
An application  analyzer 

An interactive  tool,  aimed  at  supporting  the  application 
userlanalyst in  specifying  and  analyzing  a  business 
area, is presented. The features of the  tool, named the 
Application  Analyzer/ExperimentaI,  are  described  both 
in  their  theoretical  foundations  and  their  actual  imple- 
mentation.  A brief description of the  architecture of the 
tool and  its internal  Structure is  given. A  review  of the 
main  concepts of the  application  development area is 
also  included.  The  follow-on  of the  prototype  described 
here  is the  program  offering  known as  System  A. 

0 nly 20 or 25 years  ago, implementing software 
was synonymous with  writing  programs. That 

led computer scientists to focus their attention on 
the problem of defining algorithms and procedures 
in a complete and unambiguous way. It was a time 
in  which technical meetings and symposia had, as 
an almost unique subject,  “language,” that is, a 
coding tool able to describe (as easily and as fast as 
possible) “how” to  do something. 

As time passed,  user  needs  grew. A scenario that 
often  resulted was humorously presented by E. Your- 
don:’ 

“The boss dashes in the door and shouts to the 
assembled  staff:  ‘Quick,  quick!  We’ve just been 
given the assignment to develop an on-line order 
entry system by next month! Charlie,  you run 
upstairs and try to find out what they want the 
system to do-and, in the meantime, the rest  of 
you  people start coding or we’ll never get  fin- 
ished on time!”’ 

Such  problems  modified the scenario and, step by 
step, a software  package tended to become a multi- 
level system,  having a very complex nature, that 
modeled an organizational structure. Concurrently, 
increasing attention was  given to specifying and de- 
signing the data processing  model. 

336 AMBROSETTI. CIRIANI. AND PENNACCHI 

by R. Ambrosetti 
T. A.  Ciriani 
R. Pennacchi 

We are now in a kind of “renaissance” in  which 
computer science is moving  from its “ancient” time, 
and new concepts are becoming sound disciplines 
able to specify,  analyze, and document the structure 
of a business area and the flow  of information within 
it. 

In the current literature, many terms are used in 
refemng to the above  activities.  Examples are System 
or Process  Analysis,  Application Development, Busi- 
ness  Area  Analysis,  etc. In this paper, the terms 
“application,” “business function,” and “informa- 
tion system” are synonymous, as are “function” and 
“process.” 

Even though no commonly accepted  terminology 
exists, it is  generally  recognized that the following 
activities are required to develop an application: 

1. Collect  user requirements (exactly). 
2. Build abstract systems’ able to model  (accurately) 

the user ~rganization,~ the data bases, and the 
network connecting data and processes. 

3. Map these abstract systems onto data processing 
systems  (efficiently). 

4. Implement suitable software  packages and phys- 
ical data bases  (correctly). 

The words  in parentheses emphasize that in each 
phase a specific  aspect  needs to be stressed to get the 
best  result: logic consistency in requirements speci- 
fication; accuracy and completeness in modeling; 

Copyright 1984 by  International  Business  MachinesCorporation. 
Copying  in  printed  form  for  private use is permitted  without 
payment of royalty  provided  that (1) each  reproduction is done 
without  alteration  and (2) the Journal reference  and  IBM  copyright 
notice are  included on the  first  page.  The  title  and  abstract,  but no 
other  portions, of this papex  may be copied  or  distributed  royalty 
free  without  further  permission  by  computer-based  and  other 
information-service  systems.  Permission to republish any  other 
portion of this  paper  must be obtained  from the Editor. 

IBM SYSTEMS XXIRNAL, VOL 23. NO 4, 19% 



ejiciency in data processing  systems  design; and 
correctness in software implementation. 

Many methodologies  have  been  developed to address 
these  challenges  based on theoretical approaches like 
Structured Analysis (Yourdon-Constantine), Input- 
Output Data Structures (Jackson), Structured Sys- 
tems Design (Warnier-Orr), Logic-Flow Techniques 

APAX is  an  interactive  tool. 

(HIPO), Data-Flow  Networks (De Marco), Formali- 
zation (Jones),  etc.  It is beyond the scope of this 
paper to give a description of all  these  methodologies; 
general  presentation^^.^ and detailed  discussion^^"^ 
on them can be found in the current literature. 

We shall limit our considerations of the methodol- 
ogies  because up to now not one of them has  become 
dominant,  and this situation is  likely to continue in 
future years. Users have  different  reasons and needs, 
and, in addition, no technique is optimal in  every 
case. Such a view  is  clearly demonstrated by the 
current literature and is supported by several au- 
thors.” 

The Application AnalyzerlExperimental ( A P A X ’ ~  as 
it is  called  hereafter)  has  been  designed as a tool for 
specifying,  analyzing, and documenting a business 
area, requiring no assumptions of predefined  proce- 
dural schemes; it is a flexible tool open to any 
preferred  user approach. APAX is essentially a series 
of  visual  display  screens,  each one interactively  of- 
fering  facilities  (operators-listed  in  Appendix A) 
that support the user  in  analyzing the application, 
the component functions at any logical  level, and 
the data. 

APAX design  perspective 

In designing APAX, the following  objectives were 
considered: 

1. Support the user’s “natural” view in specifying 
and analyzing a business area. By this approach, 
the user is not  required to use formal  languages 

IBM SYSTEMS XXIANAL VOL 23. NO 4. 1984 

nor to learn syntactic symbols that are foreign to 
his  knowledge and experience. 

2. Produce unambiguous machine-readable docu- 
mentation for data processing  experts. The great- 
est  effort  in implementing APAX was devoted to 
make it not only a tool for  defining requirements 
and designing architectures, but also a bridge 
between the application analyst and the data 
processing expert. 

APAX is therefore an interactive tool addressed to 
application users/analysts,  for the first  objective, and 
to  data processing  experts (in partnership with ap- 
plication  users/analysts),  for the second  one. 

In implementing APAX, highest priority was  given to 
the functional characteristics  related to generality, 
usability, and documenting capabilities. 

Inherent generality means that no specific method- 
ology  of analysis  is recommended or required: the 
user  is  allowed to execute  top-down  analysis or bot- 
tom-up synthesis in defining both processes and data 
structures and can perform  his job by starting either 
from data or from functional considerations. 

In order to support the different  methodologies, the 
structure of the processes  is  shown in three ways to 
highlight the different  aspects of the analysis: data 
flow (graphic  display), structured function tree (in- 
dented list), and logic flow (pseudo-code-like  repre- 
sentation). These three different  types of results  relate 
to the need  of  modeling a business area both as a set 
of data flows connecting couples of processes and as 
a sequence of  processes connected to one another by 
logical  relationships. 

Error messages  related to  input/output inconsisten- 
cies are also given  by APAX during the analysis. 

To reach maximum usability, APAX was  designed in 
such a way that the only competence needed  relates 
to the application to be  analyzed.  Early  experience 
has  shown that a one-day training period  consisting 
of a lecture and “hands-on” experience is  sufficient 
to learn how to use APAX productively. 

The first  objective of the design  of the screens  with 
the use  of color was to give the greatest amount of 
information to the user  in the most immediate and 
understandable way. 

For documentation purposes, APAX not only  gener- 
ates printed reports of any performed  analysis, but 

AMBROSEnI. CIRIANI, AND ENNACCHI 337 



Figure 1 The  data  structure  “Employee  Register” 

EMPLOYEE  REGISTER 
HEADING 
B.O. RECORD 

B.O.HEADING 
EMPLOYEE  RECORD 

CODE 
NAME 
WSlTlON 
SALARY 
ADMINISTRATIVE  DATA 

Figure 2 Data  Universe of “Salary  Application” 

also  allows the user to produce memos related to 
every  process or every data structure involved in the 
application. 

Basic concepts 

Since there is no commonly accepted  terminology 
in the area addressed by APAX, and since  single terms 
often have multiple meanings, this section  defines 
the principal concepts used in APAX. To better clarify 
these  concepts, we shall  refer to pictures of the related 
APAX screens obtained during the analysis of an 
application called  “Salary Application.” 

In analyzing a business area, three main concepts 
are to be considered: 

Data 
Functions 
Relationships between data and functions 

It is  necessary to assign  precise  meanings to these 

338 AMEROSElTI,  CIRIANI,  AND  PENNACCHI 

terms to avoid misunderstandings when  describing 
the APAX architecture and its related  philosophy. 

Data. In general terms, an application consists of a 
set of operations to identify,  classify, store, and re- 
trieve information (input), which  is then processed 
to generate other information (output). In order to 
store and subsequently  retrieve an item of infonna- 
tion, an identifier (name) must be associated  with it. 

A data element is an elementary item of information 
which has a name and a value, e.g., 

(name) (value) 
ADDRESS: ‘9045  Lincoln  Boulevard,  Los Angeles, CA 

90045’ 

In real-life applications, information with  complex 
structures must also be considered.  Therefore, we 
define, in general, a data structure in the following 
way: 

Data structure = <Ordered set of data elements 
associated  with a name>, <Ordered set of data struc- 
tures associated  with a name>. 

This recursive definition lets us describe the very 
complex structures typical of real  life. As an example, 
we can have 

EMPLOYEE REGISTER: HEADING, B.O. RECORD 
B.O. RECORD: B.O. HEADING, EMPLOYEE  RECORD 
EMPLOYEE RECORD:  CODE,  NAME,  POSITION,  SALARY, 

ADMINISTRATIVE  DATA 

Here, EMPLOYEE  REGISTER, B.O. RECORD, and EM- 
PLOYEE RECORD are defined as data structures, 

TION,  SALARY, and ADMINISTRATIVE DATA are data 
elements. 

When a data structure (or data element) Dl is part 
of another data structure D, a relation between D, 
and D exists.  Such a relation is  expressed by saying 
that Dl is a component of  D. In the above  example, 
the data element NAME is a component of EMPLOYEE 
RECORD, and the data structure EMPLOYEE RECORD 
is a component of EMPLOYEE REGISTER. 

In the following, the general  term “data” is  used to 
mean either data elements or data structures. 

When, for a given  D, no other D’ exists  such that D 
is a component of D’, then D will  be  called the 

whereas HEADING, B.O. HEADING,  CODE,  NAME, POSI- 

IBM SYSTEMS KIURNAL, VOC 23, NO 4, 1984 



master data. Refemng to the above  example, we  see 
that EMPLOYEE REGISTER is a master datum, whereas 
NAME is not since  it  is a component of EMPLOYEE 

not a master datum. 

We shall  call the structure of D the ordered set  of the 
names of its components. The structure of the data 
EMPLOYEE REGISTER defined  above  is  given  in  Figure 
1. 

Data can 

Belong permanently to the information system  (in 

Be temporarily  passing  through the system  (called 

RECORD. For the Same  reaSOn EMPLOYEE  RECORD iS 

this  case, calledfiles or system data) 

transactions) 

We shall  call the Data Universe UD of the application 
A at the time T the set  of  all the data existing in A 
at that time. The set UD will also  be  called the status 
of the system  “Application A” at the time T. 

An example of a Data Universe  is  shown in Figure 
2. It  gives not only a list of all the data but  also 
auxiliary information: the files are marked by an 
“F”; the color  pink  identifies the names that refer to 
data elements  (with no data components). 

When a name identifies a component of a master 
datum, this  master datum is  written  close to the 
name to avoid  possible  ambiguities  generated by 
using the same names  in  different data structures. 

Functions. We refer  to  the  term function to indicate 
a process  (storing,  retrieving, and computing) acting 
on data in order to derive  from them other data that 
can  replace  them  completely  or  partially. 

An  application  is  composed of a set  of functions (or 
processes), considered  as the first-level components 
of the application  itself,  allowing  us to obtain the 
final output data of the application from the initial 
input data. 

Figure 3 shows the application  “Salary,” the first- 
level components of  which are 

1. Employee  Register  Up-dating 
2. Salary  Procedure 
3. Accounting and Statistics 
4. End-year  Procedure 

Of  course, the same  kind of decomposition  can be 

IBM SYSTEMS XXIRNAL. VOC 23, NO 4, 1984 

Figure 3 “Salary  Application“;  first-level  components 

Figure 4 Function  “Salary  Procedure”;  first-level 
components 

repeated on each component of the application, 
giving rise to the second-level components. This proc- 
ess,  repeated n times,  leads to the definition of func- 
tions that are the Nth-level components of the appli- 
cation. Figure 4 shows the components of the func- 
tion  “Salary  Procedure,”  which  is a component of 
“Salary  Application.” 

This sequence of steps  is  called, in the following, the 
analysis of the application, and each  step  is the 
analysis  of a component function. The analysis ends 



Figure 5 Structure of “Salary Application” 

when the last functions defined are such that no 
further decomposition  is  considered to be  useful  by 
the user. 

The result of the analysis  of a function is  shown  in 
Figure 5 .  We shall  call  it the structureof the function. 

The similarity of this concept to the one defined 
above about data is  evident. 

The lowest-level components of an application will 
be  called  primitive  functions. A primitive  function  in 
application A is a component of A (of any logic  level) 
for  which the user  decides that no further decom- 
position  is  necessary.  In the following, a primitive 
function will  also  be  called a block. 

A function F is  defined  as  primitive  in three cases: 

1. Temporarily,  when the analysis of A is not yet 
completed and the user  prefers to postpone the 
analysis  of  F.  We  shall not examine this case  in 
detail  as an intermediate step of the analysis path. 

2. When F has  such a simple internal logic that it 
can be easily  understood or coded/executed.  In 
this case, the complete  specification  of F requires 

The identification of input/output data 
The specification  of the input/output data 
physical attributes 
An explicit  definition of the set  of conditions 
(if  any)  affecting its execution. This set  is  de- 
duced from all the conditions assigned in the 
previous  steps  of  analysis. 

340 AMBROSETTI,  CIRIANI.  AND  PENNACCHI 

The description  (by natural or  formal  language) 

3. When F is a generalized function, that is, a pack- 
age  of existing  software  which  requires  only the 
allocation of the proper data to its input/output 
ports and the explicit  definition of the set  of 
conditions (if  any)  affecting  its  execution. 

of the internal logic. 

The primitive functions play a primary  role  in the 
development of an application. In fact, when the 
analysis  work  is  finished, the complete application is 
described by a structured set  of  blocks. Their imple- 

The  structure  of a function 
integrated with  logical  conditions is 

called  the  syntax  of  the  function. 

mentation is  equivalent to the implementation of 
the application  itself. 

From the above,  it  should be clear that the attribute 
“primitive” is not an intrinsic property of the func- 
tion  itself but depends on the stage of the analysis, 
the user’s understanding at that time, the language 
used,  etc.  Also,  any  type of function (even a very 
complex one) for  which a suitable  software  package 
is  available  can  be  defined  as a primitive  function. 

Since the structure of a function includes  all of the 
possible components (executable  in  all  possible 
cases),  it  does not always  coincide  with the sequence 
of operations that are actually  performed to get the 
final output data from the initial input data. This 
difference  originated  from the fact that the path 
followed  can  depend on the characteristics (or pred- 
icates) of some data. 

If the components of a function are to be  performed 
sequentially  (only one path  exists),  those  compo- 
nents are called “sequential functions.” If only  some 
of them are performed-the  choice  depending on 
the results  of  tests  made on some  data-different 
paths exist. 

The structure of a function, completed by the spec- 
ification of all conditions affecting the execution  of 
its components, is  called the syntax of the function. 

IBM SYSTEMS JOURNAL, VOL 23. NO 4, 1984 



icates  cause  some “jumping” or “stopping” in the 
component sequence. 

Those situations are represented in high-level  pro- 
gramming languages  by statements like 

IF . . . THEN . . . 
ELSE . . . 

or 

DO . . . WHILE 

Summarizing, a sequential component is  always  ex- 
ecuted. A conditional or reverse component is  exe- 
cuted according to the predicates of a set of data. 
Defining a component as iterated is a short way to 
mean that it must  be  executed  several times if an 
execution condition holds. 

With use  of pseudo-code  symbols, the APAX screen 
shown in Figure 6 gives a view  of the syntax of 
“Salary Application,” automatically obtained from 
the information given  by the user in the screen 
enabling the analysis. 

By comparing Figures 5 and 6, we see the difference 
between the structure and the syntactic view  of an 
application. The first one shows  all the functions 
together  with their components; the second one high- 
lights the conditions affecting the logic  flow  of the 
application. In other words, the structure describes 
all the functions that are considered  within an appli- 
cation at each  level,  whereas the syntactic view  spec- 
ifies  when those functions are to be executed. 

IBM SYSTEMS XXIRNAL, VOL 23, NO 4. 1984 

Data/functions  relationships. In the analysis of an 
application, each component function (regardless of 
its level) should have as input either initial input 
data or data coming from another previously  exe- 
cuted function. In other words, the data come either 
from the initial status of the system or from origi- 
nator functions. Similarly, it can be stated that data 
are used either by the final status of the system or by 
receiver functions. 

From the above, it follows that the system  “Appli- 
cation A” can be conceived either as a structured set 
UF of functions (Function Universe of A) connected 
by a datu flow, or as several Data Universes,  each 
one generated  from the preceding one through the 
execution of a sequence of functions (1ogicJlow). 

Let Dl and D2 be  two items of data belonging to the 
Data Universe of an application A. In the data flow 
of  A,  two different  cases can apply: 

1. D2 exists independently from Dl.  (Dl is not 

2. D2 can be obtained only when Dl is known. (DI 
needed to compute D2.) 

is needed to compute D2.) 

In the second  case, there is a “logical  precedence” 
relationship between Dl and D2.  An example of 
logical  precedence  is  shown  in  Figure 7, where “Em- 
ployee Record,” “Extra-time Cards,” and “Tax Coef- 
ficient Table” are needed to obtain “Salary Forms.” 
The two relations “to be component of .  . .” and “to 
be precedent o f .  . .” define the logical structure of 
the set  of  all the data in an application. 

AMBROSETTI. CIRIANI. AND ENNACCHI 341 



Figure 7 “Salary  Application”; 1/0 data of  the  function 
“Salary  Procedure” 

Figure 8 Application  definition 

Table 1 Data  and  functions  correspondence 

Functions 

Data  element  Primitive  function 
Functions 

Data  components 
Structure of data 

Function  components 
Structure of function 

Data  predicates  Conditioned  functions 

342 AMBROSE~I, CIRIANI. AND FENNACCHI 

Data and functions have a structural connection with 
the complete application, as  shown  by  Figure 8. 

Data/function  duality. From the concepts  defined in 
the preceding  paragraphs, a correspondence  appears, 
as  shown in Table 1. This table  suggests a kind of 
duality  between data and functions, but a deeper 
analysis  is  needed to derive  from it a more sound 
view  of an application. 

When an application has  been  completely  specified, 
the result of the analysis  is a system, the elements of 
which are data and functions connected by  different 
types  of  relationships. A complete  description of such 
a system  leads to a description of  all the elementary 
structures contained in it. 

Let  us  examine  two  different  cases. 

1. Elementary  Structure DATA + FUNCTION + DATA 
This statement means to establish a relationship 
between  two  sets  of data through a function (re- 
gardless  of  its  logical  level) that generates the 
second  set  from the first  one. This approach leads 
to the methods that consider the functions as 
links  between data (Jackson,’ Warnier-Orr,” 
Myers,” etc.). 

2. Elementary StlUCtUre FUNCTION + DATA + 
FUNCTION 
This statement means to establish a relationship 
between  two functions through a set  of data (out- 
put of the first function and input to the second 
one). This approach leads to the methods that 
consider data as links  between functions (Your- 
don,’  De  Marco,I3 etc.). 

In  this  way, the duality  between  these  two  elementary 
structures appears  as the root of the duality  between 
the different  methods  of  application  analysis. 

To allow the user to apply the method that he prefers, 
in APAX both of  these  elementary structures are 
dynamically  selected by the user, and their mutual 
consistency  is automatically checked. 

Flows within  an  application. The description of an 
application is generally  given  through  two  kinds  of 
models: 

1. By conceiving the application  as a system  having 
as  its  elements  sequences of functions, each one 
generating data derived  from other data. This 
model  (logic  flow)  leads to the implementation of 
diagrams  in  which the functions, their order, and 

IBM SYSTEMS JOURNAL, VOL 23. NO 4, 1984 



the conditions of their execution are in full  evi- 
dence.  These  diagrams  are  generally implemented 
by using  graphical or semi-formal  languages (HIPO 
diagrams,  Petri  networks,  pseudo-code,  etc.). Fig- 
ure 6 is an example of  logic  flow in the form of 
pseudo-code. 

2. By conceiving the application as a system  in 
which a flow of data is defined starting from the 
initial input of the application. In this model,  all 
the data are connected to the application final 
output by a network of transformations along 
which they pass (data flow). 

From our experience, graphic representation appears 
to be the clearest and the most  useful way to docu- 
ment a data flow. 

Figure 9 shows the same functional structure given 
by  Figure 6 in  the  form of data flow.  In it the big 
circle  represents the “world” of the business area 
“Salary Application,” the small  circles numbered 1, 

APAX is a series of visual  display 
screens. 

2 ,3 ,4  represent  the component functions (the names 
of  which appear at the top of the right  side of the 
screen), and the data flows are represented by the 
arrows  specifying  the flow direction. The data iden- 
tifiers on the right  side  of the screen  allow a complete 
description of the connections among the compo- 
nent functions. The data coming from or going to 
the area external to the big circles are the input and 
output data of “Salary Application.” 

Logic  flow and data flow of the same application are 
obviously connected to each other, but questions 
have  been  raised about the nature of their connection 
and their equivalence. We  shall not examine this 
problem  here, but clearly the above-defined duality 
ensures that the equivalence condition for the two 
models  resides in the intrinsic self-consistency of the 
application (see  Appendix B for more rigorous con- 
siderations). 

IBM SYSTEMS XXYINAL, VOL 23. No 4, 1994 

Figure 9 Data flow of “Salary  Application” 

APAX architecture 

Functional specifications. As  was stated earlier, APAX 
is a series of visual  display  screens.  Although the 
internals of APAX are strictly formal, from the user’s 
view, APAX operates in a nonprocedural way and 
with no use  of formalized  languages. All data, func- 
tions, and relations involved  in the description of an 
application are  stored  in a data base  called the re- 
pository of the application. 

Special  care  has  been taken to maximize the effi- 
ciency and the usability of APAX. For example,  color 
provides  readable  screens and is also used to give the 
greatest amount of information quickly and easily. 

The focal point of this approach lies  in the fact that 
the user  builds up the application by defining its 
components: APAX allows at any time a comprehen- 
sive  view  of the structure and relationships of func- 
tions and data. Moreover, it checks the leveling 
consistency of the application in terms of those 
relationships. 

All these operations are carried out  at any logical 
level,  down to the level at which the functions are 
defined  as  blocks, after which the analysis is com- 
plete. 

Data  base  structure. Two kinds of  basic  objects are 
in the APAX repository: functions and data. These 
objects are represented by records of a direct  access 
data base  in  which pointers define the links among 

AMBROSETTI, CIRIANI.  AND  PENNACCHI 343 



Figure 10 Data flow Figure 11 Data flow  with  function  highlighted 

the data base  elements. The components of such a 
data base are as follows: 

Repository anchor point record-It contains the 
starting point of the application chains. Also 
stored  here  is the starting point of the available 
record chain in order to allow  flexible mainte- 
nance of the repository  space and re-use of erased 
records. 
Application  record-Besides the application name 
and password, the application pointers are  stored 
here.  These pointers establish the correct  connec- 
tions to the Master Data List  record, to the record 
of the first-level component functions, and to the 
record containing the application I/O data. 
Function records-This record contains the fol- 
lowing information on each function: function 
description, random code  (used by hashing  tables), 
pointer to the function to which it belongs,  list  of 
the pointers to the records containing the com- 
ponent functions of the next  level, and list of 
pointers to the records containing I/O data of the 
function itself. 
Data records-Besides the data description, the 
pointers to the functions using it and  to the data 
involved  in its structure are stored  here. 

Hashing tables. In APAX execution, checking  is  fre- 
quently required to determine if some “objects” (data 
or functions) are already included in the repository, 
either explicitly  (e.g.,  when  check operators are per- 
formed) or implicitly  (e.g.,  when I/O data are defined 
and the system  itself  checks  for their existence). 

To reduce  response time because  of the frequency of 
these inquiries, a random technique” is used that 
reduces the number of scans in the repository. In 
this technique, a numerical random code, obtained 
directly  from the name, is  associated  with  each  ob- 
ject. This numerical code  locates a table position in 
which the key corresponding to the actual record  is 
stored. A second  table  exists  in  which the keys  of 
synonym records are stored. 

The main operations that can be performed by the 
hashing  tables are insertion, deletion, and inquiry. 

Since the architecture of the APAX data base  has a 
fully open and flexible  design, APAX could be con- 
nected in the future with  specific  software products 
such as the Structured Query Language/Data  System 
(SQL/DS). 

APAX operators 

APAX carries out an interactive dialogue through a 
series  of “operators,” each of  which  is implemented 
by actions performed through the display terminal. 
For the sake  of  classification, operators can be 
grouped in four families, depending on the “objects” 
on which  they act: (1) operators on the whole appli- 
cation, (2) operators on each function, (3) operators 
on each data structure or data element, and (4) 
operators that cross. 

The operators belonging to the first three groups 
permit the user to initiate, update, inspect, analyze, 

IBM SYSTEMS JOURNAL, VOL 2,. NO 4, 1984 



Figure 12 Data flow with data  element  highlighted Figure 13 “Salary  Application”;  check  against  formal  errors 

or synthesize  every component of function or data. 
The operators of the fourth group perform actions 
that relate to functions and data together. 

In designing the operators, special  care  has  been 
taken in minimizing all the user actions that are 
likely to generate errors. In particular, copying  ac- 
tions have  been  avoided  as much as  possible. For 
instance, when  two functions have the same input 
(or  output) data, it is  possible to assign automatically 
the input  (or  output) of the first function to the 
second one. This is shown in Figure 7, where the 
Copy operator can be applied through the functional 
key PF~. 

Another operator designed to avoid  copying errors 
is the facility “Pick” appearing in the Action  line of 
the screen in Figure 3. With  it, any data name 
appearing in the Data List (Data Universe) shown  in 
Figure 2 can be automatically assigned as input (or 
output) of the analyzed function just by writing “i” 
(or “0”) close to it. 

Display  of Data Flow Network is another operator, 
which produces the screen  seen  in  Figure 10. Similar 
to it is the operator for “zooming in”  on a component 
data flow. It allows the display of the inner data flow 
of  every component function appearing in the initial 
network. 

To improve the readability of the network, a high- 
lighting facility  has  been implemented to show  all 
the data flowing through any selected function (Fig- 

IBM SYSTEMS X W R N A L .  VOL 23, NO 4. 1984 

Figure 14 “Salary  Application”;  diagnostic  messages 

ure 1 l) ,  or to the data flows containing a selected 
data element (Figure 12). 

Three operators have  been  specifically implemented 
for  checking  purposes:  Check Formal Errors,  Diag- 
nostic Message  List, and Automatic Correction. 
They permit detection of any formal inconsistency 
in the data flow  of  every function, and diagnostic 
messages  specify  where the inconsistencies  are.  De- 
pending on the nature of an error, a particular type 
of correction is proposed to the user, and, if accepted, 
is automatically performed. Figures 13 and 14 show 
the screen  “Check on Data Flows” and a sample of 
diagnostic messages. 

AMBROSElTI.  CIRIANI.  AND  PENNACCHI 345 



A complete list  of APAX operators is  given  in  Appen- 
dix A. 

Concluding  remarks 

It is commonly recognized that the application mod- 
eling area is one of the challenges of today. APAX is 
a tool that can be used by the user/analyst  in concert 
with the application analyst in this difficult job.  In 
APAX we have tried to build a tool that is  easy to use 
and “neutral,” as much as possible, to the different 
methodologies  existing in this area. 

The APAX conceptual starting point was general sys- 
tem theory and set theory rather than computer 
science. The aim of this approach was to obtain a 
structure broad enough to be able to analyze and 
specify  general  systems and then to apply it  to those 
special  systems that represent  business  areas. 

As a result, we obtained a general flexible tool on 
which  several improvements have  been  possible 
without major difficulties. It is  hoped that the char- 
acteristics of generality and flexibility will enable 
APAX to connect to other software  packages through 
bridges  able to transfer functions and data. Synergis- 
tic effects are expected  from  such connections so as 
to improve the user’s productivity. Furthermore, the 
use  of  new graphic  facilities will provide better usa- 
bility and enhanced dialogues. 

Acknowledgment 

An early  version  of the APAX prototype was shown 
to people  involved in application analysis. From 
them, we received constructive criticism and sugges- 
tions that we used  in the second  prototype. We thank 
all  of them. Particular thanks are due to Sue Smith 
of the IBM National Accounts  Division Headquarters 
and to Marilyn Parker of the IBM Los Angeles  Sci- 
entific Center for their extremely effective support. 

Appendix A 

Following  is a list  of the APAX operators. 

Operators on the complete application 
1. Nominate New Application 
2.  Cancel  Application 
3. Rename Application 
4.  Assign  Password 
5 .  Start Analysis (Editing) 
6.  Display I/O Data of Application 
7.  Define I/O Data of Application 

346 AMBROSETTI.  CIRIANI,  AND  PENNACCHI 

8. Cancel 110 Data of  Application 
9. Write User Comments 

10.  Restore  User Comments 
1 1. Save User Comments 
12. Display/Print User Comments 

Operators on each function 
1. Display Components 
2. Define Components (Analyze Function) 
3. Cancel Components 
4. Update Components 
5. Display I/O Data 
6.  Define 110 Data 
7. Cancel 110 Data 
8. Copy I/O Data from Another Function 
9. Display Function Tree 

10. Display Function Pseudo-Code  (single  level) 
1 1. Display Function Pseudo-Code  (nested up  to 

12. Function Synthesis  (Move Function) 
13. Write User Comments (Memo) on Functions 
14. Write User Comments (Restore) 
15. Write User Comments (Save) 
16.  Display  User Comments 
17.  Display  Alphabetic  List of  All Functions 

given depth) 

Operators on each data 
1. Nominate Master Data 
2. Cancel  Master Data 
3. Update Master Data 
4. Data Synthesis (Hang Data) 
5. Display  List  of Master Data 
6.  Display Structure of Data 
7. Define Structure of Data (Analyze Data) 
8. Update Data 
9. Cancel Data 

10.  Display  Alphabetic  List of All Data 
1 1. Write User Comments (Memo) on Data 
12.  Write  User Comments (Restore) 
13.  Write  User Comments (Save) 
14.  Display  User Comments 

Cross operators 
1. Check Formal Errors 
2. Diagnostic Message  List 
3. Automatic Correction 
4. Display  of Data Flow Network (for given 

5.  Display  of Data Flow Network (zooming in 

6.  Display of Data/Function Cross-Reference 
7. Put Data (from data list)  as 1/0 of a Function 

function) 

on a component) 

Below  is a brief  description of some operators, the 

IBM  SYSTEMS JOURNAL. VOL 23, NO 4, 1984 



effects of which are not immediately clear from the 
above list of names. 

Application of 1/0 Data. Initial and final data of the 
application are entered, changed, or erased. 

Master Data List. The master data of the application 
are defined and handled. This operator is connected 
to  the following related operators: Analysis of Data, 
Cross-Reference, Structure of Data,  Data Synthesis 
(Hang), and User Comments. The Hang operator 
allows data  to be allocated as components of another 
data structure (bottom-up method in data defini- 
tion). 

Analysis of Data. Used to define, insert, or change 
the  components of a data structure. 

Structure. The structure of data is shown, emphasiz- 
ing the position within the  structure of the master 
data to which it belongs. 

Analysis of a Function. Allows the definition of the 
components of a function (or of the complete appli- 
cation). Through this operator, an application is 
analyzed following a top-down technique. Another 
operator (Move) can  be  used to allocate previously 
defined functions as the  components of another (bot- 
tom-up synthesis). 

Function I/O Data. This operator creates a relation 
between a function and a set  of data, defining the set 
as input  or  output of the function. To simplify this 
assignment, the operator Copy is provided. Through 
Copy, the 110 data of another specified function are 
copied, avoiding the risk  of using incorrect names. 

Check Formal Errors. Any formal inconsistency in 
the  data flow of a given function is detected. Diag- 
nostic messages  specify  where the inconsistencies are. 
Automatic correction is proposed to the user, and, if 
accepted, performed. 

Function Structure (Tree). The  structure of a func- 
tion is displayed as an indented list  of  all the com- 
ponents  (up to  the deepest level)  of the function 
itself. 

Function Syntax  (View). The syntax of the function 
is described using the  standard form of pseudo- 
coding. Comments specifying the starting and ending 
points of each component are automatically added 
on request. 

IBM SYSTEMS JWRNAL. VOL 23, No 4. 1984 

Data Flow Network. The  data flow in a given func- 
tion is displayed in graphic form. The function com- 
ponents  are represented as circles and  the  data flows 
as vectors (arrows) connecting them. A full descrip- 
tion of  all the  data  and function names is  given. A 
“highlighting” facility  is also provided to better iden- 
tify data, flows, and  components on the screen. The 
facility for zooming in on a component appearing in 
the network is included. 

User Comments. The user may insert in the docu- 
mentation nonformatted comments related to any 
function or data structure. 

Printed Reports. At any time of the analysis, the user 
can automatically generate output reports. The list 
of  all the available output reports can be handled for 
printing, change, or deletion purposes. 

Appendix B 
Intuitive considerations have developed on  data, 
functions, and their role in a business area analysis. 
These concepts are more rigorously  specified here. 
Table 2 defines the symbols used in this discussion. 

The data/function  duality. Let A and A be a set of 
data  and a language, respectively. We shall call func- 
tion in A an operator 

F : C n(A) + II(A) 

such that F is fully described by a finite number n(F) 
of A statements. 

II(A) is here the power set of A, according to  the fifth 
axiom of Zermelo-Fraenkel Set Theory.’* 

When n(F) = 1, F is said to be a primitive function 
in A. 

Table 2 Symbol definition 

Symbol Definition 

Union of set  A  and  set  B 
Defined as 
A  follows  B 
A precedes B 
Element x belongs to set A 
The  set A  is  a subset of B 
The  operator (Y has domain  A  and  range B 
Implies 
Power  set of the  set  A 
Not 

AMBROSEllI, < MANI, AND  PENNACCHI 347 



When  n(F)  is  “large”  (what  “large”  means  is  arbi- 
trarily  assumed by the user),  it is convenient (or 
necessary) to describe  it  in A by a set  of routines FI, 
FZ, . . ., F,, each of  which  is  still a function (com- 
ponents of F). 

In the concepts  specified  above (“data” and “func- 
tions”), two  couples  of operators have  been  implicitly 
defined. The first  couple  is 

ID : UF n(uD) 
0, : UF n(uD) 

where ID(F) is the set  of the input data and OD(F) is 
the set  of the output data of F. 

The second  couple  is 

IF : UD ”-* n(uF) 
OF : UD ”-* n(uF) 
where  IF(D)  is the set  of the functions having D as 
input and  OF(D)  is the set  of the functions having D 
as output. 

The two  couples (ID, OD), (IF, OF) specify the duality 
between data and functions because their definitions 
can  be  deduced one from the other simply by inter- 
changing the subscripts D and F. Therefore,  all the 
concepts that are invariant in front of this  duality 
can  be  translated  from a set  of functions into a set 
of data and vice  versa.  For  example, the input and 
output data of a function are transformed by duality 
into the cross-reference  of data, that is, the sets of 
functions that have  them  as input or output. 

Flows in a function. Exploiting the duality, the con- 
trol flow, and the data flow within a function  can be 
better  specified. 

To better note the relationships  between data flow 
and control flow,  some more definitions are needed. 
We shall  say that a function F” follows a function  F’ 
(F” > F’) when 

ID(F”) X OD(F’) # 0 

Similarly, a data structure D”follows a data structure 
D’ (D” > D’) when 

IF(D‘) X OF(D”) # 0 

Those  definitions  can  be  extended to the concept of 
chain  linking functions or data. A sequence  of  func- 
tions (F,  (i = 1, . . ., n)  is linked by a chain  when 

Fj+l>Fj ,  i =  1 ,..., n -  1. 

348 AMBROSETTI, CIRIANI, AND PENNACCHI 

In a similar way a sequence of linked data is  defined. 

Now  let A be a business function having the Data 
Universe UD and the Function Universe UF, and let 
f be any component of A. From our general point of 
view. to analyze A means to define an operator 

c : UF + rI(UF) 

and therefore a control flow model off is  given  when 
C is  given  together  with a partial  ordering  relation- 
ship p on C(f).  (C(f) identifies the set  of the compo- 
nents off.) 

We shall  use the symbol 

CF(f) = (C(f),p) 

to represent the control flow within the function f. 

By applying the already  noted  duality  between  func- 
tions and data, we can give a similar  definition  for 
the data flow within  f.  When a function f is  defined, 
input and output data are  assigned to f and to its 
components. That means that in  general an operator 
is  defined on UF which  associates to any f a  subset 
of UD whose  elements are all the data involved in 
the execution off. Let  such operator be 

D : UF + ~ ( U D )  

Therefore, a data flow model off is  given  when D is 
given  together  with a partial  ordering  relationship X 
on D(f). 

We shall  use the symbol 

DF(f) = (D(f),X) 

to represent the data flow within the function f. 

Since CF(f) and DF(f) are two  different  models  of 
the same  function f, it  is  evident that a connection 
should  exist to avoid a basic  inconsistency in the f 
definition. This connection exists  through the two 
couples of operators ID, OD, and IF, OF already  de- 
fined.  In  fact,  given the operators C, ID, and OD, the 
elements of the set  of data D(f) should  exactly  be 
(for consistency  reasons) the elements of the union 
of the  sets I&) and o&) when g is either f o r  one 
of the f components. 

Formally, the relationship  between the operators C 
and D is  given  by 

D(f) = u(ID(g) U OD(!?)) being g E C(f) u ( f l  ( 1) 

EM SYSTEMS JOURNAL, VOL 23. NO 4. 1984 



The above condition is  necessary for the consistency 
of the two models off, but it is not enough because 
no ordering considerations have been involved in it 
until now. To complete the consistency conditions, 
the partial ordering relations p and X also should be 
connected in some way. 

The relation X included in  the above data flow  defi- 
nition allows us to decide, given d’ and d” E D(f), 
if d’ < d”  (d” < d’); that means that  d’ is needed to 
get d” (or vice  versa). This implies that  any function 
having d’ as output  cannot follow (according to  the 
p relation) any  other function having d” as input. 

Therefore, for the consistency of the two models 
CF(f)  and  DF(f), the following relationship should 
hold: 

f‘ p f” =$ (TEd’,  d”) 1 ((d” X d’), 

(d’ E  IF(^')), (d” E  OF(^"))) ( 2 )  

Summarizing, when the consistency relationships of 
(1)  and (2) hold, CF(f)  and  DF(f) are two isomorphic 
models off. The  term “i~omorphic”’~ is  used here as 
it is in the First-Order Predicate Logic (here appli- 
cable since both the Data  and  Function Universes 
are necessarily finite). 

Since the operators implemented in APAX essentially 
deal with the definition of the  components of any 
function and of the  data  that  are  input or output,  a 
proof of the validity  of such an approach is equiva- 
lent to  the proof that those operators lead to  the 
definition of two isomorphic models of the applica- 
tion. 

To this purpose, the following theorem is established: 

Assume that  the sets UD, UF  and  the operators C, ID, 
OD are as defined above; assume also that  the rela- 
tions p and X are specified by chaining the compo- 
nents of a function and all the  data involved in them 
(see preceding paragraph); then the relation p is a 
partial ordering if and only if such  is also the relation 
X. 

Proof: Let p be a partial ordering relation. If X is not, 
a couple of the  data d’,  d“ should exist such that 

d’ X d” and d“ X d’ (3) 

The first means that two functions, f‘ and f”, exist 
so d“ E OD(f”) and  d’ E ID(f‘) and they are connect- 
able by a function chain.  That implies f‘ p f”. But 

IBM SYSTEMS JOURNAL, VOC 23, NO 4, 1984 

starting from the second one of (3), we can state in 
the same way that f” p f’, which  is impossible since 
p is a partial ordering relation. 

In a similar way, it can be proved that if X is a partial 
ordering relation, the  same p should be. The theorem 
is therefore proved. 

From  the above theorem it  follows: 

Corollary. If the analysis of a function f has been 
camed  out (regardless of the  data flow or control 
flow method) and its results imply a partial ordering 
of the  data or of the functions involved, then  the two 
models CF(f)  and  DF(f)  are isomorphic. 

But the basis on which APAX is implemented is an 
analysis that ensures a partial ordering on UF  or UD. 
Therefore, the above corollary gives a proof of the 
validity of such an  approach. 

Cited  references  and  notes 

I .  E. Yourdon and L.  L. Constantine, Structured Design, Pren- 
tice-Hall, Inc., Englewood Cliffs,  NJ (1979). 

2. R. Pennacchi, “Principles of an abstract  theory of systems,” 
International Journal of Systems Science 3, No. I ,  1-1 1 
( 1972). 

3. M. M.  Parker, Enterprise Information Analysis: Cost-Benefit 
Analysis oflnformation  System Using PLS/PSA and the Your- 
don Methodology, IBM  Corporation, Los Angeles Scientific 
Center  Report G320-27 16 (1982); available  through IBM 
branch  offices. 

4. W. W. Cotterman et al., System Analysis and Design: A 
Foundation for  the 1980’s, Elsevier North-Holland, Inc., New 
York (1981). 

5. L. L. Beck and T. E.  Perkins, “A survey of software engineering 
practice: Tools, methods, and results,’’ IEEE Transactions on 
Software Engineering SE-9, No.  5, 541-561 (1983). 

6. D. T. Ross and K. E. Schoman, Jr., “Structured analysis for 
requirements definition,” IEEE Transactions on Software En- 
gineering SE-3, No. 1, 6- 15 ( 1977). 

7. Yourdon and Constantine, op. cit., p. 4. 
8. W. P. Stevens, Using Structured Design, John  Wiley & Sons, 

Inc., New York (1981). 
9. M. A. Jackson, Principles ofprogram Design, Academic Press, 

Inc., New York (1975). 
10. V. J. Crandall, Data Structured Systems Development Meth- 

odology, Ken Om and Associates, Inc., Topeka, KS 66607 
(1982). 

I I .  K. T. Orr, Structured Systems Development, Yourdon, Inc., 
New York (1977). 

12. HIPO-A Design Aid and Documentation Technique, GC20- 
185 1-0, IBM Corporation (1974); available  through IBM 
branch offices. 

13. T. De Marco, Structured Analysis and System Specijication, 
Yourdon, Inc., New York (1978). 

14. C. B. Jones, Software Development: A Rigorous Approach, 
Prentice-Hall, Inc., Englewood  Cliffs, NJ (1980). 

15.  Beck and Perluns, op. cit., section entitled “Discussion and 
Conclusion,” p. 553. 

AMBROSETTI,  CIRIANI, AND PENNACCHI 349 



16. APAX  is our writing  of the ancient Greek word &*a[, which 
means “all together” or “once at a  time.” It comes from an 
old Dorian verb T & L ~ Y U ~ L ,  meaning “to build something by 
bringing together different  pieces.” 

17. R. L. Obermarck and R. K. Treiber, Practical Uses of Hashing 
for Main Storage Searching, Research Report ”3483, IBM 
Corporation, Research  Division, 5600 Cottle Road, San Jose, 
CA 95193 (1983). 

18. R. Rogers, Mathematical Logic and Formalized Theories, 
North-Holland Publishing  Co., Amsterdam (197 I), Chapter 
VII. 

19. Ibid., Chapter 111. 

Reprint Order No. G321-5229. 

Rodolfo Ambrosetti IBM Italy, Program  Product  Development 
Center, Viale Oceano  Pacifico 73, 00144 Rome, Italy. Mr. Ambro- 
setti joined IBM in 1977 with  a particular interest in the fields  of 
application development and mathematical programming. Since 
198 1 he has participated in the activity  of the Advanced Technol- 
ogy Group at the PPDC in Rome, mainly in the area of application 
development techniques. Mr. Ambrosetti received  a  degree in 
mathematics from Rome University in 1973. 

Tito A. Ciriani ISM Italy, Program  Product  Development Center, 
Viale Oceano  Pacifico 73, 00144 Rome, Italy. Mr. Ciriani joined 
IBM Italy  in 1963. He managed the IBM pisa Scientific Center up 
to 1972, and after 1975 he  was  responsible  for  scientific relations 
for the IBM Italian Scientific  Centers.  In 1979, he joined the 
Program Product Development Center in Rome. At present he is 
in the Advanced  Technology Group, where  he  is  involved in 
experiments on advances in  graphics and on application develop 
ment methodologies.  Mr. Ciriani received  his  university  degree in 
electrical  engineering  from Genoa University in 1962. 

Renato  Pennacchi IBM Italy, Program  Product  Development 
Center, Viale Oceano Pacifrco 73, 00144 Rome, Italy. Mr. Pen- 
nacchi joined IBM Italy in 1954. AAer a  variety  of  assignments, 
he became manager of the IBM Italy  Scientific Centers in 1969. 
In 1980 he joined the Program Product Development Center, 
where  he  is  responsible  for the Advanced  Technology Group. His 
experience has  been  with  system theory and application develop 
ment methodologies. Mr. Pennacchi received  his  university  degree 
in mathematics from Rome University in 1949. 

350 AMBROSETTI, CIRIANI. AND PENNACCHI IBM SYSTEMS JOURNAL, VOL 23, NO 4, 1984 


