Expanded
personal computing
power and capability

Discussed is the XENIX™ Operating System for the IBM
Personal Computer AT. The operating system incorpo-
rates capabilities of a mainframe operating system—
multiusage, multitasking, file management and secu-
rity, program compilation, and networking. The XENIX
shell structure is introduced. Pipes and pipelining are
presented. The XENIX file structure is explained and
illustrated with examples. Software development and
text formatting are treated in detail. The ability to com-
pile C program code developed under XENIX and run it
on the IBM Personal Computer Disk Operating System
is explained.

his paper describes the 1BM Personal Computer

XENIX Operating System and options. (XENIX is
a trademark of the Microsoft Corporation.) Dis-
cussed are the basic features of the XENIX Operating
System, primarily for users who are new to UNIX,
and enhancements of 1BM Personal Computer XENIX.
Since the first announcement of personal computers,
users have sought operating systems to help them
increase productivity. The XENIX system brings
many of the features normally found on mainframe
computers to the 1BM Personal Computer AT. The
1BM Personal Computer XENIX, developed in con-
junction with the Microsoft Corporation, is an en-
hanced version of the UNix Operating System origi-
nally developed at Bell Laboratories. (UNIX is a trade-
mark of the AT&T Bell Telephone Laboratories,
Inc.) The movement toward UNIX has resulted from
its versatility and from the portability of its programs
to compatible systems.

26 KORN, MCADARAGH, AND TONDO

by P. A. Korn
J. P. McAdaragh
C. L. Tondo

To the software developer, the prospect of develop-
ing an application on one computer system and
running that application on other compatible sys-
tems from mainframes to microcomputers makes
software development on the XENIX system quite
attractive. The 1BM Personal Computer XENIX 1S cOm-
patible with UNIX System IIl, which allows the 1BM
Personal Computer AT to take advantage of a large
base of existing application software.

The XENIX operating system has multiuser and mul-
titasking capabilities. The term multiuser on the pC
AT currently means that up to three users can use
the system at the same time. Two users can access
the 1BM Personal Computer AT through terminals or
computers, and the third vses the system console.
The multiuser capability also allows multiple usage
of the same file. XENIX file management controls
individual file execution permissions, read permis-
sions, and write permissions for file security and
integrity. This capability makes possible the imme-
diate updating and sharing of critical data from
several sources. Multitasking means the concurrent
running of several programs, including the programs
of one or more users. The XENIX system allows

© Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




programs and tasks to be initiated as background
processes, freeing the terminal to do other work while
a time-consuming task is being completed in the
background. This increases productivity because
tasks are run simultaneously rather than in sequence.

Enhancements to the XENIX system from 1BM include
DOS-XENIX compatibility features. poOs is the 1BM
Personal Computer Disk Operating System. Com-
patibility supports transferring files between DOs and
XENIX and XENIX sharing a fixed disk with Dos.
Another enhancement is a compiler for the C
language’ that can compile programs to run under
either DOS or XENIX. Other 1BM enhancements are
designed to improve user friendliness for the inex-
perienced user.

Microsoft enhancements are improvements in per-
formance and matching the capabilities of XENIX
with the Intel 80286 microprocessor used in the 1BM
Personal Computer AT. The addition of file locking
and the micnet network by the Microsoft Corpora-
tion increases the versatility of the system.

Enhancements developed at the University of Cali-
fornia at Berkeley are vi, more, termcap, style, and
curses. These enhancements are discussed later in
this paper.

Matched hardware and software

The 1BM Personal Computer XENIX system was de-
signed to take advantage of the Intel 80286 processor
used in the 1BM Personal Computer AT. The processor
has an advanced protected mode feature. During the
development of the 1BM Personal Computer XENIiX
Operating System, much attention was placed on
this feature, which was designed to protect the op-
erating system from its users and to protect the users
from one another. The protected-mode processing
capability allows the operating system to support
multiple users. This support protects the programs
of each user against other programs’ executing, over-
laying, or even viewing their allocated storage space.
Careful and thorough testing of the operating system
has resulted in an extremely stable and secure system
environment.

The 80286 processor supports up to 16M bytes of
memory, and 1BM Personal Computer XENIX archi-
tecturally can support system memory sizes from
512K bytes to 16M bytes. This support permits users
to create and execute very large programs and to
have access to large amounts of data in system
memory.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

Figure 1 Kernel-and-shell structure of XENIX

BOURNE SHELL

KERNEL

CSHELL VISUAL SHELL

An optional Intel 80287 math coprocessor is also
supported, which means that any program using
floating point arithmetic will experience significant
time performance improvements. To ensure com-
patibility with all users of iBM Personal Computer
XENIX, if the coprocessor is not present, the 80287
instruction set is automatically emulated by the op-
erating system.

The XENIX system supports the 1BM hardware avail-
able for the 18BM Personal Computer AT, including up
to two 20M-byte fixed disks, 1.2M-byte and 360K-
byte slimline diskette drives, 1BM color and graphics
printers, IBM monochrome and color displays, as
well as 1BM enhanced color monitors. Additionally,
XENIX supports a facility to add device drivers to the
system. This enables both 1BM and other manufac-
turers to support new devices as they become avail-
able.

XENIX Operating System concepts

The internal workings of the operating system can
be described as a center, or kernel, surrounded by a
layer of interfacing, or shells, as illustrated in Figure
1.

When a UNIx-based system is changed to run on
another system, or ported, the major part of the work
1s to adapt the kernel to the new hardware require-
ments. The newly developed kernel accepts standard
UNIX interfaces and adapts system calls to the new
hardware. It is the responsibility of the kernel in the
operating system to decide how to access devices
such as printers and disk files. This internal structure
frees the program and the developer from machine-

KORN, MCADARAGH, AND TONDO 27




dependent code. Because the operating system kernel
changes while the interface remains the same, soft-
ware developed on this system is portable to other
UNIX Systems.

Commands and usage. Approximately 150 com-

mands are available with the XENIX Operating Sys-
tem. These commands create and maintain files and

The Bourne shell is a full
programming language, in addition
to being a command interpreter.

directories, create file systems, mount and unmount
file systems, link files across directories, and com-
municate with other users. The capabilities of linking
and combining these commands with shell scripts,
redirection, and pipelines are among the XENIX sys-
tem’s most powerful features.

Bourne shell. The XENIX Bourne shell is a command
language interpreter that serves as the interface be-
tween all users and the rest of the system. It interprets
commands, calls the corresponding programs into
memory, and executes them. This shell is a full
programming language, in addition to being a com-
mand interpreter. This permits the creation of new
commands simply by writing shell scripts (often
called shell procedures). The shell language contains
flow-control constructs such as while, if, else, for,
and case. It also allows the definition of variables,
the passing of parameters, and the processing of
software signals (or software interrupts).

Input/output redirection. The XENIX shell structure
provides a uniform and very flexible means for re-
directing standard input and output. The standard
input is the keyboard and the standard output is the
display. By using this feature, each physical 1/0 de-
vice—including the keyboard, the display, and other
peripherals—can be treated as any normal file. The
input to a command can come from the keyboard,
from a file stored on a disk, or from another program
and still look like the standard input. Similarly, the

28 KORN, MCADARAGH, AND TONDO

output from a command can be redirected from the
display, to the printer, to a disk file, or to another
command. With these capabilities, a single XENIX
command can often perform several distinct tasks.

Pipelines. xeNIX has the ability to pipe data from
one command to another; two or more connected
programs are called a pipeline. The shell can thus
execute a sequence of commands, with the output
of each command becoming the input to the next
command in the sequence. This ability to pipe com-
mands often eliminates the need to develop new
programs for new applications. For example, an
application that requires sorting a file of words and
printing the results can use two existing XENIX pro-
grams piped together to perform this new action as
follows:

sort words | Ipr

The vertical bar is the pipe symbol. The meaning of
this pipeline is (1) sort the file named words, and
then (2) print the output of sort on the printer using
the Ipr command.

The XeNIX file system. The xENiX file system consists
of files and directories; it allows filenames up to
fourteen alphanumeric characters in length and dif-
ferentiates between uppercase and lowercase. Direc-
tories help to group files for easy reference or sepa-
ration. The XENIX file system, which is a hierarchical
file system, consists of many levels or hierarchies,
i.e., directories within directories. Figure 2 is an
example of a hierarchical file system in which the
names bin, etc, usr, you, other, and dir are directo-
ries, and the names filel and file2 are text or source
files.

The XENIX file system has a unique path for each file
in the system. This unique path—also called the
absolute filename—is the name of the file in relation
to the root of the file system. The root of the file
system is the slash symbol /. Within the XENIX file
system some directories are standard and contain
XENIX command files. The directory /bin contains
most of the common XENIX commands. The direc-
tory /etc has the super-user (system administrator)
commands. There are other standard directories
such as /usr.

Each user of the XENIX system is assigned a /ogin or
home directory. When a system user logs in using
the assigned login name, he is automatically in his
own directory, which is a directory with the same

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




name as his login name. Starting at his home direc-
tory, a user can create and delete files and directories
as needed. As files are created, the user assigns read,
write, and execute permissions to them. There are
three sets of permissions for each file or directory:
(1) those that apply to the owner; (2) those that apply
to the group; (3) those that apply to anyone else with
a login in the system. Regarding (2), group permis-
sions, a system login is always assigned to some
group, such as programming or planning.

If the user’s login is you, as in the file system in
Figure 2, the user has files filel, file2, and a directory
dir. The file named filel is distinct from filel in the
login other because they are in different directories;
i.e., the files must have unique names only within a
given directory. Another way to look at it is that you
and other have different paths from the root, as
shown in the following example taken from Figure
2:

Jusr/you/filel

/usr/other/filel

Communications. Among the several ways to com-
municate with other users on the XENIX system, the
two basic facilities are write and mail.

The write command allows communications with
any user currently logged in to the system. One user
can write to another user, then wait for the other
user to write back. Following the execution of the
write command, whatever is typed on the first user’s
terminal appears on the other user’s terminal and
vice versa. The users take turns reading and writing
messages until one decides to end the conversation.

The other basic way to communicate with a user is
with the mail command. Mail sends a message or a
previously created file to the other user. The receiv-
ing user does not have to be logged in or even be a
user on the same system to receive mail. Mail is
delivered to the user’s mailbox directory and, when
the receiving user logs in, a message indicates that
mail has arrived. The user can then read, delete,
save, or transfer the received mail to other users.

Networks. If one wants to communicate with a re-
ceiving user who is not in the same system (i.e., the
login or home directory is in another system), addi-
tional communication facilities may be needed.
First, the two systems must be able to communicate
with one another. If the systems are not far apart—

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

Figure 2 An example illustrating the XENIX hierarchical file
system

e.g., across the room—serial lines and the Rs-232
ports on the 1BM Personal Computer AT can be used
to form a micnet network. If the other system is
across town or across the country, a modem and the
XENIX uucp communication system can be used to
complete the network. In XENIX, the command uucp
retains its UNIX meaning of UNIX-to-UNIX copy. IBM
Personal Computer XENIX micnet is a limited local
network that connects personal computers via the
serial ports. Once a form of communication has been
established between the two systems, the mail com-
mand is used to communicate with users in the other
system. Commands within micnet allow copying or
transferring files and accomplishing tasks such as
executing commands on a remote XENIX system.
The uucp communication system can combine the
usefulness of local micnet systems by connecting
them via modems. The uucp system also allows file
transfer and mail activities.

Software development

The xENIX Software Development System provides
a large set of tools, including a ¢ compiler,' a debug-
ger, and such productivity tools as the command
make and the Source Code Control System (SCCS).

Most of the software in the XENIX system is written
in the general-purpose programming language C.

KORN, McADARAGH, AND TONDO 29




This language has been used for a wide variety of
applications, including operating systems and appli-
cation programs.

The ¢ compiler’ can create programs for small,
middle-sized, and large types of memory models.
Each type of model is distinguished by its use of
available memory space and how it uses programs
and data in that space.

Small-model programs can be pure or impure with
regard to space usage. Impure-text, small-model pro-
grams occupy one 64K-byte physical segment. The
program and data areas are combined in one seg-
ment. Pure-text, small-model programs occupy two
64K-byte physical segments. One segment is used
for data and the other for text. The second is a read-
only segment. This means that a pure-text program
can be shared by several processes at a time, although
only one copy is loaded in memory. The total pro-
gram size for a pure small version is 128K bytes.

Middle-model and large-model programs generate
pure-text programs. Middle-model programs use one
segment for data and as many segments as necessary
for the program. There is no limit on the program
(text) size. The only limitation is that the space
required for variables (data area) cannot exceed 64K
bytes. Large-model programs use as many segments
as necessary for data and programs. There is no limit
on the size of either.

A significant feature of the 1BM Personal Computer
XENIX C compiler is DOS cross-compilation, which
lets the programmer create code to be run under 1BM
Personal Computer pos (Version 2.00, 2.10, or 3.00).
The programmer creates and debugs ¢ programs
using the productivity tools available in XENIX, then
recompiles the program for pos. The 1BM Personal
Computer XENIX provides a library for XENIX C pro-
grams and another library for Dos ¢ programs. The
¢ compiler selects the correct library and generates
the appropriate load module. The programmer can
then use DOs utilities available in XENIX, such as
doscp or doscat, to copy the load module to a DOS
diskette.

The ¢ compiler is also capable of generating code for
XENIX or DOS in such a way that if an 80287 or 8087
chip is present, the floating point operations are
performed in hardware. If no math coprocessor is
present, the floating point operations are emulated.
Sometimes a programmer determines that certain
tasks cannot be done in C or will be better performed

30 KORN. McADARAGH, AND TONDO

when written in assembler. The XENIX Software De-
velopment System provides an assembler for the
80286/80287, 8088/8087, 80186, and 8086. The

The programmer does not have to
remember files to be recompiled and
relinked when a change occurs.

assembler is similar to the 1BM Personal Computer
DOSs assembler except for macro support.

Development facilities. Because large programming
projects tend to have multiple source files, there may
be too many dependencies among files to be remem-
bered at all times. A modification in one file might
affect other files. The make command is a program
maintainer that coordinates these dependencies.
This command reads a file that specifies the file
dependencies in the project. Usually a programmer
specifies that a load module depends on certain
object modules, and each object module depends on
a source file. If a source file has been changed (i.e.,
its date is more recent than that for the object file),
the object file is recompiled. The new object file is
then linked with other object files to produce a new
load module. This way the programmer does not
have to remember the files that have to be recom-
piled and relinked when a change occurs.

The Source Code Control System (SCCS) controls the
maintenance of any files of text or source code. The
maintenance process starts by running the sccs ad-
min command on the files containing the text. sccs
provides other commands to retrieve and update the
files, add new releases, and recreate the complete
source of a release at any point in time. SCCS saves
the original files and maintains a list of modifications
(called deltas) that have been applied to each of the
files. To obtain a specific release, sccs starts with the
original file and applies the correct deltas to the files
involved.

Some components of the XENIx Software Develop-
ment System are an archiver, a C beautifier, a C-shell,

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




a lexical analyzer called /ex, preprocessors, and a
compiler-compiler.

Text formatting

The 1BM Personal Computer xeNix Text Formatting
System is composed of a collection of tools that
complement writing productivity. In combination
with any of the system’s text editors, the text for-
matting system can be especially valuable in simpli-
fying the generation of technical reports, formal pa-
pers, and other professional-quality documents.

Most of the commands to format text appear at the
beginning of text lines and consist of one or two
letters preceded by a dot. This makes XENIX text
formatting unlike typical microcomputer word proc-
essing programs, because the formatting of text takes
place all at once rather than interactively. The de-
sired output is generated by executing a formatter
program that uses a text file as input to create the
desired results. This allows the text formatting pro-
grams to provide great capabilities in text formatting,

At the heart of the Text Formatting System are the
nroff and troff text formatters. The nroff formatter
produces output on either matrix- or line-printer-
type devices. The troff formatter, which is compati-
ble with nroff, offers more sophisticated capabilities
because it supports phototypesetters. For example,
nroff uses underlining, approximate spacing, and text
size determined by the characteristics of a particular
printer, and troff supports italics, variable spacing,
and point size.

To use nroff or troff, a series of commands are
inserted directly into the text to specify in detail the
appearance desired for the final output. The multiple
capabilities of nroff and troff include margin justifi-
cation, vertical spacing, line and page length, inden-
tation, automatic hyphenation, page headers and
footers, page numbering, nested input files, macros
with substitutable arguments, multicolumn output,
font type (troff only), point size (troff only), and
many other features.

Although these formatters are very powerful, they
can also be difficult to master. Therefore, to reduce
the learning time required and to increase user pro-
ductivity, a series of aids have been introduced.

Memorandum macros (mm) provide a simplified
interface for translating input to nroff/troff specifi-
cations. With this macro support, the user can spec-

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

ify the style of paragraphs, titles, footnotes, bullets,
and headings. Support is provided for user-defined
macros, hyphenation, multicolumn output, and ta-
bles of contents.

Additional formatting facilities may be used in con-
junction with these programs for building sophisti-

Cut and paste utilities rearrange text
blocks within a document.

cated mathematical equations and for designing
complex tables. The equation (eqn) preprocessor can
format complicated mathematical symbols and
equations using commands that resemble English
words. Some common eqn commands are over and
union, Greek letters such as alpha and gamma, key-
words such as inf and int (for infinity and integral
symbols), and shorthand notation such as < and =.
Eqn also supports subscripts, superscripts, piles, ma-
trices, and a host of other mathematical features.
Another version of this preprocessor, termed neqn,
is available for use on matrix- or line-printer-type
devices.

A tbl preprocessor gives control over material that
must appear in tabular form, and it automatically
calculates the information necessary to line up com-
plicated columnar data even if elements have varying
widths. It also centers a table, expands a table to the
width of the current line, and encloses a table in a
box.

Because the text formatting package is a set of build-
ing blocks that work together, the user can combine
formatting commands like eqn, tbl, mm, and troff
into one file and then process it all at once.

Text analysis. Another series of text formatting sys-
tem utilities for analyzing writing style and correct-
ness are style, diction, and explain. These utilities
were developed at the University of California at
Berkeley. The style utility analyzes writing style and
reports on readability, sentence length and structure,
word length and usage, verb type, and sentence

KORN, McADARAGH, AND TONDO 31




openers. The diction utility finds all sentences in a
document that contain phrases from a data base
containing bad or wordy diction. The explain utility
interactively suggests alternatives to phrases flagged
by the diction utility.

A spell utility is useful in finding misspelled words
in a file. It has a large dictionary of words, and it
supports adding a list of additional words. It also has
an option that checks for British spellings such as
colour and centre.

Text modification. Cut and paste utilities rearrange
text blocks within a document. The cut utility can
extract or copy fields of information from a file and
provide the user with a facility to delete either col-

The XENIX Operating System
installation procedure was designed
to combine flexibility and simplicity.

umns from a table or fields from each line of a file,
Paste can merge “cut” information into a specified
file. Paste can also merge lines of a single file hori-
zontally.

XENIX enhancements

Several enhancements to the XENIX operating system
were added by 1BM during the development of the
1BM Personal Computer XENIX. One enhancement is
modular packaging of the total system, whereby the
IBM XENIX is split into three parts: (1) the XENIX
Operating System; (2) the XENIX Software Develop-
ment System; and (3) the XENIX Text Formatting
System. The main advantage of splitting the systems
is cost reduction for the end user, The prospect of
purchasing the XENix Operating System as a stand-
alone package to run application software is a signifi-
cant saving to users not requiring software develop-
ment or text formatting capabilities.

The system is distributed on large-capacity (1.2M-
byte) diskettes supported by the 1BM Personal Com-
puter AT, thereby permitting the operating system

32 KORN, McADARAGH, AND TONDO

along with the system installation diskette to be
shipped on just four diskettes. The entire XENIX
system is provided on eight diskettes. By utilizing a
simple-to-follow installation procedure, the system
can be easily and quickly installed even by inexpe-
rienced users.

The ability to coreside with and transfer files to 1BM
Personal Computer pos adds a dimension of com-
patibility with the existing personal computer oper-
ating system. This can be a great advantage to users
with existing applications running under DOS.

Installation and coresidence. The XENIX Operating
System installation procedure was designed to com-
bine the flexibility needed to handle system varia-
tions and the simplicity needed by a novice. The
installer loads a diskette-based version of the XENIX
Operating System to start the installation procedure.
A bad-track program automatically scans the surface
of the fixed disk and records the locations of any bad
or unusable tracks. This information is then passed
to the operating system so that these sectors are not
used to store information.

The system then prompts the installer for the type
of installation. The installation procedure supports
the following three installation options: (1) dedicat-
ing the entire disk to the XENIX system; (2) installing
the system with a space at the end of the fixed disk
to install an additional operating system; and (3)
installing the XENIX system on a disk that already
contains another operating system. The installation
procedure automatically calculates disk space allo-
cation and partition definitions.

When the initial procedures and checking are com-
plete, the installation program copies the XENIX sys-
tem kernel to the fixed disk along with other system
files from the installation diskette. Once the instal-
lation diskette files are copied to the fixed disk, the
installer is prompted to insert the operating system
diskettes. This procedure continues until all the op-
erating system and options diskettes are installed on
the fixed disk.

Administrative utilities. Some new system adminis-
tration commands that are unique to XENIX are
called super-user commands, because they facilitate
the maintenance of the users’ logins. The system
administrator is the super-user and is the only one
permitted to use these commands. The mkuser com-
mand is used to add a user login to the system. This
command handles all directory creation and updat-

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




ing of shell assignments and passwords. When the
super-user creates a user login, he assigns one of the
shells (Bourne shell, ¢ shell, or visual shell) as the
default shell. The rmuser command does the oppo-
site by making sure that the user’s mailbox is empty
and that all files belonging to that user have been

A user-friendly shell interface was
added to the operating system.

deleted. Rmuser then deletes the user’s name from
the password file and removes his home directory.
The chsh command allows the super-user to change
a user’s default shell.

DOS utilities. XENIX provides the capability of trans-
ferring files between 1BM Personal Computer DOS
diskettes and the XENIX file system. Eight utilities
access files and directories on DOs diskettes. These
utility commands have a “dos” prefix and include
support for copying files, listing files and directories,
erasing files, and creating and deleting directories.
As an example, one of these commands is doscp,
which copies files between a Dos diskette and the
XENIX file system. Doscp takes two arguments, filel
and file2, and copies the contents of filel to file2.
Either filename can be made a DoS file by using the
form

device:file

where device is the path name of the special device
containing the Dos file.

A new, simplified way to specify the Dos device is
provided in XENIX by a set of capital letters that
represent the Dos devices. For example, if a DOS
diskette is 48 tracks per inch (TPI), and it is in drive
A, to copy the Dos file filel to the XENIX file system
and keep the same filename, the syntax is the follow-
ing:

doscp A:filel filel

To copy filel from the XENIX file system to a 48-

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

TPI DOS diskette in drive B and rename it to file2,
the following syntax is used:

doscp filel B:file2

Visual shell. A user-friendly shell interface was added
to the operating system. The visual shell is a full-
screen shell interface that optionally replaces the
Bourne shell as the command interpreter for inex-
perienced users. The visual shell replaces operating
system commands, which may be cryptic, with com-
mon terms selected by cursor movement.

A typical visual shell screen might look as shown in
Figure 3A. At the bottom of the screen are a series
of English language words representing system com-
mands. Using the space bar, the backspace key, or
the first letter of any of the words, the user selects a
command to be executed. This set of command
words, or menu, permits the user to display files,
copy files, delete files, rename files, send and receive
mail, and send output to the printer; it offers several
additional facilities including help documentation.

At the top of the screen is a window in which all the
files in the current directory are displayed. The user
can select file(s) to use with the command word by
moving the cursor (via the cursor movement keys)
to the filename(s) desired. To change directories, the
user simply types an equal (=) to go down one level
or a minus (—) to go up one level. Optionally, the
user can type the filename on the command line.
The current directory name is displayed at the top
left of the window. At the bottom of the window is
information about the file pointed to by the cursor.
Several filenames appear in the window in Figure
3A. The filename in brackets indicates that the entry
displayed is actually a directory. The filenames pre-
ceded by an asterisk are files marked as executable.
The cursor is currently at the directory “tools.”

We now give an example of a user’s displaying the
file “lookup.” By pressing v on the terminal (meaning
“view”), the screen in Figure 3A is changed to look
as shown in Figure 3B. The file “tools” is initially
inserted on the command line because the window
cursor is currently pointing at the “tools” filename.
By using the cursor movement keys, the file “lookup”
is selected (Figure 3C).

The file named “lookup” is now automatically in-
serted on the command line because the window
cursor is currently pointing to that filename. When
the Enter key is pressed, the contents of “lookup”

KORN, McADARAGH, AND TONDO 33




Figure 3 Example visual shell procedure to display a file
named “lookup” showing (A) a typical screen; (B)
the screen after the terminal key “v” has been
pressed, and (C) the screen after the file named
“lookup” has been selected

JUSH/PRIABMID = e e o o e et it e ——

letters lookup meetings scheduie
| {[tools]} userlist *validate
L tools — - — — modified 8/28/1984

COMMAND: {Copy] Delete Edit Help Mail Name
Options Print Quit Run View Window

Select option or type command letter

Musriphiltemnp 8/28/1984.11:12

r USHPIAEMP — — = — — e e

letters lookup meetings schedule
{[tocls]} userlist *validate

i

f

|

|

L.
VIEW name: ftools}

Enter a filename or select from list

riphiltemp B/2B/1984 14:1

(B)

USHPIMABID o e

letters {lookup} meetings schedule
] [tools] userlist *validate I
| I
| E
I I
I— - lookup - — — — — — — 2709 bytes — — — modified 8/28/1984 - -J

VIEW name:{lookup}

Enter a filename or select from list

IuSlf/phil/temp/ 8/28/1984 11

(€)

34 KORN, MCADARAGH, AND TONDO

are displayed in the window. If the file contains more
lines than will fit in the window, control keys can be
used to move up or down within the file.

Another major feature of the visual shell, especially
valuable to software developers, is the ability to
change the shell easily. By developing appropriate
shell scripts or programs and changing the words on
the menu, application developers can make a simple
application interface for the novice or occasional
system user. This flexibility enables complicated data
processing tasks to be performed with minimal com-
puter knowledge.

The Microsoft Corporation added several enhance-
ments to the standard UNIX system while producing
XENIX. These enhancements help take advantage of
the processing power of the 1BM Personal Computer
AT.

File locking. Multiple processes may access a file for
reading and writing. When a process is reading in-
formation from a file, that information must not
change until the reading has ended. Therefore, it
becomes necessary to lock different parts of a file.
Similarly, when a process is writing to a file, another
process should not access the information until the
writing has been completed.

Locking a file synchronizes file usage when several
processes require access to the same file. One or
more bytes can be locked in any region of a file.
When one is writing to a file, all other users can be
locked out of that area. Because only a specific region
of a file is locked, the rest of the file can be accessed
or locked by other users.

Semaphores. Semaphores are signals that allow the
1BM Personal Computer XENIX system to control
access to its resources. Semaphores are named like
files and are created by a process that synchronizes
the access of other processes to the resource. The
control of a semaphore passes from process to proc-
ess. The process that controls the semaphore has
control of the system resource.

Shared data. A shared data segment (also known as
a shared memory segment) improves speed and fa-
cilitates communication among processes. It works
like a temporary file, except that it is kept in memory.
A process can create a shared data segment. Other
processes can request access, wait if necessary, and
gain access to a shared segment. Once a process has

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985



finished accessing a shared data segment, it signals
other processes. The sharing of data allows processes
to pool information without creating temporary files.
The process that creates a shared data segment may
allow simultaneous access to the segment by multiple
processes and can free the segment when the space
is no longer needed.

The 1BM Personal Computer XENIX includes exten-
sions written at the University of California at Berke-
ley. Among the most significant are the ¢ shell, vi,
and termcap/curses.

C shell. The ¢ shell (csh) is a command language
interpreter. Like the 1BM Personal Computer XENIX
Bourne shell (sh), the ¢ shell is an interface between
the user and the system that translates command
lines typed at a terminal into corresponding system
actions. It is packaged as part of the 1BM Personal
Computer XENIX Operating System. The c shell of-
fers features other than those specifically provided
by the Bourne shell. For example, the C shell can
maintain a history list in which it places the text of
previously entered commands. By using a special
notation, commands or words from previously typed
commands can be used to form new commands.
This mechanism is useful for repeating commands
or correcting typing mistakes.

An alias facility simplifies commands, supplies de-
fault arguments, and performs transformations on
commands and their arguments. This mechanism
enables the user to substitute, for example, a person-
ally preferred name for a system command, for a
system command and its arguments, or even for
multiple commands or pipelines.

Also provided by the ¢ shell are control structures
similar to those of the c language, as well as features
to help trace the actions of the C shell. These control
structures make it easy for users to write shell pro-
cedures.

Full-screen editor. The vi editor is a full-screen text
editor based on a set of mnemonics commands. Most
commands are single keystrokes that perform editing
functions. The vi editor, which combines line-ori-
ented and screen-oriented features to increase editing
productivity, is packaged as part of the 1BM Personal
Computer XENIX Operating System. The capabilities
of the vi editor include inserting characters, deleting
lines, searching for a character, replacing a string
wherever it is found in a file, and splitting and
rejoining lines. Cursor control permits movement in

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

any direction, to any line, or to a word, sentence,
line, or paragraph boundary.

Multiple files may be edited by vi simultaneously,
and users may be permitted to leave the editor
temporarily to execute any system command. This
can be especially helpful when writing or debugging
programs or shell scripts. The editor vi also supports
a series of options to tailor its execution to individual

Another system feature is a
database that describes terminals.

needs. These options include features for displaying
hidden and end-of-line characters in files, set tabs,
and display line numbers, and for preventing mes-
sages from other users from interrupting screen dis-
plays. Additionally, vi allows options to be prede-
fined in a file so that they are automatically set each
time vi is invoked.

Terminal support. Another system feature developed
at the University of California at Berkeley is termcap,
which is a database that describes terminals. It is
used by programs such as vi to interface with a user’s
terminal. Termcap in 1BM Personal Computer XENIX
supports many ASCIl terminals, including terminals
manufactured by vendors other than 1BM. Termcap
is packaged as part of the 1BM Personal Computer
XENIX Operating System. Termcap support can also
be easily added for new terminals as they become
available. Some of the terminal features that are
described in a termcap database entry are number
of lines, number of columns in each line, how the
screen is cleared, backspace capability, cursor mo-
tions, highlighting, underlining, and insert/delete
character keys.

As a complement to termcap, curses is a screen-
updating and cursor-movement set of library func-
tions that are packaged as part of the 1BM Personal
Computer XENIX Software Development System.
Curses relies on the information in the termcap
database to tailor terminal commands, thereby al-
lowing the user to write terminal-independent pro-

KORN, McADARAGH, AND TONDO 35




grams. These functions provide a simple and efficient
way to use the capabilities of the terminal attached
to the program’s standard input and output files.

Concluding remarks

Because of the increasing power and complexity of
computer hardware, more sophisticated operating
systems are needed. The XENIX Operating System
takes advantage of the hardware capabilities of the
1BM Personal Computer AT and also brings compat-
ibility to many different hardware systems. This
paper has discussed some of the features of the 1BM
Personal Computer XENIXx Operating System. Be-
cause of the number of multifaceted commands and
utilities, the XENIX system allows the user to tailor a
unique working environment to facilitate his com-
puting tasks. This operating system is an integral
part of the microcomputing industry and a step
toward increasing the power and usefulness of the
personal computer.

Cited references

1. Bell System Technical Journal 57, No. 6, Part 2, whole issue
(1978).

2. R. R. Ryan and H. Spiller, “The C programming language and
a C compiler,” IBM Systems Journal 29, No. 1, 37-48 (1985,
this issue).

Reprint Order No. G321-5235.

Philip A. Korn /BM Entry Systems Division, P.O. Box 1328, Boca
Raton, Florida 33432. Mr. Korn is currently a senior programmer
in the Engineering/Scientific Microsystems Development Depart-
ment, where he is involved in the development and testing of the
IBM Personal Computer implementation of XENIX. In 1970, he
joined IBM in East Fishkill, New York, where he was a systems
programmer providing support for OS/MVT and MVS users. In
1975, Mr. Korn joined the IBM System Products Division, where
he has worked on the Audio Distribution System and the RPS
operating system on the Series/l computer system. He received
his B.S. degree in mathematics from Hunter College of the City
University of New York.

John P. McAdaragh [BM Entry Systems Division, P.O. Box 1328,
Boca Raton, Florida 33432. Mr. McAdaragh joined the Office
Products Division in 1977. While a member of that division, he
received the IBM Means Service Award. He transferred to the
Entry Systems Division in 1983 and there joined the Information
Development Department. His work there has included project
planning and team leading in personal systems software informa-
tion development. He was responsible for the IBM Personal Com-
puter XENIX library. Mr. McAdaragh is currently doing research
in on-line graphics and tutorial information, along with other
planning responsibilities. Mr. McAdaragh received his B.A. degree
in management in 1983 from Governors State University, Park
Forest South, Illinois.

36 KORN. McADARAGH, AND TONDO

Clovis L. Tondo /BM Entry Systems Division, P.O. Box 1328,
Boca Raton, Florida 33432. Mr. Tondo is currently a staff pro-
grammer in the Engineering/Scientific Microsystems Development
Department. There he is involved in the development and testing
of the IBM Personal Computer implementation of XENIX. Prior
to this assignment, he worked in compiler construction for COBOL
and FORTRAN on the Series/1 computer. Before joining IBM,
Mr. Tondo worked with UNIX at the Western Electric Company
and the Bell Telephone Laboratories on the Number 5 Electronic
Switching System. He has a B.S, degree in civil engineering from
the Federal University of Santa Maria in Brazil, and an M.S.
degree in computer science from Southern Illinois University at
Carbondale.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985




