An application analyzer

An interactive tool, aimed at supporting the application
user[analyst in specifying and analyzing a business
area, is presented. The features of the tool, named the
Application Analyzer/Experimental, are described both
in their theoretical foundations and their actual imple-
mentation. A brief description of the architecture of the
tool and its internal structure is given. A review of the
main concepts of the application development area is
also included. The follow-on of the prototype described
here is the program offering known as System A.

Only 20 or 25 years ago, implementing software
was synonymous with writing programs. That
led computer scientists to focus their attention on
the problem of defining algorithms and procedures
in a complete and unambiguous way. It was a time
in which technical meetings and symposia had, as
an almost unique subject, “language,” that is, a
coding tool able to describe (as easily and as fast as
possible) “how” to do something.

As time passed, user needs grew. A scenario that
often resulted was humorously presented by E. Your-
don:!

“The boss dashes in the door and shouts to the
assembled staff: ‘Quick, quick! We’ve just been
given the assignment to develop an on-line order
entry system by next month! Charlie, you run
upstairs and try to find out what they want the
system to do—and, in the meantime, the rest of
you people start coding or we’ll never get fin-
ished on time!’”

Such problems modified the scenario and, step by
step, a software package tended to become a multi-
level system, having a very complex nature, that
modeled an organizational structure. Concurrently,
increasing attention was given to specifying and de-
signing the data processing model.
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We are now in a kind of “renaissance” in which
computer science is moving from its “ancient” time,
and new concepts are becoming sound disciplines
able to specify, analyze, and document the structure
of a business area and the flow of information within
1t.

In the current literature, many terms are used in
referring to the above activities. Examples are System
or Process Analysis, Application Development, Busi-
ness Area Analysis, etc. In this paper, the terms
“application,” “business function,” and “informa-
tion system” are synonymous, as are “function” and
“process.”

Even though no commonly accepted terminology
exists, it is generally recognized that the following
activities are required to develop an application:

1. Collect user requirements (exactly).

2. Build abstract systems? able to model (accurately)
the user organization,® the data bases, and the
network connecting data and processes.

3. Map these abstract systems onto data processing
systems (efficiently).

4. Implement suitable software packages and phys-
ical data bases (correctly).

The words in parentheses emphasize that in each
phase a specific aspect needs to be stressed to get the
best result: logic consistency in requirements Speci-
fication; accuracy and completeness in modeling;
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efficiency in data processing systems design; and
correctness in software implementation.

Many methodologies have been developed to address
these challenges based on theoretical approaches like
Structured Analysis (Yourdon-Constantine), Input-
Output Data Structures (Jackson), Structured Sys-
tems Design (Warnier-Orr), Logic-Flow Techniques

APAX is an interactive tool.

(urpo), Data-Flow Networks (De Marco), Formali-
zation (Jones), etc. It is beyond the scope of this
paper to give a description of all these methodologies;
general presentations*® and detailed discussions®'4
on them can be found in the current literature.

We shall limit our considerations of the methodol-
ogies because up to now not one of them has become
dominant, and this situation is likely to continue in
future years. Users have different reasons and needs,
and, in addition, no technique is optimal in every
case. Such a view is clearly demonstrated by the
current literature and is supported by several au-
thors.'®

The Application Analyzer/Experimental (APAX'S as
it is called hereafter) has been designed as a tool for
specifying, analyzing, and documenting a business
area, requiring no assumptions of predefined proce-
dural schemes; it is a flexible tool open to any
preferred user approach. APAX is essentially a series
of visual display screens, each one interactively of-
fering facilities (operators—Ilisted in Appendix A)
that support the user in analyzing the application,
the component functions at any logical level, and
the data.

APAX design perspective

In designing APAX, the following objectives were
considered:

1. Support the user’s “natural” view in specifying
and analyzing a business area. By this approach,
the user is not required to use formal languages

IBM SYSTEMS JOURNAL, VOL 23, NO 4, 1984

nor to learn syntactic symbols that are foreign to
his knowledge and experience.

2. Produce unambiguous machine-readable docu-
mentation for data processing experts. The great-
est effort in implementing ApAX was devoted to
make it not only a tool for defining requirements
and designing architectures, but also a bridge
between the application analyst and the data
processing expert.

APAX Is therefore an interactive tool addressed to
application users/analysts, for the first objective, and
to data processing experts (in partnership with ap-
plication users/analysts), for the second one.

In implementing APAX, highest priority was given to
the functional characteristics related to generality,
usability, and documenting capabilities.

Inherent generality means that no specific method-
ology of analysis is recommended or required: the
user is allowed to execute top-down analysis or bot-
tom-up synthesis in defining both processes and data
structures and can perform his job by starting either
from data or from functional considerations.

In order to support the different methodologies, the
structure of the processes is shown in three ways to
highlight the different aspects of the analysis: data
flow (graphic display), structured function tree (in-
dented list), and Jogic flow (pseudo-code-like repre-
sentation). These three different types of results relate
to the need of modeling a business area both as a set
of data flows connecting couples of processes and as
a sequence of processes connected to one another by
logical relationships.

Error messages related to input/output inconsisten-
cies are also given by APAX during the analysis.

To reach maximum usability, APAX was designed in
such a way that the only competence needed relates
to the application to be analyzed. Early experience
has shown that a one-day training period consisting
of a lecture and “hands-on” experience is sufficient
to learn how to use APAX productively.

The first objective of the design of the screens with
the use of color was to give the greatest amount of
information to the user in the most immediate and
understandable way.

For documentation purposes, APAX not only gener-
ates printed reports of any performed analysis, but
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Figure 1 The data structure “Employee Register”
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Figure 2 Data Universe of “Salary Application”
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also allows the user to produce memos related to
every process or every data structure involved in the
application.

Basic concepts

Since there is no commonly accepted terminology
in the area addressed by APAX, and since single terms
often have multiple meanings, this section defines
the principal concepts used in APAX. To better clarify
these concepts, we shall refer to pictures of the related
APAX screens obtained during the analysis of an
application called “Salary Application.”

In analyzing a business area, three main concepts
are to be considered:

e Data
e Functions
e Relationships between data and functions

It is necessary to assign precise meanings to these
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terms to avoid misunderstandings when describing
the APAX architecture and its related philosophy.

Data. In general terms, an application consists of a
set of operations to identify, classify, store, and re-
trieve information (input), which is then processed
to generate other information (output). In order to
store and subsequently retrieve an item of informa-
tion, an identifier (name) must be associated with it.

A data element is an elementary item of information
which has a name and a value, e.g.,

(name) (value)
ADDRESS: ‘9045 Lincoln Boulevard, Los Angeles, CA
90045’

In real-life applications, information with complex
structures must also be considered. Therefore, we
define, in general, a data structure in the following
way:

Data structure = <Ordered set of data elements
associated with a name>, <Ordered set of data struc-
tures associated with a name>.

This recursive definition lets us describe the very
complex structures typical of real life. As an example,
we can have

EMPLOYEE REGISTER: HEADING, B.O. RECORD

B.O. RECORD: B.O. HEADING, EMPLOYEE RECORD

EMPLOYEE RECORD: CODE, NAME, POSITION, SALARY,
ADMINISTRATIVE DATA

Here, EMPLOYEE REGISTER, B.O. RECORD, and EM-
PLOYEE RECORD are defined as data structures,
whereas HEADING, B.O. HEADING, CODE, NAME, POSI-
TION, SALARY, and ADMINISTRATIVE DATA are data
elements.

When a data structure (or data element) D, is part
of another data structure D, a relation between D,
and D exists. Such a relation is expressed by saying
that D, is a component of D. In the above example,
the data element NAME is a component of EMPLOYEE
RECORD, and the data structure EMPLOYEE RECORD
is a component of EMPLOYEE REGISTER.

In the following, the general term “data” is used to
mean either data elements or data structures.

When, for a given D, no other D’ exists such that D
is a component of D', then D will be called the
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master data. Referring to the above example, we see
that EMPLOYEE REGISTER is a master datum, whereas
NAME is not since it is a component of EMPLOYEE
RECORD. For the same reason EMPLOYEE RECORD 1is
not a master datum.

We shall call the structure of D the ordered set of the
names of its components. The structure of the data
EMPLOYEE REGISTER defined above is given in Figure
1.

Data can

¢ Belong permanently to the information system (in
this case, called files or system data)

¢ Be temporarily passing through the system (called
transactions)

We shall call the Data Universe Up of the application
A at the time T the set of all the data existing in A
at that time. The set Up, will also be called the status
of the system “Application A” at the time T.

An example of a Data Universe is shown in Figure
2. It gives not only a list of all the data but also

auxiliary information: the files are marked by an
“F”; the color pink identifies the names that refer to
data elements (with no data components).

When a name identifies a component of a master
datum, this master datum is written close to the
name to avoid possible ambiguities generated by
using the same names in different data structures.

Functions. We refer to the term finction to indicate
a process (storing, retrieving, and computing) acting
on data in order to derive from them other data that
can replace them completely or partially.

An application is composed of a set of functions (or
processes), considered as the first-level components
of the application itself, allowing us to obtain the
final output data of the application from the initial
input data.

Figure 3 shows the application “Salary,” the first-
level components of which are

1. Employee Register Up-dating
2. Salary Procedure

3. Accounting and Statistics

4. End-year Procedure

Of course, the same kind of decomposition can be
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Figure 3 “Salary Application”; first-level components

Figure 4 Function “Salary Procedure”; first-level
components

repeated on each component of the application,
giving rise to the second-level components. This proc-
ess, repeated » times, leads to the definition of func-
tions that are the Nth-level components of the appli-
cation. Figure 4 shows the components of the func-
tion “Salary Procedure,” which is a component of
“Salary Application.”

This sequence of steps is called, in the following, the
analysis of the application, and each step is the
analysis of a component function. The analysis ends
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Figure 5 Structure of “Salary Application”

when the last functions defined are such that no
further decomposition is considered to be useful by
the user.

The result of the analysis of a function is shown in
Figure 5. We shall call it the structure of the function.

The similarity of this concept to the one defined
above about data is evident.

The lowest-level components of an application will
be called primitive functions. A primitive function in
application A is a component of A (of any logic level)
for which the user decides that no further decom-
position is necessary. In the following, a primitive
function will also be called a block.

A function F is defined as primitive in three cases:

1. Temporarily, when the analysis of A is not yet
completed and the user prefers to postpone the
analysis of F. We shall not examine this case in
detail as an intermediate step of the analysis path.

. When F has such a simple internal logic that it
can be easily understood or coded/executed. In
this case, the complete specification of F requires
e The identification of input/output data
e The specification of the input/output data

physical attributes

An explicit definition of the set of conditions
(if any) affecting its execution. This set is de-
duced from all the conditions assigned in the
previous steps of analysis.
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¢ The description (by natural or formal language)
of the internal logic.

. When F is a generalized function, that is, a pack-
age of existing software which requires only the
allocation of the proper data to its input/output
ports and the explicit definition of the set of
conditions (if any) affecting its execution.

The primitive functions play a primary role in the
development of an application. In fact, when the
analysis work is finished, the complete application is
described by a structured set of blocks. Their imple-

The structure of a function
integrated with logical conditions is
called the syntax of the function.

mentation is equivalent to the implementation of
the application itself.

From the above, it should be clear that the attribute
“primitive” is not an intrinsic property of the func-
tion itself but depends on the stage of the analysis,
the user’s understanding at that time, the language
used, etc. Also, any type of function (even a very
complex one) for which a suitable software package
is available can be defined as a primitive function.

Since the structure of a function includes all of the
possible components (executable in all possible
cases), it does not always coincide with the sequence
of operations that are actually performed to get the
final output data from the initial input data. This
difference originated from the fact that the path
followed can depend on the characteristics (or pred-
Icates) of some data.

If the components of a function are to be performed
sequentially (only one path exists), those compo-
nents are called “sequential functions.” If only some
of them are performed—the choice depending on
the results of tests made on some data—different
paths exist.

The structure of a function, completed by the spec-

ification of all conditions affecting the execution of
its components, is called the syntax of the function.
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As shown in Jackson’s Structured Programming
Theory,” multiple paths exist only in three cases:

1. When the execution of a component of F depends
on predicates of some data (the component is a
conditioned function).

2. When a component of F is conditioned by pred-
icates opposite those of another predefined con-
ditioned component F’ (the component is the
reverse function of F’).

3. When a component of F is a sequence of identical
functions to be executed on a set of data while
given data predicates hold (the component is an
iterated function).

When the function F has conditioned or iterated
components, its syntax does not coincide with its
structure, because in the component ordering, the
different combinations of the conditional data pred-
icates cause some “jumping” or “stopping” in the
component sequence.

Those situations are represented in high-level pro-
gramming languages by statements like

IF...THEN ...
ELSE...

or

DO ... WHILE

Summarizing, a sequential component is always ex-
ecuted. A conditional or reverse component is exe-
cuted according to the predicates of a set of data.
Defining a component as iterated is a short way to
mean that it must be executed several times if an
execution condition holds.

With use of pseudo-code symbols, the APAX screen
shown in Figure 6 gives a view of the syntax of
“Salary Application,” automatically obtained from
the information given by the user in the screen
enabling the analysis.

By comparing Figures 5 and 6, we see the difference
between the structure and the syntactic view of an
application. The first one shows all the functions
together with their components; the second one high-
lights the conditions affecting the logic flow of the
application. In other words, the structure describes
all the functions that are considered within an appli-
cation at each level, whereas the syntactic view spec-
ifies when those functions are to be executed.
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Figure 6 Syntactic view of “Salary Application”

Data/functions relationships. In the analysis of an
application, each component function (regardless of
its level) should have as input either initial input
data or data coming from another previously exe-
cuted function. In other words, the data come either
from the initial status of the system or from origi-
nator functions. Similarly, it can be stated that data
are used either by the final status of the system or by
receiver functions.

From the above, it follows that the system “Appli-
cation A” can be concetved either as a structured set
Ur of functions (Function Universe of A) connected
by a data flow, or as several Data Universes, each
one generated from the preceding one through the
execution of a sequence of functions (logic flow).

Let D, and D, be two items of data belonging to the
Data Universe of an application A. In the data flow
of A, two different cases can apply:

1. D, exists independently from D,. (D, is not
needed to compute D,.)

2. D, can be obtained only when D, is known. (D,
is needed to compute D,.)

In the second case, there is a “logical precedence”
relationship between D; and D,. An example of
logical precedence is shown in Figure 7, where “Em-
ployee Record,” “Extra-time Cards,” and “Tax Coef-
ficient Table” are needed to obtain “Salary Forms.”
The two relations “to be component of . ..” and “to
be precedent of ...” define the logical structure of
the set of all the data in an application.
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Figure 7 “Salary Application”; |/O data of the function
“Salary Procedure”

Figure 8 Application definition

INFORMATION

IDENTIFIED

CLASSIFIED

STORED e

FUNCTIONS

RETRIEVED

PROCESSED

INFORMATION

Table 1 Data and functions correspondence

Data Functions
Data element Primitive function
Data Functions
Data components Function components
Structure of data Structure of function
Data predicates Conditioned functions
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Data and functions have a structural connection with
the complete application, as shown by Figure 8.

Data/function duality. From the concepts defined in
the preceding paragraphs, a correspondence appears,
as shown in Table 1. This table suggests a kind of
duality between data and functions, but a deeper
analysis is needed to derive from it a more sound
view of an application.

When an application has been completely specified,
the result of the analysis is a system, the elements of
which are data and functions connected by different
types of relationships. A complete description of such
a system leads to a description of all the elementary
structures contained in it.

Let us examine two different cases.

1. Elementary structure DATA — FUNCTION — DATA
This statement means to establish a relationship
between two sets of data through a function (re-
gardless of its logical level) that generates the
second set from the first one. This approach leads
to the methods that consider the functions as
links between data (Jackson,” Warnier-Orr,"
Myers,'? etc.).

2. Elementary structure FUNCTION — DATA —>
FUNCTION
This statement means to establish a relationship
between two functions through a set of data (out-
put of the first function and input to the second
one). This approach leads to the methods that
consider data as links between functions (Your-
don,” De Marco,'? etc.).

In this way, the duality between these two elementary
structures appears as the root of the duality between
the different methods of application analysis.

To allow the user to apply the method that he prefers,
in APAX both of these elementary structures are
dynamically selected by the user, and their mutual
consistency is automatically checked.

Flows within an application. The description of an
application is generally given through two kinds of
models:

1. By conceiving the application as a system having
as its elements sequences of functions, each one
generating data derived from other data. This
model (logic flow) leads to the implementation of
diagrams in which the functions, their order, and
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the conditions of their execution are in full evi-
dence. These diagrams are generally implemented
by using graphical or semi-formal languages (H1PO
diagrams, Petri networks, pseudo-code, etc.). Fig-
ure 6 is an example of logic flow in the form of
pseudo-code.

By conceiving the application as a system in
which a flow of data is defined starting from the
initial input of the application. In this model, all
the data are connected to the application final
output by a network of transformations along
which they pass (data flow).

o

From our experience, graphic representation appears
to be the clearest and the most useful way to docu-
ment a data flow.

Figure 9 shows the same functional structure given
by Figure 6 in the form of data flow. In it the big
circle represents the “world” of the business area
“Salary Application,” the small circles numbered 1,

APAX is a series of visual display
screens.

2, 3, 4 represent the component functions (the names
of which appear at the top of the right side of the
screen), and the data flows are represented by the
arrows specifying the flow direction. The data iden-
tifiers on the right side of the screen allow a complete
description of the connections among the compo-
nent functions. The data coming from or going to
the area external to the big circles are the input and
output data of “Salary Application.”

Logic flow and data flow of the same application are
obviously connected to each other, but questions
have been raised about the nature of their connection
and their equivalence. We shall not examine this
problem here, but clearly the above-defined duality
ensures that the equivalence condition for the two
models resides in the intrinsic self-consistency of the
application (see Appendix B for more rigorous con-
siderations).
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Figure 9 Data flow of “Salary Application”

APAX architecture

Functional specifications. As was stated earlier, APAX
is a series of visual display screens. Although the
internals of APAX are strictly formal, from the user’s
view, APAX operates in a nonprocedural way and
with no use of formalized languages. All data, func-
tions, and relations involved in the description of an
application are stored in a data base called the re-
pository of the application.

Special care has been taken to maximize the effi-
ciency and the usability of Apax. For example, color
provides readable screens and is also used to give the
greatest amount of information quickly and easily.

The focal point of this approach lies in the fact that
the user builds up the application by defining its
components: APAX allows at any time a comprehen-
sive view of the structure and relationships of func-
tions and data. Moreover, it checks the leveling
consistency of the application in terms of those
relationships.

All these operations are carried out at any logical
level, down to the level at which the functions are
defined as blocks, after which the analysis is com-
plete.

Data base structure. Two kinds of basic objects are
in the APAX repository: functions and data. These
objects are represented by records of a direct access
data base in which pointers define the links among
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Figure 10 Data flow

Figure 11 Data flow with function highlighted

the data base elements. The components of such a
data base are as follows:

Repository anchor point record—It contains the
starting point of the application chains. Also
stored here is the starting point of the available
record chain in order to allow flexible mainte-
nance of the repository space and re-use of erased
records.

Application record—Besides the application name
and password, the application pointers are stored
here. These pointers establish the correct connec-
tions to the Master Data List record, to the record
of the first-level component functions, and to the
record containing the application 1/0 data.
Function records—This record contains the fol-
lowing information on each function: function
description, random code (used by hashing tables),
pointer to the function to which it belongs, list of
the pointers to the records containing the com-
ponent functions of the next level, and list of
pointers to the records containing I/0 data of the
function itself.

Data records—Besides the data description, the
pointers to the functions using it and to the data
involved in its structure are stored here.

Hashing tables. In APAX execution, checking is fre-
quently required to determine if some “objects” (data
or functions) are already included in the repository,
either explicitly (e.g., when check operators are per-
formed) or implicitly (e.g., when 1/0 data are defined
and the system itself checks for their existence).
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To reduce response time because of the frequency of
these inquiries, a random technique'” is used that
reduces the number of scans in the repository. In
this technique, a numerical random code, obtained
directly from the name, is associated with each ob-
ject. This numerical code locates a table position in
which the key corresponding to the actual record is
stored. A second table exists in which the keys of
synonym records are stored.

The main operations that can be performed by the
hashing tables are insertion, deletion, and inquiry.

Since the architecture of the APAX data base has a
fully open and flexible design, APAX could be con-
nected in the future with specific software products
such as the Structured Query Language/Data System

(SQL/DS).

APAX operators

APAX carries out an interactive dialogue through a
series of “operators,” each of which is implemented
by actions performed through the display terminal.
For the sake of classification, operators can be
grouped in four families, depending on the “objects”
on which they act: (1) operators on the whole appli-
cation, (2) operators on each function, (3) operators
on each data structure or data element, and (4)
operators that cross.

The operators belonging to the first three groups
permit the user to initiate, update, inspect, analyze,
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Figure 12 Data flow with data element highlighted

Figure 13 “Salary Application”; check against formal errors

or synthesize every component of function or data.
The operators of the fourth group perform actions
that relate to functions and data together.

In designing the operators, special care has been
taken in minimizing all the user actions that are
likely to generate errors. In particular, copying ac-
tions have been avoided as much as possible. For
instance, when two functions have the same input
(or output) data, it is possible to assign automatically
the input (or output) of the first function to the
second one. This is shown in Figure 7, where the
Copy operator can be applied through the functional
key PF9.

Another operator designed to avoid copying errors
is the facility “Pick” appearing in the Action line of
the screen in Figure 3. With it, any data name
appearing in the Data List (Data Universe) shown in
Figure 2 can be automatically assigned as input (or
output) of the analyzed function just by writing “i”
(or “0”) close to it.

Display of Data Flow Network is another operator,
which produces the screen seen in Figure 10. Similar
to it is the operator for “zooming in” on a component
data flow. It allows the display of the inner data flow
of every component function appearing in the initial
network.

To improve the readability of the network, a high-

lighting facility has been implemented to show all
the data flowing through any selected function (Fig-
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Figure 14 “Salary Application”; diagnostic messages

ure 11), or to the data flows containing a selected
data element (Figure 12).

Three operators have been specifically implemented
for checking purposes: Check Formal Errors, Diag-
nostic Message List, and Automatic Correction.
They permit detection of any formal inconsistency
in the data flow of every function, and diagnostic
messages specify where the inconsistencies are. De-
pending on the nature of an error, a particular type
of correction is proposed to the user, and, if accepted,
is automatically performed. Figures 13 and 14 show
the screen “Check on Data Flows” and a sample of
diagnostic messages.
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A complete list of APAX operators is given in Appen-
dix A.

Concluding remarks

It is commonly recognized that the application mod-
eling area is one of the challenges of today. APAX is
a tool that can be used by the user/analyst in concert
with the application analyst in this difficult job. In
APAX we have tried to build a tool that is easy to use
and “neutral,” as much as possible, to the different
methodologies existing in this area.

The APAX conceptual starting point was general sys-
tem theory and set theory rather than computer
science. The aim of this approach was to obtain a
structure broad enough to be able to analyze and
specify general systems and then to apply it to those
special systems that represent business areas.

As a result, we obtained a general flexible tool on
which several improvements have been possible
without major difficulties. It is hoped that the char-
acteristics of generality and flexibility will enable
APAX to connect to other software packages through
bridges able to transfer functions and data. Synergis-
tic effects are expected from such connections so as
to improve the user’s productivity. Furthermore, the
use of new graphic facilities will provide better usa-
bility and enhanced dialogues.
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Appendix A

Following is a list of the APAX operators.

* Operators on the complete application
Nominate New Application
Cancel Application

Rename Application

Assign Password

Start Analysis (Editing)

Display 1/0 Data of Application
Define 1/0 Data of Application

1.
2.
3
4.
3.
6.
7.
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8.
9.
10.
11.
12.

Cancel 1/0 Data of Application
Write User Comments

Restore User Comments

Save User Comments
Display/Print User Comments

e Operators on each function

—OOXRXIIN S W=

- —

Display Components

Define Components (Analyze Function)
Cancel Components

Update Components

Display 1/0 Data

Define 1/0 Data

Cancel 1/0 Data

Copy 10 Data from Another Function
Display Function Tree

Display Function Pseudo-Code (single level)
Display Function Pseudo-Code (nested up to
given depth)

Function Synthesis (Move Function)

. Write User Comments (Memo) on Functions
. Write User Comments (Restore)
. Write User Comments (Save)

Display User Comments
Display Alphabetic List of All Functions

¢ Operators on each data

10.
11.
12.
13.
14.

WOk LD

Nominate Master Data

Cancel Master Data

Update Master Data

Data Synthesis (Hang Data)

Display List of Master Data

Display Structure of Data

Define Structure of Data (Analyze Data)
Update Data

Cancel Data

Display Alphabetic List of All Data
Write User Comments (Memo) on Data
Write User Comments (Restore)

Write User Comments (Save)

Display User Comments

¢ Cross operators

1.

5.

Check Formal Errors

2. Diagnostic Message List
3.
4. Display of Data Flow Network (for given

Automatic Correction

function)
Display of Data Flow Network (zooming in
on a component)

6. Display of Data/Function Cross-Reference

7.

Put Data (from data list) as 1/0 of a Function

Below is a brief description of some operators, the
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effects of which are not immediately clear from the
above list of names.

Application of I/O Data. Initial and final data of the
application are entered, changed, or erased.

Master Data List. The master data of the application
are defined and handled. This operator is connected
to the following related operators: Analysis of Data,
Cross-Reference, Structure of Data, Data Synthesis
(Hang), and User Comments. The Hang operator
allows data to be allocated as components of another
data structure (bottom-up method in data defini-
tion).

Analysis of Data. Used to define, insert, or change
the components of a data structure.

Structure. The structure of data is shown, emphasiz-
ing the position within the structure of the master
data to which it belongs.

Analysis of a Function. Allows the definition of the
components of a function (or of the complete appli-
cation). Through this operator, an application is
analyzed following a top-down technique. Another
operator (Move) can be used to allocate previously
defined functions as the components of another (bot-
tom-up synthesis).

Function 1/0 Data. This operator creates a relation
between a function and a set of data, defining the set
as input or output of the function. To simplify this
assignment, the operator Copy is provided. Through
Copy, the 170 data of another specified function are
copied, avoiding the risk of using incorrect names.

Check Formal Errors. Any formal inconsistency in
the data flow of a given function is detected. Diag-
nostic messages specify where the inconsistencies are.
Automatic correction is proposed to the user, and, if
accepted, performed.

Function Structure (Tree). The structure of a func-
tion is displayed as an indented list of all the com-
ponents (up to the deepest level) of the function
itself.

Function Syntax (View). The syntax of the function
is described using the standard form of pseudo-
coding. Comments specifying the starting and ending
points of each component are automatically added
on request.
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Data Flow Network. The data flow in a given func-
tion is displayed in graphic form. The function com-
ponents are represented as circles and the data flows
as vectors (arrows) connecting them. A full descrip-
tion of all the data and function names is given. A
“highlighting” facility is also provided to better iden-
tify data, flows, and components on the screen. The
facility for zooming in on a component appearing in
the network is included.

User Comments. The user may insert in the docu-
mentation nonformatted comments related to any
function or data structure.

Printed Reports. At any time of the analysis, the user
can automatically generate output reports. The list
of all the available output reports can be handled for
printing, change, or deletion purposes.

Appendix B

Intuitive considerations have developed on data,
functions, and their role in a business area analysis.
These concepts are more rigorously specified here.
Table 2 defines the symbols used in this discussion.

The data/function duality. Let A and A be a set of
data and a language, respectively. We shall call func-
tion in A an operator

F: & C II(A) — II(A)
such that F is fully described by a finite number #(F)
of A statements.

II(A) is here the power set of A, according to the fifth
axiom of Zermelo-Fraenkel Set Theory.!®

When n(F) = 1, F is said to be a primitive function
in A.

Table2 Symbol definition

Symbol Definition
AUB Union of set A and set B
- Defined as
A>B A follows B
A<B A precedes B
XEA Element x belongs to set A
ACB The set A is a subset of B
a:A—B The operator a has domain A and range B
= Implies
11 (A) Power set of the set A
- Not
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When #n(F) 1s “large” (what “large” means is arbi-
trarily assumed by the user), it is convenient (or
necessary) to describe it in A by a set of routines F,
Fs, ..., Fn, each of which is still a function (com-
ponents of F).

In the concepts specified above (“data” and “func-
tions™), two couples of operators have been implicitly
defined. The first couple is

ID M UF e H(UD)
OD : UF b d H(UD)

where Ip(F) is the set of the input data and Op(F) is
the set of the output data of F.

The second couple is
Ir: Up — II(Ug)
Or : Up — II(Uf)

where Ig(D) is the set of the functions having D as
input and Og(D) is the set of the functions having D
as output.

The two couples (Ip, Op), (Ir, Of) specify the duality
between data and functions because their definitions
can be deduced one from the other simply by inter-
changing the subscripts D and F. Therefore, all the
concepts that are invariant in front of this duality
can be translated from a set of functions into a set
of data and vice versa. For example, the input and
output data of a function are transformed by duality
into the cross-reference of data, that is, the sets of
functions that have them as input or output.

Flows in a function. Exploiting the duality, the con-
trol flow, and the data flow within a function can be
better specified.

To better note the relationships between data flow
and control flow, some more definitions are needed.
‘We shall say that a function F” follows a function F’
(F” > F’) when

In(F”) X Op(F’')# 0

Similarly, a data structure D” follows a data structure
D’ (D” > D’) when

(D) X O(D")# 0
Those definitions can be extended to the concept of

chain linking functions or data. A sequence of func-
tions (F,, (i = 1, .. ., n) is linked by a chain when

F,‘+1>Fi, i=l,...,n_1-
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In a similar way a sequence of linked data is defined.

Now let A be a business function having the Data
Universe Up and the Function Universe Ug, and let
f be any component of A. From our general point of
view. to analyze A means to define an operator

C: Ug— II(Uy)

and therefore a control flow model of fis given when
C is given together with a partial ordering relation-
ship p on C(f). (C(f) identifies the set of the compo-
nents of f.)

We shall use the symbol
CF(f) = (C(f).p)

to represent the control flow within the function f.

By applying the already noted duality between func-
tions and data, we can give a similar definition for
the data flow within f. When a function f is defined,
input and output data are assigned to f and to its
components. That means that in general an operator
is defined on Ur which associates to any f a subset
of Up whose elements are all the data involved in
the execution of f. Let such operator be

D: UF b d H(UD)

Therefore, a data flow model of f is given when D is
given together with a partial ordering relationship A
on D(f).

We shall use the symbol
DF(f) = (D(f),A)

to represent the data flow within the function f.

Since CF(f) and DF(f) are two different models of
the same function f, it is evident that a connection
should exist to avoid a basic inconsistency in the f
definition. This connection exists through the two
couples of operators Ip, Op, and I, Of already de-
fined. In fact, given the operators C, Ip, and Op, the
elements of the set of data D(f) should exactly be
(for consistency reasons) the elements of the union
of the sets Ip(g) and Op(g) when g is either f or one
of the f components.

Formally, the relationship between the operators C
and D is given by

D(f)=U(In(g) U Op(g)) being g € C(f) U {f} (1)
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The above condition is necessary for the consistency
of the two models of f, but it is not enough because
no ordering considerations have been involved in it
until now. To complete the consistency conditions,
the partial ordering relations p and A also should be
connected in some way.

The relation X included in the above data flow defi-
nition allows us to decide, given d’ and d” € D(f),
if d’ < d” (d” < d’); that means that d’ is needed to
get d” (or vice versa). This implies that any function
having d’ as output cannot follow (according to the
p relation) any other function having d” as input.

Therefore, for the consistency of the two models
CF(f) and DF(f), the following relationship should
hold:

fr p £ =>(ﬂEd’, d”) ' ((d” A d,),

(@ € Ie(f"), (d” € Ox(f")))  (2)

Summarizing, when the consistency relationships of
(1) and (2) hold, CF(f) and DF(f) are two isomorphic
models of f. The term “isomorphic™'® is used here as
it is in the First-Order Predicate Logic (here appli-
cable since both the Data and Function Universes

are necessarily finite).

Since the operators implemented in APAX essentially
deal with the definition of the components of any
function and of the data that are input or output, a
proof of the validity of such an approach is equiva-
lent to the proof that those operators lead to the
definition of two isomorphic models of the applica-
tion.

To this purpose, the following theorem is established:

Assume that the sets Up, Ur and the operators C, Ip,
Op are as defined above; assume also that the rela-
tions p and A are specified by chaining the compo-
nents of a function and all the data involved in them
(see preceding paragraph); then the relation p is a
partial ordering if and only if such is also the relation
A

Proof. Let p be a partial ordering relation. If X is not,
a couple of the data d’, d” should exist such that

d’xd” and d”xd’ 3)

The first means that two functions, f’ and {”, exist
so d” € Op(f”) and d’ € Ip(f’) and they are connect-
able by a function chain. That implies f’ p f”. But
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starting from the second one of (3), we can state in
the same way that f” p f*, which is impossible since
p 1s a partial ordering relation.

In a similar way, it can be proved that if X is a partial
ordering relation, the same p should be. The theorem
1s therefore proved.

From the above theorem it follows:

Corollary. If the analysis of a function f has been
carried out (regardless of the data flow or control
flow method) and its results imply a partial ordering
of the data or of the functions involved, then the two
models CF(f) and DF(f) are isomorphic.

But the basis on which APAX is implemented is an
analysis that ensures a partial ordering on U or Up.
Therefore, the above corollary gives a proof of the
validity of such an approach.
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