Architecture implications in
the design of
microprocessors

This paper examines how architecture, the definition of
the instruction set and other facilities that are available
to the user, can influence the implementation of a very
large scale integration (VLSI) microsystem. The instruc-
tion set affects the system implementation in a number
of direct ways. The instruction formats determine the
complexity of instruction decoding. The addressing
modes available determine not only the hardware
needed (multiported register files or three-operand
adders), but also the complexity of the overall machine
pipeline as greater variability is introduced in the time
it takes to obtain an operand. Naturally, the actual
operations specified by the instructions determine the
hardware needed by the execution unit. In a less direct
way, the architecture also determines the memory
bandwidth required. A few key parameters are intro-
duced that characterize the architecture and can be
simply obtained from a typical workload. These param-
eters are used to analyze the memory bandwidth re-
quired and indicate whether the system is CPU- or
memory-limited at a given design point. The implica-
tions of caches and virtual memories are also briefly
considered.

he rapid advances in density and performance

of very large scale integration (vLsI) technology
have provided the designer with the opportunity to
achieve unprecedented performance on a single chip
of silicon. The emerging technologies have the po-
tential of producing microprocessors with perform-
ance that matches or exceeds that of medium to large
machines today. With this performance, users will
come to expect other features normally associated
with large systems, such as a powerful instruction
set, large main memory, and large virtual address
spaces. Furthermore, in order to achieve high per-
formance the microprocessor designer must resort
to many of the techniques pioneered in large ma-
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chines, such as cache, pipelined organization, and
parallel functional units. It is within this technolog-
ical framework that we investigate in this paper the
relationships between the architecture and the im-
plementation of microsystems that consist of one or
a few visI chips.

The structure, architecture, and design of any com-
puting system are affected by an extremely large
number of interrelated parameters so that any at-
tempt to optimize a total system by including all
parameters is virtually impossible. Not only is there
no adequate and well-defined model, but also the
complexity and possible variations far exceed the
intellectual capability of any individual. Therefore,
to reduce the complexity and limit the number of
parameters that must be considered simultaneously,
a data processing system is typically viewed as a
hierarchical structure. Each level of the hierarchy
reflects one major aspect of the system and hence
contains only a small subset of the total parameters.
Each interface between these various levels is usually
assumed to be relatively independent of the two
levels being interfaced. For instance, at the highest
level of the hierarchy is the applications program,
often written in a high-level language. It is assumed
that the language can be designed without consider-
ation of the remainder of the hierarchy. Below this
level lie the compiler and operating system. The
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latter manages the system resources and provides
basic system services. Below that lies the architec-
tural interface, the nominal boundary between hard-
ware and software. This key interface consists of all
facilities and operations that are made available to
the programmer; for example, the registers, instruc-
tion set, and the addressing capabilities are all part
of the architecture. Finally, there is the hardware
level, which can further be stratified into the machine
organization, including the pipeline structure, micro-
code and data flow, the circuit family, and the tech-
nology itself.

Although the hierarchical structure, in principle, al-

lows each level to be designed separately, closer
examination reveals interesting possibilities. Recent

VLSI permits more of the system to
be viewed as a unit on a chip.

papers have suggested that the design of a processing
system can be improved if several levels of the hier-
archy are considered together. For example, recent
designs'? have been guided by the relationship be-
tween the architecture and the high-level language
compiler. At the architectural level, simple but pow-
erful instructions were chosen to form an efficient
compiler target. A simple instruction set made code
selection in the compiler much easier. Furthermore,
careful choice of instructions resulted in total path
lengths comparable to those generated using a more
complex instruction set. In other words, complex
operations can very efficiently be broken into a se-
quence of more general, fundamental steps. Finally,
by not including memory-to-memory operations,
but rather allowing only register stores and loads to
and from memory, the compiler can frequently over-
lap access to storage with execution of other instruc-
tions, giving better throughput.

Another example has been to integrate machine
organization with the control program design.*~* One
way this can be achieved is to create an explicit
architecture of the primitive control program oper-
ations. For example, in System/370.% instructions
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were added to support dual address spaces, and in
both 18M System/38* and Intel iaPx 432, instruc-
tions are available for process management and in-
terprocess communication. Rao and Rosenfeld® dis-
cuss other opportunities to exploit the intent of the
operating system at the machine organization level.

Thus, by crossing the boundaries between the various
levels of the hierarchy, new opportunities are af-
forded for improving the overall system perform-
ance. Since VLSI permits more and more of the
system to be viewed as a unit on a chip, not only is
the designer permitted the opportunity to cross these
boundaries, but in fact it also becomes a necessity.
This is especially true at the lower levels of the
hierarchy.

In this paper, we examine the interaction between
two levels in the hierarchy, namely the architecture
and machine organization levels, within the context
of a high-performance vLsI-based microsystem. We
focus on the following two issues:

¢ The effect of the architecture on the instruction
decode unit of the cpru.

¢ The relationship between architecture and the
memory subsystem, especially with regard to nec-
essary memory bandwidth and the need to support
a demand-paged virtual memory.

With a few simple, general concepts, a number of
important principles and tradeoffs concerning the
processor and especially the memory system can
easily be deduced. In order to do this, it is necessary
to understand the nature of a pipeline system, as well
as the conflicts and disruptions that can occur in the
pipeline flow, because these significantly reduce the
system performance. These conflicts and disruptions,
together called Aazards, can occur within the CPU
itself or within the memory subsystem. If they occur
mainly within the cpu, the cpU is the performance
bottleneck. On the other hand, if most of these
hazards are caused by the memory system, the mem-
ory bandwidth is inadequate, and attempts to im-
prove the overall performance by improving the CPU
are of little value. Obviously a balanced design is
necessary; therefore, we shall derive the general range
of certain simple parameters required for such a
balanced design.

The VLSI environment

Since the introduction of the first microprocessor
about fourteen years ago, there has been a two-order-
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Figure 1 Schematic of a generalized microprocessor system organization
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of-magnitude increase in both the density and per-
formance of the chips. The increase in performance
has come about not only because of improvements
in technology, but also because of better circuit
designs and the adoption of more sophisticated ma-
chine organizations. Many of these machine orga-
nization techniques have been directly modeled after
the design of large mainframes. However, many of
the approaches used in large mainframes are not
appropriate in the microsystem environment. The
constraints in the microsystem arena stem from the
desire to limit system cost and to emphasize the cost-
performance ratio rather than performance alone.
As a result, the processor is generally limited to only
one or a few vLSI chips. In addition, the number of
interchip connections should be kept small because
they are expensive from a number of standpoints.
First, it is difficult to fabricate and package chips that
have a large number of input/output pads. Second,
even if a large number of outputs are made available,
the number that can be simultaneously switched is
limited by the inductive switching noise.”® In addi-
tion, the number of interchip connections in a criti-
cal path may limit system performance because in-
terchip propagation tends to be much slower than
on-chip propagation. A further constraint is that the
cooling system for a microsystem must usually be
inexpensive and compact, requiring, for example,
only a fan. This is very unlike a large mainframe
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system. Hence the allowed heat dissipation limits the
chip power, with appropriate reductions in circuit as
well as interchip communication speed.

Partitioning a vLSI microsystem is therefore a critical
first task and is determined both by the technology,
which establishes the number of circuits that can be
placed on the chip, and by the number of 1/0s
available. In general, the constraints just discussed
imply that each chip contains a complete functional
unit, such as the entire cpu or the floating point
unit, or at least a complete subunit, such as the data
flow or microcode. However, even with such a func-
tional partitioning, the need to restrict interchip
connections can have a profound effect on the ma-
chine organization chosen. For example, if the ma-
chine is simply partitioned into microcode and data
flow, the size of the microword is determined by the
pins available. A more sophisticated partitioning is
therefore often desirable.® The constraints on the
number of pins and simultaneous switching also tend
to limit the width of the main processor-memory
bus. The implications of this form one of the main
themes of this paper.

Another important component of the cost of a mi-
crosystem is the design cost, measured both in terms
of dollars and design time. From the point of view
of physical design (layout), design cost can be re-
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duced by using regular physical structures, for ex-
ample RAMs, register files, and ALUSs, so that fewer
unique devices have to be drawn.'® From the point
of view of logic design, control logic is far more
difficult to design and debug than data flow. (Inten-
sive use of microcode has been one method of deal-
ing with this complexity.) Therefore reducing the
complexity of control logic will have greater leverage
than simplification of the data flow. This will be seen
in the discussion of instruction decoding.

The machine model

We describe in this section a machine model that
serves as the standard example for later discussion.
We assume that the processor consists of the follow-
ing chips (see Figure 1):

¢ CPU that houses the instruction prefetch and de-
code unit, the execution unit, the register file, and
the address translation logic, as well as cache di-
rectory and control logic if cache is used.

¢ Storage control unit for management of main
memory.

¢ 1/0 processor to off-load 1/0 from the main proc-
essor and handle Direct Memory Access (DMA)
requests.

Cache itself, if present, is assumed to be located
external to the cpu on a few (perhaps one to four)
high-speed memory chips. A high-speed system bus
connects the CPU, storage control unit, and 1/0 proc-
essor and provides a path for cache reload for systems
with cache. In general, we assume that this bus is
capable of transferring one full memory word (typi-
cally four bytes) on every cycle. We also assume that
the machine is pipelined to improve performance.
By pipelined we mean that the instructions are proc-
essed in stages by separate portions of the hardware,
much as in an assembly line.'! The major reason for
using such a structure is speed. All data processing
can be reduced to a number of fundamental opera-
tions, some of which are quite simple and some of
which are more complex. The complex operations
can be broken into a series of simpler sequential
stages.

In Figure 2, we illustrate a simple machine with the
following three pipeline stages: instruction fetch, in-
struction decode, and instruction execution. When
an instruction has completed one stage, say instruc-
tion fetch, it moves to the next stage, instruction
decode. At the same time, the instruction fetch unit
starts fetching the subsequent instruction, while the
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Figure 2 Schematic of a simple three-stage pipeline
processing five instructions
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execution unit starts executing the previous instruc-
tion. Thus up to three instructions can be processed
at one time. Provided the pipe is kept full, the rate
at which instructions are completed is one instruc-
tion per stage delay even though it may take multiple
stages to process an instruction completely. There
are three stages in our example. The stage delay is
also known as the machine cycle time. Unfortu-
nately, contention for common resources causes
pipeline hazards, so that instructions cannot always
flow through the pipe at the maximum rate. This
can best be illustrated by a typical pipeline, shown
in Figure 3. All instructions must first be fetched
from memory on one of the pipe stages. This may
require a long or short delay and may possibly re-
quire multiple cycles, depending on the type of mem-
ory. Then each instruction must be decoded, one
instruction at a time if there is only one decode stage.
After being decoded, each instruction is executed
through the execution part of the pipeline. The exact
path and number of stages required for complete
execution is a function of the instruction type, com-
plexity, and design of the pipeline. Since there are
many different types of instructions, the pipeline can
be filled to different levels of capacity, depending on
what sequences of instructions have been entered
into the decode stage.

If an instruction enters the decode stage on cycle |
and proceeds down the path Al B1 toward memory,
it arrives at register R4, at the end of cycle 2. Suppose
a second 1nstruction enters the pipe decode stage on
cycle 2, immediately following instruction 1, pro-
ceeds toward memory down path D2, and arrives at
register Rp, at the end of cycle 2. At the beginning
of cycle 3, data in Rp, from instruction 2 are ready
to enter stage Bl in conflict with data in Ra; from
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Figure 3 Schematic of part of a typical pipeline showing execution paths of varying numbers of stages (controls are not shown)
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instruction 1. Inasmuch as only data from one in-
struction can enter any pipeline stage during one
cycle, obviously one has to be delayed. Furthermore,
since instructions must be executed in sequential
order, execution of instruction 2 must be held back;
in fact, the decode stage is stopped for one cycle.
This conflict requires that the third instruction enter
the decode stage one cycle later than it otherwise
would have done. Other similar conflicts along dif-
ferent paths can arise. Obviously, if we were given a
string of instructions to be executed and were free to
specify the order in which they would enter the
decode stage, we could pick an order to avoid most,
if not all, such conflicts. Under such conditions, the
pipe could run at full efficiency. However, the se-
quenttial order of a program is important and must
be maintained, so some conflicts are unavoidable. A
conflict and the resulting delay arise because different
instructions require different numbers of pipeline
stages and can occur in sequences such that a con-
tention for resources occurs. The architecture pro-
foundly affects not only the number of pipeline
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stages but also the availability of these stages for
processing different instruction types. A more com-
plex architecture requires a more complex pipeline
with potentially more conflicts. Whether or not, or
to what extent, these conflicts actually occur depends
on the instruction stream sequence. However, even
this can be improved by a smart compiler, which is
a compiler that knows something about the system
pipeline and attempts to avoid certain types of con-
flict. For instance, a dependent load is an instruction
immediately followed by another instruction that
requires the data being loaded. The compiler may
be able to schedule other instructions between the
load and its use, so as to allow additional time for
the memory access required by the load, if the pro-
gram inherently allows it.

In addition to delays resulting from conflicts, there
is another class of delays introduced by disruptions
to the smooth pipeline flow. Such disruptions arise
from any single instruction that requires partial or
full completion before the next instruction can be
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processed. Successful branches typically make up a
significant part of this class, particularly in simple
architectures. There are others with varying degrees
of significance (e.g., storage-to-storage arithmetic op-
erations, long moves, and load/store multiple). The

The architecture can affect the time
to resolve the branch and generate
the branch target address.

delays resulting from this class do not depend on
any particular sequence of instructions. Rather, the
mere occurrence of such an instruction results in a
pipeline delay. For instance, whenever a conditional
branch instruction is decoded, we do not know ini-
tially whether the branch is going to be successful
and transfer to a new instruction until either the very
end of the decode cycle or the beginning of the next
cycle. Furthermore, the branch target address may
have to be computed. In the meantime, in order to
keep the pipeline full, the system will have started
decoding the next sequential instruction, If the
branch is successful, unless branch target prefetching
along both possible paths has been made, a memory
reference delay is required until the target instruction
is obtained, after which decoding may start once
again. The architecture can profoundly affect part of
this delay, namely the time to resolve the branch
and generate the branch target address. The remain-
ing part, which is the memory access delay for the
new instruction, is independent of architecture to a
first approximation and depends principally on ma-
chine organization, although the word size and
boundary alignment due to different instruction
lengths have a small effect.

We can illustrate this disruption delay by reference
to Figure 3. Suppose a successful branch of a partic-
ular type traverses the pipeline toward memory via
path Al BI to register Rg; prior to memory array
accessing. The branch is decoded on cycle 1, and the
result resides in register Rp; at the end of the first
cycle. Suppose we know at the very beginning of
cycle 2 that the branch is successful, so that the
sequential instruction following the branch cannot
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be decoded. Rather, a delay equal to that of two pipe
stages, Al plus B1, plus the full memory access time
from register Rg; back to R; is incurred until the
next instruction is ready for decoding. The two pipe
stage delays in this case might be address generation
and virtual-to-real address translation. If the branch
instruction is sufficiently complex, it may require
two cycles of address generation. This would be
determined mainly by the architecture. If address
generation requires the addition of three numbers,
say a base, an index, and a displacement (as in
System/370), this would most likely require two
cycles, with two numbers added on each cycle. This
of course gives a very versatile addressing scheme
but complicates the pipeline design, increases disrup-
tion length, and increases the potential for conflicts.
These can all be improved by making the address
generation simpler by adding only two numbers,
base plus displacement, but obviously this is not as
versatile, In any case, the architecture clearly can
have a significant effect on one part of the total
disruption delay. There are other types of disruptions
that can be important, depending on the specific
architecture.

Obviously, it is possible that a particular sequence
of instructions can produce delays of both the con-
flict and disruption class simultaneously. For in-
stance, if a load or store operation requires one
additional pipeline stage compared to a branch, a
load or store followed by a branch results in a conflict
delay for the branch, plus the usual branch disrup-
tion delay.

In order to analyze such pipeline behavior, the gen-
eral pipeline structure as well as instruction se-
quences and some method to simulate the dynamic
data flow are required. A full simulation is complex
and tedious, and does not easily provide insights into
the various design tradeoffs. As a result, the first-pass
analysis is simpler, using a quasi-static approach.
Initially, the designer has some overall structure in
mind for the pipeline in terms of the number of
stages desired for each instruction type. From this,
the major types of pipeline disruptions and conflicts
can be deduced. Sample programs or estimates based
on experience are then used to obtain the frequency
of occurrence of such major potential delay factors
as the average number of loads and stores (including
dependent loads) and successful branches. Ob-
viously, the number and types of conflicts or pipeline
disruptions that lead to lost cycles depend on the
specific instruction stream for any given pipeline.
Since this sequence cannot be known in advance,
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Figure 4 Generalized instruction format: (A) two formats
having fields of different length and function; (B)
two formats having fixed length and function
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the actual performance of any system cannot be
specified exactly. An upper bound on the perform-
ance can be obtained by an average analysis of the
pipeline where certain types of less-frequent disrup-
tions, conflicts, and combinations are neglected for
a first-pass analysis, because they are often small
effects. Obviously, if this program were to be proc-
essed, the results would be meaningless. However,
this analysis gives a good first approximation to
system behavior for typical average workloads and
can be used to estimate the average number of cycles
per instruction, Cj, possible for the architecture and
assumed pipeline. If the results do not match the
desired performance, various options and tradeoffs
must be used to bring them into line; otherwise the
goal must be revised. In the next section, we look at
the implications of architecture on the value of (;,
what tradeoffs are provided, and how difficult it is to
make them effective.

The performance of any machine can be character-
ized by two parameters, the cycle time (i.e., pipeline
stage delay) and the number of cycles required to
execute an instruction, (i, as previously described.
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This latter number is greater than one because of the
pipeline hazards already noted. The net execution
rate of a processor can be improved either by low-
ering the cycle time or by decreasing the average
cycles per instruction.

Implications of architecture on instruction
decode and operand fetch

In this section we show how the architecture, in
particular the length and format of instructions,
influences the design of the instruction decode stage
of the processor and indeed overall machine per-
formance. Because an efficient pipelined machine
should have compact pipe stages of roughly equal
lengths, the complexity of the decode stage may
determine the length and partitioning of the pipeline
and the overall cycle time.

Instruction decode involves identifying the instruc-
tion format and extracting the appropriate fields
from that format to determine the operand loca-
tion(s), the destination location(s), and the operation
to be performed. If the instruction set is complex
and there are many different formats and lengths, it
may be necessary 1o perform the decode process
sequentially. For example, suppose there are two
formats, as shown in Figure 4A. The opcode fields
are of different lengths, which forces the operand
fields to be misaligned. Until the opcode length is
determined, the operand fields cannot be extracted.
Even then the extraction probably involves three
separate multiplexors. On the other hand, consider
the two formats shown in Figure 4B. In this case,
the A and B operand fields can be extracted imme-
diately because they are always located in the same
fields of all instructions. If the codes are chosen
judiciously, a fast predecode can set one multiplexor
to gate bits 1215 to either the decode unit if it is an
opcode extension or the execution unit if it is a
displacement. Note that the predecode does not de-
lay operand fetch, which is likely to be in the critical
path.

Additional complexity is introduced if there are
many different instruction lengths. If the machine
includes an instruction prefetch stage before the
decode stage, there is probably a first-in-first-out
(riro) prefetch buffer between these two stages of the
pipe. This buffer is probably organized into words of
the same width as the processor bus. If instructions
vary greatly in length and can cross multiple word
boundaries or even start at any bit boundary, field
extraction can be quite difficult. In a demand-paged
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system, attention must also be paid to the case of an
instruction crossing a page boundary, because this
requires special detection and processing.

Other architectural features that significantly affect
design are the inherent features for address forma-
tion. If memory addresses for a store operation are
formed by adding the contents of one general-pur-
pose register (GPR) to another, in addition to a dis-
placement,® both these addresses and the data to be
stored must be accessed simultaneously from the
GPR array on the decode cycle. Hence the array must
have three independent read ports, which are costly
in terms of hardware, or multiple decode cycles are
needed, which is slow. Furthermore, a three-operand
adder is required if address generation is to be per-
formed on one cycle. If a simpler addressing mode
is provided, for which an address can be formed only
by adding the contents of one GPR to a displacement
contained in the instruction, then the GPR array need
be capable of only two simultaneous read operations,
which is a substantial saving. Although this address-
ing capability is more limited, it may be a good
tradeoff for a microprocessor where space on the
chip is at a premium. Alternative methods for
achieving versatile addressing often use complex ad-
dressing modes, such as indirect addressing. How-
ever, these place additional demands on the memory
bandwidth for accessing the operand address. Some
architectures, such as the PDP-11 and Motorola
MC68000, provide both simple and complex ad-
dressing capability and leave the choice of mode up
to the user. Although this can avoid multiple GPR
accesses and multiple additions, the complex modes
require additional decode time and memory accesses
that can significantly reduce performance if used
extensively. Complex modes also require user aware-
ness of the machine organization, if processing time
is important.

A complex architecture can have other instruction
types that place severe requirements on the GPR array
accesses needed for decode. For instance, if an in-
struction requires two register accesses for a source,
and likewise two for a target, then four GPR accesses
may be needed. This either requires four separate
read ports or multiple decode cycles, both of which
are more complex and costly than a simpler instruc-
tion set. Such long operations are common in Sys-
tem/370 and represent one of the reasons why com-
plex architectures tend to have a large value of Ci.

The architecture specifies the instruction format
which, as previously noted, determines the complex-
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ity of instruction decoding. In addition, the instruc-
tion format also determines the ease with which the
instruction set can be extended in future generations.
If the opcode field is too small, it may be difficult to

The instruction format determines
the ease with which the instruction
set can be extended.

find opcodes for new instructions that preserve the
field boundaries for simple decoding. It may be
necessary to create extended opcodes, a contingency
that can result in awkward, multiple-cycle decoding.

Influence of architecture on memory subsystem

The term memory is used in a general sense. For
systems with a cache, the memory is the cache. For
systems without cache, memory is main memory.
Although the architecture does not explicitly define
the memory subsystem, it greatly influences the over-
all design.

Because microprocessor systems can have only a
limited number of 1/0 pins available on the chips or
modules, the width of buses and bandwidth between
chips are similarly limited. However, the architecture
of a microprocessor often evolves from consideration
of the general types of instructions that should be
provided, without much consideration for the mem-
ory bandwidth. In a microprocessor, this effect can
be significant. In order to study these effects, the
following analysis assumes a pipeline system with a
general structure, as previously discussed and shown
in Figure 3. With such a structure, the effects of
memory bandwidth can most readily be understood
by studying the average behavior of the instruction
set. To do this, it is assumed that a large number of
instructions /g are executed. The types of instructions
executed are examined, and the total number of
memory references required can be calculated in
terms of a few important parameters that reflect the
memory system structure and instruction set com-
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plexity. This analysis does not include all possible
conflicts and local anomalies that result from instruc-
tion sequences; it provides only the lower or upper
bounds on parameters and performance.

In this analysis, the most important parameters are
the following:

Iya = number of instructions (/) fetched per mem-
ory I-fetch cycle.

Arr = total number of memory accesses or refer-
ences for instructions and data per instruc-
tion executed.

6 = fractional percent of the instructions exe-
cuted, Ig, that are data-reads from memory
(exclusive of I-fetches).

o = fractional percent of Ig that are data-writes
to memory.
B = fractional percent of Ir that are successful

branches to a new instruction (requires non-
sequential I-fetch).

p = fractional percent of It that do not require a
memory access, €.g., register-to-register or
other operation.

(1 = average number of machine execution cycles
per instruction required for the I instruction
stream; ideal processor performance is
(CiTcpy) ™! instructions per second.

Tcpu = machine pipeline cycle time in seconds.

Inasmuch as 1/0 pins are a critical resource that
should be minimized, this analysis assumes that the
bus width to memory is equal to the maximum
instruction length in bits. Hence, if there is only one
instruction length, it exactly equals the bus width.
Obviously a smaller bus width increases the memory
bandwidth requirement. For this analysis to remain
valid, we need not make this assumption, but it
simplifies certain limits such as the peak bandwidth
requirement. From the definitions just given, the
following relationship can be obtained:

O+6+8+p=1 (1)

The total number of memory requests required for
the total instructions executed, Ig, is easily deduced
as follows. Each of the I instructions must be ac-
cessed from memory. If an average of v, instruc-
tions are fetched for each memory word referenced,
a total of Ix/Iya memory references are required just
for those executed instructions. Of these executed
instructions,  + 6 require additional references for
data reads and writes. Hence the total number of
memory references required for Ig is the following:
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memory references = <— + 6 + 6) Iy 2)
IMA

Dividing both sides by /¢ normalizes Equation 2 as
follows:

average memory references _
instruction

T

1
—7—+0+5 3)

MA

The average memory bandwidth required by the cpU
in terms of accesses per machine cycle can be ob-
tained by dividing Equation 3 by (, the average
number of machine pipeline cycles per instruction,
as follows:

BN
memory cycles _ Iua

machine cycle G

(4)

Equation 4 expresses the cpu-bound condition and
tells us that for the given pipeline design executing
an average program, on average, the instruction
stream makes this many references to memory on
each machine cycle. If the memory system cannot
provide such requests fast enough, additional pipe-
line disruptions occur that retard the flow to a point
that the memory can handle. In other words, addi-
tional disruption cycles are added to C; to obtain an
effective value Cjg that just matches the memory
speed:

CIE = C] + A (5)

where

A = cycles per instruction penalty introduced by
memory disruptions,

Cie = net effective cycles per instruction for the total
system (processor plus memory).

So the memory-bound relationship is as follows:

— + 0+
memory cycles _ Iva _ Ty ©6)
machine cycle Cie Tm
or
Tm CIE
= ==t 7
TCPU AIT ( )
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where un, is the normalized memory cycle time in
machine cycles per memory cycle and T, is the
memory cycle delay time in seconds. T}, increases as

Conflicts arise whenever instructions
are of maximum length with each
requiring a memory reference.

um increases. Substituting Equation 3 for A gives
the foliowing expression for the normalized memory
cycle time:

-1
um=cm<—‘—+o+a) ®)

IMA

The system performance in millions of instructions
per second (MIPS) is given simply as follows:

MIPS(A = 0) = (10° TepuCe)™ (9)
= [10° Tcpu(Cr + A)]™ (10)

In Equation 9, Cig is greater than or equal to C; and
Ais positive. If Cie is less than C so that A is negative,
performance is given by Equation 10, with A set
equal to 0. As un, increases, Cig increases and moves
further away from C), so that A increases. Since the
obtainable system performance from Equation 10 is
proportional to 1/(Ci  + A), it is desirable to keep
um as small as possible, but only small enough so
that C; = Cie. If Cie becomes smaller than (i, so that
A becomes negative, the performance is limited en-
tirely by the processor as given by Equation 10, with
A set equal to 0. If Cie is larger than C, the perform-
ance is limited by the memory. Thus a balanced
design is desired.

To simplify terminology, we use the following
expression:

Ri=0+5 (1)
In Equation 11, R4 presents all the memory refer-

ences for loads and stores (appropriately adjusted for
load/store multiple or similar instructions, if neces-

sary).
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We can further characterize the memory bandwidth
requirements during periods of peak traffic. This
occurs for short periods of time when there are
pipeline conflicts for memory requests. These con-
flicts arise whenever instructions are of maximum
length (instantaneous I'ya = 1), with each instruction
requiring a memory reference (instantaneous Ry =
1), and with the pipeline percolating at one cycle per
instruction (instantaneous Ci = 1). We now substi-
tute these values into Equation 6 and solve for
maximum memory bandwidth or minimum cycle
time as follows:

. 1
Tm(mm) = 5 Tecru (12)

While the concepts embodied in Equations 8
through 12 are relatively simple and based on aver-
age performance, they can provide insight into many
design tradeoffs. Some specific cases are considered
first and afterwards some problems and tradeoffs
encountered for general ranges of Air, Ry, and C; are
discussed.

As a first example, consider the memory bandwidth
requirements in terms of the architectural param-
eters just discussed. Our objective is to determine
what design tradeoffs are available within the cpu
versus those in the memory itself to improve the
overall performance and/or to balance the design
between processor and memory. On average the
memory cycle time requirement is that specified in
Equation 7. Let us look at what tradeofs are possible
as we let Ci/A;r take on different values as deter-
mined by the architecture.

Case l: C//Ar> 1

To clarify the example, we let Ci/4;r = 1.2. From
Equation 7, this case requires a memory of average
cycle time T, = 1.2 Tcpy. This would be sufficient
to handle the average memory traffic but not the
peak traffic. The peak traffic requires a memory cycle
time given by Equation 12, which is Ty, = 0.5 Tcpu.
This condition is very difficuit and expensive to
achieve. On the other hand, a cycle time of 1.2 Tepy
is awkward and inefficient. A value of T, = Tcpy is
more reasonable. This would provide a memory that
is a little faster than the average requirement but
slower than the peak requirement. Can something
be done to smooth out these fluctuations in memory
traffic? Using a memory with T, = Tepy with the
architectural parameters just presented, there are
1/1.2 = 0.833 memory references required per cycle,
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but one such reference available each cycle, or 1 —
0.833 = 0.167 free memory references each cycle. In
other words, there is one full, free memory cycle
every 1/0.167 = 6 machine cycles. We can make use
of this average one out of six free memory cycles to
help reduce memory conflicts during peak periods
by introducing an instruction prefetch buffer (1pB).
This buffer is essentially a small stack of the R;
registers shown in Figure 3. Whenever there is an
unused memory cycle and simultaneously an empty
register in the IPB, the next sequential instruction is
fetched. On average this prefetching occurs substan-
tially ahead of the actual decoding, so there is usually
an instruction available for decoding during periods
of heavy data referencing to memory. Occasionally
unavoidable conflicts occur when the 1PB is empty
simultaneously with some other data references to
memory. If the I prefetching is delayed for such
conflicts, this makes A > 0 in Equation 5. Therefore,
such memory conflicts with 1PB empty merely add a
small A to the average number of execution cycles
per instruction.

An estimate of the size of the 1pB and worst-case
conflicts can be obtained as follows. Suppose, for
Case I, that Iyya = 1.5 instructions fetched per mem-
ory I-fetch, on average. Every one out of six memory
cycles, on average, is free for an I-fetch. Note that an
instruction decode can take place during this I-fetch,
so that six decode cycles take place for every free I-
fetch. These six cycles consume on average 6/1.5 =
4 registers of the 1pB. Thus four registers in the buffer
can maintain the average pipe flow.

During long peak periods, the 1pB becomes empty.
The pipeline start-up time typically has at least four
free memory cycles during which the iPB can be
filled. Thus the designer has some flexibility afforded
by the architecture, which allows certain hidden
hardware options for smoothing out the peak-versus-
average memory demands that were also created by
the architecture.

Casell: C\//Ax =1

Suppose in Case I that the average memory band-
width required by the architecture is unity, expressed
by the following equation:

Th=C/Ar =1 Ter
Thus one memory reference for either instructions

or data is required for every cycle. The minimum
value remains as before, as follows:

. 1
Tm(mm) = E TCPU

On average, there are no free memory cycles, so it
does not seem likely that an 1PB would be of much
value. However, it might help to some extent, partic-
ularly if the typical memory bandwidth requirements

The major problem is to increase the
effective memory bandwidth.

consist of short bursts of maximum demand where
simultaneous I-fetches and data references are re-
quired, followed by minimum demand with only I-
fetches required at the cycle time specified by Equa-
tion 4, or 1/Iua references per machine cycle. If Iyya
is greater than one, an instruction prefetch buffer
can help smooth out some of the memory demands.
The extent to which this is effective is highly depend-
ent on the actual instruction stream, but it is not as
effective as in Case 1. The situation most likely to
occur is that the 1B is effective part of the time, but
for the remaining time—during heavy traffic to
memory—the conflicts arising from limited band-
width insert additional unproductive A cycles in
Equation 10, causing the effective Cig to be larger
than () during these periods. This momentarily
makes Cig/A\r larger than one, which is the situation
of Case I previously presented. Hence the limited
memory bandwidth adjusts the demand upon it to
just match its capability. During periods of light data
referencing Cie can equal C; and some instructions
can be profitably prefetched.

It can be seen from Case II that the designer is always
faced with limited memory bandwidth, and any
attempt to improve the processor pipeline so as to
decrease Cie is an attack on the wrong problem. The
designer has to accept the fact that, for these system
parameters, the average effective Cig will most likely
be substantially above the target value of Ci.

Case lll: Ci/Ar < 1

Suppose Ci/Air = 0.83 = T/ Tcpy so that an average
1.2 memory references are required every cycle. Be-
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cause the maximum number of references remains
the same at two references per cycle, and because
the design point chosen was originally T = Tcru,
there are not only no free memory cycles on average,
but there is also insufficient memory bandwidth to
sustain the pipeline. Hence an 1pB is of little value.
The major problem is to increase the effective mem-
ory bandwidth. This can be achieved either by in-
creasing the value of Iua or increasing the memory
bus width (or both). If the bus width is not changed,
the first method requires a change in the architecture,
which may or may not be an option. If the bus width
is changed, there are several options, but all with
inherent difficulties. For a medium or large system
under similar conditions, the designer might con-
sider using a separate instruction and data cache,
each with um = 1 to achieve the required bandwidth.
This may or may not be a reasonable approach,
depending on the actual values of Iua, Ra, and C;.
In certain cases, an example of which is given later
in this paper, a very unbalanced design results, where
the I-cache is fully utilized and the D-cache is seldom
used. Nevertheless it may be the only alternative.

For a microprocessor, there may be too few pin 1/0s
to allow separate I- and D-caches. Thus the designer
has little choice. The small value of C; must be
increased, either by design or because the memory
system will make A of Equation 10 large enough to
balance the throughput. The architecture obviously
requires too many memory references to support a
small value of Cy. The designer should redesign the
pipeline and not attempt an impossible task.

The three cases just given have shown that, for a
certain range of parameters, the designer has the
option of introducing hardware into the CPU to help
alleviate peak traffic congestion to the memory.
However, outside this range, the problem becomes
more and more simply a memory bandwidth limit
that cannot be improved by the cpu alone. The
designer should be careful to attack the right prob-
lem. For instance, there are clever schemes for im-
proving C; by reducing pipeline disruption length on
certain types of instructions. A branch history table
and smart decoder can predict and fetch the success-
ful branch targets ahead of time. Note, however, that
this does not usually reduce the number of required
memory references. Since Cy may actually decrease,
the memory bandwidth requirement becomes worse
(see Equation 6), because the instructions are proc-
essed faster, on average. Thus, when bandwidth is
the limiting factor, introducing special hardware into
the cpu to improve C; may be fruitless.
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Figure 5 Normalized memory performance versus processor
performance for various values of instruction fetch
per memory access and data reference per
instruction executed

NORMAL|ZED I’\\AEMC RY CYCLE| TIMH

General tradeoffs

Now that some specific examples have been ana-
lyzed, let us focus on architectures and resulting
tradeoffs in a more general way. To do this, we make
use of the normalized memory cycle time un as a
function of the effective numbers of cycles per in-
struction Cie, as obtained from Equation 8 and
shown in Figure 5 for various values of Iya and Ra.

As a first example, suppose we have an instruction
set that results in significant memory references for
data, giving Ry of 0.8 references per instruction
executed. If our memory is a cache with ym = 1,
Figure 5 shows that there is a significant relationship
between Iua (instructions fetched per memory ac-
cess) and Cy (effective execution cycles per instruc-
tion). If we try to drive Cz down toward one, Iva
must increase. For Cig = 1.2 cycles per instruction
at um = 1, Iya must have at least the value 2.
However, complex instructions tend to push Cie to
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higher values, which eases the requirement on Iya.
The first conclusion is that, with an architecture that
generates large Ry, it is difficult to push Cy toward
one cycle per instruction. This is indeed the case in

If the processor and arrays are
fabricated from similar technologies,
a fast cache is difficult to achieve.

System/370, even in the large mainframe systems.
At Cg = 1, Ry = 0.8, and Ima = 2 instructions
per memory access, the cache must have an average
cycle time of about 0.75 Tcpy, le., faster than the
cpu. Allowing for peak traffic requires the cache to
have twice the speed of the processor. This can be
achieved with either a dual-ported cache or an ex-
tremely fast cache. The former may be unreasonable
for a microprocessor, due to the cost in terms of chip
count, 1/0 pins, and bus wires. Currently, if the
processor and arrays are fabricated from similar
technologies, a fast cache is difficult to achieve with-
out special array design. Hence a microprocessor
with such an architecture is more suitable for oper-
ation at Cie substantially above the value 1. Two
cycles per instruction or greater gives a more bal-
anced design.

For an architecture with Ry in the range of 0.3,
Figure 5 indicates that it is possible to push Ci
toward one cycle per instruction, with memory of
cycle time 1 Tcpy or even slightly slower if we have
Iua of 1.5 instructions per access or greater.

If it is desirable to strive for an architecture with a
memory cycle time slower than g, = 1, then Figure
5 indicates that Ciz must increase. Increasing the
value of Iua helps, but it is extremely difficult to
push this parameter above 2 to 2.5, even for complex
architecture. Word boundary alignment plus instruc-
tion complexity keeps the effective value small. If we
can increase Iya to 2, while R4 remains at 0.3, and
memory cycle time is 3 Tcpy, the pipeline then
requires a minimum of about 2.5 cycles per instruc-
tion, at best.
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Note that for an architecture with Ry in the range of
0.3 and /ma = 1, the memory access conflicts occur
for the average case rather than for just peak periods.
Therefore, memory access conflicts cannot be
smoothed out with an instruction prefetch buffer.
This can be greatly improved by the use of separate
instruction and data caches (i.e.,, I-cache and D-
cache), as previously pointed out. However, although
this structure is adequate, it is not well balanced,
because the I-cache will essentially be accessed on
every cycle, while the D-cache will be used only 30
percent of the time. For such a case, a more ideal
approach may be to have one memory with two
completely separate ports, in and out. This would
not only fulfill the average bandwidth requirements,
but it would also handle most of the peak conflict
traffic as well, since two instructions or two data
references could be made simultaneously. However,
both approaches are rather costly for a microproc-
essor and are not considered further here.

If the designer has more than adequate memory
bandwidth available, the cpu-bound value of Cj, as
in Equation 4, should be the design focus. This can
be attacked in many ways such as branch history
tables mentioned previously, and more parallel hard-
ware. Many issues and tradeoffs available for reduc-
ing C} have purposely been avoided since they are a
separate subject. If one knows or has a target value
for C; desired, the analysis provided here can show
the range of parameters available for a balanced
design.

Cache reload

In any microprocessor architecture, simple or com-
plex, if a cache is used to improve the bandwidth on
the front end between cpU and memory, there still
remains a serious bandwidth problem on the back
end between main memory and cache during a block
reload. A high instantaneous memory bandwidth is
needed only occasionally for the reload, but it is a
major factor in performance. It is clear that if the
cache reloading must take place at a bandwidth that
is no faster than normal memory accessing, the only
cycles saved by a cache are for any words that are
reused, i.e., words accessed more than once. The
amount of reuse as well as the effect of reload time
can be conveniently represented by the finite cache
penalty (Fcp). This is used in conjunction with the
parameter Cy as follows. The use of Cie does not
include the effects of cache misses and reload time.
In essence, Cig represents the performance that could
be obtained with a very large (say infinite) cache so
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that no misses occur. However, a miss is a pipeline
disruption that merely adds an additional term to
the value of A in Equation 10. This additional term
is the finite cache penalty given by the following
equation:

FCP = AtMR Troions

TCPU (13)
where MR is the cache miss ratio and Treioaa/ 7 cpu 1S
the number of machine cycles needed for reloading
a miss. The value of Ay is set by the architecture.
The cache miss ratio is influenced slightly by the
architecture but mainly by the size of the cache and
the blocks that are replaced. Smaller blocks tend to
give smaller hit ratios. Also, the size of directory
translation hardware needed for the cache increases
linearly with the number of blocks. Furthermore,
the silicon area available for this directory is very
limited, so both these effects favor larger block sizes.
Unfortunately, larger blocks take longer to reload
and the relationships are nonlinear. The net result
for a microprocessor is that the cache and block size
are fixed by the available chip area. The designer
may be able to change this, but usually only very
little within a given technology. Thus the only pa-
rameter available for tradeoffs is the reload time.
One example of the effects of reload for a high-
performance microprocessor with a moderately sim-
ple architecture is shown in Figure 6. The x axis is
the average number of machine cycles required for
reload and must include the time to write-back mod-
ified pages to main memory, if appropriate. If noth-
ing special is done to improve reload time, a typical
range of 15 to 30 cycles or more might be imposed
by the memory system. It can be seen that the
performance degradation compared to an infinite
cache (zero reload time) can be more than 50 per-
cent. It is desirable to reduce the reload time to a
value between 5 and 10 cycles, if at all possible. The
only reasonable way to improve this is to load the
cache from a main memory system, which—after
the initial access time penalty—can stream words in
and out either at one word per machine cycle or
faster. Streaming at one word every one-half cycle is
very desirable but is costly. The clock, storage con-
troller, and cache array chips must be able to support
this cycle time.

An attempt to improve the reload time by the use of
a multiple word bus width on the back side, coupled
with a complex block mapping, is very difficult and
costly if at all possible. The total number of data 1/0
pins to the cache is most likely fixed at the cpPU word
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Figure 6 Normalized millions of instructions per second
(MIPS) versus the total number of cycles to reload
the cache for two values of cache miss ratio
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length, so the maximum bus width is fixed. The only
parameter available for improvement is the cycle
time.

Memory move operations

Within the cpu, nearly all architectures must and do
provide for the manipulation of individual charac-
ters or bytes. Since the dawn of the computing era,
it has been desirable to do likewise within the mem-
ory. However, the bandwidth requirements of mem-
ory demand that more than one byte be accessed at
one time. Thus memory systems access words, which
are typically 2, 4, or 8 bytes, depending on the
system. Therefore, words must be accessed on word
boundaries, which makes the very common memory
MOVE operation quite complex and time-consuming
for the general case. In a MOVE operation, the con-
tents of a logical portion of memory are moved from
one physical location to another. Such operations
can start the move from any byte boundary and
place it in a new location starting at any byte bound-
ary. Sometimes the two areas even overlap. The
MOVE Is such a common operation in both large and
small systems that special hardware and instructions
are often used to handle it (e.g., Move Character
Long in System/370). Most systems do not attempt
to solve this problem at its root, but rather attempt
to use the CpU to avoid the lack of a byte-addressable
memory. For instance, the 801 architecture' includes
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special rotate and store instructions to improve MOVE
operations. Although the process of moving on ar-
bitrary byte boundaries can be aided by the use of
special processor instructions, this complicates the
processor design, requires extra hardware, and still
1s not as fast or efficient as a byte boundary address-
able memory. However, it has the distinct advantage
of being able to use ordinary memory chips, thereby
keeping the cost low. In order to make the general
move operation simple and efficient, it is desirable
to implement a memory system that has the appear-
ance of byte addressability. This can be achieved
either by means of a sophisticated controller chip or

Memory management in any high-
performance system can be greatly
aided by the use of virtual memory.

by enhanced functions added to the memory chips.
Such enhanced memory chips may begin to become
economically attractive as the density and cost of
memory chips continue to decrease. Very simple
MOVE instructions may then be likely to appear in
the architectures of microprocessors.

Virtual memory

The memory management in any high-performance
system can be greatly aided by the use of virtual
memory. When properly implemented, this concept
not only optimizes the use of real memory but also
provides the user with a large address space. Thus
the user can write programs as though a larger main
memory is available than there actually is.

Unfortunately, virtual memory is not free. The most
significant design consideration is the translation
look-aside buffer (TLB), which must be added to
prevent deterioration of system performance due to
the translation process. The TLB is a partial directory
that provides virtual-to-real address translation of
some of the more recently used pages. Each entry to
the directory provides translation for one page. The
size of the entry is fixed by other parameters, as we
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shall see, but the number of entries is a variable.
More entries give better performance but require
more hardware.

A very approximate estimate of the number of page
entries required in the TLB can be made, but this
requires a new statistic. It is observed over many
different programs and operating systems that with
a 4K-byte page size and memory size between 0.5
and IM bytes per MIPS of performance, 20K to
60K instructions are executed between page faults.
We represent this variable, instructions between page
faults, by Ir. Knowing the value of this variable, the
approximate number of pages touched between page
faults can be estimated by multiplying /¢ by Air to
obtain the following number of memory references
between page faults:

references between faults = Ay = Arrly (14)

Assuming that every word in memory is referenced
once and only once, the total number of pages
referenced, N, is given by the following equation:

Ay
Np = —+— (15)
b We

Here, W, is the number of words or equivalent
number of instructions per page. In typical cases, Arr
varies from approximately 1 to 2, and I, varies
between 20K and 60K. Using 4 bytes per word, W,
is typically 4K/4 or 1K words per page. Substituting
these into Equation 15 gives N, as approximately 20
to 120 pages referenced between page faults. If we
wish to provide a TLB hardware assist with translation
to all pages referenced between page faults, there
must be one entry for each of the 20 to 120 possible
pages. This keeps the hit ratio to the TLB very large,
which is desirable. For various reasons, it is not
unusual to have double this number of entries if the
cost allows it.

Each entry in the TLB must hold most of the virtual
page address, which is typically 23 bits, plus the real
main memory address, which is typically 12 bits (for
a maximum 16M-byte main memory with 4K-byte
pages). The TLB must also hold a valid bit, a memory
protect key, and other control bits, which together
amount to about six bits. The minimum number of
bits per entry is thus in the range of about forty.
Thus the TLB can range from about 1K to 8K bits.
This is a substantial piece of hardware that is neces-
sary to maintain the performance. In addition to the
TLB itself, in order to maintain performance it is
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desirable that whenever a miss occurs to the TLB, the
reload of that entry be done with special hardware

Complex instructions have a more
complex pipeline, particularly more
parallel paths.

control for speed. Otherwise, a software program
that uses the available general hardware is required,
which is very slow.

In order to speed up the translation process and page
fault detection, as well as simplify the pipeline con-
trol, the TLB should be located on the processor chip
if at all possible. However, this may limit the number
of entries and reduce performance. The effects of
TLB reload time can be analyzed in a manner anal-
ogous to that of Equation 13 for cache reload. In
essence, TLB reload time adds another small value to
A in Equation 10, but that is not included in this
work.

Early attempts to provide a large address space and
facilitate memory management in microsystems
have included the use of instructions with different
addressing modes, such as extended addressing using
multiple words and indirect addressing, mentioned
previously. However, severe fragmentation and
wasted real main memory space can still be encoun-
tered. The inclusion of virtual memory in the archi-
tecture not only solves the fragmentation and address
space problem, but it also eliminates the need for
these complex addressing modes. Thus it is likely for
virtual memory to become more common in future
microprocessor architectures.

Concluding remarks

This paper has shown how architecture influences
two major components of a microprocessor, the
instruction unit and memory subsystem. Architec-
ture directly affects the instruction decoding proc-
esses. A complex instruction set can require a long
decode time, with complex field extraction and align-
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ment, multiple accesses to the general-purpose reg-
isters or memory, and a difficult address generation
cycle. Furthermore, complex instructions have a
more complex pipeline, particularly more parallel
paths, many of which can have different lengths.
This tends to increase pipeline conflicts and disrup-
tions. Maintaining the sequentiality of execution in
a complex pipelined system requires additional
priority controls, as well as additional staging regis-
ters for the pipeline flow. In other words, the pipeline
hardware becomes more complex, consumes more
silicon area, and most likely produces a slower ma-
chine cycle. A simple architecture can significantly
minimize all these difficulties, and simplicity is de-
sirable in a microprocessor where cost is of prime
importance.

Although less evident at the architectural level, the
instruction set has a significant effect on the memory
subsystem. It has been shown how a few key param-
eters that characterize the architecture can be used
to analyze the required memory bandwidth and
show the designer whether the system performance
is CPU- or memory-limited. Achieving a small value
for cycles per instruction is generally easier for a
simple architecture. Over a certain range of param-
eters, the system balance is less likely to be limited
by the memory bandwidth. Hence various options
for reducing the cpu cycles per instruction become
available to the designer. Also there are additional
CPU options for smoothing out the peaks and valleys
in memory traffic. Outside this range, memory band-
width is a fundamental limit on system performance,
even for simple architectures. For such cases, an
architecture, which has a target of achieving a small
value for cycles per instruction, should strive either
to avoid instructions that have multiple accesses to
memory or to use instructions of more than one
length. The memory bandwidth requirements can
become so severe that a cache may be necessary to
achieve the desired performance for a given architec-
ture. However, adequate reload capability during a
cache miss places new requirements on the memory
bandwidth. This pushes the design toward cost-per-
formance considerations rather than the original ob-
jective of low cost. The designer of a microsystem is
constantly faced with these tradeoffs, which provide
many opportunities for innovations as well as radi-
cally new approaches.
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manager of the Magnetic Film Memory Group from 1962 to 1964,
he received an Outstanding Invention Award for the invention
and development of the thick film read-only memory. He spent
six months at IBM Hursley, England, developing this read-only
memory for System/360 applications. Dr. Matick joined the tech-
nical staff of the IBM Director of Research in 1965 and remained
until 1972, serving in various staff positions that included coordi-
nator of Research Division plans and Technical Assistant to the
Director of Research. He took a sabbatical in 1972 to teach at the
University of Colorado and at IBM Boulder. During the summer
of 1973 he taught at Stanford University. He is currently working
in the areas of VLSI functional memory chip and microprocessor
design. Dr. Matick is the author of the books Transmission Lines
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Jfor Digital and Communication Networks and Computer Storage
Systems and Technology. He is also the author of chapters on
memories in Introduction to Computer Architecture and Electron-
ics Engineers’ Handbook, Second Edition. Dr. Matick has written
numerous papers on magnetic devices and memories, semicon-
ductor circuits, memory and logic, as well as virtual memory chips
and systems. He is the holder of numerous patents and patent
publications, and he is a member of the Institute of Electrical and
Electronics Engineers and Eta Kappa Nu.
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ford University. While at Stanford, Dr. Ling was a Fannie and
John Hertz Foundation Fellow. He is a member of the Institute
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