vision system can allow everyone to see the displayed
information at once, although only one person can
use the keyboard at a time.

The above examples point out that this solution is

often either expensive or impossible. Travel is expen-
sive in both money and time, and the expense in-

In today’s workstations, applications
are designed to interact with a
single user.

volved in getting people together can easily be more
than the benefit to be gained. Even when the people
can be brought together physically, many 1/0 devices
will not conveniently allow more than one person
access; this is particularly true of input devices, such
as keyboards or tablets.

A solution. An ideal solution to this problem would
enable each person involved to interact fully with
the relevant computing environment from his or her
own workstation, in as transparent a manner as
possible, and with as little penalty (in terms of speed,
reliability, and the like) as possible.

To accomplish this, at least the following elements
are required:

1. A means of capturing relevant output from the
computing environment for forwarding to the
remote participants

. A means of providing the computing environ-
ment with input received from remote partici-
pants in such a way that the environment will
treat the input as though it came from the normal
local input devices

. A communication method to connect the work-
stations

[\

o

This conception of the problem and its solution is
based on the assumption that the computing envi-
ronment with which the participants need to interact
does not “know” about the remote participants, This

256 cress

is typically the case in today’s workstations; appli-
cations are designed to interact with a single user,
and that user is assumed to be physically located at
the workstation itself and to be using the standard
input and output devices of the workstation.

The requirement for a communication method be-
tween the workstations is the easiest to satisfy; there
are numerous methods, and designs for methods, of
communicating information between workstations.
The only special requirement in the present case is
that the communications method must be able to
operate “behind the scenes” at the same time that
the application of interest is executing in one of the
workstations. This requirement implies that at least
a primitive (interrupt-driven) type of multiprocess-
ing must be available. Capturing of output and pro-
vision of input are more difficult issues; they will be
taken up in the next section.

Systems have been implemented that address this
sort of problem in various environments. IBM’s re-
cently announced Cooperative Viewing Facility,? for
instance, uses Virtual Machine (vM) Logical Device
Support for elements 1 and 2 and already-existing
terminal-to-host connections for element 3. It can
thus support workstations connected as terminals to
a vM mainframe host. The prototype system de-
scribed later in this paper (the “coupler”) is being
used to study possible implementations of this sort
of solution in a microcomputer workstation environ-
ment.

Approaches. One of the functions of an operating
system is to provide, in a well-defined and structured
manner, a way for application programs to perform
1/0 operations with user devices such as keyboards
and display screens. This has an important implica-
tion for our problem. Somewhere between the ap-
plication code and the devices, there are typically
places where “the path is narrow”; where, that is,
some vector or entry point will always be used to do
input or output operations using the operating sys-
tem interfaces. A program that accomplishes objec-
tives 1 and 2 can step in at the narrow places in the
path and, for instance, intercept all writes to the
display and all queries to the keyboard.

By seeing every attempt by a program to write to the
display, a program doing this sort of interception
can forward the appropriate information to the re-
mote workstations, where a simple application pro-
gram can take the information and update the re-
mote displays accordingly. Similarly, the programs

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

at the remote workstations can send any input that
they receive to the intercepting program, which can
provide the input in the usual way when the appli-
cation asks for it. If all relevant narrow paths are
identified and intercepted, and all applications use
these paths for their input and output, the full trans-
parency we want can theoretically be achieved.

The actual picture is not as rosy. Particularly in
small, self-contained workstations, applications are
not constrained to using the operating system inter-
faces to do device 1/0 operations. For reasons of
speed, or just because of sloppy programming, ap-
plications often read and write directly from and to
memory locations and hardware ports connected to
1/0 devices, rather than using the standard interfaces.
This means that the intercepting program must be-
come more complex, and that in some cases the
software cannot provide full transparency, regardless
of cost.

Communications issues are another complicating
factor. They will not be discussed here at any length,
but it is good to keep in mind that even a relatively
reliable communications medium may occasionally
lose a message and thus cause the remote worksta-
tions to become in some sense out of step with the
actual display. Since it is generally anticipated that
the people at the various workstations will be in
verbal communication, the remote participants
should be able to notice this and request that a
synchronization function be performed. This func-
tion might be as simple as clearing the display screen,
or it might require special action on the part of the
interception program.

With these considerations in mind, we can outline
the requirements for a system to address the prob-
lem:

¢ On one of the workstations, there must be a means
by which the interception and communication
programs can run in the background, in parallel
with the application of interest. This requirement
implies that at least a primitive level of multipro-
cessing must be available on the workstation.

¢ The interception routines must be able to monitor
the “narrow places” in the relevant 1/0 paths,
without interfering maternially with their normal
function.

« All relevant 1/0 operations by the application of
interest must be done through 1/0 paths that the
interception routines are monitoring. To the ex-
tent that unmonitored paths exist, some 1/0 device

1BM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

will be unavailable, or only partially available, to
the remote participants.

¢ The communications program must be able to
communicate information between the worksta-
tions at a rate acceptable to the participants.

The remainder of this paper presents a prototype
solution to the problem.

A prototype solution

A prototype system has been developed at 1BM’s
Thomas J. Watson Research Center to study ways
of implementing a solution to the problem of having
a simultaneous computing environment at separate,
remote workstations. This section describes the
workstations used by the prototype, the nature of
the 1/0 paths intercepted, the types of information
exchanged between the workstations, and the com-
munications method used. The subsequent sections
describe some uses to which the system has been, or
might be, put, as well as some possible future exten-
sions, For brevity, the prototype system is referred
to as “the coupler” in what follows.

The workstations. The coupler was developed to run
on workstations in the 1BM Personal Computer (PC)
family® (the Personal Computer, Personal Computer
XT, and PCjr) under the 1BM Personal Computer Disk
Operating System (Dos).* The choice of operating
environment was largely pragmatic; it is the one used
by most of the workstation (as opposed to terminal)
users at the Research Center. It proved to be a
fortunate choice, though, in that the narrow places
in the 1/0 paths were few and readily intercepted. As
will be discussed later, interception of the appropri-
ate paths did not completely solve the problem.

Narrow paths. There are two levels of 1/0 interface
that are specified by the architecture in the 1BM PC
pOs environment. The higher level consists of calls
to DOs proper. This interface provides simple inter-
faces with somewhat limited function. There is a call
to write a character to the display, for instance, but
no way to clear the display, or to determine where
on the screen the next character will appear.

The lower level (which is called by the higher one) is
known as the BIOS (for Basic Input/OQutput System)
interface. It provides a more detailed control of the
display, and more generalized access to the keyboard.
Since calls to the DoSs interface result in calls to the
BIOS, intercepting the BIOS calls takes care of both
levels.

cHess 257

Figure 1 Service calls in normal workstation operation

{ INTERRUPT ‘

VECTORS

DOS

APPLICATION
PROGRAMS

Calls to the BIOs are made through a so-called “in-
terrupt” instruction, which results in control being
transferred to an entry point defined by one of a set
of vectors at the bottom of the memory of the pc.
(See Figure 1, where it can be seen that application
programs may call the operating system, which re-
sides in low memory, or the 1/0 subsystem, which is
in read-only memory (ROM) in high memory. The
operating system also calls the 1/0 subsystem.) Inter-
cepting BIOS calls, then, consists simply of recording
the old contents of the appropriate vectors, and then
substituting the addresses of the proper entry points
in the interception code.

At the “host” end of the connection, the code in-
volved consists of an interceptor for Bios display
output calls, and one for BI10S keyboard input calls.
These interceptors are installed in main memory and
made “resident” by the appropriate operating
system requests; they remain in memory while other
applications are run, until memory is cleared by a
system reset, or power down. (See Figure 2. At the
host workstation, some calls that would normally go
to the 1/0 subsystem are diverted through the coupler
code first by changing the contents of certain “inter-
rupt” vectors. The coupler code in the host com-
municates with the terminal workstation code, which
runs as a standard application under DOS.) At the
“terminal,” or remote, end of the connection, the
code consists of a single application program, run-
ning under the operating system in the more usual
way. This program simply interprets messages com-
ing in from the interceptor code in the host, updates

258 cHess

its display accordingly, and informs the host about
any keystrokes entered by the user at the remote
workstation.

Many of the service calls to the BIOs concern devices
that the coupler is not concerned with—the disk
drives of the workstation, the time of day clock, and
the like. Only the following calls to the Bios are
intercepted as being of interest to the coupler:

e Change the shape of the hardware cursor

* Change the cursor position

¢ Scroll the screen up

 Scroll the screen down

e Write a character at the current cursor position

e Determine if a character is ready to be read from
the keyboard

¢ Read a character from the keyboard

Semantics. Except for some protocol information
used to establish the logical connection in the first
place, and to terminate it when necessary, the pro-
grams in the “host” and “terminal” workstations
need to exchange only a few types of messages. The
terminal program must be able to inform the host
about relevant input received (in the current proto-
type, this consists only of keystrokes), and the host
must be able to inform the terminal about any
changes to be made to the display.

In the current implementation, the following types
of information are defined in host-to-terminal com-
munication:

e Request for initiation—Sent by the host to set up
the link with the terminal workstation.

¢ Request for shutdown—Sent by the host to re-
quest termination of the session.

« BIOS service call—Notification to the terminal that
the given service call, with given parameters, has
been executed on the host. If all applications uti-
lized the BiOS for all display output (see the re-
marks below), this information would completely
determine the screen contents.

e Changed display information—There are several
variants of this message: one gives a position on
the screen and a single character to appear there,
one gives a starting position and a number of
characters, and a third gives a starting position, a
single character, and a repeat count specifying how
many times that character is to appear. By balanc-
ing the use of these variants, the performance of
the communications link can be slightly im-
proved.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

e Display cursor position—This is used by the host
to notify the terminal that the position of the
hardware cursor of the display has changed.

The following message types are defined for termi-
nal-to-host communications:

e Grant initiation—Used as a positive acknowledg-
ment of the request-for-initiation message.

¢ Acknowledge shutdown—Used as a positive ac-
knowledgment of the request-for-shutdown mes-
sage.

¢ Keystroke—Notification to the host that the given
key on the terminal has been struck.

Support for more complex input and output devices
would require the addition of more types of messages
between the workstations.

Note that the details of the communication protocol
(requiring the host end to request initiation and
termination of the session) were more or less arbi-
trary, and the same ends could have been accom-
plished with the reverse protocol, or probably with
no particular protocol at all.

Communication. The prototype implementation of
the coupler uses asynchronous communications to
connect the workstations. On one hand, this method
is generally available, given the growing number of
workstations that have built-in or optional modems
and an easy connection to a telephone system. On
the other hand, it is neither very fast nor particularly
reliable.

The communications code was implemented as a set
of subroutines so as to require the interception code
to know as little about the communication method
as possible. Modifying the prototype to use another
medium (a local area network, for instance) would
primarily require changes only to these subroutines.

User protocols. As the prototype is currently set up,
the physical communication link between the work-
stations is established first (through a direct cable
connection or through modems and telephones).
Then the terminal workstation program is invoked
to wait for an initiation request from the host. When
the host program is run, it sends the initiation re-
quest, waits for a grant of initiation in reply, and
then installs the communication and interception
programs and returns control to the operating sys-
tem. From then on, the workstations are coupled
together; anything typed on either keyboard is made

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

Figure 2 Operation with coupler installed

TERMINAL HOST
WORKSTATION WORKSTATION
(™ /" INTERRUPT '\
™N VECTORS
DOS DOS

COUPLER COUPLER
TERMINAL HOST

CODE CODE

BIOS APPLICATION

PROGRAMS

available to the BIOS keyboard input routines, and
anything displayed on the host screen is reflected to
the terminal for display there.

If the telephone system is being used to connect the
workstations and only one telephone is available at
each workstation, it may be difficult for the partici-
pants to communicate directly. If the application
being run has a free-form input area of some kind
(such as an editor data area, or a general command
line), one user can just enter a message from the
keyboard, and the other user will see it when the
application displays it on the screen. In menu-driven
systems, or other environments without a free-form
input area, this type of operation will not be possible.

Since it will in general be desirable (and even nec-
essary) for the participants to communicate directly,
an extension to the coupler that would allow an
immediate message to be passed from one worksta-
tion to the other, independent of the active applica-
tion, might be useful. However, such a facility would
have the drawback of being dependent on the correct
functioning of the workstation communications link
(one of the reasons the participants might want to
communicate directly would be to ask “Has the link
gone down?”) and would involve some kind of vi-
olation of transparency (if sending a message in-

cHess 259

volved entering a particular keystroke, for instance,
that keystroke could no longer be passed to applica-
tions).

Another possible means of direct communication
during a coupler session is a second telephone line.
Workstations used heavily for communication may
already have two telephone lines, so that the user
can be available for incoming calls while using the
workstation as a mainframe terminal, for instance.
The point to be borne in mind is that the connection
of computing environments may not be enough; if

The coupler may be used to present
information in a conferencing or
teaching environment.

the users are physically remote from one another,
they will want a means of communicating directly,
rather than through the environment. Such com-
munication may be done either through the work-
station connection or through a separate medium.

When the coupler session is over, one of the users
invokes the host program with special arguments,
and the host workstation sends a request for shut-
down. The terminal responds with an acknowledg-
ment, and returns control to the operating system.
The host program then disables the interception
routines and returns control to the operating system
in the host.

There is also an “emergency exit” key in the termi-
nal, which may be used to return control to the
operating system at the terminal end in case, for
instance, the communications link fails. This key
involves a slight violation of transparency but was
found to be necessary during development and test-
ing.

Uses

As the prototype was being developed, people were
continually thinking of more situations in which it

260 cress

could be useful. The summary of situations given
here is not intended to be exhaustive by any means.

Remote troubleshooting. Customers and other per-
sonal computer users often have difficulties that seem
to require the help of software service personnel.
With present methods, this requires either travel on
the part of the service person (which is expensive
and time-consuming), “talk-throughs” over the tele-
phone (which do not generally work very well), or
the mailing of printed output such as dumps (which
is very slow and inflexible). With the coupler, the
customer’s PC can serve as the host end of the
connection and the service person’s as the terminal
end. Since the machines may be connected over
telephone lines, the service person will not have to
leave the service location.

Remote demonstrations. Personal Computer soft-
ware is usually demonstrated either by travel (the
“road show” technique) or by mailing diskettes and
documentation. The first method is expensive, time-
consuming, and often not cost-effective. The latter
method is unreliable (diskettes are damaged in ship-
ment), limited (potential customers cannot ask ques-
tions as they occur to them and may be unable to
use the software correctly without help), and some-
times impossible (proprietary software should not be
shipped).

With the solution outlined here, demonstrations can
be conducted under direct control of the program
owners, without allowing the software to leave the
shop and without any travel expense. The demon-
strator’s PC acts as the host machine, and that of the
audience serves as the terminal. The owner may
conduct the demonstration, and the audience can
try the software out themselves, almost as if they
were in the same room. Thus, most of the benefit of
travel is obtained, without the expense and incon-
venience of actual travel or the danger of software
shipment.

Presentations, conferencing, and education. The cou-
pler may be used to present information in a confer-
encing or teaching environment. The host PC is used
by the person presenting the information (the pre-
senter or teacher), and the other pC is used by the
students or conference participants. With a voice
connection active at the same time as the coupler
connection, the presenter can cause information
(perhaps in a viewgraph-like format) to appear on
the screen of the terminal pC, watch it on the host
pC, and discuss the information, all without leaving

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

his office. With the appropriate conferencing soft-
ware running in the host pc, those at the terminal
PC could also enter information (questions or feed-
back) to be displayed on both screens.

Mainframe remote shared terminal support. Individ-
uals, such as service personnel, who are not them-

The speed of the communications
link is a limiting factor.

selves authorized to use a certain mainframe com-
puter system must occasionally have access to that
system for short periods of time, under supervision
from system personnel, to aid in problem determi-
nation or similar activities. With conventional meth-
ods, this access must be available either by travel or
by temporarily authorizing the individuals to access
the mainframe remotely. The latter method may be
either impossible (many mainframes have no provi-
sion for remote access) or an unacceptable security
exposure.

If software is available (and it generally is) to allow
an 1BM Personal Computer to emulate a terminal to
the mainframe, the coupler can be used to allow
completely supervised remote access to the main-
frame. The host PC runs terminal emulation software
and connects to the mainframe as a terminal. The
service person’s PC acts as the terminal end of the
connection. In this environment, the service person
can issue commands to the mainframe through the
terminal PC without leaving the service location, and
the owners of the mainframe system can control
everything that is done by watching and entering
commands on the host pC.

Note that access to the mainframe via the coupler
does not depend on the mainframe having remote
access hardware; it merely requires that the host pC
have access to the mainframe.

Resource sharing. The coupler also turns out to be
useful in a situation for which it was not specifically
designed. It can be used in an environment contain-

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

ing workstations with various levels of hardware and
software, to give all the workstations the apparent
power of the “richest” among them. For instance, if
only one PC in a department has enough in main
memory to run some program, users at any of the
other PCs can (one at a time) access that program
almost as if 1t were running on their own machines.
In this case, the “rich” pC acts as the host machine,
and the user’s PC as the terminal.

The reason the coupler is effective in this situation
is that it can “copy” the computing environment of
the better-endowed workstation to any of the others.
Resources which may be shared this way include

* Coprocessors

e Hard disks

e Large shared data bases

Letter quality printers

Plotters and other output devices

Dial-up lines to various information services
One-machine-only software

A slight modification to the setup protocol of the
coupler is necessary to accomplish this sharing. In
particular, the host workstation must be able to wait
for a telephone call, begin waiting for an initiation
request when a call comes in, and revert to the
waiting state when the termination grant is received.
These changes are relatively minor.

Some further considerations

Badly behaved applications. The prototype programs
as described so far do not do the whole job. First of
all, many commonly used programs on the pC work-
stations are not well-behaved, in that they do not use
the standard interfaces for all their 1/0 operations. It
is common for editors, for instance, to write directly
to the display buffers (the pc displays are memory-
mapped) rather than going through DOs or the BIOS.
This method is necessary because of speed consid-
erations (the BIOS interface has a one-character band-
width) but complicates the job of the interception
code. In one version of the prototype, this problem
was solved by having the program in the host period-
ically examine the display buffers directly and inform
the terminal of any changes found. A more serious
problem occurs with some programs that directly
access the 1/0 ports of the workstation to get input
from the keyboard. There is no way to pass input
that is received along the communications line to
these programs in such a way that it will be “mis-
taken” for local input.

cHess 261

Speed. The speed of the communications link is
another limiting factor in this solution. The current
prototype performs tolerably when the workstations
involved are physically close enough to be connected
by a high-speed (4800 or 9600 bits per second) data
link. In a typical remote application of the facility,
though, the comparatively slow data rate available
on telephone lines (1200 or fewer bits per second)
restricts its usefulness. Implementing some kind of
compression scheme on the line would help over-
come this problem but would most likely worsen
another: the amount of memory of the workstation
occupied by the interception programs. Every byte
used by these programs is a byte not available for
applications. As larger memories in pC-based work-
stations become common, this problem will become
less critical.

Other I/O devices. The display screen and the key-
board were chosen as the primary devices that are of
concern to the user. Alternate input devices (mice,
joysticks, panels) and sophisticated output devices
(high-resolution graphics, speech synthesis) are be-
coming more common on business workstations,
and a useful implementation of this solution will
eventually have to deal with them. Finding the
proper narrow paths for interception may be more
difficult in these cases. Since the popular workstation
operating systems were designed primarily for key-
board-and-screen environments, applications that
use more advanced devices tend to communicate
with them directly, for want of operating system
support. The speaker on the 1BM pC, for instance, is
used by many programs, but it is not supported
through either DOs or BIOs interfaces. The prototype
coupler can therefore not support it. If a program is
playing the Washington Post March in the host pc,
users at the terminal pc will not hear it playing.

Further directions. Speed and reliability always offer
room for improvement. The current prototype in-
cludes a checksum with every message interchanged,
but the checksum is not put to much use. Error
detection and correction, or a more sophisticated
acknowledgment protocol, would increase the relia-
bility of the link. It might also be desirable to have
an automatic resynchronization protocol, to re-es-
tablish the integrity of the shared environment if
either workstation detects a synchronization prob-
lem. Any of these additions would probably decrease
the effective speed of the link.

Data compaction could be used to increase the effec-
tive speed, at the cost of more code space dedicated

262 cress

to the coupler in the host workstation (code space in
the terminal workstation is effectively free).

A means of providing for direct communication
between the workstation users was discussed earlier.
It could be implemented in the coupler itself, at a
small cost in reliability and transparency, or in an
external medium.

Various modifications to implement the resource
sharing use of the coupler, described previously, have
also been tested. In theory, the control flow in the
host program changes a bit; after receiving an “ac-
knowledge shutdown” message, the host should go
back to waiting for an initiation request. In practice,
the modifications turn out to be a little more com-
plex, involving the specific ability of various modems
to automatically answer a telephone, break the con-
nection, reinitialize internal registers reflecting the
state of the communications link, and so on.

Several users of the prototype requested a means of
actually transferring data from the storage devices of
the host workstation to those of the terminal. This
operation would involve establishing several new
messages (“request for data transfer,” “begin trans-
fer,” “transfer block,” etc.), more careful checksum
handling to ensure data integrity, and some kind of
user interface to request the transfer. This represents
a natural extension of the idea of duplicating the
computing environment: the remote participants
may access not only the 1/0 devices of the host
workstation, but the storage devices (diskettes and
fixed disk drives in these workstations) as well.

Conclusion

The use of tightly coupled workstations as presented
here seems to solve a variety of problems associated
with the distribution of computing power. As these
problems, and therefore solutions of this type, be-
come more widespread, it is hoped that operating
systems will become more cooperative, in the sense
of providing narrow paths to relevant user 1/0 de-
vices, and enforcing the use of those paths by appli-
cations. (This is not, of course, the only reason to
hope for clean interfaces.)

The problems addressed here are parts of a more
general problem, which will require a variety of
solutions. As computing power moves out of large
central facilities and into workstations, access to the
computing environment and to the information in
those workstations becomes more difficult, hence

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

the profusion of local area networks (or at least
designs for them) and communications programs.
The solution outlined here applies to a very tightly
coupled sharing of information and the computing
environment; looser couplings will require solutions
of their own.

Cited references and note

1. “Computing environment,” as used here, includes the operating
system, application programs, and relevant I/O devices such as
keyboards and CRT screens.

2. IBM Cooperative Viewing Facility, General Information,
GC34-2149 (Program Number 5664-187), IBM Corporation;
available through IBM branch offices.

3. IBM Personal Computer Technical Reference Manual, 6024-
005; IBM Personal Computer/XT Technical Reference Manual,
6936-808, IBM Corporation; available through IBM branch
offices.

4. IBM Personal Computer Disk Operating System, Version 2.1,
6024-125, IBM Corporation; available through IBM branch
offices.

Reprint Order No. G321-5223.

David M. Chess /BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Mr. Chess joined IBM in July 1981 at the Research Center.
Working at first on VM performance and workload management,
he received an Qutstanding Technical Achievement Award in 1982
for his contribution to the VM/370 Resource Limiter. When the
IBM Personal Computer was announced, he became the Center’s
first Personal Computer consultant. He then joined the Advanced
Workstation Projects group and is now manager of Advanced
Workstation Services, working on new ways of increasing produc-
tivity through distributed workstations. Mr. Chess also maintains
the “IBMPC” data base, a conferencing facility devoted to the
IBM Personal Computer on the internal computer network,
VNET.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

cHESS 263

