
VM/370, Attached
Processor, and
multiprocessor
performance study

by W. H. Tetzlaff
W. M. Bum

This paper discusses performance studies of Attached
Processors, multiprocessors, and VM/370. A methodol-
ogy for evaluating performance is discussed. Perform-
ance improvements are explained and evaluated.
These studies played a role in a new option to the VM/
System Product control program that is called the High
Performance Option (HPO).

I n September of 1980, a system at the IBM Thomas
J. Watson Research Center that originally had run

on a System/370 Model 168 Attached Processor was
upgraded to run on a System/370 Model 3033 mul-
tiprocessor system. It was immediately clear that the
multiprocessor support had changed the behavior of
the system, even on an Attached Processor configu-
ration. At the same time, an analysis and improve-
ment project for Release 6 with the VM/370 System
Product (hereafter VM/SP) system was started. See
Reference 1 for more information on the computing
environment at the Research Center.

This paper discusses the Attached Processor support,
what was learned about its operational characteris-
tics, the changes made to the software, and the
performance improvements realized. The multiproc-
essor support and its operational characteristics are
also discussed. Changes in software are evaluated.

Following the performance studies reported in this
paper, a new option to the VM/SP control program,
called the High Performance Option (HPO), was an-
nounced. This option has a number of features that

IBM SYSTEMS JOURNAL VOL 23. NO 4. 1984

affect the performance on the Attached Processor,
multiprocessor, and diadic processors. The HFQ sys-
tem incorporates improvements to the paging rate
feedback, changes to page migration, and an increase
in the number of free storage subpools. The need to
keep two copies of shared pages and to examine
them for change has been eliminated in HPO Release
1 by making use of a segment protect feature. The
free storage algorithms have been further refined2 in
HPO Release 2. HPO Release 3.4 contains algorithm
changes to improve cache performance in general,
and cache performance on diadic processors in par-
ticular.

Measurement tools
At the Research Center a program called VM/
Monitorj collects data during the first shift for two
~ ~ 1 3 7 0 systems. vM/Monitor has long been the pri-
mary VM/370 data collection tool here.4 vM/Monitor
collects system performance and resource utilization
data by means of sampling and trace techniques,
and writes the data collected on tape or (under
~ ~ 1 3 7 0 Release 5) to a spool file. Some of the captured
events-terminal input, for example-are caused by

e Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

TETZLAFF AND BUCO 375

activities of system users. Other events correspond
to the use of such resources as individual Direct
Access Storage Device (DASD) accesses. Still other
events, such as moving a user from one scheduling
queue to another, are caused when scheduling deci-
sions are made. Sampling is initiated by the expira-
tion of an interval of time. The time-driven events

A special data collector was created
to capture response-time data.

~~

are used to cause information about each individual
user to be recorded, as well as to cause information
about DASD and tape device utilization to be written
periodically.

vM/Monitor data are reduced by a special data re-
duction program written at the Research Center and
known as the Generalized Reduction of Information
program GRIN).^ GRIN is a program generator that
has been designed to increase the productivity and
effectiveness of performance analysts by enabling
them to spend more time on analysis and less time
on either defining or writing data reduction pro-
grams. During the investigation of the performance
of ~ ~ 1 3 7 0 , GRIN was invaluable because of its ability
to create new reports very quickly. Many throwaway
reports were created, while others evolved into stand-
ard Attached Processor performance reports.

A special data collector was created to capture re-
sponse-time data. Basic data are created within the
operating system. The collector obtained the data
and recorded them in a data base during all times
that the system was running. This monitor allowed
us to collect response-time data without running the
vM/Monitor SCHEDULE Class Of data.

V M ~ O accounting data were also used in order to
measure total accountable CPU time before and after
the changes.

VM/370 Attached Processor support

~ ~ 1 3 7 0 Release 4 introduced support for Attached
Processors for the System/370 Models 158 and 168.

376 TETZLAFF AND EUCO

In this type of system, two processors reference the
same main memory and execute a shared operating
system. This system differs from a more classical
multiprocessor in that the Input/Output (110) devices
are accessed only from the main processor. Refer-
ence 5 contains a more detailed explanation of the
Attached Processor support.

Lock management. Prior to the introduction of At-
tached Processor support in V M / ~ ~ O , it was not nec-
essary to have any locks because the structure of the
control program forced all necessary serialization.
The Attached Processor support introduced several
locks to protect the integrity of system tables at times
when both processors were executing system code.

Two types of lock usage were introduced, named
spin and suspend. If it is possible to delay a particular
process until the lock becomes available, the state
vector is saved and the process is suspended. If
suspension is not possible, the processor is placed in
a loop, testing for the availability of the lock. This is
the spin condition; it takes place in a lock manager
that also counts and times the spin conditions for
each lock. Lock-spin time is shown in Figure 1 as a
percentage of elapsed time waiting for a lock for
various ranges of active system users.

Lock spin time was typically found to be about 0.5
percent of elapsed time on ~ ~ 1 3 7 0 Release 5. The
dominant lock on the system was the SYSTEM lock.
The SYSTEM lock is really a general lock for activity
that is not covered by more specific locks. The linear
relationship with the multiprogramming level can be
observed in Figure 1.

If a lock is needed but unavailable, it may be possible
to defer the processes that require the lock. The
action of deferring processes happens from 200 to
400 times per second during normal load, indicating
that this is an often-used feature. Like the lock-spin
time, the defer rate increased linearly with multipro-
gramming level.

1 / 0 and paging. In an Attached Processor configu-
ration the attached CPU does not have access to any
110 channels. Thus, 110 operations requested by a user
on the Attached Processor must be executed on the
main processor. Similarly, paging, like 110, must be
initiated on the main processor.

In ~ ~ 1 3 7 0 , shared pages may be modified by a user.
When this happens, the modified page is given to
the user, and a new unmodified page is made avail-

IBM SYSTEMS XWRNAL, VOL 23. NO 4, 1984

Figure 1 VM/370 Release 5 lock-spin time

. . ' , "'

PERCENT OF ELAPSED TIME WAITING FOR A LOCK
ACTIVE
USERS

0.0 1 . o
0 t o 1
2 t o 3

I
. I

4 t o 5
6 to 7

I

8 t o 9
I

10 t o 11
I

12 t o 1 3
I

. I
14 t o 15 I
16 t o 17
18 t o 19

I

20 t o 21
1"- I
I"_ ""

22 t o 23
I

24 t o 25
. . I

. I

,

.
.

.

.

.

/

able to other users. This feature is supported by a
subroutine that is called by the dispatcher and is
called when the dispatcher detects that it is about to
dispatch a different user. The subroutine inspects all
shared pages to determine whether the hardware had
turned on the change page flag to indicate that the
page had been changed by the last user. The shared-
page architecture requires that all shared pages be
inspected each time the dispatcher switches to a
different user.

The performance improvement study determined,
through a combination of static instruction counting
and dynamic path counting, that substantial CPU
time was spent examining the page tables looking
for shared pages that had been changed. One way to
control this would be to try to limit the number of
switches to a different user.

Shared pages (in CMS, for example) cause an addi-
tional complexity on Attached Processor systems. It
is not possible to have one set of shared pages be-
cause, when a shared page is modified, there is no
record of which processor modified it. Thus VM/370
maintains two sets of shared pages, one for each
processor. On a uniprocessor, it is not unusual to
have several hundred shared pages in main memory
simultaneously. The necessity of keeping two sets of
shared pages doubles the number of pages in main
memory at the same time. We found that there was
almost always an exact match between the particular
pages that each processor had in main memory. The
doubling of the pages caused about 400 page frames
to be used for this purpose. The loss of 200 pages
can be significant in a system that is storage-con-
strained.

When a processor requires a shared page, it initiates
a page-in. However, the user might later be dis-
patched on the processor that does not have the
page. That does not cause a double page-in because
the system detects that the first processor now has
the page in memory and, therefore, does a memory-
to-memory copy.

Dispatching. The Attached Processor dispatcher
works in basically the same way that it did before
Attached Processor support was added. Changes deal
primarily with the resumption of suspended proc-
esses and with the ability to force processing onto a
particular CPU. The dispatcher uses the same priority
list for finding a dispatchable user for either proces-
sor. Suspended processes are dispatched ahead of the
normal priority dispatching order.

The study data showed the dispatch rate to be some-
what higher than we had previously found for the
uniprocessor system. The rate appeared to be quite
high, with 1000 to 1600 trips through the dispatcher
per second, but somewhat lower in the context of
the 110 and paging rates. A page-in or 110 operation
normally involves one dispatch when the requesting
machine begins to wait for completion of the oper-
ation. Later, when the operation has completed, a
second dispatch is required to begin processing again.
The dispatch rate is about two times the page-in rate
plus the 110 rate.

On a uniprocessor system, ~ ~ 1 3 7 0 uses preemptive
dispatching, which means that the highest-priority
user always runs. This is accomplished by examining
the dispatching list each time a user becomes ready
to run as a result of an 110 completion. When two

IBM SYSTEMS JCURNAL. VOL 23, No 4. 1984 TETZLAFF AND @X0 377

Figure 2 VM/370 Release 5 interactive CPU usage

/ fl
ACTIVE 0.0 CPU TIME IN SECONDS
USERS
0 to 1 lvvwvuwvuussssssssssssss
2 to 3 lvuvwvvssssssssssss
4 t o 5 luvvvvvvussssssssssssss
6 t o 7 lvvwvvvsssssssssssssss
8 t o 9 lvvwuvussssssssssssssss

1 0 to 11 iwvuuuvsssssssssssssssss
12 t o 13 iuvuvuvssssssssssssssssss
1 4 t o 15 iuwvwssssssssssssssssss
16 t o 17 iwvuvvusssssssssssssssssss
18 t o 19 lvuvvwsssssssssssssssssss
2 0 t o 21 lvvvvwvssssssssssssssssssss
22 t o 23 1wuwvussssssssssssssssssss
2 4 to 2 5 lvuvvwssssssssssssssssssssss
2 6 to 27 lwuvvvvvsssssssssssssssssssssssssss

0.05

I
I
I
I
I
I
I
I
1
I
I
I
I
I

U Mean virtual CPU time
S Mean supervisor CPU time I I

processors are used, preemption does not take effect
on the Attached Processor. The 110 completion
causes an interrupt on the system with the device.
The user who is then ready to run is selected by the
dispatcher if he is the highest-priority ready user. If
he is not the highest, he will not be run. The user
being run on the Attached Processor may be of lower
priority, but he is not preempted on the Attached
Processor. Thus, Attached Processor dispatching
does not conform to strict preemptive dispatching.
This nonpreemptive dispatching causes some biases
in the treatment of users, so that low-priority, com-
putation-bound users may obtain a great deal of cpu
time.

One of the measures of the differences between work
run on the main CPU and the Attached Processing
Unit (APU) is the ratio of virtual time (i.e., time
running in problem program state) to page-in oper-
ations. We found that, on Attached Processor sys-
tems, the Attached Processor used 2.5 times as much
virtual time between page-ins. Thus, the Attached
Processor benefits primarily long-running users.
These users avoid preemption by not voluntarily
giving up control to the dispatcher.

The data showed that system CPU time was consid-
erably higher when an Attached Processor system
was being run. Data from scheduler traces showed
that the greatest increase in supervisor time was
associated with transactions because these transac-
tions make greater use of supervisor services and do
the bulk of the paging on the system. The supervisor
time per transaction doubled on an Attached Proc-
essor system as compared with a uniprocessor sys-
tem. This was apparently due to longer paths asso-

ciated with paging and other services. The data used
to produce Figure 2 also showed that supervisor time
per interactive transaction increased linearly with
the number of active users, whereas virtual time
remained constant. Problem state time per transac-
tion stayed essentially the same.

Multiprogramming level as a measure of load.
Callaway6 demonstrated the usefulness of using mul-
tiprogramming level as a measure of contention on
a V M / ~ O system. He showed the relationship between
virtual time and total CPU time under increasing
load. Our data are summarized in Figure 3. Using
the same type of graphs, we have shown that the
multiprocessor and Attached Processor systems stud-
ied become 110-saturated before they become CPU-
saturated. By this we mean that increasing the mul-
tiprogramming level does not increase the number
of 110 operations. This has not been the case for our
uniprocessor systems because they become cpu-sat-
urated first.

Responses are normally categorized as interactive (or
Q I transactions, because they complete while in
scheduling queue number 1) or long-running (called
~2 transactions because they complete while in
scheduling queue number 2). Transactions are ini-
tially placed in Q I . If they have not completed after
using a specific quantity of cpu time, they are moved
to ~ 2 . The graph in Figure 4 shows the Q I response
time relationship to multiprogramming level, which
is useful in evaluating the ability of the system to
maintain service during overload. The events dis-
played by the graphs have proved to be repeatable
and have proved to be characteristic of a given
system. It is possible to observe changes in the shape

~ 378 TETZLAFF AND BUCO IBM SYSTEMS KIURNAL, VOL 23, NO 4, 1984

Figure 3 Virtual (V) and total (T) CPU time as a function of
active users

s
ACTIVE 1 PERCENT OF ELAPSED TIME
USERS

200

O t O 1 I V I T I I I

10 to 1 1
12 to 13
14 to 15
16 to 1 7

20 to 21
18 to 19

22 to 23

V I
V I
V I
V I

VI
V I

V I

IT I
I T
I T 1

I

I T 1
I T I
I T I

, -

I T I
24 to 25 I I V I
26 to 27 I I V I

I T i 1 1
I T I

28 to 29 I I V I I TI I I

Figure 4 Interactive response time

ACTIVE
USERS
0 to 1

4 t o 5
2 to 3

6 to 7

10 to 1 1
8 to 9

12 to 13
14 to 15
16 to 17
18 to 19
20 to 21
22 to 23
24 to 25
26 to 27

0.0 Ql RESPONSE TIME IN SECONDS 2.0

I *
I *

I
I

I * I
I
I

I * I
I *
I * I

I

I * I
I * I
I * I
I * I
I *
I

I
I

I **

*

30 to 31 I
32 to 33 I

I V I
I V I

I
I

Figure 5 Response time throughput tradeoff

of the response-time-to-multiprogramming-level re-
lationship curve as the system improvements are
made.

The graph that was found most useful was a combi-
nation of the percent virtual CPU time data (from
Figure 3) and the Q 1 response time data (from Figure
4). The plot of these measurements in Figure 5 shows
the tradeoff between response time and throughput.
Each point on the graph in Figure 5 represents the
average response time and the average virtual CPU
utilization at a particular multiprogramming level.
In general, at low load the response time is very
good, and the CPU is relatively underloaded. At heavy
load, the response time is higher, and the virtual CPU
time is as high as it can be. At overload, the response
time is very high, and the virtual CPU time is lower
due to the increased need for supervisor CPU time to
manage the system. Performance improvements are
easily seen by shifts in the curve toward lower re-
sponse times and higher virtual CPU time.

Changes in Attached Processor support

Our observations of Attached Processor performance
indicate that the additional processor gives good
improvement in expansion factors for noninteractive
work, particularly that which is cpu-bound. The
expansion factor is a measure of increased elapsed
time to complete a transaction due to contention for
resources. The expansion factor is the actual elapsed
time divided by the elapsed time that would have
been required without contention between users.
(Reference 4 contains a discussion of the calculation
of expansion factors.) We felt there was potential for

Percent Virtual CPU Tune

+ Unmodlfied Attached Processor system
* Attached Processor system with changes - Attached Processor system wlth changes

and added signal processor communication

greater throughput relative to a uniprocessor as mea-
sured by virtual CPU time. Thus our goals in modify-
ing the system have been to reduce Q t response time
and increase virtual CPU time.

Paging rate. We observed that the INDICATE com-
mand did not display paging rates that were consist-
ent with the rates derived from vM/Monitor data.
(The INDICATE command may be used to display the
current paging rate of the system at a terminal.) We
found that for Attached Processor systems the INDI-

TETZLAFF AND BUCO 379 IBM SYSTEMS XXIRNAL. VOL 23. No 4. 1984

CATE command displayed the total paging rate di-
vided by two. Thus it displayed the average rate per
processor. The same calculation was also used in the
systems control algorithms, which prevented the sys-
tem from recognizing that the actual paging rate was
too high and taking corrective action. Division by
two was removed to allow proper feedback.

Dispatcher. Another change to the system relates to
a preemption effect that gave 4 2 users increased
preference on Attached Processor systems. The dis-
patcher was modified to select the highest-priority Q I
user, even though a higher-priority ~2 user might be
ready to run. This change might be more appropri-
ately made by changing the scheduler so that when
the system is an Attached Processor, Q I priorities are
made higher than Q2 priorities.

For several reasons, the dispatcher has been modified
to redispatch an interrupted user if he was in Q I .
This modification gives Q I users added preference
and reduces the number of dispatcher switches so
that snared pages need not be inspected. This reduces
supervisor CPU time and increases the probability of
the processor’s finding needed data in the cache (i.e.,
high-speed storage), thereby allowing instructions to
be executed faster.

Time quantum. If a cpu-bound user (who may be in
a loop as a result of a bug) is dispatched on the
Attached Processor, he may run a long time because
of the lack of preemption. The mechanism for stop-
ping such a user is the time quantum. The end of a
time quantum creates an interrupt, which gives the
dispatcher the opportunity to discover whether a
higher-priority user has become ready to run. When
a user runs to the end of a time quantum he is
marked as cpu-bound if he did not do any 110 during
the time quantum. Based on this definition of CPU-
,bound, that user’s next quantum will be four times
as long as the previous one. In practice, even a low-
priority user in a loop may be dispatched often
enough to use as much as half of the power of the
Attached Processor. In order to lessen the impact of
such a user, we eliminated the multiplication of the
first time quantum by four for cpu-bound users.

Some experiments were done with code that used
the System/370 Signal Processor (SIGP) instructions
to cause more communication between the two proc-
essors. This instruction allows one processor to in-
terrupt the other. The code was intended to improve
the throughput of low-multiprogramming-level At-
tached Processor systems. The systems signal one

380 TETZLAFF AND 6x0

another when they have made work available that
the other processor should do now. This creates more
preemption.

Evaluation after changes

Evaluation of individual changes was done by com-
paring the response time-throughput tradeoff data as
shown in Figure 5 . There are several reasons why it

It was necessary to improve service
quickly and without stopping the

flow of improvements.

was not possible to do complete evaluations of each
change individually, all of which relate to the fact
that the changes were being made on a system at the
same time it was providing service to a large number
of users. Thus, it was necessary to improve service
quickly and without stopping the flow of improve-
ments. At the same time, data would have to have
been collected over a period of many days in order
to fully evaluate each change. It would also have
been necessary to remove some of the previous
changes in order to evaluate their interactions.
Otherwise, there might have been a regression in
service that would not be acceptable to our users or
our system management philosophy.

Figure 5 shows the response time versus throughput
profiles for three typical usage days. The shape of
the curve moved down and to the right as a result of
system modifications. The day with the added signal
communications falls between the other two curves.
Additional signal communication was not a useful
change for the system. (We ran with that change for
three days to confirm the reduced performance and
then removed it from the system.)

The signal communication modifications were char-
acterized by high supervisor CPU time, high lock-
spin time (five times higher than without the modi-
fications), and poor interactive performance. It
seems that the Attached Processor architecture has a

IBM SYSTEMS XXIRNAL, VOL 23, NO 4. 1984

Table 1 Mean Q1 response time analysis for two months

Time

9 AM
10 AM
1 1 AM
12 PM

1 PM
2 PM
3 PM
4 PM

mean

November
Mean

Response

0.428
0.48 1
0.357
0.22 1
0.480
0.474
0.605
0.6 17

0.458

February
Mean

Response

0.343
0.346
0.277
0.2 17
0.303
0.357
0.390
0.405

0.330

Improvement

0.085
0.135
0.080
0.004
0.177
0.117
0.2 15
0.212

0.128

Percent
Improvement

20
28
22
2

37
25
36
34

28

natural advantage in that it tends to place the need
for locks on the main processor, thus reducing the
contention for locks. The attempt at balancing su-
pervisor CPU time between the two processors was ill
advised because it also maximized lock contention.

Table 1 gives an overall evaluation of the changes by
comparing mean Q I response time for each hour of
the day for each of two months. November of 1979
was the last month before the scheduling changes
were tried. February of 1980 was the first month
after the scheduling changes had been completed.
Thus Table 1 contrasts the hourly response times for
these months. The fact that each of the eight hours
has improved response time shows the statistical
validity of the conclusion that there was an improve-
ment. A 28 percent mean reduction in response time
resulted, despite an increasing workload, and it was
accompanied by an increased throughput.

VM/System Product experiences

The multiprocessor support provided by vu/System
Product (VM/SP) allows both processors to access data
channels. If a device is to be accessible from both
processors it must have the same address on each
processor. It is not required that all addresses be
accessible from both processors. Processing for a
user’s I/O operation begins on the processor that is
executing the user’s program. When processing has
reached the point at which a Start I/O operation (SIO)
is to be done, it may then be determined that a path
to the requested device is not actually available. If
so, the operation is queued for the other processor.

In VM/SP two more locks were added to the system:
one for 110 and the other for real memory. This was
done in order to reduce the use of the system lock.

IBM SYSTEMS JOURNAL, VOL 23, NO 4, 1934

During the first shift of the first day of operation the
system experienced severe performance problems.
Paging bottlenecks were the most noticeable differ-
ence from the ~ ~ 1 3 7 0 Release 5 system that had been
running. Measurements indicated that the selection
of old pages for drum-to-disk migration was not as
effective as VM/370. The characteristics of the user
virtual memory requirements were confirmed to be
the same, and the size of the drum paging space was
the same. The decreased effectiveness of the drum-
to-disk migration was probably due to changed page
reference patterns in CMS. Previously, drum migra-
tion had been able to ensure that 70 to 80 percent
of the pages of the active users were on drum. Under
VM/SP the percentage dropped below fifty. This drop
in page availability had the predicted increase in
page-in time accompanied by increased QI response
time.3

By having a multiprocessing system, the conditions
for preemption change but equity among programs
is not resolved. Our system was not fully symmetric.
It was deliberately configured to provide paths to all
devices from the main CPU, and redundant DASD
paths were the only ones available from the second
processor. This ensured the continued ability to run
V M ~ O Release 5 on the hardware. The virtual time
per page-in was observed as 1.5 times higher on the
processor with fewer I/O devices than on the other
processor. The multiprocessor architecture is not a
solution to the preemption problem because both
CPUS suffer from some nonpreemptive dispatching.

Several days of running with a completely asymmet-
ric configuration were done to determine whether
the additional paths were a help or a hindrance.
The result was that it was not possible to measure
any difference in response time or throughput.

TETZLAFF AND BUCO 381

Page migration. Page migration is a facility that
moves unreferenced pages from high-speed paging
drums to larger but lower-speed paging disks. Page
migration changes were implemented to cause the

The changes to the migration
algorithms had a very positive effect

on the use of drums for paging.

drum-to-disk migration to operate more nearly con-
tinuously, and to improve the approximation to the
Least-Recently-Used (LRU) algorithm. This was ac-
complished primarily by invoking the page migra-
tion routine more often (once per minute instead of
every ten minutes), and compensating by moving
fewer pages.

The changes to the migration algorithms had a very
positive effect on the use of drums for paging. The
drums became used typically for about 80 percent
of the pages of the active users. The shift of paging
toward the drums caused the average page-in time
to be halved. Because page-in time is the largest
component of the Q I response time, the shift of
paging toward drums reduced the response time by
about one third.

Free storage manager. Even after the page migration
changes had been installed in the system, there were
still two striking differences between the VM/370
Release 5 and the VM/SP system. First was lock-spin
time, which was about five times higher than that
for V M / ~ ~ O . Second was supervisor CPU time, which
was also higher. The particular lock that was associ-
ated with most of the spin time was the free storage
management lock (DMKFREE). This lock had very
little spin activity on V M ~ O Release 5 , but on
VM/SP it was the dominant lock on the system. Our
previous experience had shown that lock-spin time
is a very sensitive measure of lock-hold time. The
lock-spin probability is proportional to the product
of the lock-hold probabilities of the two processors.
Thus, a small change in lock-spin time indicates a
much larger increase in lock-hold time. This infor-
mation pointed to the free storage manager.

382 TETZLAFF AND BUCO

The free storage manager is used to manage available
storage and make blocks available for control blocks
and buffers. Storage is initially accounted for by
chaining blocks together, in what is called the main
chain. The main chain is ordered by storage address
so that adjacent free blocks can be recognized and
merged into one block. V M ~ O makes high use of
data areas that require less than 30 double words of
storage. In order to make small blocks available
quickly (without searching the main chain), a system
of subpools was created. There are ten subpools that
contain blocks of 3 ,6 ,9 , etc. double words of storage.
A request for storage may be filled very quickly by
rounding up to the next multiple of three double
words and taking an available block of that size.
Available storage is placed on the subpools, as a
result of freeing a previously used block. Storage
blocks in a particular subpool are chained together
and managed in Last-In-First-Out (LIFO) order.

Dynamic and static measurements determined that
requests calling for storage from the main chain
required three orders of magnitude more CPU time
than the subpools to obtain a storage block. Thus, a
small increase in the use of the main chain could
have a dramatic effect on the time spent in the free
storage manager.

The most obvious change in the pattern of storage
use in VM/SP was the display terminal input area
increase. The input area buffer for display terminals
was increased from 28 to 31 double words. Thus,
these requests were moved out of the subpool man-
agement.

An additional subpool was created so that there
would be eleven pools of up to 33 double words.
This brought the input buffer back into subpool
management, which provided a considerable im-
provement. Storage management time was reduced
from 10- 1 5 percent of elapsed time to 5- 10 percent
of elapsed time.

The use of eleven subpools has made some reduction
in the lock-spin time, thereby allowing the system to
run at less than two percent lock spin most of the
time, as shown in Table 1. This is still four times the
lock-spin time of v ~ / 3 7 0 Release 5 , and the difference
is almost fully accounted for by the DMKFREE lock,
which is the dominant lock on the system.

Table 2 shows response times for the various systems
studied. With VMISP, we observed a 34 percent
increase in Q I response time. The page migration

IBM SYSTEMS JOURNAL. VOL 23,' NO 4, 1W

changes and eleven subpool codes have produced a
system that is about equivalent to the previous
VM/VO Release 5 system.

Epilogue

The purpose of this epilogue is to describe some of
the additions and changes made to the performance
algorithms by the VM/SP High Performance Option
(HPO) product. This discussion is not meant as a
guide or tutorial on the VM/SP High Performance
Option, but rather as an overview of the significant
differences between current products and the pre-
vious discussion in this paper.

Shared pages. When run on certain processors (e.g.,
IBM 308 1, 3083, 438 1, and partitioned 3084), HPO
uses the Segment Protect feature to protect the pages
of shared segments. This reduces the time spent
scanning the pages to inspect the change page flag,
because the hardware now prevents any change. On
an IBM 308X run as a Dyadic Processor, there is an
additional benefit in storage, since only one copy of
a page is needed.

Because the hardware is preventing any changes to
the pages, including any changes to the protect keys,
the Set Storage Key (SSK) instruction can now be
assisted by Virtual Machine Assist (VMA). This results
in a faster execution of these instructions by CMS on
processors with VMA and Segment Protect hardware
(e.g., IBM 308X and 434 1 Processors).

Dispatching. The dispatching algorithms have been
changed to improve performance. On AP, MP, or
dyadic processors generated for MP or AP modes of
operation, two dispatch lists are now maintained.
When a virtual machine begins a new transaction, it
tends to run on the same processor for the entire
transaction. This soft afinity has been provided to
allow better reuse of the data in each processor’s real
storage cache. This is especially helpful for redis-
patching a virtual machine after a short delay, such
as a page fault.

Signals between processors. HPO has reduced its need
for Signal Processor (SIGP) instructions, especially
the SIGP WAKEUP, compared to VM/SP. These SIGP
instructions had been introduced to make the system
more responsive to work when one processor is busy
doing something, the other processor is idle, and an
interrupt occurs that creates work to be done. Signal
Processor instructions were introduced so that the
busy processor could be sure that the idle processor
started to work on the newly eligible work. This

IBM SYSTEMS X X I R W . VOL 23, No 4. 1984

Table 2 Evaluation of VM/SP changes

System Days 01
Measured Response

Time

VM/370 Release 5 with AP changes 10 0.2 16
VM/SP with AP changes 9 0.289
VM/SP with AP changes and page 10 0.263

VM/SP with AP changes, page mi- 6 0.198
migration changes

gration changes, and 11 subpools

created a problem in perception, since a lightly
loaded system appeared to have less remaining ca-
pacity than in fact it had. Low Utilization Eflects are
characterized as extra overhead spent when the sys-
tem is not fully loaded. As the system becomes more
heavily loaded, the probability of having one proc-
essor busy and one idle is decreased, so that the
overhead of interprocessor communications is re-
duced.

In HPO, the system now has a new way of handling
this condition. The former way was to have the busy
processor do the following: Receive the interrupt,
determine that the other processor is idle, queue the
work, signal via SIGP for the other processor to
WAKEUP, and then go back to its useful work.

HPO now has the idle processor scan its own queue
for available work. If the processor has no work, it
looks to see whether the other (busy) processor has
two or more units of work. If the busy processor has
a queue, the idle processor steals the second entry
on the queue. This reduces the time spent processing
the interrupt, yet allows the “two processors and one
unit of work” condition to be handled efficiently.
This change is called Active Wait State.

Page migration. The page migration changes de-
scribed in this paper were integrated into HPO.

Free storage management changes. As a result of the
research described in Reference 2, a split set of
subpools was created. There are now subpools of 2,
4, . . . , 30, 32 double words and 64, 96, 128, . . . ,
992, 1024 double words. This allows any request up
to two 4096-byte pages to be satisfied from a subpool.
The latest release of HPO has extended these storage
management changes in several additional ways:

Each processor has its own set of subpools. This
reduces interference between the caches of the two
processors in a dyadic complex.

TETZLAFF AND wco 383

Each subpool has a separate lock. Since only one
processor normally goes after storage in each sub-
pool, the locking procedure rarely finds the lock
held by the other processor. There is still a lock
for the main chain of storage blocks that are not
on a subpool, but the contention for it has been
greatly reduced.
Each processor also has available another subpool
of 128-byte cache-aligned entries, called Prime
Storage. This area is requested (with a special
request) for control blocks that are characterized
by short life and high activity. Having the prime
storage areas cache-aligned ensures that no control
block will span cache lines, and no cache line will
have two control blocks, with one in use by each
processor.
There is another area for larger blocks (128-768
double words) that is also cache-aligned for control
blocks that are characterized by high activity and
long life. The only control block currently placed
in this area is the VMBLOK, but the interface is
more general and may be used for additional
blocks in future releases.

Concluding remarks

Attached Processor and multiprocessor systems of-
ten have characteristics that differ from those of
uniprocessor systems from which they are derived.
For example, a priority dispatcher that has preemp-
tion on a uniprocessor may lose some of its control
of CPU allocation through a lack of preemption
across processors in the complex. A lack of preemp-
tion in dispatching is better compensated for in
scheduling and dispatching than by creating addi-
tional communication among processors.

The relationship between lock-spin time and lock-
hold time provides an interesting way to measure
lock-hold time by measuring lock-spin time. At-
tached Processor systems have a useful separation of
function that unevenly distributes lock usage, thus
lowering lock-spin time. An even distribution of
lock-hold maximizes lock-spin time.

The graphs that relate throughput in virtual CPU
time to interactive response time are very useful.
They show very clearly the tradeoff that the system
makes between throughput and response time. The
shapes of the graphs were shown to be highly repeat-
able, despite daily fluctuations in load. The graphs
provide a way to evaluate changes to the system,
despite day-to-day load changes.

384 TETZLAFF AND wco

Three significant performance improvements de-
signed to reduce response time and to increase
throughput have been discussed. The changes we
made resulted from our study of multiprocessor and
Attached Processor systems, but benefits were also
created for uniprocessor systems. The dispatcher
changes reduce task-switch overhead on any system
using shared pages, improve 41 response, possibly
improve cache hit ratios, and improve the 4 2 re-
sponse on Attached Processor/multiprocessor sys-
tems. The page migration changes should improve
migration on any system that uses drum-to-disk
migration. The storage management changes reduce
supervisor CPU time for any VM/SP system.

Acknowledgments

The study of Attached Processor performance was
initiated when C. Stephenson and G. Waldbaum
proved that 41 response time was longer on the
Attached Processor system at the Thomas J. Watson
Research Center than it was on the uniprocessor. L.
Junker and N. Brenner provided the continuous
monitoring of interactive response time on the sys-
tems and also the data reduction of historical re-
sponse-time data. W. Doherty, P. Capek, L. Climen-
haga, M. Linehan, and A. Greenberg participated in
the process of understanding the system and propos-
ing changes. W. J. Doherty, H. Serenson, and R. P.
Kelisky provided management support. The authors
thank D. R. Patterson for his critical review of the
manuscript.

Cited references

1 . W. J. Doherty and R. P. Kelisky, “Managing VM/CMS sys
tems for user effectiveness,” IBM Systems Journal 18, No. 1 ,

2. G. Bozman, W. Bum, T. P. Daly, and W. H. Tetzlaff, “Anal-
ysis of free-storage algorithms-revisited,” IBM Systems Jour-
nal 23, No. 1,44-64 (1984).

3. VM/370 System Programmer’s Guide, GC20-1807; available
through IBM branch offices.

4. W. Tetzlaff, “State sampling of interactive VM/370 usem,”
IBM Systems Journal 18, No. 1 , 164- 180 (1979).

5 . L. H. Holley, R. P. Parmelee, C. A. Salisbury, and D. N. Saul,
“VM/370 asymmetric multiprocessing,” IBM Systems Jour-
nal 18, No. 1,47-70 (1979).

6. P. Callaway, “VM/370 performance tools,” IBM Systems
Journal 14, No. 2, 134-160 (1975).

143-163 (1979).

Reprint Order No. G321-523 1 .

William H. Tetzlaff IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Mr. Tetzlaff joined the Service Bureau Corporation in

IBM SYSTEMS JOURNAL. VOL 23, NO 4, 1W

1966. He joined the Research Division of IBM in 1969 and has
done research in the areas of information retrieval and system
performance. He published several papers on that research, and
received an IBM Outstanding Contribution Award for his work
on system performance. He recently completed a temporary as-
signment as a member of the Technical Planning Staff of the
Research Division. Mr. Tetzlaff studied engineering sciences at
Northwestern University and is a graduate of the IBM Systems
Research Institute. He is currently manager of VM Analysis and
Restructure in the Computer Sciences Department of the Research
Division.

William M. Bum IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Mr. Buco is currently Technical Assistant to the Director
of Computing Systems at the Research Center. From 1970 to 1974
he worked at the IBM Cambridge Scientific Center on prototype
versions of Discontiguous Shared Segments and schedular exten-
sions for VM/370. He worked at the Research Center from 1974
to 1977 as a systems programmer improving the performance and
reliability of VM/370, and from 1977 to 1983 he managed the
VM/370 systems programming project. In 1974 Mr. Bum received
a B.A. in mathematics from Northeastern University and in 1977
an M.A. in computer science from Columbia University.

