing mode that does exactly this. An idiom which is
often seen is the following:

while(*p++ = *q++)

k]
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This copies a null-terminated string. On some ma-
chines, it is easy for the compiler to recognize this
idiom and produce an optimal machine instruction
sequence.

The return statement sets the return value of the
function. In this case, the return statement is using

Sharing compiler technology across
languages and processors both
lowers the cost and increases the
overall quality.

a ternary conditional operator, a C language con-
struct of the following form:

expressionl ? expression2 : expression3
which is equivalent to

if (expression1 is TRUE)
evaluate expression2

else
evaluate expression3

The result of the whole expression is the value of
whichever expression has been evaluated.

Microsoft C compiler

The Microsoft ¢ compiler is part of a project of the
Microsoft Corporation to create a set of common
compiler phases for several languages and machines.
Like many language producers, we realized that writ-
ing good compilers is expensive and that sharing
compiler technology across languages and processors
both lowers the cost and increases the overall quality.
Thus, we designed an intermediate language (1L) that
allows language processors to communicate with a
machine-independent optimizer, which in turn com-
municates through another 1L to the machine-de-
pendent portions of the compiler. At present we have
language front ends for c, Pascal, FORTRAN, and
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BASIC. Code generators have been written for the
Intel 8088/8086/286,° as well as for other machines.
Written in ¢, the compilers are very portable and
run on IBM Pcs and other systems.

Because ¢ continues to be an evolving language, the
first question we asked was which ¢ we should im-
plement. We started with the UNIx System-v C com-
pilers, which we used as a base language definition.
When the ANsI standards effort began, we reviewed
the extensions proposed by the committee and in-
corporated the ones that seemed likely to become
part of the eventual standard.

It has been important to keep the compilers consis-
tent across machines and operating systems and to
provide strong cross-development tools. For exam-
ple, the relocatable object format is identical for pc
pos and for XENIX on the 8086 and 286.

Memory models. One of the difficulties of creating a
¢ compiler for the 8088/8086/286 is the segmented
architecture of the processor. The fact that the ¢
language views the underlying machine as a flat
address space creates a conflict. The usual approach
to this problem is to construct the following memory
models to approximate the c assumptions:

s Small. All code and data addresses are 16 bits.
This limits the program to two 64K-byte segments,
one for code and one for data.

s Medium. Code addresses are 32 bits, but data
addresses are 16 bits. This model allows an arbi-
trary number of code segments, but it is limited
to a single data segment.

s Compact. The inverse of the medium model, the
code addresses of the compact model are 16 bits
and data addresses are 32 bits. A single code
segment can access an arbitrary number of data
segments.

s Large. Both code and data addresses are 32 bits,
and both can have an arbitrary number of seg-
ments.

The major problem with pure memory models is
that a program must pay a severe performance pen-
alty to access large quantities of code or data. It is
more expensive to manipulate 32-bit pointers than
16-bit pointers. The problem is inherent in the ar-
chitecture, which is really that of a 16-bit machine.
For many applications, the ability to address large
amounts of memory is not needed for the whole
program but only for selected portions. To address
this need, we have added the following two key words
to the language:
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Figure 1 General architecture of the C compiler

XACC GRAMMAR

OPTIMIZER/ ASSEMBLY

CODE GEN.
s LISTING
2] LINKABLE

' seimp OBJECT
MODULE

* pnear denotes an item with a 16-bit address.
s far denotes an item with a 32-bit address.

Regardless of the memory model, an object declared
with a near or far attribute is given the appropriate
allocation. The programmer now has a way to escape
from the memory model. Realistically, programmers
tend to compile programs using the small or medium
model and then use far data pointers to access the
few data structures that need to extend beyond the
size of a segment. The converse is less useful, but it
is nonetheless available to provide near calls to local
procedures in middle-model programs or access to
near data in large-model programs.

General architecture. The Microsoft ¢ compiler con-
sists of three phases—p1, P2, and p3—as shown in
Figure 1. The r1 phase or front end reads the source
program and does the ¢ language preprocessing. This
includes macro substitution, conditional compila-
tion, and inclusion of named files. p1 then translates
the program into expression trees, doing semantic
analysis, checking for syntax and type correctness,
and writes an intermediate language (IL) temporary
file. This intermediate language is both machine-
and language-independent and contains information
about such things as control structures, expressions,
symbols, and data initialization. p1 also emits DIL,
which contains data-type information to be used by
a symbolic debugger.

P2 is the first pass of the back end. It translates the
intermediate language (IL) to a form of machine
instruction. It first reads the iL and builds expression
trees. Thus p2 assigns specific storage to data and
does various optimizations: constant folding,
strength reduction (e.g., converting a multiplication
by a power of two into a shift), type optimizations
(e.g., changing a 32-bit addition to a 16-bit addition,
if that is the precision required in the result), com-
mon subexpression elimination, and value propaga-
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tion. Aho and Ullman'? describe these optimizations
in more detail. After P2 has done these optimizations,
the expression trees are processed by the code gen-
erator. This part of P2 is generated automatically
from a pattern language processor called xacc and
is described further in the next section. P2 translates
the optimized expression trees into Assembly Inter-
mediate Language (AIL), also described further in the
next section. AIL is very similar to assembly language
but in a form that is more useful to the rest of the
compiler.

The AIL is read in by p3, the last part of the back
end. Based on command line switches, p3 optionally
passes the code through the Post-Generation Opti-
mizer (pGO), which does further code improvement.
The pGo is described in a later section of this paper.
After it has completed its optimizations, P3 builds
instructions and emits one or more of the following:

o Link text for the 8086/80286. This relocatable
format is based on the Intel Object Module For-
mat (OMF).

o Assembly language source for the code being gen-
erated.

e A listing that looks like the listing file of the typical
assembler. The listing contains the offsets and
binary values of the emitted instructions, as well
as the assembly language.

Phase p1, the early phases of p2, and much of p3 are
fairly conventional. Aho and Ullman'® and many of
the other compiler construction textbooks are good
references for most of these processes. The Code
Generator and the pGO, which are more interesting,
are now presented in greater detail.

Code generation. The code generator translates in-
termediate language (IL) into an assembly language
(AIL). The 1L consists of trees representing the various
expressions from the source program, and the AIL is
a set of instructions and addressing modes for the
target machine. Because the translation is usually
complex, writing high-quality code generators is a
difficult task. The problem is largely one of recogniz-
ing patterns in the input representation and translat-
ing them to the output representation in an optimal
way. Glanville!' observed that since the code gener-
ator, like the front end, is a translator, much of the
theoretical work on pattern matching for front ends
can be applied to the code generator.

The Glanville approach uses a tool called a LALR
parser generator, which takes a formal description of
the input language and produces a parsing program
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that recognizes patterns in the input language and
makes them available for translation.'° When a pat-
tern is recognized, it is a simple matter to write out
the appropriate output language. Much of the power
of the Glanville technique comes from the ability to
have the parser recognize arbitrary patterns that
correspond to machine instructions.

However, a number of workers have discovered that
register targeting is a problem with this approach
and have used various techniques to deal with it.'*""
That is, if an intermediate calculation is needed for
some purpose—say as a pointer—it may be neces-
sary to perform the calculation in a special-purpose
register. Glanville’s approach recognizes patterns by

A pattern can consist of terminal
symbols, other productions,
conditions to be met, or actions to
be taken.

collecting smaller patterns into larger ones (i.e., in a
bottom-up manner). Thus, it does not recognize the
context in which a pattern is used.

Our approach also uses a parser built by a parser
generator, but the matching process is steered by the
eventual use of the pattern, in addition to the com-
ponent patterns (i.e., a top-down approach). We now
illustrate how our code generator works by stepping
through the translation of a ¢ program fragment.

The pattern description language is of the following
form:

production : pattern
| optional alternate pattern

3

A pattern can consist of terminal symbols, other
productions, conditions to be met, or actions to be
taken. If the first pattern fails to match, the second
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is tried, and so on. A pattern description is processed
by the xAcc pattern language processor, which pro-
duces a parser that is part of p2. In the following
example, each time a pattern is recognized a code
template is associated with the pattern. This template
has the following three parts:

* CODE represents some number of machine instruc-
tions (possibly zero). Code templates look much
like assembly language, but have substitution ma-
cros (indicated in the example by a leading %
symbol) and other operators imbedded in them.

e DEFER is analogous to the return value of a func-
tion. The deferred strings allow us to build up a
single machine instruction out of component pat-
terns. As an example, an instruction typically uses
the deferred strings of its subpatterns for operand
addressing modes. The addressing modes have, in
turn, been built up from simpler components such
as register names and constants.

e ATTRIB contains miscellaneous attributes of the
template.

1. The first field contains the number of child
templates or subpatterns.

2. The second field consists of the following two
parts:

Rewrite rule. Whenever the actions of a tem-
plate are complete and AIL has been generated,
the original expression tree is rewritten to re-
flect the current state, most commonly as
REREG (in a register) or REFAD (an effective
address).

Path. When machine code is eventually emit-
ted, the lower regions of the tree come out first.
Each template in the code sequence may have
some restrictions on allowed registers. This at-
tribute, termed the path, is used to pass register
constraint information downward. These con-
straints are accumulated so that the eventual
selection of a register satisfies the tightest con-
straint on its use along a path.

3. The third field contains operators that deter-
mine the order in which code is emitted. This
is described in more detail later in this paper.

4. The remaining fields contain register allocation
information. Each of these fields has three sub-
fields:
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Link attaches the other two subfields to a par-
ticular child template.

Constraint places restrictions on which registers
may be selected. CAREG, for example, states
that there must be an address register. Note
that the child template can further propagate
this constraint using the path parameter previ-
ously described.

Allocation attributes declare what to do with a
register: NEW to allocate a new register; FREE to
free all registers used by the subpattern or
others.

Usually there are only one or two of these subfields
that are nonzero. The following is the example for
which we have been setting the stage. We first give
an example of an XACC input grammar. Although it
1s not complete, it is sufficient to compile the C
expression that follows it.

start : ASSIGN address reg
{
CODE(“mov %bw %1, %27);
/* template 1 */
DEFER (“”);
ATTRIB(*2, 0, 0, 1|O|FREE, 2|0|FREE,
0,07),
)

reg ! EXTRACT address
{
CODE(“mov %bw %1, %2™),
/* template 2 */
DEFER(*%17);
ATTRIB(“ 1, REREG] 1, SU_SCR, O|O|NEW,
1|0|FREE, 0,0”);
J

| PLUS reg constant
{
CODE(“add %bw %1, %27),
/* template 3 */
DEFER(“%17);
ATTRIB(“1, REREG]|1, SU_ScCr, 0]0]0,
10| FREE, 0,0™);
§

address : N’AME
{
CODE(“™),
DEFER(*“[%S]”);
ATTRIB(“0,0,0, 0,0,0,0™);
}

/* template 4 */
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| pLUS addr_reg constant
{
CODE(“”); /* template 5 */
DEFER(“[%regl + %2]7);
ATTRIB(“2, REFAD|0, SU_ADR,
1]cAREG|0, 2]|0]0, 0,0™);
J

constant: CONSTANT

{

CODE(“”);
DEFER(“%C”);
ATTRIB(“0,0,0, 0,0,0,0™);

}

addr_ : EXTRACT address
reg
{

CODE(“mov %bw %1, %27,
/* template 7 */

/* template 6 */

DEFER(“%17);
ATTRIB(“1, REREG]| 1, SU__ADR,
O|NEW|CAREG, 1|FREE, 0,0);
}
| reg

£}

The macros used in the example are defined as
follows:

%1 Replace with the results of the first link field
in the ATTRIB. This could be either the DE-
FER string of a subpattern or the result of
allocating a new register.

%2 Similarly, replace with the results of the

second link field.

%C Substitute the value of the constant in the
associated expression tree.

%S Substitute the symbol name from the asso-

ciated expression tree.
%regl Replace with the register name returned in
the first link field.
Here is an example C expression to be compiled:
1=p—>x + 3;
This expression means to get the value of the x field
of the structure pointed to by p, add 3, and assign to
the variable 1.

After P1 and the optimizer stage of p2 are done, the
expression tree looks as shown in Figure 2.
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Note that the NAME node represents a memory ad-
dress. The EXTRACT node is used to get the contents
of that address. The parser generated from the pat-
tern grammar given previously tries to match this
tree by doing a preorder or forward Polish walk of
this tree. This is written as follows:

ASSIGN NAME(i) PLUS EXTRACT PLUS EXTRACT
NAME(p) CONSTANT(offset x) CONSTANT(3)

In the pattern to be matched, start consists of ASSIGN
(which matches), and two subpatterns: address and
reg. The address pattern matches the NAME node.
Similarly, the rest of the input matches the reg
pattern and its associated subpatterns. Each time a
pattern is recognized, the associated template (if it
exists) is pushed onto a stack. When the entire
matching process is complete, a new tree is created
parallel to the original expression tree. Figure 3
shows the parallel tree for this example. The instruc-
tions from the coDE fields are used to identify all the
operands. The number in parentheses is the number
of the template producing the node.

To generate AlL from this parallel tree, we must
determine the optimal order in which to walk the
tree, and we must assign registers where required.
The first walk of the parallel tree analyzes the order
operators (the third field in each ATTRIB record).
These operators have the prefix su_, after Sethi and
Ullman, who created an ancestor of the technique;'®
such operators are used to decide the order in which
to walk the tree. The ordering heuristic deals with
overlapping and conflicting register classes. For each
node in the parallel tree, a held vector (the registers
left busy from this calculation) and a used vector (the
total set of registers used by this entire subtree) are
computed on the basis of the su_ operator. Each
component of the vector contains the number of
registers held or used in that register class by the
expression. The sum of held and used registers in
each class predicts where the register allocator will
run out of registers and spill code will have to be
generated. The ordering phase attempts to minimize
the number of spills by considering whether there
are fewer spills in first walking the left side of the
tree in Figure 3, then the night side, or vice versa. In
the example, there are no conflicts, so that any order
1s as good as any other order.

After deciding the order in which to generate code
for the parallel tree nodes, we do another walk in the
established order, passing register constraints from
the ATTRIB fields down the tree. These constraints
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Figure 2 Example expression tree after P1 and P2
processing

ASSIGN

EXTRACT

Y.

EXTRACT

I |
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are accumulated so that the ultimate selection of a
register satisfies the strictest constraint used in the
expression. In the example, the addressing mode
template (5) constrains its first child to CAREG (Con-
strain to Address REGister), which, on the 8086,
forces one of BX, SI, or DI to be chosen. If there had
been other constraints, say, that the register must be
convertible to a byte register, we would have re-
stricted it further to the intersection of the two sets.
That 1s, the intersection of {AX,cx,DX,BX}] and
{BX,SL,DI} is {BX].

As the leaf nodes are reached, we back out of the
tree, allocating registers on the fly according to the
accumulated constraints and emitting code to the
AIL stream. The original expression trees are rewrit-
ten according to the rewrite field of the ATTRIB in
the template in preparation for potential spills (dis-
cussed below).

Here is the example in ¢ again:

RYAN AND SPLLER 45




Figure 3 New expression tree after completion of the
matching process

i=p—->x+3;

and the code produced is the following:

mov  bx,p

mov  ax,[bx+x]

add ax,3

mov i,ax
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move the contents of p into
BX

template 2 with operand from
template 4

move the contents of address
BX+X into AX

template 2 with operand from
template 5 (which was built
from 2 and 6)

add 3 to Ax
template 3 with operands
from 2 and 6

move the contents of AX into i
template 1, with operands
from 4 and 3

When there are unresolvable register conflicts, it is
necessary to spill an intermediate value from the
demanded register to another location in order to
proceed with the calculation. On machines like the
8086, it is often more effective to spill to a different
register than to spill to memory. Regardless of the
choice, the spill sufficiently changes the pattern of
code to be generated that a reanalysis is in order.
Thus, we emit code to make the required register
available, rewrite the original tree to represent the
current state of the evaluation, and run the whole
grammar/order/register allocation algorithm again.

The Post-Generation Optimizer. The Post-Genera-
tion Optimizer (PGO) is based largely on the FINAL
phase of the Bliss compiler.!” The pGo performs a
variety of optimizations that the code generator can-
not do or does not do because the PGO can do a
better job. These include peephole optimizations,
which involve replacing sequences of code with more
efficient sequences that produce the same result. The
PGO also performs a simple flow analysis to eliminate
redundant register loads. Branches are shortened
where possible, and several simple code movement
optimizations are applied. One of the more interest-
ing of these code movement optimizations, which is
called cross-jumping, involves sharing the instruc-
tions of a common sequence before a common label.

Consider the following ¢ statements: if (x) then x =
y+z; else x = w+z. P2 generates the following 8086
instructions. The comments after each line describe
each instruction rather than explaining the general
flow.

cmp X,0 ; compare x and 0

je Ll ; branch if x ==

mov ax,y; load y into register ax

add ax,z ; add z to register ax

mov  X,ax; store register ax into x

j L2 ; unconditional branch
Ll: mov ax,w ;load w into register ax

add ax,z ; add z to register ax

mov X,ax; store register ax into x
L2

Observe that the last two instructions of each path

add ax,z ;add z to register ax
mov X,ax ; store register ax into x

are the same. Cross-jumping takes advantage of this
and rewrites the whole sequence as
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cmp  x,0 ; compare x and 0
je LI ; branch if x ==
mov ax,y; load y into register ax
j L2 ; branch
Ll: mov ax,w ;load w into register ax
L2: add ax,z ; add z to register ax
mov  X,ax; store register ax into x

Because our target machines are small, our objective
has been to concentrate on generating small code.
Small code is usually fast code. Cross-jumping does
not change execution speed, but it reduces code size.
Such sequences are surprisingly common in gener-
ated code.

P1 passes line numbers to P2, which passes them on
to p3. This allows the creation of code offset-line-
number tables in the object module. Data allocation
information is passed from P2 to 3 in the AIL, and
P3 merges it with the type information from the DIL
to create a symbol table in the object module. A
symbolic debugger capable of using this information
is currently being studied.

Concluding remarks

In the past two years, there have been over ten new
¢ compilers offered for the pc. The availability of so
many compilers has made more people aware of the
language. The hardware requirements are basic. A
programmer can adequately use microsoft C on the
pc with two floppy disks and as little as 192K bytes
of memory. For a realistic development environ-
ment, a minimum of 256K bytes of memory and a
hard disk are preferable. A growing number of de-
velopment tools are becoming available for use with
c—special-purpose libraries, symbolic debuggers,
and program-oriented editors. C has proved to be a
fine systems and applications language for small
computers. The greatest advantage of ¢ stems from
its original concept, which is to give the programmer
both low-level control of the machine and high-level
expression of programming concepts.
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