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This  paper  examines  how architecture, the definition of 
the instruction set and other facilities that are  available 
to the user, can influence the implementation of a very 
large scale integration (VLSI) microsystem. The instruc- 
tion set affects the system implementation in a  number 
of direct ways. The instruction formats determine the 
complexity of instruction decoding. The addressing 
modes  available  determine not only the hardware 
needed (multiported register  files or three-operand 
adders),  but also the complexity of the overall  machine 
pipeline as greater variability is introduced in the time 
it takes to obtain an  operand.  Naturally, the actual 
operations specified by the instructions determine the 
hardware needed  by the execution unit. In a  less direct 
way, the architecture also determines the memory 
bandwidth required. A few  key parameters  are intro- 
duced that characterize the architecture and can be 
simply obtained from a typical workload. These param 
eters  are  used to analyze the memory bandwidth r e  
quired and indicate whether the system is CPU- or 
memory-limited at a  given design point. The implica- 
tions of caches and virtual memories  are also briefly 
considered. 

T he rapid advances in density and performance 
of very large scale integration (VLSI) technology 

have provided the designer with the  opportunity  to 
achieve unprecedented performance on  a single chip 
of silicon. The emerging technologies have the po- 
tential of producing microprocessors with perform- 
ance that matches or exceeds that of medium to large 
machines today. With this performance, users will 
come  to expect other features normally associated 
with  large  systems, such as a powerful instruction 
set, large main memory, and large virtual address 
spaces. Furthermore, in order to achieve high per- 
formance  the microprocessor designer must resort 
to  many of the techniques pioneered in large ma- 

chines, such as cache, pipelined organization, and 
parallel functional units. It is within this technolog- 
ical framework that we investigate in this paper the 
relationships between the architecture and  the im- 
plementation of microsystems that consist of one  or 
a few VLSI chips. 

The structure, architecture, and design of any com- 
puting system are affected by an extremely large 
number of interrelated parameters so that any at- 
tempt to optimize  a  total system by including all 
parameters is virtually impossible. Not only is there 
no adequate  and well-defined model, but also the 
complexity and possible variations far exceed the 
intellectual capability of any individual. Therefore, 
to reduce the complexity and limit the  number of 
parameters that must be considered simultaneously, 
a  data processing system is typically  viewed as a 
hierarchical structure. Each level  of the hierarchy 
reflects one major aspect of the system and hence 
contains only a small subset of the total parameters. 
Each interface between these various levels  is  usually 
assumed to be  relatively independent of the two 
levels being interfaced. For instance, at  the highest 
level of the hierarchy is the applications program, 
often written in a high-level language. It is assumed 
that  the language can be  designed without consider- 
ation of the remainder of the hierarchy. Below this 
level  lie the compiler and operating system. The 
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latter manages the system  resources and provides 
basic  system  services. Below that lies the architec- 
tural interface, the nominal boundary between  hard- 
ware and software. This key interface  consists of  all 
facilities and operations that are made available to 
the programmer;  for  example, the registers, instruc- 
tion set, and the addressing  capabilities are all part 
of the architecture. Finally, there is the hardware 
level,  which  can further be  stratified into the machine 
organization,  including the pipeline structure, micro- 
code and data flow, the circuit  family, and the tech- 
nology  itself. 

Although the hierarchical structure, in principle,  al- 
lows  each  level to be  designed  separately,  closer 
examination reveals  interesting  possibilities.  Recent 

VLSl permits  more of the  system  to 
be viewed as a unit on a chip. 

papers  have  suggested that the design of a processing 
system  can be improved if  several  levels  of the hier- 
archy are considered  together.  For  example,  recent 
designs',*  have  been  guided by the relationship  be- 
tween the architecture and the high-level  language 
compiler. At the architectural level,  simple but pow- 
erful instructions were  chosen to form an efficient 
compiler  target. A simple instruction set  made  code 
selection  in the compiler  much  easier. Furthermore, 
careful  choice of instructions resulted in total path 
lengths comparable to those  generated  using a more 
complex instruction set.  In other words,  complex 
operations can very  efficiently  be broken into a se- 
quence of more general, fundamental steps.  Finally, 
by not  including  memory-to-memory operations, 
but rather allowing  only  register  stores and loads to 
and from  memory, the compiler can  frequently  over- 
lap access to storage  with  execution  of other instruc- 
tions, giving better throughput. 

Another  example  has  been to integrate  machine 
organization  with the control program One 
way this  can  be  achieved  is to create an explicit 
architecture of the primitive control program  oper- 
ations. For example,  in Sy~tem/370,~ instructions 
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were added to support dual address  spaces, and  in 
both IBM Sy~tem/38~ and Intel iAPX 432,5 instruc- 
tions are available  for  process  management and in- 
terprocess communication. Rao and Rosenfeld3  dis- 
cuss other opportunities to exploit the intent of the 
operating  system at the machine organization  level. 

Thus, by crossing the boundaries between the various 
levels  of the hierarchy, new opportunities are af- 
forded  for improving the overall  system  perform- 
ance.  Since VLSI permits more and more of the 
system to be  viewed as a unit on a chip, not only  is 
the designer permitted the opportunity to cross  these 
boundaries, but in fact  it  also  becomes a necessity. 
This is  especially true at the lower  levels  of the 
hierarchy. 

In this paper, we examine the interaction between 
two  levels in the hierarchy,  namely the architecture 
and machine organization levels,  within the context 
of a high-performance vLs1-based microsystem. We 
focus on the following  two  issues: 

The effect  of the architecture on the instruction 
decode unit of the CPU. 
The relationship  between architecture and the 
memory  subsystem,  especially  with  regard to nec- 
essary  memory  bandwidth and the need to support 
a demand-paged  virtual  memory. 

With a few simple,  general  concepts, a number of 
important principles and tradeoffs  concerning the 
processor and especially the memory  system can 
easily  be deduced. In order to do this, it is necessary 
to understand the nature of a pipeline  system, as well 
as the conflicts and disruptions that can  occur in the 
pipeline  flow,  because  these  significantly  reduce the 
system  performance.  These  conflicts and disruptions, 
together  called hazards, can occur within the CPU 
itself or within the memory  subsystem. If they  occur 
mainly  within the CPU, the CPU is the performance 
bottleneck.  On the other hand, if most of these 
hazards are caused by the memory  system, the mem- 
ory  bandwidth  is inadequate, and attempts to im- 
prove the overall  performance by improving the CPU 
are of little value.  Obviously a balanced  design  is 
necessary;  therefore, we shall  derive the general  range 
of certain simple parameters required  for  such a 
balanced  design. 

The VLSl environment 

Since the introduction of the first  microprocessor 
about fourteen years  ago,  there  has  been a two-order- 



Figure 1 Schematic of a generalized  microprocessor  system  organization 
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of-magnitude increase in both the density and per- 
formance of the chips. The increase in performance 
has come about not only  because of improvements 
in technology, but also  because of better circuit 
designs and the adoption of more sophisticated  ma- 
chine organizations. Many of these machine orga- 
nization techniques have  been  directly  modeled after 
the design of large mainframes. However, many of 
the approaches used in large mainframes are not 
appropriate in the microsystem environment. The 
constraints in the microsystem arena stem from the 
desire to limit system  cost and to emphasize the cost- 
performance ratio rather than performance alone. 
As a result, the processor is generally limited to only 
one or a few VLSI chips. In addition, the number of 
interchip connections should be kept  small  because 
they are expensive  from a number of standpoints. 
First, it is  difficult to fabricate and package  chips that 
have a large number of input/output pads.  Second, 
even  if a large number of outputs are made available, 
the number that can be simultaneously switched  is 
limited by the inductive switching  In addi- 
tion, the number of interchip connections in a criti- 
cal path may limit system performance because in- 
terchip propagation tends to be much slower than 
on-chip propagation. A further constraint is that the 
cooling  system  for a microsystem must usually  be 
inexpensive and compact, requiring,  for  example, 
only a fan. This is  very unlike a large mainframe 
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system. Hence the allowed heat dissipation limits the 
chip power,  with appropriate reductions in circuit as 
well as interchip communication speed. 

Partitioning a VLSI microsystem  is therefore a critical 
first  task and is determined both by the technology, 
which  establishes the number of circuits that can be 
placed on the chip, and by the number of I/OS 
available. In general, the constraints just discussed 
imply that each chip contains a complete functional 
unit, such as the entire CPU or the floating point 
unit, or at least a complete subunit, such as the data 
flow or microcode.  However,  even  with  such a func- 
tional partitioning, the need to restrict interchip 
connections can have a profound effect on the ma- 
chine organization chosen. For example, if the ma- 
chine is simply partitioned into microcode and data 
flow, the size of the microword is determined by the 
pins available. A more sophisticated partitioning is 
therefore  often  desirable.’ The constraints on the 
number of pins and simultaneous switching  also tend 
to limit the width of the main processor-memory 
bus. The implications of this form one of the main 
themes of this paper. 

Another important component of the cost of a mi- 
crosystem is the design cost, measured both in terms 
of dollars and design time. From the point of  view 
of  physical  design (layout), design  cost can be re- 
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d u c d  by using regular physical structures, for ex- Figure 2 Schematic of a simple  three-stage  pipeline 
ample RAMS, register  files, and ALUS, so that fewer processing  five  instructions 
unique devices have to be drawn." From  the point 
of view of logic design, control logic  is far more ~ - ~ ~ ~ ~ ~ - ~  
difficult to design and debug than  data flow. (Inten- INSTRUCTION INSTRUCTION INSTRUCTION , , 

sive  use  of microcode has been one  method of deal- 
ing with this complexity.) Therefore reducing the 
complexity of control logic will have greater leverage 
than simplification of the  data flow. This will  be  seen 
in  the discussion of instruction decoding. INSTRUCTIONS IN PRESENT ATTlME 
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The machine  model 

We describe in this section a machine model that 
serves as  the  standard example for later discussion. 
We assume that  the processor consists of the follow- 
ing chips (see  Figure 1): 

CPU that houses the instruction prefetch and de- 
code unit,  the execution unit,  the register  file, and 
the address translation logic, as well as cache di- 
rectory and control logic if cache is  used. 
Storage control unit  for management of main 
memory. 
110 processor to off-load 110 from the  main proc- 
essor and handle Direct Memory Access (DMA) 
requests. 

Cache itself,  if present, is assumed to be located 
external to  the CPU on a few (perhaps one  to four) 
high-speed memory chips. A high-speed  system bus 
connects the CPU, storage control unit,  and 110 proc- 
essor and provides a path for cache reload for systems 
with cache. In general, we assume that  this bus is 
capable of transferring one full memory word (typi- 
cally four bytes) on every cycle. We also assume that 
the  machine is pipelined to  improve performance. 
By pipelined we mean that  the  instructions  are proc- 
essed in stages by separate portions of the hardware, 
much  as  in an assembly line." The  major reason for 
using such a structure is speed. All data processing 
can be reduced to a number of fundamental opera- 
tions, some of  which are  quite simple and some of 
which are more complex. The complex operations 
can be broken into a series of simpler sequential 
stages. 

In Figure 2, we illustrate a simple machine with the 
following three pipeline stages: instruction fetch, in- 
struction decode, and  instruction execution. When 
an instruction has completed one stage,  say instruc- 
tion fetch, it moves to  the next stage, instruction 
decode. At the same time,  the instruction fetch unit 
starts fetching the subsequent instruction, while the 
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TI T2  T3  T4  Ts 

INSTRUCTION FETCH  LOGIC 11 12 '3 14 15 

INSTRUCTION DECODE LOGIC 1, 12 13 14 

INSTRUCTION EXECUTE LOGIC 11 12 13 

execution unit starts executing the previous instruc- 
tion.  Thus  up  to three instructions can be  processed 
at  one  time. Provided the pipe is kept full, the rate 
at which instructions  are completed is one instruc- 
tion per stage delay even though it may take multiple 
stages to process an instruction completely. There 
are three stages in  our example. The stage  delay  is 
also known as  the  machine cycle time.  Unfortu- 
nately, contention for common resources causes 
pipeline hazards, so that instructions cannot always 
flow through the pipe at  the  maximum rate. This 
can best  be illustrated by a typical pipeline, shown 
in Figure 3. All instructions must first  be  fetched 
from memory on one of the pipe stages. This may 
require a long or  short delay and may possibly  re- 
quire multiple cycles, depending on the type of mem- 
ory. Then each instruction must be decoded, one 
instruction  at a time if there is only one decode stage. 
After being decoded, each instruction is executed 
through the execution part of the pipeline. The exact 
path and  number of  stages required for complete 
execution is a function of the instruction type, com- 
plexity, and design  of the pipeline. Since there are 
many different types of instructions, the pipeline can 
be filled to different levels  of capacity, depending on 
what sequences of instructions have been entered 
into  the decode stage. 

If an instruction enters  the decode stage on cycle 1 
and proceeds down the path A 1 B 1 toward memory, 
it arrives at register R A l  at  the  end of  cycle 2. Suppose 
a second instruction  enters  the pipe decode stage on 
cycle 2, immediately following instruction 1, pro- 
ceeds toward memory down path D2, and arrives at 
register RD2 at  the  end of  cycle 2. At the beginning 
of  cycle 3, data in RD2 from instruction 2 are ready 
to enter stage B1 in conflict with data in R A I  from 
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Figure 3 Schematic of part of a  typical  pipeline  showing  execution  paths of varying  numbers of stages  (controls are not  shown) 
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instruction 1. Inasmuch  as only data from one in- 
struction can  enter any pipeline stage during  one 
cycle, obviously one has to be delayed. Furthermore, 
since instructions must be executed in sequential 
order, execution of instruction 2 must be held back; 
in fact, the decode stage  is stopped for one cycle. 
This conflict requires that  the  third instruction enter 
the decode stage one cycle later than it otherwise 
would have done.  Other similar conflicts along dif- 
ferent paths can arise. Obviously, if we were  given a 
string of instructions to be executed and were  free to 
specify the  order in which they would enter  the 
decode stage, we could pick an  order  to avoid most, 
if not all, such conflicts. Under such conditions, the 
pipe could run  at full  efficiency.  However, the se- 
quential order of a program is important  and must 
be maintained, so some conflicts are unavoidable. A 
conflict and  the resulting delay arise because different 
instructions require different numbers of pipeline 
stages and can occur in sequences such that  a con- 
tention for resources occurs. The architecture pro- 
foundly affects not only the  number of pipeline 

W 

PIPELINE 
REGISTERS 

stages but also the availability of these stages for 
processing different instruction types. A more com- 
plex architecture requires a more complex pipeline 
with potentially more conflicts. Whether or not,  or 
to what extent, these conflicts actually occur depends 
on  the instruction  stream sequence. However, even 
this can be improved by a smart  compiler, which  is 
a compiler that knows something about  the system 
pipeline and  attempts to avoid certain types of con- 
flict. For instance, a  dependent load is an instruction 
immediately followed by another  instruction  that 
requires the  data being loaded. The compiler may 
be able to schedule other instructions between the 
load and its use, so as  to allow additional  time for 
the memory access required by the load, if the pro- 
gram inherently allows it. 

In addition to delays resulting from conflicts, there 
is another class  of delays introduced by disruptions 
to  the  smooth pipeline flow. Such disruptions arise 
from any single instruction  that requires partial or 
full completion before the next instruction  can be 
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processed.  Successful  branches  typically  make up a 
significant part of this  class,  particularly in simple 
architectures. There are others with  varying  degrees 
of  significance  (e.g.,  storage-to-storage arithmetic o p  
erations, long  moves, and load/store multiple). The 

The  architecture  can  affect  the  time 
to  resolve  the  branch  and  generate 

the  branch  target  address. 

delays  resulting  from  this  class do not depend on 
any particular sequence of instructions. Rather, the 
mere  occurrence  of  such an instruction results in a 
pipeline  delay. For instance, whenever a conditional 
branch instruction is  decoded, we do not know ini- 
tially  whether the branch  is  going to be  successful 
and transfer to a new instruction until either the very 
end of the decode  cycle or the beginning  of the next 
cycle. Furthermore, the branch target  address  may 
have to be computed. In the meantime, in order to 
keep the pipeline  full, the system  will  have started 
decoding the next  sequential instruction. If the 
branch is  successful,  unless branch target  prefetching 
along  both  possible paths has  been  made, a memory 
reference  delay  is  required until the target instruction 
is obtained, after  which  decoding  may start once 
again. The architecture can profoundly  affect  part  of 
this  delay,  namely the time to resolve the branch 
and generate the branch  target  address. The remain- 
ing part, which  is the memory  access  delay  for the 
new instruction, is independent of architecture to a 
first approximation and depends  principally on ma- 
chine organization, although the word  size and 
boundary alignment due to different instruction 
lengths  have a small  effect. 

We can illustrate this disruption delay by reference 
to Figure 3. Suppose a successful branch of a partic- 
ular  type  traverses the pipeline  toward  memory via 
path A1 B1 to register RBI prior to memory  array 
accessing. The branch is  decoded  on  cycle 1, and the 
result  resides  in  register RDI at the end of the  first 
cycle.  Suppose we know at the very  beginning  of 
cycle 2 that the branch is successful, so that the 
sequential instruction following the branch cannot 
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be  decoded. Rather, a delay  equal to  that of two  pipe 
stages, A 1 plus B 1, plus the full  memory  access time 
from  register RBI back to R, is incurred until the 
next instruction is  ready  for  decoding. The two  pipe 
stage  delays in this case  might  be  address  generation 
and virtual-to-real  address translation. I f  the branch 
instruction is  sufficiently  complex,  it  may  require 
two  cycles  of  address  generation. This would be 
determined mainly by the architecture. If address 
generation  requires the addition of three numbers, 
say a base, an index, and a displacement  (as in 
System/370), this would  most  likely  require  two 
cycles,  with  two numbers added on each  cycle. This 
of  course  gives a very  versatile  addressing  scheme 
but complicates the pipeline  design,  increases disrup- 
tion length, and increases the potential  for  conflicts. 
These  can  all be improved by making the address 
generation  simpler by adding  only  two numbers, 
base  plus  displacement, but obviously this is not as 
versatile. In any case, the architecture clearly  can 
have a significant  effect on one part of the total 
disruption delay. There are other types of disruptions 
that can  be important, depending on the specific 
architecture. 

Obviously,  it  is  possible that a particular sequence 
of instructions can produce delays  of both the con- 
flict and disruption class  simultaneously.  For in- 
stance, if a load or store operation requires one 
additional pipeline  stage  compared to a branch, a 
load or store  followed by a branch  results in a conflict 
delay  for the branch, plus the usual  branch disrup- 
tion delay. 

In order to analyze  such  pipeline  behavior, the gen- 
eral  pipeline structure as well as instruction se- 
quences and some method to simulate the dynamic 
data flow are required. A full simulation is  complex 
and  tedious, and does not easily  provide  insights into 
the various  design  tradeoffs. As a result, the first-pass 
analysis is simpler,  using a quasi-static approach. 
Initially, the designer  has  some  overall structure in 
mind  for the pipeline in terms of the number of 
stages  desired  for  each instruction type.  From  this, 
the major types of pipeline disruptions and conflicts 
can be deduced.  Sample  programs or estimates  based 
on experience  are then used to obtain the frequency 
of occurrence of such  major potential delay  factors 
as the average number of loads and stores  (including 
dependent loads) and successful  branches.  Ob- 
viously, the number and types  of  conflicts or pipeline 
disruptions that lead to lost  cycles  depend  on the 
specific instruction stream  for  any  given  pipeline. 
Since  this  sequence cannot be known  in  advance, 
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two formats  having  fixed length and function 
having  fields of different length and function; (B) 
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the  actual performance of any system cannot be 
specified exactly. An upper  bound on  the perform- 
ance can be obtained by an average analysis of the 
pipeline where certain types of less-frequent disrup- 
tions, conflicts, and combinations  are neglected for 
a first-pass analysis, because they are often small 
effects. Obviously, if this program were to be proc- 
essed, the results would be meaningless. However, 
this analysis gives a good  first approximation to 
system behavior for typical average workloads and 
can be used to estimate the average number of  cycles 
per instruction, CI, possible for the architecture and 
assumed pipeline. If the results do not  match  the 
desired performance, various options and tradeoffs 
must be  used to bring them  into line; otherwise the 
goal must be revised. In the next section, we look at 
the implications of architecture on  the value of CI, 
what tradeoffs are provided, and how  difficult it is to 
make  them effective. 

The performance of any  machine  can be character- 
ized by two parameters, the cycle time (Le., pipeline 
stage delay) and  the  number of  cycles required to 
execute an  instruction, CI, as previously described. 

pipeline hazards already noted. The net execution 
rate of a processor can be improved either by low- 
ering the cycle time  or by decreasing the average 
cycles per instruction. 

Implications  of  architecture on instruction 
decode  and  operand  fetch 

In this section we show  how the architecture, in 
particular the length and  format of instructions, 
influences the design  of the instruction decode stage 
of the processor and indeed overall machine per- 
formance. Because an efficient pipelined machine 
should have compact pipe stages  of  roughly equal 
lengths, the complexity of the decode stage may 
determine  the length and partitioning of the pipeline 
and  the overall cycle time. 

Instruction decode involves identifying the instruc- 
tion format and extracting the  appropriate fields 
from that  format  to  determine  the  operand loca- 
tion(s), the destination location(s), and the operation 
to be performed. If the instruction set is complex 
and there are many different formats and lengths, it 
may be necessary to perform the decode process 
sequentially. For example, suppose there are two 
formats, as shown in Figure 4A. The opcode fields 
are of different lengths, which forces the  operand 
fields to be misaligned. Until the opcode length is 
determined, the  operand fields cannot be extracted. 
Even then  the extraction probably involves three 
separate multiplexors. On  the  other  hand, consider 
the two formats shown in Figure 4B. In this case, 
the A and B operand fields can be extracted imme- 
diately because they are always located in  the same 
fields  of  all instructions. If the codes are chosen 
judiciously, a fast predecode can set one multiplexor 
to gate bits 12- 15 to either the decode unit if it is an 
opcode extension or  the execution unit if it is a 
displacement. Note  that  the predecode does not de- 
lay operand fetch, which  is  likely to be in the critical 
path. 

Additional complexity is introduced if there are 
many different instruction lengths. If the machine 
includes an instruction prefetch stage  before the 
decode stage, there is probably a first-in-first-out 
(FIFO) prefetch buffer between these two stages of the 
pipe. This buffer is probably organized into words  of 
the same width as the processor bus. If instructions 
vary  greatly in length and  can cross multiple word 
boundaries or even start  at any bit boundary, field 
extraction can be quite difficult. In a demand-paged 
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system, attention must  also be paid to the case  of an 
instruction crossing a page boundary, because  this 
requires  special detection and processing. 

Other architectural features that significantly  affect 
design are the inherent features  for  address  forma- 
tion. If memory addresses  for a store operation are 
formed by adding the contents of one general-pur- 
pose  register (GPR) to another, in addition to a dis- 
placement,6 both these  addresses and the data to be 
stored must be  accessed  simultaneously  from the 
GPR array on the decode  cycle.  Hence the array must 
have  three independent read  ports,  which are costly 
in terms of hardware, or multiple  decode  cycles are 
needed,  which  is  slow. Furthermore, a three-operand 
adder is  required  if  address  generation  is to be per- 
formed on one cycle.  If a simpler  addressing  mode 
is  provided,  for  which an address  can be formed  only 
by adding the contents of one GPR to a displacement 
contained in the instruction, then the GPR array need 
be capable of only  two simultaneous read operations, 
which  is a substantial saving.  Although  this  address- 
ing  capability  is  more limited, it  may  be a good 
tradeoff  for a microprocessor  where  space on the 
chip is at a premium. Alternative  methods  for 
achieving  versatile  addressing  often  use  complex ad- 
dressing  modes,  such  as indirect addressing.  How- 
ever,  these  place additional demands on the memory 
bandwidth  for  accessing the operand address.  Some 
architectures,  such  as the PDP-11 and Motorola 
MC68000,  provide both simple and complex  ad- 
dressing  capability and leave the choice of mode up 
to the user.  Although  this  can  avoid  multiple GPR 
accesses and multiple additions, the complex  modes 
require additional decode time and memory  accesses 
that can  significantly  reduce  performance  if  used 
extensively.  Complex  modes  also  require  user  aware- 
ness  of the machine organization, if  processing time 
is important. 

A complex architecture can  have other instruction 
types that place  severe requirements on the GPR array 
accesses  needed  for  decode. For instance, if an in- 
struction requires  two  register  accesses  for a source, 
and likewise  two  for a target, then four GPR accesses 
may be needed. This either requires  four  separate 
read  ports or multiple  decode  cycles,  both  of  which 
are more  complex  and  costly than a simpler instruc- 
tion set.  Such  long operations are common in  Sys- 
tem/370 and represent one of the  reasons why com- 
plex architectures tend to have a large  value  of CI. 

The architecture specifies the instruction format 
which,  as  previously noted, determines the complex- 
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ity of instruction decoding.  In addition, the instruc- 
tion format also determines the ease  with  which the 
instruction set  can  be  extended in future generations. 
If the opcode  field  is too small,  it  may  be  difficult to 

The  instruction  format  determines 
the ease with  which  the  instruction 

set  can be extended. 

find  opcodes  for new instructions that preserve the 
field boundaries for  simple  decoding. It may be 
necessary to create  extended  opcodes, a contingency 
that can  result in awkward,  multiple-cycle  decoding. 

Influence  of  architecture  on  memory  subsystem 

The  term memory is used  in a general  sense. For 
systems  with a cache, the memory  is the cache.  For 
systems without cache,  memory  is main memory. 
Although the architecture does not explicitly  define 
the memory  subsystem,  it  greatly  influences the over- 
all  design. 

Because  microprocessor  systems  can  have  only a 
limited number of I/O pins  available on the chips or 
modules, the width  of  buses and bandwidth  between 
chips are similarly limited. However, the architecture 
of a microprocessor  often  evolves  from  consideration 
of the general  types of instructions that should be 
provided,  without  much consideration for the mem- 
ory  bandwidth. In a microprocessor,  this effect can 
be  significant.  In order to study  these  effects, the 
following  analysis  assumes a pipeline  system  with a 
general structure, as previously  discussed and shown 
in  Figure  3.  With  such a structure, the effects  of 
memory  bandwidth  can  most  readily  be  understood 
by studying the average  behavior of the instruction 
set. To do this,  it  is  assumed that a large number of 
instructions ZE are executed. The types  of instructions 
executed are examined, and the total number of 
memory  references  required  can  be  calculated  in 
terms of a few important parameters that reflect the 
memory  system structure and instruction set  corn- 
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plexity. This analysis does not include all  possible 
conflicts and local anomalies that result from instruc- 
tion sequences; it provides  only the lower or upper 
bounds on parameters and performance. 

In this analysis, the most important parameters are 
the following: 

I M A  = number of instructions ( I )  fetched  per mem- 
ory I-fetch cycle. 

AIT = total number of memory accesses or refer- 
ences  for instructions and  data per instruc- 
tion executed. 

B = fractional percent of the instructions exe- 
cuted, ZE, that are data-reads from memory 
(exclusive of  I-fetches). 

6 = fractional percent of I E  that are data-writes 
to memory. 

p = fractional percent of I E  that are successful 
branches to a new instruction (requires non- 
sequential I-fetch). 

p = fractional percent of I E  that do not require a 
memory  access,  e.g.,  register-to-register or 
other operation. 

CI = average number of machine execution cycles 
per instruction required for the I E  instruction 
stream; ideal  processor performance is 
(CITcpu)" instructions per  second. 

Tcpu = machine pipeline cycle time in seconds. 

Inasmuch as I/O pins are a critical  resource that 
should be minimized, this analysis assumes that the 
bus width to memory is equal to the maximum 
instruction length in bits. Hence, if there is only one 
instruction length, it exactly  equals the bus width. 
Obviously a smaller bus  width  increases the memory 
bandwidth requirement. For this analysis to remain 
valid, we need not make this assumption, but it 
simplifies certain limits such as the peak bandwidth 
requirement. From the definitions just given, the 
following relationship can be obtained: 

0 + 6 + P + p =  1 (1) 

The total number of memory  requests required for 
the total instructions executed, ZE, is  easily deduced 
as follows. Each of the ZE instructions must be  ac- 
cessed from memory. If an average  of I M A  instruc- 
tions are fetched  for  each memory word  referenced, 
a total of I E / I M A  memory references are required just 
for those executed instructions. Of these  executed 
instructions, B + 6 require additional references  for 
data reads and writes. Hence the total number of 
memory  references required for ZE is the following: 
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memory references = ( 2 )  

Dividing both sides by I E  normalizes Equation 2 as 
follows: 

average memory references 
instruction = AIT 

- + 0 + 6  (3) -- 
~ M A  

The average memory bandwidth required by the CPU 
in terms of  accesses  per machine cycle can be  ob- 
tained by dividing Equation 3 by Cr, the average 
number of machine pipeline  cycles  per instruction, 
as follows: 

1 
- + 0 + 6  memory cycles - I M A  

machine cycle CI 
- (4) 

Equation 4 expresses the cpu-bound condition and 
tells  us that for the given  pipeline  design  executing 
an average program, on average, the instruction 
stream makes this many references to memory on 
each machine cycle.  If the memory system cannot 
provide such requests  fast enough, additional pipe- 
line disruptions occur that retard the flow to a point 
that the memory can handle. In other words, addi- 
tional disruption cycles are added to CI to obtain an 
effective  value C I E  that just matches the memory 
speed: 

where 
A = cycles  per instruction penalty introduced by 

C I E  = net effective  cycles  per instruction for the total 
memory disruptions, 

system  (processor  plus memory). 

So the memory-bound relationship is as follows: 

1 
memory cycles - IMA - TCPU 
machine cycle C I E  T, 

- + B + 6  
- -- (6) 

or 
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where pm is the normalized memory cycle time in 
machine cycles per memory cycle and T, is the 
memory cycle delay time  in seconds. T, increases as 

Conflicts  arise  whenever  instructions 
are of  maximum length  with  each 

requiring  a  memory  reference. 

pm increases. Substituting Equation 3 for AIT gives 
the following expression for the normalized memory 
cycle time: 

- I  

prn = ClE (k + 0 + 6) (8) 

The system performance in millions of instructions 
per second (MIPS) is  given simply as follows: 

MIPS(A 1 0)  = (IO6 TCpUCIE)-I (9) 

= [ lo6 TcpU(C1 + A)]-' (10) 

In Equation 9, CIE is greater than  or equal to CI and 
A is positive.  If CIE is less than CI so that A is negative, 
performance is given by Equation 10, with A set 
equal to 0. As pm increases, CIE increases and moves 
further away from CI, so that A increases. Since the 
obtainable system performance from Equation 10 is 
proportional to l/(CI + A), it is desirable to keep 
pm as small as possible, but only small enough so 
that CI = CIE. If CIE becomes smaller than CI, so that 
A becomes negative, the performance is limited en- 
tirely by the processor as given by Equation 10, with 
A set equal to 0. If CIE is larger than CI, the perform- 
ance is limited by the memory. Thus a balanced 
design is desired. 

To simplify terminology, we use the following 
expression: 

& = 8 + 6  (1 1) 

In Equation 1 1, Rd presents all the memory refer- 
ences for loads and stores (appropriately adjusted for 
load/store multiple or similar instructions, if  neces- 
sary). 
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We can  further characterize the memory bandwidth 
requirements during periods of  peak  traffic. This 
occurs for short periods of time when there are 
pipeline conflicts for memory requests. These con- 
flicts arise whenever instructions are of maximum 
length (instantaneous ILA = I ) ,  with each instruction 
requiring a memory reference (instantaneous RA = 
I), and with the pipeline percolating at one cycle  per 
instruction (instantaneous Ci = 1). We  now substi- 
tute these values into Equation 6 and solve for 
maximum memory bandwidth or  minimum cycle 
time as follows: 

1 
2 

Tm(min) = - Tcpu (12) 

While the concepts embodied in Equations 8 
through 12 are relatively simple and based on aver- 
age performance, they can provide insight into many 
design tradeoffs. Some specific  cases are considered 
first and afterwards some problems and tradeoffs 
encountered for general ranges Of  AIT, Rd, and CI are 
discussed. 

As a first example, consider the memory bandwidth 
requirements in terms of the architectural param- 
eters just discussed. Our objective is to  determine 
what  design  tradeoffs are available within the CPU 
versus those in  the memory itself to improve the 
overall performance and/or  to balance the design 
between processor and memory. On average the 
memory cycle time requirement is that specified  in 
Equation 7. Let us  look at what tradeoffs are possible 
as we let Cl/AIT take on different values  as deter- 
mined by the architecture. 

Case I: CI/Alr > 1 

To clarify the example, we let CI/AIT = 1.2. From 
Equation 7, this case requires a memory of average 
cycle time T, = 1.2 Tcpu. This would  be  sufficient 
to handle the average memory traffic but  not  the 
peak  traffic. The peak  traffic requires a memory cycle 
time given by Equation 12, which  is T, = 0.5 Tcpu. 
This condition is  very  difficult and expensive to 
achieve. On  the  other  hand, a cycle time of 1.2 Tcpu 
is awkward and inefficient. A value of T, = Tcpu is 
more reasonable. This would provide a memory that 
is a little faster than  the average requirement but 
slower than  the peak requirement. Can something 
be done  to  smooth  out these fluctuations in memory 
traffic? Using a memory with T, = Tcpu with the 
architectural parameters just presented, there are 
1/1.2 = 0.833 memory references required per  cycle, 
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but one such reference  available  each  cycle, or 1 - 
0.833 = 0.167 free memory references  each cycle. In 
other words, there is one full,  free memory cycle 
every l/O. 167 = 6 machine cycles.  We can make use 
of this average one out of six free memory cycles to 
help reduce memory conflicts during peak  periods 
by introducing an instruction prefetch  buffer (IPB). 
This buffer  is  essentially a small  stack of the RI 
registers  shown in Figure 3. Whenever there is an 
unused memory cycle and simultaneously an empty 
register in the IPB, the next sequential instruction is 
fetched. On average this prefetching occurs substan- 
tially ahead of the actual decoding, so there is  usually 
an instruction available  for  decoding during periods 
of  heavy data referencing to memory. Occasionally 
unavoidable conflicts occur when the IPB is empty 
simultaneously with some other data references to 
memory. If the I prefetching is delayed  for such 
conflicts, this makes A > 0 in Equation 5. Therefore, 
such memory conflicts  with IPB empty merely add a 
small A to the average number of execution cycles 
per instruction. 

An estimate of the size  of the IPB and worst-case 
conflicts can be obtained as  follows.  Suppose,  for 
Case  I, that IMA = 1.5 instructions fetched  per mem- 
ory  I-fetch, on average.  Every one out of  six memory 
cycles, on average,  is  free  for an I-fetch. Note that an 
instruction decode can take place during this I-fetch, 
so that six decode  cycles take place  for  every  free  I- 
fetch.  These  six  cycles consume on average 6 /  1 S = 
4 registers  of the IPB. Thus four registers in the buffer 
can maintain the average  pipe  flow. 

During long  peak  periods, the IPB becomes empty. 
The pipeline start-up time typically  has at least four 
free memory cycles during which the IPB can be 
filled. Thus the designer  has some flexibility  afforded 
by the architecture, which  allows certain hidden 
hardware options for smoothing out the peak-versus- 
average memory demands that were also  created by 
the architecture. 

Case II: Cl/AIT = 1 

Suppose  in  Case I that the average memory band- 
width required by the architecture is unity, expressed 
by the following equation: 

T m  = C1/& = 1 TCPU 

Thus one memory  reference for either instructions 
or data is required  for  every  cycle. The minimum 
value remains as  before,  as  follows: 
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1 
2 Tm(min) = - Tcpu 

On average, there are no free  memory  cycles, so it 
does not seem  likely that  an IPB would be of much 
value.  However, it might help to some extent, partic- 
ularly if the typical memory bandwidth requirements 

The  major  problem  is  to  increase  the 
effective memory  bandwidth. 

~ ~ ~~ 

consist of short bursts of maximum demand where 
simultaneous I-fetches and data references are re- 
quired, followed by minimum demand with only I- 
fetches required at  the cycle time specified by Equa- 
tion 4, or 1/&A references  per machine cycle.  If ZMA 
is greater than one, an instruction prefetch  buffer 
can help smooth out some of the memory demands. 
The extent to which this is  effective is highly depend- 
ent on the actual instruction stream, but it is not as 
effective as in  Case I.  The situation most  likely to 
occur is that the IPB is  effective part of the time, but 
for the remaining time-during  heavy  traffic to 
memory-the  conflicts  arising from limited band- 
width insert additional unproductive A cycles in 
Equation 10, causing the effective CrE to be  larger 
than CI during these  periods. This momentarily 
makes CIE/AIT larger than one, which  is the situation 
of  Case 1 previously  presented. Hence the limited 
memory bandwidth adjusts the demand upon it to 
just match its capability. During periods of  light data 
referencing CIE can equal Cl and some instructions 
can be profitably  prefetched. 

It can be  seen  from  Case I1 that the designer is  always 
faced  with limited memory bandwidth, and any 
attempt to improve the processor  pipeline so as to 
decrease CIE is an attack on the wrong  problem. The 
designer  has to accept the fact that, for  these  system 
parameters, the average  effective CIE will most  likely 
be substantially above the target  value of CI. 

Case 111: CI/AIT e 1 

Suppose Cl/AIT = 0.83 = Tm/Tcpu so that an average 
1.2 memory  references  are required every  cycle.  Be- 
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cause the maximum number of references remains 
the same at two  references  per  cycle, and because 
the design point chosen was originally T, = TCPU, 
there are not only no free memory cycles on average, 
but there is also  insufficient memory bandwidth to 
sustain the pipeline. Hence an IPB is  of little value. 
The major problem is to increase the effective mem- 
ory bandwidth. This can be  achieved either by in- 
creasing the value of IMA  or increasing the memory 
bus width (or both). If the bus width  is not changed, 
the first method requires a change in the architecture, 
which  may or may not be an option. If the bus width 
is changed, there are several options, but all  with 
inherent difficulties. For a medium or large  system 
under similar conditions, the designer  might con- 
sider using a separate instruction and  data cache, 
each  with p, = 1 to achieve the required bandwidth. 
This may or may not be a reasonable approach, 
depending on the actual values of IMA,  %, and CI. 
In certain cases, an example of  which  is  given later 
in this paper, a very unbalanced design  results,  where 
the I-cache is  fully  utilized and the D-cache is seldom 
used.  Nevertheless  it  may be the only alternative. 

For a microprocessor, there may  be too few pin I/OS 
to allow separate I- and D-caches. Thus the designer 
has little choice. The small value of CI must be 
increased, either by design or because the memory 
system  will make A of Equation 10 large enough to 
balance the throughput. The architecture obviously 
requires too many memory references to support a 
small value of CI. The designer should redesign the 
pipeline and not attempt an impossible task. 

The three cases just given  have  shown that, for a 
certain range of parameters, the designer  has the 
option of introducing hardware into the CPU to help 
alleviate  peak  traffic  congestion to the memory. 
However, outside this range, the problem becomes 
more and more simply a memory bandwidth limit 
that cannot be improved by the CPU alone. The 
designer should be careful to attack the right  prob- 
lem. For instance, there are clever  schemes  for im- 
proving CI by reducing  pipeline disruption length on 
certain types of instructions. A branch history  table 
and smart decoder can  predict and fetch the success- 
ful branch targets  ahead of time. Note, however, that 
this does not usually  reduce the number of required 
memory  references.  Since C, may actually  decrease, 
the memory bandwidth requirement becomes worse 
(see Equation 6), because the instructions are  proc- 
essed faster, on average. Thus, when bandwidth is 
the limiting factor, introducing special  hardware into 
the CPU to improve CI may  be  fruitless. 
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Figure 5 Normalized  memory  performance  versus  processor 
performance  for  various  values  of  instruction  fetch 
per  memory  access  and  data  reference per 
instruction  executed 

General  tradeoff s 

Now that some specific  examples  have  been ana- 
lyzed,  let  us  focus on architectures and resulting 
tradeoffs in a more general way. To  do this, we make 
use  of the normalized memory cycle time pm as a 
function of the effective numbers of  cycles  per in- 
struction CIE, as obtained from Equation 8 and 
shown  in  Figure 5 for  various  values of I M A  and Rd. 

As a first example, suppose we have an instruction 
set that results  in  significant  memory  references  for 
data, giving Rd of 0.8 references  per instruction 
executed. If our memory is a cache  with pm = 1, 
Figure 5 shows that there is a significant relationship 
between I M A  (instructions fetched  per  memory  ac- 
cess) and CIE (effective execution cycles  per instruc- 
tion). If we try to drive CIE down toward one, I M A  

must  increase. For CIE = 1.2  cycles  per instruction 
at p, = 1, I M A  must have at least the value 2. 
However,  complex instructions tend to push C I E  to 
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higher values,  which  eases the requirement on ZMA. 

The first conclusion is that, with an architecture that 
generates large Rd, it is difficult to push CIE toward 
one cycle per instruction. This is indeed the case in 

If the  processor  and  arrays  are 
fabricated  from  similar  technologies, 

a  fast  cache  is  difficult  to  achieve. 

System/370, even in the large mainframe systems. 
At CIE = 1, Rd = 0.8, and ZMA = 2 instructions 
per memory access, the cache must have an average 
cycle time of about 0.75 Tcpu, i.e., faster than  the 
CPU. Allowing for peak  traffic requires the cache to 
have twice the speed  of the processor. This can be 
achieved with either a dual-ported cache or  an ex- 
tremely fast cache. The former may be unreasonable 
for a microprocessor, due  to  the cost in terms of chip 
count, I/O pins, and bus wires. Currently, if the 
processor and arrays are fabricated from similar 
technologies, a fast cache is difficult to achieve with- 
out special array design. Hence a microprocessor 
with such an architecture is more suitable for oper- 
ation at CIE substantially above the value 1. Two 
cycles per instruction or greater gives a more bal- 
anced design. 

For  an architecture with Rd in  the range of 0.3, 
Figure 5 indicates that  it is  possible to push CIE 
toward one cycle per instruction, with memory of 
cycle time 1 Tcpu or even  slightly  slower  if we have 
ZMA of 1.5 instructions per access or greater. 

If it is desirable to strive for an architecture with a 
memory cycle time slower than pm = 1, then Figure 
5 indicates that CIE must increase. Increasing the 
value of I M A  helps, but it is extremely difficult to 
push this parameter above 2 to 2.5, even for complex 
architecture. Word boundary alignment plus instruc- 
tion complexity keeps the effective value small. If  we 
can increase ZMA to 2, while Rd remains at 0.3, and 
memory cycle time is 3 Tcpu, the pipeline then 
requires a minimum of about 2.5 cycles  per instruc- 
tion, at best. 
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Note  that for an architecture with Rd in  the range of 
0.3  and ZMA = 1, the memory access conflicts occur 
for the average  case rather  than for just peak periods. 
Therefore, memory access conflicts cannot be 
smoothed out with an instruction prefetch  buffer. 
This can be greatly improved by the use  of separate 
instruction  and  data caches (i.e., I-cache and D- 
cache), as previously pointed  out. However, although 
this structure is adequate, it is not well balanced, 
because the I-cache will essentially be accessed on 
every  cycle,  while the D-cache will  be  used only 30 
percent of the  time.  For such a case, a more ideal 
approach may be to have one memory with two 
completely separate ports, in and  out. This would 
not only fulfill the average bandwidth requirements, 
but it would also handle most of the peak conflict 
traffic as well, since two instructions  or two data 
references could be made simultaneously. However, 
both approaches are rather costly for a microproc- 
essor and are  not considered further here. 

If the designer has more than  adequate memory 
bandwidth available, the  cpu-bound value of CI, as 
in Equation 4, should be the design focus. This can 
be attacked in many ways such as branch history 
tables mentioned previously, and  more parallel hard- 
ware. Many issues and tradeoffs available for reduc- 
ing C, have purposely been avoided since they are a 
separate subject. If one knows or has a target value 
for C1 desired, the analysis provided here can show 
the range  of parameters available for a balanced 
design. 

Cache reload 

In any microprocessor architecture, simple or  com- 
plex, if a cache is  used to improve the bandwidth on 
the  front  end between CPU and memory, there still 
remains a serious bandwidth problem on the back 
end between main memory and cache during a block 
reload. A high instantaneous memory bandwidth is 
needed only occasionally for the reload, but it is a 
major factor in performance. It is clear that if the 
cache reloading must  take place at a bandwidth that 
is no faster than  normal memory accessing, the only 
cycles  saved by a cache are for any words that  are 
reused, i.e., words accessed more than once. The 
amount of reuse as well as the effect  of  reload time 
can be conveniently represented by the finite cache 
penalty (FCP). This is  used in conjunction with the 
parameter C1E as follows. The use  of CIE does not 
include the effects  of cache misses and reload time. 
In essence, C I E  represents the performance that could 
be obtained with a very  large  (say infinite) cache so 

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984 



that no misses occur. However, a miss is a pipeline 
disruption that merely adds an additional term to 
the value of A in Equation 10. This  additional  term 
is the finite cache penalty given by the following 
equation: 

FCP = AITMR - T R ~ I ~ &  
TCPU (13) 

where MR is the cache miss ratio and TRel0ad/Tcpu is 
the  number of machine cycles needed for reloading 
a miss. The value of A T  is set by the architecture. 
The cache miss ratio is influenced slightly by the 
architecture but mainly by the size  of the cache and 
the blocks that  are replaced. Smaller blocks tend  to 
give smaller hit ratios. Also, the size of directory 
translation hardware needed for the cache increases 
linearly with the  number of  blocks. Furthermore, 
the silicon area available for this directory is  very 
limited, so both these effects favor larger block sizes. 
Unfortunately, larger blocks take longer to reload 
and  the relationships are nonlinear. The net result 
for a microprocessor is that  the cache and block  size 
are fixed  by the available chip area. The designer 
may be able to change this, but usually only very 
little within a given technology. Thus  the only pa- 
rameter available for tradeoffs is the reload time. 
One example of the effects  of reload for a high- 
performance microprocessor with a moderately sim- 
ple architecture is shown in Figure 6 .  The x axis is 
the average number of machine cycles required for 
reload and  must include the  time  to write-back mod- 
ified  pages to  main memory, if appropriate. If noth- 
ing special is done  to improve reload time, a typical 
range of 15 to 30  cycles or more might be imposed 
by the memory system. It can be seen that  the 
performance degradation compared to  an infinite 
cache (zero reload time) can be more  than 50 per- 
cent. It is desirable to reduce the reload time to a 
value between 5 and 10 cycles,  if at all possible. The 
only reasonable way to improve this is to load the 
cache from a main memory system, which-after 
the initial access time penalty-can stream words in 
and  out either at one word per machine cycle or 
faster. Streaming at  one word  every one-half cycle  is 
very desirable but is  costly. The clock, storage con- 
troller, and cache array chips must be able to support 
this cycle time. 

An attempt  to improve the reload time by the use  of 
a multiple word bus width on  the back side, coupled 
with a complex block mapping, is  very  difficult and 
costly if at all  possible. The total number of data 110 
pins to  the cache is most likely  fixed at  the CPU word 
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Figure 6 Normalized  millions of instructions  per  second 
(MIPS) versus  the  total  number  of  cycles  to reload 
the  cache  for two values of cache  miss  ratio 

1 0  

0 9  

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0 1  

I l l i l i l l l l l l ' l l ' l ' l ' I  
0 1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

length, so the  maximum  bus width is  fixed. The only 
parameter available for improvement is the cycle 
time. 

Memory move operations 

Within the CPU, nearly all architectures must  and do 
provide for the  manipulation of individual charac- 
ters or bytes. Since the dawn of the  computing era, 
it has been desirable to do likewise within the mem- 
ory. However, the bandwidth requirements of mem- 
ory demand  that more than  one byte be  accessed at 
one time. Thus memory systems access  words,  which 
are typically 2, 4, or 8 bytes, depending on the 
system. Therefore, words must be  accessed on word 
boundaries, which makes the very common memory 
MOVE operation  quite complex and time-consuming 
for the general case. In a MOVE operation,  the  con- 
tents of a logical portion of memory are moved from 
one physical location to another. Such operations 
can start  the move from any byte boundary and 
place  it in a new location starting at  any byte bound- 
ary. Sometimes the two areas even overlap. The 
MOVE is such a common operation in both large and 
small systems that special hardware and instructions 
are often used to handle it (e.g.,  Move Character 
Long in System/370). Most systems do not  attempt 
to solve this problem at its root, but rather attempt 
to use the CPU to avoid the lack  of a byte-addressable 
memory. For instance, the 80 1 architecture' includes 
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special rotate and store instructions to improve MOVE 
operations. Although the process  of  moving on ar- 
bitrary byte boundaries can be  aided by the use  of 
special  processor instructions, this complicates the 
processor  design, requires extra hardware, and still 
is not as fast or efficient as a byte boundary address- 
able memory. However, it has the distinct advantage 
of being able to use ordinary memory chips, thereby 
keeping the cost low. In order to make the general 
move operation simple and efficient, it is  desirable 
to implement a memory system that has the appear- 
ance of byte  addressability. This can be  achieved 
either by means of a sophisticated controller chip or 

Memory  management  in  any  high- 
performance  system  can  be  greatly 
aided by  the  use of virtual  memory. 

by enhanced functions added to the memory chips. 
Such enhanced memory chips may  begin to become 
economically attractive as the density and cost of 
memory chips continue to decrease. Very simple 
MOVE instructions may then be  likely to appear in 
the architectures of microprocessors. 

Virtual memory 

The memory management in any high-performance 
system can be  greatly aided by the use  of virtual 
memory. When  properly implemented, this concept 
not only optimizes the use  of real memory but also 
provides the user  with a large  address  space. Thus 
the user can write  programs as though a larger main 
memory is available than there actually  is. 

Unfortunately, virtual memory is not free. The most 
significant  design consideration is the translation 
look-aside  buffer (TLB), which must be added to 
prevent deterioration of  system performance due to 
the translation process. The TLB is a partial directory 
that provides virtual-to-real address translation of 
some of the more recently  used pages. Each entry to 
the directory provides translation for one page. The 
size  of the entry is  fixed  by other parameters, as we 
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shall  see, but the number of entries is a variable. 
More entries give better performance but require 
more hardware. 

A very approximate estimate of the number of  page 
entries required in the TLB can be  made, but this 
requires a new statistic. It is observed  over many 
different programs and operating systems that with 
a 4K-byte page  size and memory size  between 0.5 
and 1M bytes per MIPS of performance, 20K to 
60K instructions are executed  between page faults. 
We represent this variable, instructions between  page 
faults, by Zpf. Knowing the value of this variable, the 
approximate number of  pages touched between  page 
faults can be estimated by multiplying Zpf by AIT to 
obtain the following number of memory references 
between  page  faults: 

references between faults = APf = AITZpf (14) 

Assuming that every  word in memory is  referenced 
once and only once, the total number of  pages 
referenced, N,, is  given by the following equation: 

Here, W, is the number of words or equivalent 
number of instructions per page. In typical  cases, AIT 
varies from approximately 1 to 2, and Z,f varies 
between 20K and 60K. Using 4 bytes  per  word, W, 
is typically 4K/4 or 1 K words  per  page. Substituting 
these into Equation 15  gives Np as approximately 20 
to 120 pages  referenced  between page faults. If  we 
wish to provide a TLB hardware  assist  with translation 
to all  pages  referenced  between  page  faults, there 
must be one entry for  each of the 20 to 120 possible 
pages. This keeps the hit ratio to the TLB very  large, 
which  is  desirable. For various  reasons, it is not 
unusual to have double this number of entries if the 
cost  allows it. 

Each entry in the TLB must hold  most of the virtual 
page address,  which  is  typically 23 bits,  plus the real 
main memory address,  which is typically 12 bits (for 
a maximum l6M-byte main memory  with  4K-byte 
pages). The TLB must also  hold a valid bit, a memory 
protect key, and other control bits,  which  together 
amount  to about six bits. The minimum number of 
bits  per entry is thus in the range  of about forty. 
Thus the TLB can range from about 1K to 8K bits. 
This is a substantial piece  of  hardware that is  neces- 
sary to maintain the performance. In addition to the 
TLB itself. in order to maintain performance it is 

IBM SYSTEMS JOURNAL, VOL 23, NO 3. 1984 



desirable that whenever a miss occurs to  the TLB, the 
reload of that  entry be done with special hardware 

Complex  instructions  have  a  more 
complex  pipeline,  particularly  more 

parallel  paths. 

control for speed. Otherwise, a software program 
that uses the available general hardware is required, 
which  is  very  slow. 

In order  to speed up the translation process and page 
fault detection, as well as simplify the pipeline con- 
trol, the TLB should be located on  the processor chip 
if at all possible.  However, this may limit the  number 
of entries and reduce performance. The effects of 
TLB reload time  can be analyzed in a manner anal- 
ogous to that of Equation 13 for cache reload. In 
essence, TLB reload time adds another small value to 
A in Equation 10, but that is not included in this 
work. 

Early attempts to provide a large address space and 
facilitate memory management in microsystems 
have included the use  of instructions with different 
addressing modes, such as extended addressing using 
multiple words and indirect addressing, mentioned 
previously. However,  severe fragmentation and 
wasted real main memory space can still be encoun- 
tered. The inclusion of virtual memory in  the archi- 
tecture not only solves the fragmentation and address 
space problem, but it also eliminates the need for 
these complex addressing modes. Thus it is  likely for 
virtual memory to become more common  in future 
microprocessor architectures. 

Concluding  remarks 

This paper has shown how architecture influences 
two major components of a microprocessor, the 
instruction  unit  and memory subsystem. Architec- 
ture directly affects the  instruction decoding proc- 
esses. A complex instruction set can require a long 
decode time, with complex field extraction and align- 
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ment, multiple accesses to  the general-purpose reg- 
isters or memory, and a difficult address generation 
cycle. Furthermore, complex instructions have a 
more complex pipeline, particularly more parallel 
paths, many of which can have different lengths. 
This tends  to increase pipeline conflicts and disrup- 
tions. Maintaining the sequentiality of execution in 
a complex pipelined system requires additional 
priority controls, as well as additional staging regis- 
ters for the pipeline flow. In other words, the pipeline 
hardware becomes more complex, consumes more 
silicon area, and most likely produces a slower ma- 
chine cycle. A simple architecture can significantly 
minimize all these difficulties, and simplicity is de- 
sirable in a microprocessor where cost is of prime 
importance. 

Although less evident at  the architectural level, the 
instruction set has a significant  effect on  the memory 
subsystem. It has been shown how a few  key param- 
eters that characterize the architecture can be  used 
to analyze the required memory bandwidth and 
show the designer whether the system performance 
is CPU- or memory-limited. Achieving a small value 
for cycles per instruction is  generally  easier for a 
simple architecture. Over a certain range of param- 
eters, the system balance is less likely to be limited 
by the memory bandwidth. Hence various options 
for reducing the CPU cycles per instruction become 
available to the designer. Also there are additional 
CPU options for smoothing  out  the peaks and valleys 
in memory traffic. Outside this range, memory band- 
width is a fundamental limit on system performance, 
even for simple architectures. For such cases, an 
architecture, which has a target of achieving a small 
value for cycles  per instruction, should strive either 
to avoid instructions  that have multiple accesses to 
memory or  to use instructions of more than  one 
length. The memory bandwidth requirements can 
become so severe that a cache may be  necessary to 
achieve the desired performance for a given architec- 
ture. However, adequate reload capability during a 
cache miss places  new requirements on  the memory 
bandwidth. This pushes the design toward cost-per- 
formance considerations rather than  the original ob- 
jective of  low cost. The designer of a microsystem is 
constantly faced  with these tradeoffs,  which provide 
many  opportunities for innovations  as well as radi- 
cally  new approaches. 
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