
Directions in cooperative
processing between
workstations and hosts

by B. C. Goldstein
A. R. Heller
F. H. Moss
I. Wladawsky-Berger

Advancements in technology have provided us with the
availability of high-pedormance processors from the
high end of computing to the personal computer. In
addition, technology growth has enabled us to envl-
slon slxteen megabytes of real storage for a personal
computer.

As a result, we have witnessed not only a tremendous
growth at the high end of the computlng spectrum, but
also the development of sophisticated personal com-
puters (e.g., the IBM PC XT1370) with real storage ca-
pacities approaching those of high-end computers of a
decade ago.

This growth at both ends of the computing spectrum
has glven us a choice. We can either allow a clean
separation to grow between personal computer and
host or provide a means by which they cooperate in
providing quality service to the user without the com
plexity normally associated with high-end systems.
This paper explores what such a cooperation could
mean.

A s host machines have developed over the years,
they have come to be viewed in several dimen-

sions. One dimension is that of significantly sophis-
ticated state-of-the-art software services, such as data
base managers (e.g., IMS,' DB2,' SQLIDS,~) and batch
schedulers. Another dimension is that of high per-
formance [hundreds of Millions of Instructions Per
Second (MIPS) in computing power available to the
users], high availability, and reliability. There is also
such state-of-the-art hardware as high-performance,
letter-quality printers. Host machines have been
viewed by non-data-processing professionals as hav-
ing poor human factors. The major reason put forth
has been that these systems evolved from the batch
era of programming, when a computer did not have

236 GOLDSTEIN ET AL

to be friendly to its users. In general, host systems
serve many users concurrently with sophisticated
services.

On the other hand, personal computers are consid-
ered to be relative newcomers to the field, with their
major acceptance occumng within this decade. Per-
sonal computers started off modestly. The basic me-
dium for retaining data on early systems was the
cassette, and memory was typically between 4K and
16K bytes. One hardly considered them to be in the
same league with large mainframe computers. With
the passage of time, the power of the personal com-
puter has increased so that one can now talk about
having a desk-top personal Systemf370. Such a sys-
tem might be equipped with 768K of memory, 20
megabytes of hard disk, and a printer. Such a config-
uration used to be referred to as a mainframe com-
puter.

Personal computers are noted for having several
desirable characteristics. First, these systems are de-
signed for the non-data-processing professional. As
such, they assume almost no knowledge of a com-
puter and are designed to be simple and easy to
learn. Most personal computers are single-user sys-
tems. That is, they are not shared with other users.

Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

One’s data and programs are private and cannot be
accessed concurrently by another. As single-user sys-
tems, personal computers generally perform simple
multiprogramming. For example, they may allow
the printer to work in parallel with editing a report.
Because work is done serially, one cannot create two
or more processes actively working against the same
data. Autonomy is another important consideration
when providing a personal computer for the DP
professional. (See Figure 1.) Because the personal
computer is independent of the mainframe, if the
mainframe should fail the personal computer user
can continue. Performance of a personal computer,
although not matching that of the mainframe, is at
least consistent. No matter how many other persons
are working next to the personal computer user, the
response time of that system remains invariant.

Interdependences among hosts and personal
computers

It was once thought that large numbers of personal
computers could one day replace the giant main-
frame. It is now clear that, although processing power
is becoming less expensive, the cost of peripherals
(such as large DASD, mass storage devices, and high-
quality/high-speed printers) is not decreasing pro-
portionately. The implications are that, even if a
large number of minicomputers were installed, a
typical installation could still not afford to allocate
the peripherals per minicomputer nor have the proc-
essing power to efficiently utilize the peripherals. The
organization to support the operation of a large
computing center is not something that a typical user
desires to be confronted with. It is true that a local
area network helps to provide increased sharing
among minicomputers, but one still needs signifi-
cantly greater processing power to utilize many of
our traditionally expensive peripherals. Thus, from
a cost amortization perspective, one cannot elimi-
nate the mainframe.

Consider the following conjecture. In a corporation
that employs both mainframes and personal com-
puters, personal computer users want access to the
mainframes, and mainframe users want personal
computers. Let us consider the requirements of both
classes of users.

The personal computer user wants access to the
mainframe to share data. Giving another user a
floppy disk containing the data causes the originator
to lose control and prevents both users from concur-
rently working on those data. Mainframe operating

IEM SYSTEMS JOURNAL, VOL 23, NO 3. 1W

Figure 1 Application processing autonomy

systems usually provide reasonably sophisticated
data sharing and security.

Given the limited capacity of the personal computer,
one can easily run out of DASD space. Maintaining
backup files on floppy disks can be cumbersome and
time-consuming. Mainframes offer mass storage de-
vices that give the illusion of having an infinite
archive for data storage.

Executives in a large enterprise, having their own
personal computers, may wish to access the corpo-
rate data. At one time, it was assumed that distrib-
uted data would make such access possible. A hy-
perbolic solution to that problem might have
sounded like this: Take the four hundred spindles of
DASD connected to the mainframe, throw away the
mainframe, place one spindle on each employee’s
desk, and connect all employees into one giant local
area network. Although such a configuration might
be almost practical for a non-data-base enterprise, it
would have been a disaster for an enterprise with a
centralized, integrated corporate data base, for sev-
eral reasons.

Security. Suppose that one data base is the personnel
file. Consider how vulnerable individuals and the
company would be if one were to place a spindle of
those data on an employee’s desk. Corporate data
implies a great deal of security, recovery, and audit
control. Mainframe data base management systems
are designed to address these requirements.

Recovery. Consider the damage if one were to spill a
cup of coffee over the hard disk containing corporate
data. Needless to say, the probability of this happen-
ing in a mainframe-controlled environment is small.
One cannot say the same thing about data associated
with the personal computer.

Performance. Consider the probability that the data
one wants are on a given user’s personal computer.

GOLDSTEIN ET AL. 237

Figure 2 The Personal Computer as a terminal, shown here
emulating the IBM 3270

If there are 400 users in a local network, is the
probability one in 400 (assuming random distribu-
tion of the data)? No. It may turn out to be as great
as one in 400! (factorial) if in traversing the network
we do not remember which users we have previously
visited.

These are just a few of the reasons why one would
not replace a mainframe with personal computers
for access and control of corporate data. This is not
to say that distributed data is a bad idea. Two reasons
for the distribution of data among mainframes are
the following:

Geographic separation. For an enterprise that has
more than one mainframe separated over large geo-
graphic distances, one wants to partition the data
along these geographic boundaries for the purpose
of performance gain.

Catastrophic error. Some enterprises replicate their
data across geographically separated mainframes as
insurance against catastrophe, such as earthquake,
flood, and fire.

Thus, we have a number of very subjective reasons
why personal computer users want access to main-
frames. For objective reasons, one has merely to look
at the growing industry of vendors who make com-
munication cards that enable personal computers to
connect to mainframes. (See Figure 2.) Among the
reasons why mainframe users want personal com-
puters are the following:

Function isolation. The loss of a single personal
computer does not affect any other personal com-
puter connected to the same mainframe. There are
no longer fears that a program in development will
destroy another application due to unforeseen errors.

238 GOLDSTEIN ET AL

Reduced complexity. Given that a personal computer
is intended to support only a single user, the human
interface can be made very simple, for example, by
not requiring JCL. Furthermore, the user need not
negotiate with computer center personnel as to the
requirements of his application. In addition, there is
a relatively short educational period required to learn
how to use a personal computer.

Ofloading. Although a user sees consistent perform-
ance at the personal computer, the mainframe per-
forms faster. By offloading trivial user transactions
(i.e., those with short path length and few I/O re-
quests) the mainframe can devote its resources to
more efficient support of nontrivial transactions,
such as batch work, heavy computation-limited ac-
tivity, and intensive 110 operations.

Although personal computers tend to satisfy these
concerns, they do have their limitations. Personal

Personal computers and mainframes
complement one another’s

capabilities.

computers are primarily DASD limited, and thus
preclude very large data base support or large appli-
cation support. Thus, personal computers and main-
frames complement one another’s capabilities. The
limitations of personal computers are those that are
easily addressed by mainframes, and the limitations
of mainframes are easily addressed by the personal
computer. Ideally, we would like to have an environ-
ment that gives us the advantages of both.

Cooperation and its challenges

How do we characterize an environment in which
mainframes not only coexist, but also cooperate with
personal computers? For the purposes of discussion
and for brevity, we now refer to mainframes as hosts
and to cooperating personal computers as worksta-
tions or Intelligent Workstations (rws).

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

Figure 3 Cooperative processing

Intelligent workstations. Cooperative processing en- ment in which to run trivial, compute-bound trans-
ables us to view the workstation as being an environ- actions. (See Figure 3.) The IWS also has a modest

IBM SYSTEMS JOURNAL, VOC 23, NO 3, 1W GCDSTEIN ET AL. 239

repository for local private files as well as a small
and inexpensive printer.

Host. On the other hand, the host, in our view,
provides the workstation with an environment in
which to run large, compute-bound transactions.
The host also performs basic underlying services for
the workstation, such as uploading and downloading
files between the workstation and the host, for ex-
ample, for archival purposes. The host also has the
ability to extract data from corporate data bases. The
host makes available high-performance/high-quality
printers and a global communications network. Thus
the host is simply a place in which to submit long-
running transactions, batch jobs, and so forth.

In order to provide such a natural division between
workstation and host, we are faced with a number
of objectives and challenges. To begin with, we
would like to bring the host interfaces for services
and data down to the Intelligent Workstation with-
out also bringing along the complexity inherent in
those interfaces. Such a capability would, for exam-
ple, enable an IWS application to issue SQL requests
to a DBZ data base without requiring the application
programmer to be a DBZ systems programmer.

The key challenge is that the workstation user not
be required to learn three command languages: that
of the local workstation to which the user has already
adapted; the network command language; and the
host command language. In general, the user wants
to use the language to which he has already adapted.

Virtual services and data. To address this challenge,
cooperative processing interfaces should provide an
interface to a set of virtual services and data in such
a way that their local and remote locations are
transparent to the requester. An application in one
processor, when requesting a service, obtains that
service no matter where it executes. The application
perceives all services and data to be local, even if
they actually exist on a remote processor. Of course,
the timing may vary for remote facilities as compared
with local ones.

Providing service and data transparency would en-
able us to offload a host application onto the work-
station while leaving the data host resident. This
would avoid expensive application redesign costs.
Today, such costs usually entail the application pro-
grammer dissecting the application into two parts:
(1) one part on the workstation interfacing with the

240 GOLDSTEIN ET AL.

other on the host, using a telecommunication access
method, and (2) the second part performing the data
access. Although this may seem simple, it can be a
very complex process. For example, there may be no
one in the organization who understands how the
application originally worked, or the organization
may no longer have either the source or libraries
used in creating the program.

The optimal situation is simply to offload the appli-
cation onto the workstation. This requires that the
original requests for service and data must work,
even though they do not exist at the workstation.

In providing such transparency between workstation
and host one can see, as an analogy, the virtual

The Virtual Service Interface enables
the user to see all host files as being
locally available on the workstation,

machine capability presented by v ~ / 3 7 0 . ~ ~ ~ 1 3 7 0 pre-
sents an interface that is the System/370 architecture.
This interface enables guest operating systems to
believe that they are actually running on real System/
370s. A similar analogy exists in virtual memory
systems where an application may see itself as run-
ning in 16 megabytes of real storage, for example. In
fact, the application may be running in 5 12K bytes
of memory, and references to program pages may
result in page faults that are transparent to the ap-
plication.

Although we like to contemplate transparency, we
must provide the ability to copy data from one
environment to another through explicit commands.
There are two basic approaches to this:

Transparency. As previously described, the user
simply enters the local COPY command that nor-
mally copies files from one workstation disk to
another, as a means of copying files from the
workstation to the host and vice versa.
Introduction of new commands. Import/Export
commands explicitly state that a file should be
copied down from the host to the workstation

IBM SYSTEMS JOURNAL, VOL 23. NO 3, 1984

(Import) or that a file should be copied from the
workstation to the host (Export).

~

~ Although transparency is the simplest solution, it
may not be adequate for all file types. For example,
some binary fields may not translate properly when
going from an ASCII workstation to an EBCDIC host
without added information. The introduction of new
commands provides a means of enhancing the user’s
command repertoire to include such translation de-
claratives.

Present status of cooperative processing

Given this general understanding of cooperative
processing, what is the current practical situation as
exemplified by products? In 1983, IBM announced
two major workstation products, the IBM PC xT/3705
and the IBM 3270 PC. Both products provide a basis
for cooperative processing with a host System/370.

The IBM Personal Computer XT/370. In summary,
the IBM X T / ~ ~ O is an IBM PC/XT with an additional
three-card set. These three cards perform the follow-
ing functions:

IBM 3277-2 emulation adapter card. This card
enables the ~ ~ 1 3 7 0 to be connected via coaxial
cable to an IBM 3274 controller for either local or
remote host operation.
System/370 processor card. This card contains
three microprocessors and supporting random ac-
cess memory and logic to provide a true System/
370 capability.
A 512-kilobyte memory card. This memory is
accessible from either the processor card or the
PC/XT processor itself.

The X T / ~ ~ O provides three forms of cooperative proc-
essing.

The user can concurrently log on to the host (here
the X T ~ O appears as a terminal) and perform local
System/370 processing. In this form, the X T ~ O pro-
vides the ability to concurrently execute local simple
transactions in parallel with heavier computation-
limited host transactions.

Explicit commands are provided to Import and Ex-
port files between the local System/370 environment
and a co-resident PC/DOS file environment. That is,
explicit commands are provided that enable a user
to transform an existing PC file into a VM file and
vice versa, even though the file systems are different.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

Figure 4 A major step toward cooperative processing

A new form of cooperative processing is provided
for transparent access of host data and services from
the local VM environment. (See Figure 4.) This inter-
face, known as the Virtual Service Interface (v s ~) , ~
enables the user to see all host files as being locally
available on the workstation, assuming proper secu-
rity authorization. To copy a file from one environ-
ment to another the user merely uses the local COPY
command. Similarly, the user can view the host
printers as being locally attached. (In this case, the
user may simply have to walk to the host to pick up
the output.) This support is provided not only be-
tween homogeneous systems, such as VM on the host
and VM on the ~ ~ 1 3 7 0 , but also between dissimilar
systems, such as MVS~TSO’ on the host and VM on the
workstation.

The TSO support enables the user to transparently
access any TSO data set or Partitioned Data Set (PDS)
as though those data sets were CMS files and mini-
disks. Here the VM user at the workstation does not
have to learn MVS/TSO commands and can continue
to access files even though they are remote. That is,
the user does not have to adapt to another command
language.

Provided with this support is a set of mappings that
map the file types in CMS (on the x ~ / 3 7 0) into the
equivalent form in TSO. As examples of this mapping
operation, one can cause a file type of SCRIPT in CMS
to map into TEXT in TSO or cause ASSEMBLE in CMS
to map into ASM in TSO. This set of mappings is
transparent to the user, though a new VMPC com-
mand DSNMAP is provided so that the user can dy-
namically redefine the mappings in a more person-
alized fashion.

GOLDSTEIN ET AL 241

The following examples demonstrate the explicit and
implicit use of the DSNMAP command:

LINK MOMADUK 191 233 W
ACCESS 233 K

Assuming that the requested minidisk does not re-
side locally on the workstation but is transparent to
the user, these commands cause TSO to LINK to all
MVS data sets belonging to the user MOMADUK as the
high-level qualifier and to identify the minidisk to
CMS as file mode K. The default map or pattern
provided is the following:

DSNMAP K &FN.&FT

In this situation, the user does not have to specify
the DSNMAP command. This map is automatically
set up with the LINK. A CMS file request for EXAMPLE
TEST K is treated by TSO implicitly in the form MO-
MADUK.EXAMPLE.TEST.

The following example shows how to map to two
MVS partitioned data sets as different file modes:

LINK MOMADUK 191 233 W
ACCESS 233 K
DSNMAP K DATASETI.&FN(&FT)

LINK MOMADUK 191 234 W
ACCESS 233 L
DSNMAP L DATASETZ.&FN(&FT)

Given this example, the issuing of the command
COPY * * A = = K copies all files on the local A disk
into the DATASETI partitioned data set. Each file
copied over becomes a member of the PDS. If the
members of PDS DATASETI had not existed prior to
the invocation of the COPY command they are dy-
namically created. This interface is extremely rich.

From the workstation perspective, it makes no dif-
ference whether the host is a VM- or Mvs-based
system. The local file system using the VSI merely
states that it would like to request service of the file
server subsystem. Requests in this interface are of
the form “I want function X of subsystem Y,” where
a subsystem’s functions are represented in tabular
form. [This is very much like the host MVS Subsystem
Interfaces (SSI)~”~.] The VSI determines whether the
requested service can be performed locally or has to
be routed remotely. The necessary transforms are
done on the host side.

242 GOLDSTEIN ET AL

In the TSO host support, the user can also enter host
TSO commands. The fact that those commands are
performed remotely is transparent to the requester.
Similarly, local print requests are transparently
mapped into host spool requests when that is appro-
priate.

As can be seen, the X T / ~ ~ O satisfies many of the
objectives of cooperative processing. What is missing
is the ability to go the other way, i.e., to give a host
application access to workstation services and data,
such as to run a compiler on the host to compile a
program that is resident at the workstation. Despite
this, we see a significant start in cooperative process-
ing embodied in the IBM PC ~ ~ 1 3 7 0 .

The IBM 3270 Personal Computer

We briefly summarize here the capability of the
intelligent workstation, the IBM 3270 Personal Com-
puter. The IBM 3270 PC combines the ability to per-
form host interactive functions of the 3270 Infor-
mation Display System with the computing capabil-
ity of the IBM Personal Computer. The user can
concurrently establish up to four 3270-type sessions
with possibly four different hosts (all sessions being
concurrent), two local notepad sessions, and one PC
DOS session.

From a cooperative processing perspective, the IBM
3270 PC addresses three distinct alternatives.

By utilizing its highly sophisticated window system,
the user can easily move information between any
of the 3270-type sessions and/or the notepad areas.
Thus, information that is being displayed by one
session may be moved to the display of another
session, without the modification of any host/work-
station application.

Explicit commands are provided for in the PC DOS
session to import (receive) and export (send) files
between the PC DOS session and the host session
(whether it is CMS, TSO, or CICS). The user learns a
single (albeit new) set of commands for the move-
ment of files irrespective of the host environment.
That is, the IBM 3270 PC does not require the user to
learn a new set of commands for file transfer (or
window data movement) for each different set of
host environments.

The IBM 3270 PC also provides the ability to establish
concurrent sessions with up to four different hosts.
This means that the user may be requesting heavy

IBM SYSTEMS JOURNAL, VOL 23, NO 3. 1%

computations or data-intensive activity to be per-
formed on four different systems, while running a
PC DOS application or while transferring data between
the PC and one of those sessions.

All these services are provided in a simple, easy-to-
use fashion. In fact, one of the authors learned to
use the workstation without use of manuals.

Both the X T ~ O and the 3270 PC offer a significant
stake in the ground in terms of providing a basis for
cooperative processing.

Future directions and summary

The following are the authors’ personal conjectures
as to research that might prove fruitful in the host-
workstation synergism. We have shown here the
beginnings of cooperation between workstations and
hosts. We can contemplate that a second stage might
be based on research into the following:

Establishing up to four concurrent 3270-type ses-
sions.
Issuing host commands from the native worksta-
tion environment as well as from any of the host
sessions.
Providing virtual diskette support for native ap-
plications.
Interchanging host files and local workstation files
transparently.
Supporting a local coprocessor, such as the Sys-
tern1370 in the ~ ~ 1 3 7 0 .

From the host perspective, one should not forget
CICS and its functional capability. Cooperative proc-
essing should grant a PC application access to the
host CICS application programmer’s interface, even
though CICS is not in the workstation. The implica-
tion of such an interface is that the PC application
would then have access to host DL/I, D B ~ data, and a
wealth of existing CICS applications. One could ex-
pect similar access through TSO to such subsystems
as on-line IMS DL/I and D B ~ , and SQL/DS from VM.
This would enable the PC application programmer
to issue calls to DL/] or D B ~ as though those subsys-
tems were running on the workstation. Clearly, such
interfaces are not geared for the novice PC program-
mer. Rather, they are oriented toward the more
advanced PC systems programmer.

One would expect the PC systems programmer to
utilize these cooperative processing interfaces in the

IBM SYSTEMS JOURNAL, VOC 23, NO 3, 1984

development of such ergonomically designed appli-
cations as spreadsheets and data base query.

Concerning the novice, hosts might grow toward the
development of generalized extract programs. Such
host programs would perform sophisticated host data
base requests and merely provide the workstation
with the end results to be incorporated into reports.

For the person who uses host systems (such as TSO
and CMS) interchangeably with the workstation en-
vironment, access to data in the different file systems
should be interchangeable. For example, consider
the person who has a significant investment in host
CMS files (such as reports prepared in SCRIPT format)
and who uses the IBM PC Personal Editor (PE). This
person would like to use PE to edit host files as
though those files were local files.

For host applications, it should similarly be possible
to access workstation data or simply use the work-
station printer for local output.

In the realm of presentation services (i.e., formats in
which data are presented for display), host subsys-
tems and applications should be able to take advan-
tage of the simple, easy-to-use presentation services
and windowing capabilities provided by the worksta-
tion.

In general, regardless of the cooperative processing
performed between workstation and host, one would
like the interface for service to be common and
invariant. Change of the host environment should
not affect workstation applications (causing different
versions) depending on whether a given subsystem
is available.

Furthermore, as both workstation applications and
cooperative processing subsystem interfaces for host
subsystems grow, we expect to see a need for greater
recovery control in the workstation to operate when
an application fails. If we are operating in a multi-
programming environment, we do not want the
failure of a single application to bring down all
others.

To summarize, cooperative processing is presenting
us with many benefits as well as renewed challenges.
The challenge of providing simple, easy-to-use inter-
faces is a continuing grand objective.

GOLDSTEIN ET AL 243

Acknowledgments

The authors are indebted to Lee Hoevel, Jean Vold-
man, and Lynn Trivett for their contributions lead-
ing to the design of the Virtual Service Interface
(VSI). Credits for the idealizations and implementa-
tions of the VSI are due also to Jon Bangs, Dan Casey,
George Case, Vini Cina, Lyle Haff, Hank Hamson,
Frank Kozuh, Larry Koved, Andy Pierce, Francis
Parr, Ray E. Rose, Thom Scrutchin, Dave Wherly,
and Barry Willner. For their refinement of the notion
of cooperative processing we express our gratitude
to Jim Cannavino, Don Gibson, Peter Hansen, Bill
Kleinbecker, Leonard Liu, Steve Stark, and Tom
Wheeler. Finally, we thank Gene Trivett for his
significant expertise in helping us shape the direction
cooperative processing might take.

Cited references

1. W. C. McGee, “The information management system IMS/

2. IBM Systems Journal 23, No. 2 (whole issue, 1984).
3. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.

Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lone,
P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B.
W. Wade, and V. Watson, “System R Architectural approach
to data base management,” ACM Transactions on Data Base
Systems 1, No. 2, 97-137 (June 1976).

VS,” IBM Systems Journal 16, No. 2, 84-168 (1977).

4. IBM Systems Journal 18, No. 1 (whole issue, 1979).
5. F. T. Kozuh, D. L. Livingston, and T. C. Spillman, “System/

370 capability in a desktop computer,” IBM Systems Journal
23, No. 3, 245-254 (1984, this issue).

6. B. C. Goldstein, G. Trivett, and I. Wladawsky-Berger, Distrib-
uted Processing in a Large Systems Environment, Research
Report RC-9027, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (1976).

7. A. L. Scherr, “Functional structure of IBM virtual storage
operating systems; Part 11: OS/VS2-2 concepts and philoso-
phies,” IBM Systems Journal 12, No. 4, 382-400 (1973).

8. J. A. Cannavino, B. C. Goldstein, and T. W. Scrutchin, “OS/
VS Release 2 job management structure,” Proceedings of
Guide 48 (May 1979); may be obtained from Guide Interna-
tional, l 1 l East Wacker Drive, Chicago, IL 6060 l .

9. MVS/XA: System Modijications, GC28-1152-1, IBM Corpo-
ration; available through IBM branch offices.

10. MVS Job Management, GC28-1303, IBM Corporation; avail-
able through IBM branch offices.

Reprint Order No. G32 1-522 I ,

search into the role of small systems in the realm of distributed
cooperating heterogeneous systems. Dr. Goldstein joined IBM in
1969. He received his B.S. degree in engineering sciences from
New York University and his MS. and Ph.D. degrees in computer
and information sciences from Syracuse University.

Andrew R. Heller IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Dr. Heller is an IBM Fellow and Director of Advanced
Technology Systems.

Franklin H. Moss IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218. Yorktown Heights, New York
10598. Dr. Moss joined IBM in November 1977 in a postdoctoral
assignment at the Israel Scientific Center, Haifa, Israel. He became
a Research Staff Member at the Research Center in January 1978.
In September of 1979 he became leader of the network architecture
project and was promoted to manager of the group in December
1979. He then assumed the position of manager of the Commu-
nications and Distributed Systems Department in June 198 1. He
has directed five research groups in the development of advanced
technology for distributed system and data communication prod-
ucts: SNA Network Architecture and Protocols, Communications
Subsystems, Communications Network Management, Distributed
Systems Software Technology, and Distributed Systems Organi-
zation. He currently has the position of manager of the Large
Systems Laboratory. He directs major efforts towards evolving
large systems (including both hardware and MVS and VM soft-
ware). In this position, his responsibilities include strategy plan-
ning, technical evaluation and guidance, technology transfer to
product development groups, and research personnel management
and development. Dr. Moss received his B.S.E. degree in aerospace
and mechanical sciences from Princeton University in 1971. He
received his S.M. and Ph.D. degrees in aeronautics and astronau-
tics from the Massachusetts Institute of Technology in 1972 and
1977, respectively.

Irving Wladawsky-Berger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598. As Director of Small Systems and Communications,
Dr. Wladawsky-Berger is responsible for technical strategy and
advanced products in workstations, minicomputers, communica-
tion networks, distributed systems, user interfaces, office applica-
tions, and software technology. He has had similar responsibilities
for large systems architecture, high-end operating systems, and
scientific computers. Dr. Wladawsky-Berger joined IBM in 1970.
He holds M.S. and Ph.D. degrees in physics from the University
of Chicago.

Barry C. Goldstein IBM Research Division, Thomas J. Watson
Research Center, P. 0. Box 218, Yorktown Heights, New York
10598. Dr. Goldstein is the department manager of the Worksta-
tion and Distributed Processing group in the Small Systems Lab-
oratory of the Computer Sciences Department. In this position,
his responsibilities include performing advanced technology re-

244 GOLDSTEIN ET AL IBM SYSTEMS JOURNAL, VOL 23, No 3, 19%

