Standardized graphics on
the IBM Personal Computer

Although acknowledged to be an effective means of
communicating information, graphics has not pro-
gressed more rapidly in the burgeoning use of per-
sonal computers due to the lack of standards for both
writing and running graphics applications. A graphics
standard—the Virtual Device Interface (VDI)—has been
proposed for national use and is in the process of
being adopted. An implementation of the VDI is cur-
rently available for the IBM Personal Computer. This
paper briefly traces the history of graphics as used
with personal computers, explores the difficulties that
standardization efforts have met, explains the VDI
model, and shows how this model operates in the IBM
Personal Computer environment to make graphics a
natural extension of the operating system.

Graphics is well recognized as an effective means
of communication. Some studies' indicate that
a graphic message is consciously recognized more
than twice as fast as a text message. However, for
years the use of graphics was limited to sophisticated
mainframe systems because of the expense involved;
complex graphic images require both extensive proc-
essing power and vast amounts of memory.

Graphics quickly moved into the microcomputer
environment when the size of processors and the
price of memory decreased significantly;? however,
widespread implementation has been slowed by the
plethora of incompatible devices and noncommu-
nicating software. Currently, graphics implementa-
tions are either written as a program for a specific
device or custom-installed for each graphics device.

Despite the difficulties, graphics for use with personal
computers seems to be here to stay. Certainly there
is user demand for graphics, from simple menu
pictorial symbols, or icons, to elaborate window

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

by T. B. Clarkson llI

systems for concurrent display of data from different
processes. But before personal computer graphics
can really become widespread, a standard architec-
ture is needed for writing graphics applications and
having them communicate with the huge diversity
of available hardware. 1BM has chosen to offer the
Virtual Device Interface (vD1) implemented by
Graphic Software Systems, Inc., for use on its line of
personal computers.

The Graphics Development Toolkit, or vDI, and
device driver technology provide the needed frame-
work to permit graphics to easily penetrate all facets
of the 1BM Personal Computer (IBM PC) user inter-
action. The vpI forms an extension to the operating
system to provide communications with graphic de-
vices on a logical basis, much as FORTRAN programs
read from and write to logical units. In this case,
however, the user is no longer restricted to traditional
alphanumeric text. Graphics can become as easy and
natural a way of communicating with the user as
alphanumeric messages and menus have been in the
past.

Graphics enters the personal computer world

Mainframe graphics software has been in existence
almost as long as electronic computers.® However,
because of the high system cost in terms of memory
requirements and computing power, the use of
graphics was limited to critical tasks (air traffic con-

© Copyright 1985 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

CLARKSON 3

trol) or tasks in which graphics significantly increased
the performance-to-cost ratio (computer-aided de-
sign).

The technological developments that allowed the

development of the personal computer—compact
packaging and low memory costs—have also allowed

The key use for graphics in a PC
environment is data representation.

graphics to become an integral part of the capabilities
of the personal computer. Converting numerical
data into charts or graphs, combining text and draw-
ings, changing type styles, and even playing games
are all examples of graphics applications in a per-
sonal computer environment.

With the advent of a variety of graphic pointing
devices, such as the joystick, mouse, digitizing tablet,
touch screen, touch tablet, and track ball, the selec-
tion of operations became easier for the novice user.
With such a device, the user need only move the
cross hairs to the picture of the desired operation
and select it. Graphics provides an immediately ac-
cessible front end to applications when integrated
into the program in the original design.*

Video games have done a great deal to influence the
public’s high expectations of graphics on personal
computers. Many electronic games evidence high-
quality, ingenious graphics and animation. Most
people expect their business programs to have graph-
ics of a quality equal to or higher than that of a
Centipede™ or Donkey Kong™ game.’

However, the requirements of most games that call
for video animation are often met by special-purpose
processors with graphics images recorded as raster
screen representations. Further, simultaneous pro-
duction of game images on different types of devices
is not necessary. There is clearly more to microcom-
puter graphics than games, and to try to play a game
where the graphic images are produced on a plotter
is irrelevant.

4 cLARKson

Historically, the key use for graphics in a personal
computer environment has been data representation.
As programs such as electronic spreadsheets and
forecast models proliferate, personal computer users
want the same kind of easily grasped graphic output
that is available on mainframe computers. The big
problem, of course, is that there is no professional
data processing staff to help the user couple his
application with graphics. In a personal computer
environment, graphics programs must be much sim-
pler to use, or as a better alternative, integrated into
the application design.

Barriers to personal computer graphics

With the user demand for increased “friendliness”
came a demand for better, higher-resolution color
graphics. 1BM has taken great strides in meeting this
demand with the introduction of the Enhanced
Graphics Adapter and Display and the Professional
Graphics Display and Controller for the 1BM PC. In
the past, however, several problems arose in imple-
menting graphics on personal computers. The first
was the limit on memory. Despite dramatic improve-
ments in price/performance, memory can still ac-
count for a considerable portion of the cost of a
personal computer, For every addressable point, or
pixel, on the screen, at least one bit of memory is
required. When one considers that the Enhanced
Graphics Adapter with a monochrome display has a
resolution of 640 X 200 pixels, it can be seen that
16000 bytes of memory are required for a single
image. The Professional Graphics Controller, when
fully configured, uses 307200 bytes of memory for
display storage.

There is a second problem: It is difficult to translate
from the picture elements of a display screen to those
of a printer when the two devices have different
resolutions and aspect ratios, as they almost always
do. For instance, a screen might have a resolution of
640 x 200 with an aspect ratio of 4 X 3, but a printer
might have a resolution of 480 X 751 with an aspect
ratio of 3 X 4.

The conversion results in a very poor match between
the display screen and the hard copy device. This is
because such “screen dumps” merely duplicate the
screen resolution, which is usually far inferior to that
of the output device. Whereas a screen may be able
to display a horizontal resolution of 640 points across
a width of, say, ten inches, many dot matrix printers
are capable of imaging 200 dots per inch or 1600
dots per line—more than two and one-half times
better resolution in the horizontal direction alone.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

As the use of personal computers for data represen-
tation grows in the business environment, high-qual-
ity hard copy in the form of 35-mm slide output will
become increasingly important, not only for the
resolution it affords but for the impact of color it
adds. Achieving presentation quality requires the use
of either high-resolution or anti-aliasing techniques,
both of which use memory intensively. There needs
to be a fast, economical way to create both bit-
mapped screen images and high-resolution output.

Yet a third problem crops up: the nontrivial matter
of software responsible for controlling the input and
output devices. For mainframe computers, each in-
dependent software developer wrote a library of in-
put and output device-controlling software, called
device drivers, for this purpose, closely matching the
application to the supported devices. The result was
a specialized, limited-use system.

For personal computers, it is frequently the end user
who must coordinate the screen, the application
software, input/output peripherals, and device driv-
ers. When this task becomes too difficult, the user
simply does not bother, instead buying what is easiest
to configure.

Even if an applications programmer does spend time
writing tailored controlling software, new develop-
ments or improvements in existing devices are diffi-
cult to address. Most applications restrict device-
dependent programming to a limited number of
modules. But these low-level routines must be re-
written for each application and for each supported
device. Having to write custom software for each
device not only limits the number of devices sup-
ported by an applications package, but it forces a
certain downward compatibility on manufacturers.
Better hardware will not be built if no software is
available to run on it. The result is apt to be little
incentive for innovation.

The Virtual Device Interface

From this background, it can be seen (1) why better
graphics has not been available for personal com-
puters and (2) why stronger efforts have not been
made to standardize the production of graphics pro-
grams.

To assist in solving these problems, the American
National Standards Institute (ANsI) has formed a
technical committee (x3H3) to develop computer
graphics standards. The first standard to be accepted

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

was the Graphical Kernel System (Gks), adopted in
October 1984 and previously adopted by the Inter-
national Standards Organization. GKS defines graph-
ics functions at the programmer level, with specifi-
cation of how those functions are assessed through
high-level programming languages.

Three other proposals are being considered for stan-
dardization by ANsI: Programmer’s Hierarchical In-
teractive Graphical Standard (PHIGS), Virtual Device

The role of the VDI is analogous to
that of the BIOS.

Metafile (vDM), and Virtual Device Interface (vDI).6
This paper addresses the vbi produced by Graphic
Software Systems for the 1BM Personal Computer.

The vDI1 constitutes a single standard for relaying
input to a program and graphics information to
output devices. The vDI conceptual model specifies
the logical capabilities of both input devices (key-
boards, mice, joysticks, etc.) and output devices
(screens, printers, plotters, cameras, etc.).

The role of the vDI is analogous to that of the BIOS
(Basic Input/Output System) in a portable operating
system. The BIOS is the specialized, hardware-specific
layer that performs all logical system functions such
as displaying data on the screen, reading from and
writing to disk, and accepting keyboard input.

The role of the vDI is to provide device independence
by creating a logical graphics device interface. Such
an interface allows an application to control any
graphics peripheral, regardless of individual pecu-
liarities. For input devices, the vDI specifies the kinds
of actions, such as pointing or string input, which an
input device should be capable of performing. Sim-
ilarly for output devices, the vDI1 specifies conceptual
capabilities, such as the drawing of lines and poly-
gons.

ANSI has received proposals for a vDI from a number
of manufacturers and, as noted, is in the process of

CLARKSON §

Figure 1 VDI structural dichotomy

GSS VDICONTROL CONCEPT

GSS VDI CONTROL DRIVER

formulating a draft standard. Because industry needs
are so immediate and because final adoption of the
ANSI vDI standard may be more than a year away,
the vDI was developed to satisfy the current needs of
industry.

The Graphics Development Toolkit (the vbi) devel-
oped by Graphic Software Systems provides for de-
vice independence through the following capabilities:

* Device driver management

¢ Coordinate transformation

¢ Text models

e Character 1/0

¢ Emulation of certain graphics primitives
* Device inquiry

e Error reporting

The implementation of the vbpI is functionally di-
vided into two parts (see Figure 1): a vbI controller
and the various device drivers. The vpI controller is
responsible for device driver management, coordi-
nate transformations, and emulation; the drivers are
responsible for all graphics tasks. The user can think
of the vDI as a black box, without knowing about
this separation, since divisions of labor within the
VDI are transparent. What is important is to under-
stand that the vDI serves as a standardized interface
between drivers, application program, and operating
system.

Unless otherwise specified, vD1 in this paper will
always refer to the vbi1 controller, as distinguished
from the drivers.

6 cLarkson

Device driver management. A key point of the vDI is
the fact that the application talks only to the vbi and
never to the actual devices. The insulation of the
application from all hardware is a central advantage
of the vpI device driver management. This makes
applications device-independent; applications can
run on any device for which there is a driver resident
in the 1BM Personal Computer Disk Operating Sys-
tem (PC DOS), the operating system of the Personal
Computer. When a new device is developed, its
driver can easily be added. This means that vDI-
based applications can run on devices that will be
developed in the future, capitalizing on increased
resolution, color, and performance.

Another key feature of the vDI is that it loads the
required drivers dynamically (as needed), minimiz-
ing the memory requirements for systems having
many peripheral devices. In addition, the drivers
look like standard DOs drivers (in the IBM PC envi-
ronment) and are loaded as if they were part of the
operating system. The user is never aware of device
driver changes; all graphics invocation is completely
transparent. The vDI can dynamically configure the
collection of devices that constitute a workstation,
and have multiple drivers resident and active simul-
taneously (for simultaneous use of, say, a joystick, a
keyboard, and a printer). In order to load a device
driver, the vDI receives requests from the application
program through a language-specific vDI binding
(Figure 2).

To facilitate use of the Graphics Development
Toolkit, it is accessible from programs written in
FORTRAN, Pascal, BASIC, C, and Macro Assembler.
Since the vDI has not been officially adopted, the
language bindings to the vDI are unique to the GsS
implementation.

The language binding issues system calls to the vDI.
vDI calls stay the same from system to system. Above
the vDI call level there can be a tremendous amount
of variation from application to application—differ-
ent high-level languages, different program sizes, etc.
Below the vDi calls, at the hardware and device driver
level, there is also tremendous variation. However,
the vDI interface always remains the same.

Coordinate transformation. The vbI deals strictly in
what is called normalized device coordinate (NDC)
space, which the vDI defines as a Cartesian coordi-
nate space bounded by 0 and 32767 (see Figure 3).
This universal NDC space allows graphics informa-
tion to be developed for all devices in an identical
way, regardless of the device used.

IBM SYSTEMS JOURNAL, VOL 24, NO 1,1985

Input and output devices, however, form images in
coordinate spaces appropriate to the particular de-
vice. It is part of the job of the vDI to translate, or
transform, normalized device coordinates to the ac-
tual device coordinates used by the peripheral device.
This built-in transformation capability of the vbI,
from NDC space to device-specific space, frees the
application for application-related processing.

Transformation and emulation of graphics primi-
tives (discussed below) are the primary responsibili-
ties of the vbi. Often other vDI implementations
place additional responsibilities with the vDI con-
troller, greatly retarding throughput. As a result of
the design for the vpi, the graphics can run at very
high speeds.

To maintain this speed and to isolate the vDI from
application-specific tasks, special graphics manipu-
lations such as scaling, rotation, segment picking,
etc. are handled at a higher level. Programs that
perform these tasks include (1) a level “mb” imple-
mentation of the ANSI Graphical Kernel System; (2)
Plotting System, a library of generalized plotting and
charting routines; and (3) Graphical File System, a
utility to read and interpret graphics and alphanu-
meric data stored in the proposed ANSI Virtual De-
vice Metafile standard. These programs, aiso devel-
oped by Graphic Software Systems, are being distrib-
uted by 1BM under the 1BM logo.

Emulation. In all current cases, the capabilities of-
fered by a graphics device are only a subset of the
capabilities offered by vDI. In order to ensure total
portability, i.e., the ability to have different devices
operate with a system despite each having a different
command format, the vpI offers guaranteed emula-
tion of many functions.

For instance, if the vDI issues the command “Draw
a polygon,” and the device does not include the
primitive, “Draw polygon,” the vDI will see that the
polygon gets drawn using primitives the device does
have. It might accomplish “Draw a polygon” by
piecing together a series of “Draw line” commands.
Emulation is totally transparent to the user, who
only knows that his command has been carried out.
Guaranteed emulation is a key requirement of any
vDI implementation, since it ensures true portability
across all devices.

Device inquiry. While the vbI provides device inde-
pendence, it also enables application software to
query device capabilities for tailoring program exe-

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

Figure 2 Schematic of FORTRAN application talking to VDI

FORTRAN APPLICATION PROGRAM

|

FORTRAN/VDILANGUAGE BINDING

GSS VDICONTROL DRIVER

y
£

DEVICE
DRIVER

DEVICE
DRIVER ;

Figure 3 lllustration of NDC space

ONLY POSITIVE INTEGERS ARE USED
TO GUARANTEE PORTABILITY

(32767 32767)

(00)

cution. For example, a charting program can inquire
whether a color display is available. If it is, color can
be used to differentiate data; if it is not, shade pat-
terns or line styles can be substituted.

Error reporting. The vDI has a comprehensive set of
error codes that inform the application program of
any unusual condition. The application program has
the responsibility for checking the error status and
attempting error recovery, or at least informing the
user.

CLARKSON [

VDI functions

The vDI graphics capabilities can be divided into six
functional areas:

Graphics
Alpha text
Cursor text
Inquiry
Input
Control

I e

Graphics functions. The vD1 achieves device-inde-
pendent graphic standardization by supporting input
and output graphics primitives, as well as individual
attribute control. A graphics primitive is defined as
a function that generates graphic objects on the
display surface. Lines, markers, circles, and arcs are
examples. An attribute is a characteristic of that
primitive (color, style, line style, or line width).

The primitives of the vDI are polyline, polymarker,
filled areas, cell arrays, arcs, circles, bars, and pie
slices. A polyline s a line connecting a specified series
of points. Symbols used to highlight the points are
called polymarkers. When a polyline encloses an
area, the area can be filled. A cell array is a collection
of points used to form a pattern that can be used to
fill an area. An grc is a segment of a circle; some
devices are capable of producing arcs but not circles.
A circle is a collection of points equidistant from a
central point; circles can be emulated by successive
arcs. Bars are rectilinear areas, frequently filled. Pie
slices are sectors of a circle, sometimes formed from
arcs and line segments to the focus of the arc, fre-
quently used in the pie charts. Pie slices are treated
as filled areas. All graphics primitives are specified
by a set of coordinates in the NDC space.

The vbI attributes are divided into character attri-
butes (for text), polyline attributes, polymarker attri-
butes, and fill attributes. For example, graphics text
attributes control height, baseline rotation, color,
font, and alignment. Polyline attributes control type,
width, and color. Fill attributes control type, style,
and color.

The text model is chosen by the application writer
and offers an extra element of flexibility in fitting the
application to particular requirements.

Graphics text can be rotated, scaled, aligned, posi-
tioned, and colored like any other graphics primitive.

8 cLarksoN

Alpha text functions. Alpha text is not rotatable or
scalable like graphics text, but can be precisely posi-
tioned on device-unit-addressable pixel boundaries.
It provides a high-speed path to hardware text in
printers for mixing word processing with graphics.

Alpha text attributes include variable line spacing,
subscripting, superscripting, underlining, overstrik-

It is the VDI inquiry function that
ensures intelligent device
independence.

ing, text quality, and color. Alpha text enables the
application writer to tailor the application to partic-
ular application requirements.

Cursor text functions. Used only with cathode ray
tubes (CRTs) in the generation of screen menus and
forms, cursor text is available in only one size and
one font, and is character-cell-positionable. Cursor
text displays a text string on a fixed rectangular grid
and is used commonly for the filling out of forms. It
is not rotatable and cannot be combined with graph-
ics text, alpha text, or graphics primitives. Its attri-
butes are reverse video, underline, bold, blink, and
color.

Inquiry. For the graphics, alpha text, and cursor text
functions, the vDI provides an extensive set of in-
quiry facilities to provide the user with information
on current system status, current attribute settings,
active devices, and device/system capabilities. In-
quiry functions are provided as listed in Table 1.

It is the vDI inquiry function that ensures intelligent
device independence. The application can adapt it-
self to the peculiarities of the device and make ad-
justments to overcome device limitations.

Input functions. Input functions relay information

from the operator to the application via the device.
There are four types of graphics input functions:

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

Table 1 Characteristics determined by inquiry functions

For graphics primitives
¢ current polyline attributes
s current polymarker attributes

For alpha text

¢ capabilities

s position

¢ font availability

For cursor text
¢ number of addressable character cells
s current cursor address

Workstation capabilities
maximum addressable width
maximum addressable height
scaling capabilities

width of one pel

height of one pel

number of character heights
number of line types
number of line widths
number of marker types
number of marker sizes
number of graphic text fonts
number of patterns

number of hatch styles
number of predefined colors
number of generalized drawing primitives
list of generalized drawing primitives
attributes of each primitive
color capability

text rotation capability

fill area capability

pel operation capability

® © & & & & ¢ O O & O & o 6 ¢ & 0 0 0 0o o0

current fill-area attributes
current graphics text attributes

string length
attributes

video capabilities

total number of colors available

locator capability

valuator capability

number of choices available

string input capability

workstation type

device type

number of writing modes available

highest level of input mode available

text alignment capability

inking capability as output echo
rubberbanding capability

maximum addressable NDC units on x axis
maximum addressable NDC units on y axis
version of the driver

minimum graphic character height in NDC units
maximum graphic character width in NDC units
minimum line width in NDC units
maximum line width in NDC units
minimum marker height in NDC units
maximum marker height in NDC units

1. Locator. The locator input reports the point lo-
cation of the graphics input device (such as a
tablet, mouse, or joystick) in NDC units.

2. Valuator. The valuator input function returns a
scalar value corresponding to the status of a val-
uator device (potentiometer, slide control, etc.).

3. Choice. The input choice function returns the
status of a choice device (such as a switch or
function key).

4. String. String input allows text input from a key-
board or other text-character device.

Input functions operate in two modes: request and
sample. In the sample mode, the input is returned
immediately. In the request mode, the operator must
complete the input function by indicating that the
request is complete.

Control functions. The control functions include

initialization of a graphics device, termination of
graphics operations to a device, clearing the display

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

surface of a workstation, and displaying pending
graphics. These functions are invoked by the com-
mands that are now described.

Open workstation. This command links an applica-
tion program to the actual physical device that will
be used. As written in a FORTRAN program the call
is vopNWK (workin, devhdl, workot), where workin
is an array containing environmental information
for the device being opened; devhdl is the device
reference returned to VDLSYS, the control driver; and
workot is an array containing information about the
capabilities of the device being opened. Note that
redirection at the system level through the DOS SET
command is possible, so although the output of an
application program may have been designed for a
display, it is easily and correctly directed to another
device, such as a pen plotter.

These device capabilities returned by the opening of
a workstation are used by vDI emulation routines to

cLarkson 9

determine the most proficient way of producing
graphics output.

The OPEN WORKSTATION command dynamically
loads a graphics device driver, if it is not already
present in memory, initializes the graphics device,
and sets attribute defaults. This command is always
the first graphics operation performed to be sent to
a device.

Close workstation. This command terminates graph-

ics operations to a device. It is always the last graphics
operation performed to be sent to a device. The

Any application can use any device
as long as an appropriate device
driver exists.

FORTRAN call is vcLSWK (devhdl), where devhdl is
the device identifier returned from OPEN WORK-
STATION.

Clear workstation. This command clears the surface
of the workstation: clears a CRT screen, prompts for
new paper on a plotter, or sends all pending graphics
to a printer and advances to top-of-form. The FOR-
TRAN call is VCLRWK (devhdl), where devhdl refers
to the device identifier returned from OPEN WORK-
STATION,

Update workstation. This command displays all
pending graphics. The FORTRAN call to VUPDWK
(devhdl) displays all pending graphics on the work-
station specified by devhdl. For printers, this causes
the current picture to be printed and the printer to
advance to top-of-form.

The notion of a “workstation” is fundamental to the
vDIL. A workstation is any logical entity from which
the application receives input or to which output is
directed. A workstation can be a display screen and
keyboard, a mouse, or a plotter. At the programmer
level, a workstation can refer to a complete work
site, eliminating the need to reference each device

10 CLaRKsON

explicitly. At the vDI level, however, each device is
always designated explicitly, although the designa-
tion may be transparent to the user.

Techniques of invocation under the operating
system of the IBM Personal Computer

When it is remembered that all vbi-level operations
discussed thus far are happening at the operating
system level, one sees that a tremendous amount of
graphics power and flexibility is effectively built in
as far as the user is concerned. There is no need to
worry about specific hardware which may or may
not be available. With the vpi, applications deal
strictly with the vpr binding and not at all with
devices. Any application can use any device as long
as an appropriate device driver exists.’

We will now see exactly how this is accomplished at
the operating system level. Figure 4 shows how vDI
is related to the operating system, the application,
and the device drivers.

The application program with high-level language
calls to vpI functions is linked with the appropriate
vDI language-binding library and is a link-time, ap-
plication-developer-controlled activity. Everything
below the language binding is a run-time, applica-
tion-transparent activity. The language binding is-
sues vDI calls to the vDI controller, which then
performs driver selection, transformations, invoca-
tion of the driver, etc. The vbi calls never change to
the application; they look like calls to the operating
system.

When the user starts pos (boots it), a file called
CONFIG.SYS is loaded. The CONFIG.SYS file specifies
boot-time device drivers for pos, among which can
be vDI1 device drivers. The user can edit the CON-
FIG.SYS file to include them. The last vDI driver
specified must be the vDI controller.

vDI device drivers may be “grouped.” Grouped driv-
ers share memory space and thus are not resident at
the same time; however, drivers from different
groups may be resident (and open) at the same time.
There is no limit (other than memory space) to the
number of groups that may be specified.

When booting, DOs sequentially loads each of the
drivers specified in the CONFIG.SYS file. After it loads
a driver, it invokes that driver with a special one-
time INIT call to determine, among other things, the
amount of memory the driver requires.

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

vDI device drivers, when invoked with the INIT call,
tell pDos that they only need a small amount of
memory, since all they leave resident is a 100-byte-
long header. When the vpi controller is finally loaded
(towards the end of the processing by Dos of the
CONFIG.SYS file at boot time) and hit with the INIT
call, it computes the amount of memory required by
the largest vDI driver in each group. When the vDI
controller returns to DOS from the INIT call, it reserves
memory for itself and that total.

Thus, after pos is fully booted, enough space has
automatically been allocated in the area of the vDi
controller for a full complement of vbi device driv-
ers, with no subsequent user concern for memory
allocation or management. When an OPEN WORK-
STATION command is given by an application, the
vDI controller brings in the appropriate device driver
(if it is not already loaded and if no other driver is
already loaded in its group area) and starts it.

The key point to remember is that vDI and DoOS are
one and the same as far as the application is con-
cerned. Device selection is fully automatic and trans-
parent to the user. The application never deals with
devices—only with vDI.

Emulation example

To better understand what goes on at the operating
system level when the vDI is active, let’s look at an
example of a typical vDI function—emulation. Sup-
pose that a user writing in FORTRAN wants to create
a filled circle, with center coordinates of X = 30 000
NDC units; Y = 2000 NDC units; R (radius) = 4000
NDC units. Because the circle is located near the end
of the x axis, when the circle is drawn it will be
clipped to the edge of NDC space. The figure will be
drawn on a pen plotter that cannot draw filled circles
on its own.

Appearance attributes of a circle include interior
style, fill style, and color. Interior style is set through
a call to VSFINT (devhdl, stylin), where devhdl is the
device identifier returned by OPEN WORKSTATION and
stylin is an integer specifying the interior fill style.
Acceptable values are 0 for hollow fill (outline only),
1 for solid fill, 2 for pattern fill, and 3 for hatch fill.
Pattern and hatch fill patterns are specified by an-
other call to SET FILL STYLE INDEX. Color is selected
by a call to SET FILL COLOR INDEX.

The user first issues a command to the vDI routine
that draws a circle: VCIRCL (devhdl, X, Y, radius),

IBM SYSTEMS JOURNAL, VOL 24, NO 1,1985

Figure 4 Schematic showing software layers at OS level:
application program on top, VDI bindings, VDI calls,
etc.

APPLICATION PROGRAM

GKS LEVE == =— = ——

GRAPHICS UTILITY SYSTEM

VDILEVEL — — = e e — e — {-— SR

STANDARD
DEVICE

DEVICE
} DRIVER

STANDARD
DEVICE

NAPLPS
DEVICE

where devhdl is the device identifier returned when
the device was opened, X and Y are the center
coordinates of the circle, and radius is the radius of
the circle as measured along the x axis.

The FORTRAN language binding used by the appli-
cation would format this information into five arrays
of the appropriate form for the vDI:

CONTROL[]} INTIN[] PTSIN[] INTOUT[] PTSOUT[]

The CONTROL array is used to specify the desired vDI
function opcode and the length counts of the other
passed arrays. INTIN is an array of integer input
parameters, while INTOUT will contain output pa-
rameters. PTSIN is an array of X, Y pair coordinate
data, with PTSOUT reserved for output coordinates in
a similar fashion. For a circle, the CONTROL and
PTSIN arrays are meaningful and contain the follow-
ing:

CONTROL [0]—opcode = 11

CONTROL [1]—number of input vertices = 3
CONTROL [2]—Ilength of INTIN array = 0
CONTROL [5]—device identifier = devhd]l
CONTROL [6]—subopcode for circle = 4

cLarkson 11

Figure 5 Program to draw a filled circle

¢ ™™ program to open a vdi device, draw a circle and close

¢ *** the vdi device
implicit integer * 2 (a-z)
dimension workin(19), workout(66), echoxy(2)
character * 10 dummy
dataworkin /0,1,1,1,1,1,1,1,1,1,1,
+ 68,73,83,80,76,65,89,32/
data echoxy /0,0/
¢™* open the device

status = vopnwk(workin,devhandle,workout)

o
H

*** set the fill color to blue

status = vsfcol(devhandie,4)

o
H

*** set the interior style to solid

status = vsfint(devhandle,1}

¢ ™" draw a filled circle

status = vcircl(devhandle,3000,2000,4000)
¢*** do a read to wait for viewing

status = vrgstr(devhandle,2,0,echoxy,dummy)
¢ *** close the device

status = vclswk(devhandie)

stop

end

PTSIN [0]—x coordinate of center

PTSIN [1]—y coordinate of center

PTSIN [2]—x coordinate of point on circumference
PTSIN [3]—y coordinate of point on circumference
PTSIN [4]—radius

PTSIN [5]—0

The vDI1 would then direct the device driver to draw
the circle. The device, not having filled-circle capa-
bilities, would essentially respond: “I don’t know
how.” The vbI circle emulation routine, em_circle
(em), would then be summoned. This routine uses
the parameters specified in the DRAW CIRCLE func-
tion, as well as parameters returned when the device
was opened, to construct a polyline representing the
edge of the circle, clipped where appropriate. Since
values in the vDI must be in the range 0-32 767,
coordinate values cannot be less than O in the Y
direction, nor greater than 32767 in the X direction,
so a polyline is constructed along the two edges of
device area and an arc is constructed between them.

12 cLARKSON

Finally, the vDI1 would direct the driver to fill the
circle and would again call the em_circle routine
with a solid fill style. The plotter pen width would
dictate the spacing necessary to produce a solid,
uniform filled area.

After these emulation routines, all transparent to the
user, have been summoned, the figure is complete.
The small FORTRAN program in Figure 5 illustrates
the above example.

Concluding remarks

The Graphics Development Toolkit (the vDI) is apt
to have the same kind of impact on the personal
computer environment for graphics that the proces-
sor-independent (BiOs-based) operating system had
on general applications, enabling graphics to be in-
tegrated with almost any generic application func-
tion.

Applications written to a vDI standard are portable
from one machine to another—as well as to devices
offered in the future. If the machines have the same
operating system, the object code is portable; if they
have different operating systems, the high-level
source code is portable.

Concentrating graphics functionality at the operating
system level allows applications to be upgraded easily
and to take advantage of new or improved devices.
Additionally, a low-capability device can transpar-
ently support high-level vD1I graphics functions
through emulation.

If the “open system” concept is furthered, more
application programs will be developed with graphics
as a natural and logical extension rather than as an
afterthought.

The vDI promotes development of a wider range of
input and output devices, all of which can be handled
with the same conceptual model without regard for
device-specific constraints.

The vbDI frees computer development, since graphic
application software developed for one graphics
computer will work with others.

The vDi frees 1BM PC graphics from the encumbrance
of device dependence, allowing the field to expand
and blossom as a dynamic industry.

One may expect that such low-level routines as those
contained in the vpI will soon migrate into device

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

controller chips, with the consequent development
of devices which can accept direct vDI input.

As for the vpiI itself, after it is standardized the vDI
may be extended to include enhanced font technol-
ogy, advanced raster techniques, and, as the power
of personal computers improves, graphic segments.

In summation, the 1BM Personal Computer Graphics
Development Toolkit (vDI) permits an application
program to be isolated from the operating environ-
ment in which it is run.

Cited references and notes

1. Studies done by Wharton Applied Research Center, Wharton
School, University of Pennsylvania, Philadelphia, under grant
from the Audio Visual Division of 3M Corporation. Reviewed
in Computer Graphics News (March/April 1982).

2. A. Bechtolsheim and F. Baskett, “High-performance raster
graphics for microcomputer systems,” Computer Graphics 14,
No. 3, 43-47 (July 1980).

3. Whirlwind example from J. D. Foley and A. van Dam, Fun-
damentals of Interactive Computer Graphics, Addison-Wesley
Publishing Co., Reading, MA (1982), p. 18.

4. W. K. English, D. C. Englebart, and M. L. Berman, “Display
selection techniques for text manipulation,” IEEFE Transactions
on Human Factors in Electronics HFE-8, No. 1, 21-31 (1967).

. Centipede™ and Donkey Kong™ are software games available
from Atari, Inc., P.O. Box 2943, South San Francisco, CA
94080.

6. GKS is known as ANS X3.124, PHIGS will be available soon

in working draft form for public review in 1985. VDM is known
as dpANS X3.122, with final approval expected in early 1985.
VDI is available in draft form for public review in 1985. At its
June 1984 meeting in Genodet, France, the International Or-
ganization for Standardization (ISO) WGZ (Graphics) voted
the following formal titles for the projects formerly known as
VDM and VDI:

wn

Long title: Information Processing—Computer Graph-
ics—Metafile for Transfer and Storage of Pic-
ture Description Information

Short title: Computer Graphics Metafile

Abbreviation:. CGM

Long title: Information Processing—Computer Graph-
ics—Interface Techniques for Dialogues with
Graphical Devices

Short title: Computer Graphics Interface

Abbreviation: CGI

It is expected that ANSI will adopt ISO nomenclature when
these standards are adopted.

7. The following devices are supported by the IBM Personal
Computer Graphics Development Toolkit (VDI): IBM Game
Adapter and IBM PCjr and PC Joystick, IBM Color/Graphics
Monitor Adapter—High Resolution 2 Color, IBM Color/
Graphics Monitor Adapter-——Medium Resolution 4 Color, IBM
Enhanced Graphics Adapter with Monochrome Monitor, IBM
Enhanced Graphics Adapter with Enhanced Color Display,
IBM Enhanced Graphics Adapter-—~Medium Resolution 16
Color, IBM Enhanced Graphics Adapter—High Resolution 16

IBM SYSTEMS JOURNAL, VOL 24, NO 1, 1985

Color, IBM Professional Graphics Display and Controller—
256 Color, IBM Compact Printer, IBM Color Printer, IBM
Graphics Printer, IBM PCjr—High Resolution 4 Color, IBM
PCjr—Medium Resolution 16 Color, IBM PCjr—Low Reso-
lution 16 Color, IBM 7372 Color Plotter, IBM 7371 Color
Plotter, and IBM Virtual Device Metafile (VDM).

Reprint Order No. G321-5233.

Thomas B. Clarkson Wl Graphic Software Systems, Inc., 25117
SW Parkway, Wilsonville, Oregon 97070. Mr. Clarkson is Presi-
dent of GSS and co-founder of the corporation. Before becoming
involved with the enterprise, he played a key role in enhancing the
Plot-10 interactive graphics software library of Tektronix. Prior to
that, he was a software project leader and computer analyst at Jet
Propulsion Laboratory, developing programs for the Galileo proj-
ect to Jupiter. He had earlier been a research assistant at the
Georgia Institute of Technology and a programmer at Interna-
tional Energy Conservation Systems, Inc., in Atlanta. Mr. Clarkson
earned a Bachelor’s degree in physics from Wake Forest University
and a Master of Science degree in information and computer
science from the Georgia Institute of Technology. He is a member
of the ANSI X3H3 Graphics Standards Committee, ACM SIG-
GRAPH, and the National Computer Graphics Association.

cLarkson 13

