
Ease of use: A system 
design  challenge 

by L. M. Branscomb 
J. C. Thomas 

While  it  is becoming  increasingly  obvious that the fun- 
damental architecture of a  system  has  a  profound  In- 
fluence  on the quality of  its human factors, the vast 
majority  of human factors studies  concern the surface 
of hardware (keyboards,  screens)  or the very surface 
of the software (command  names,  menu formats). In 
this paper, we discuss  human factors and  system ar- 
chitecture. We offer  best-guess  guidelines  for  what  a 
system  should be  like and  how it should be developed. 
In  addition, we suggest  ways  in  which  advances  in 
research  and  education  could  result  in  systems  with 
better  human factors. This paper is based on an ad- 
dress by L. M. Branscomb  and  a  publication by the 
authors  in the Proceedings of the IFIP 9th World Com- 
puter  Congress,  Paris,  France,  September  79-23, 1983. 

A s the  end users of computer  equipment  con- 
tinue  to diversify, the first claim on  the greater 

computing power that  improved microelectronics 
can provide must be that of making  computers easier 
to learn and easier to use. It takes a  smart  machine 
to serve a naive user well. Fortunately, technological 
progress is enabling programmers to  do things that 
previously would have been too costly. 

The personal computer, for example, has totally 
changed the  end user's perception of what constitutes 
an acceptable user interface and system behavior. 
Integrated systems combining word processing, fi- 
nancial analysis, graphics and  data  management 
functions, and windows that display different tasks 
simultaneously, are typical features of many inge- 
nious programs being written to help any motivated, 
intelligent person progress rapidly in accomplishing 
useful tasks. 

Despite the  current fascination with stand-alone per- 
sonal computers, however, the  future  undoubtedly 
lies closer to cooperative processing between intelli- 

gent workstations and central-site computers. To 
exploit the synergism that can result from taking 
both these machines and properly allocating tasks 
between them,  the burgeoning research in  human 
factors issues must  broaden its scope. 

Though  a significant number of questions  remain in 
the  area of hardware human factors, much is known. 
A body of knowledge also exists concerning such 
software issues as  the  structure of command  lan- 
guages, menus,  and  error messages. A perusal of the 
l i terat~re"~ confirms this focus, for the most part, 
on  the  important  but surface aspects of the user 
interface. 

Yet, anyone who has attempted to improve  the 
human factors of a  computer system by altering the 
surface structure after all the  fundamental architec- 
tural decisions have been made feels continuing frus- 
tration. We know that  the system architecture has 
significant and widespread implications for user- 
friendliness, but we know very little about how to 
make  fundamental  architectural decisions differently 
as  a result of an emphasis  on  human factors. Exten- 
sive study is needed to collect data for such decisions. 

The purpose of this paper is to begin laying the 
groundwork for that  study by focusing attention  on 
relevant issues in four areas. First, we provide our 
current best  guesses about what a system architecture 
should be like and offer guidelines for the system 

Copyright 1984 by International Business Machines Corporation. 
Copying  in printed form  for private use is permitted without 
payment of  royalty  provided that (1 )  each reproduction is done 
without alteration and (2) the Journal reference and IBM copyright 
notice are included on the first  page. The title and abstract, but no 
other portions, of this paper may be copied or distributed royalty 
free without further permission by computer-based and other 
information-service systems.  Permission to republish any other 
portion of this paper must be obtained from the Editor. 

224 BRANSCOMB AND THOMAS IBM  SYSTEMS JOURNAL, VOL 23, NO 3, 1984 



designer. Second, we suggest  how a new set of  soft- 
ware development tools could not only increase the 
productivity of the software development process, 
but also increase the likelihood of developing a sys- 
tem with good human factors. Third, we briefly point 
out some areas of fundamental and applied research 
that  are needed before we can  more adequately 
articulate the impact of architecture on ease of use. 
Fourth, we make some suggestions for changes in 
educational policy. 

Throughout this discussion, we attempt to go beyond 
the usual description of the  man-machine interface 
to look at some of the more fundamental questions 
about how computer systems ought to be conceived, 
in the first instance, so that they will be easier to use. 
Our concern here is not so much artificial intelli- 
gence-the task of building a computer  to reason as 
we imagine people do-but  what might be called 
artificial personality-how to make  the  computer 
behave the way  we want it to. 

What a system  architecture  should be  like 

People communicate  via,  not  with,  computer systems. 
Alphonse Chapanis, at  the  Johns  Hopkins Univer- 
sity, was perhaps the first to  point  out  that  the phrase 
“man-machine  communications” is  misleading. In- 
stead, as  he and others have  suggested, it may help 
to think of a terminal as a channel through which a 
user communicates with other  human beings-those 
who  designed and programmed the system and  put 
data in its memory. Some computer scientists, es- 
pecially those attempting  to build systems that ex- 
hibit artificial intelligence, find that view limiting. 

Certainly, in the engineering sense, people do com- 
municate with, as well as via, computers. But we 
believe it is counterproductive for systems designers 
to overlook obvious differences  between human 
beings communicating via a computer  and infor- 
mation transmission between two computers-be- 
tween computer  “thinking”  and  human thinking; 
between computer “goals” and  human goals. 

There need be nothing ontologically more mysteri- 
ous about helping people by incorporating relevant 
information in computer systems than there is about 
the process  whereby experts write textbooks. Con- 
sider John Seeley  Brown’s4  series  of tests that quickly 
determine what wrong algorithm a child is attempt- 
ing to use to solve math problems. Children taking 
these tests are, in a real sense, communicating with 
the  author of the tests. Similar diagnostic system 

IBM SYSTEMS XXIRNAL. VOL 23, NO 3, 1 9 8 4  

responses to  untrained users of computers could be 
a powerful help to people who want to learn by 
trying, or  are confused by the machine’s responses 
to their actions. 

The  computer  allows  us  to  apply 
human  communications expertise  to 
the  human  communication  process. 

Enhancing  the  human  communication  process. Elec- 
tronics allows us to communicate with people over 
long distances. Yet, as currently constituted, elec- 
tronic  communication takes place over a much nar- 
rower bandwidth than face-to-face communication 
allows. In addition,  the  communications system it- 
self often provides a less than obvious set  of com- 
mands, messages, protocols, and so on.  Human fac- 
tors research and experience are beginning to reduce 
the unnecessary glitches to  communications, and 
further reductions in the cost of technology will allow 
wider bandwidths as well. 

The power of the  computer, however,  offers the 
opportunity  to do far more than simply reduce the 
effective distance between people. The  computer 
allows us to apply human  communications expertise 
to  the  human  communication proce~s .~  Even the 
most casual observation reveals that  humans often 
have  difficulty in face-to-face communication. Some 
of these difficulties can be traced back to  human 
cognitive difficulties such as keeping track of multi- 
ple  goal contexts, holding to cognitive complexity, 
and clearly separating statements of  feeling from 
statements  about  the real world. 

In  today’s world, people are typically pursuing mul- 
tiple goals in various contexts, and a computer could 
help them deal with this complexity by providing 
goal reminders. A computer filter could search for 
terms  that  are likely to be oversimplifications in 
social contexts, such as “never,” “always,” and 
“should,” and could request clarification. A system 



could encourage a separate channel for the expres- 
sion of  feelings  if that is  agreed upon as appropriate. 
These aids might help people communicate more 
effectively. The point for architecture is that a system 
for person-to-person communication might well al- 

The  computer  may be partly 
responsible for the  information 

explosion,  but it can  offer  solutions. 

low the possibility of a third-party human arbitrator 
to help the communication process.  Analogously, 
there might be  access to code that performs some of 
an arbitrator’s functions. 

It may  also  be important for an electronic mail 
system to lend itself to highly interactive “chit-chat,” 
before “serious” information exchange  commences. 
Tests  have shown6 that the most rapid form of 
communication when  exchange of acquired knowl- 
edge  is attempted is in short, fragmented phrases of 
a few  words-highly redundant and highly interac- 
tive.  Also, a computer communication system  may 
seem threatening if the users are deprived of the 
occasion to socialize, to establish the needed  rela- 
tionship.’ 

If  we take as a premise the widespread  existence of 
computer networks, a number of interesting further 
possibilities  arise. The computer may  be partly  re- 
sponsible  for the information explosion, but it can 
also offer potential solutions. For example, it may 
be  possible-given a graphics,  video, and text  ter- 
minal with synthetic speech  output-for one human 
being to communicate thoughts much more quickly 
and completely to  another  human being.  Evidence 
already suggests that rapidly  presenting  words and 
pictures in the same place  may  allow  faster  reading 
than ordinary scanning. 

New ways of doing work. Once we postulate the 
existence of such  networks, we can  imagine that 

226 BRANSCOMB AND THOMAS 

people will  evolve  new kinds of organizations for 
doing work that take better account of the individual 
knowledge that people possess, as well as  differences 
in abilities and preferences. For example,  in  solving 
a problem requiring a creative solution, a group of 
people  may independently generate  ideas.  These  peo- 
ple  could be chosen  for their divergent thinking 
ability and, over large  networks,  they could be cho- 
sen  from  diverse cultural backgrounds. Indeed, they 
may  be  largely  self-selected. 

By asking  for  suggestions independently, the system 
could  avoid premature clashes  of opinion that might 
occur with  people of such diverse  backgrounds. The 
computer system could then automatically form the 
union of these suggestions and distribute it for an- 
other round of ideas. 

Once a set of ideas were generated, a different  set of 
people-ones particularly good at judgment- 
could be  polled independently for their evaluations. 
Such a process  would not be appropriate for  every 
case that requires creative thinking, but it illustrates 
just one of the ways’ that computer networking could 
allow  different  divisions of thought, labor, and com- 
munication patterns than could exist  in  face-to-face 
groups. 

In nearly  every  large organization, there are informal 
groups of people  with common interests, and there 
are also formal committees to solve  problems not 
covered by the hierarchical structure. Allowing such 
groups to communicate via computer networks  fo- 
cuses the composition and work product of such 
groups on those persons  with  relevant interests and 
expertise. Communication via computer networks 
also avoids irrelevant factors such as  geographical 
location or even  preference  for certain accents or 
physical appearances that merely  lowers the proba- 
bility  of  success. This is already happening in orga- 
nizations with  large open-ended, peer-connected net- 
works, such as the IBM worldwide VNET, which con- 
tains over 1000 host  processors in over 125 cities in 
some thirty countrie~.~ 

To the extent that networks-no  less than single- 
user  systems-exhibit  good human factors,  they will 
be  used  by people  with  relevant  expertise. If network 
structures constrain communication paths to the 
official organization chart of the enterprise, the result 
will  be to decrease the effectiveness  of the individuals 
in the enterprise. Organizations do not function in 
the way authority charts suggest. 

IBM SYSTEMS  JOURNAL, VOL 23, NO 3. 1W 



Architectural  guidelines 

To the  extent  that  arbitrary  and unwieldy conven- 
tions exist, the use  of computer facilities will be gated 
by expertise in knowing these conventions. It may 
at first  seem as though mandating a strict'  set  of 
standards for user interfaces should be done quickly. 
Unfortunately, however, we do not have enough 
knowledge about software human factors to  do this 
intelligently. The following sections do  not present 
proposals for standards  but rather best-guess  guide- 
lines that  are  to be thought of as tools of thought for 
designers and issues for research in human factors. 

Separate the user  interface. Perhaps the most im- 
portant architectural guideline, given our  current 
state of ignorance, is to separate as cleanly as possible 

Without  changing  the  logic of the 
system,  messages  should be 

translatable  into different languages. 

the user interface from the rest of the system so that 
future  improvements  can be made to the user inter- 
face  based on empirical data without requiring a 
complete rewrite. 

Imagine, for example, that  one is designing a system 
for helping office principals define problems. To the 
extent possible, one should define the interface as a 
set of states and transitions. Associated  with each 
state is a set of fundamental choices the user could 
make, each of which will take the user to a new state. 
Associated with the user's choice is a pointer to a list 
of  feedback  messages, and associated with the state 
is a state-message  list.  Associated  with each invalid 
response in a given state is an error-message list. 

Without changing the  fundamental logic  of the sys- 
tem,  the messages should be translatable into differ- 
ent languages.  Different interfaces should be ame- 
nable to experimentation by simply specifying the 
number of the item in the list that will  be displayed. 

Figure 1 Simplified  Audio  Distribution  System  transition 
table 

USER ACTION 

(KEY NO.) CALLED) 
RESPONSE (ROUTINE 

2 COSLINE 
3 NONE 
4 COSLINE 
5 COSLINE 
6 NONE 
7 COSLINE 
8 COSLINE 

STATE  TO WHICH SYSTEM 
CONTROL 
TRANSFERS NO. 

MESSAGE 
COMMENT 

TCUST 
TDISC 

XLIST LISTEN 
E M P N  UNDEFINED 
XRECD RECORD 
XXMIT 

Error message generator routines should have access 
to  the state as well as  the user's  response. If empirical 
observation later suggests that a single error message 
can cover a variety  of  cases, such as  the message 
"Syntax error  in line 20," the messages can be col- 
lapsed. 

It is also possible that experience with prototypes 
will reveal that certain user functions are really not 
useful. This should translate into certain states that 
are rarely  visited. In such cases, it may be decided to 
delete such states. With such a scheme, the interface 
state table itself should provide useful information 
to allow the programmer to delete such states easily 
while minimizing unnoticed side-effects. To a great 
extent, the IBM Audio Distribution System follows 
these principles.'0*'' The interface is defined as a set 
of states and transitions. (See Figure 1.) Associated 
with each state is a set of fundamental choices the 
user can make, each of  which takes him  to a new 
state. Associated  with the user's choice is a pointer 
to a feedback-message list, and associated with the 
state is a state-message list. 

During development, the system  was amenable to 
experimentation simply by changing the  numbers of 
the items on these lists.  Now, without changing the 
fundamental logic,  messages are easily translatable 
into different languages.  In addition, error messages 
that  are discovered to be confusing can easily be 
changed. 

Layered  interface. Various users  of nearly any system 
have different degrees of sophistication and experi- 
ence, and  the interface could reflect these differences. 
For example, suppose that a menu-driven interface 
may be necessary for the new or casual user, but  that 

IEM SYSTEMS JOURNAL, VOL 23, NO 3, 1984 



Figure 2 Customizing  the  Audio  Distribution System 

CHANGE PLAYBACK SPEED 
OF SYSTEM MESSAGES 

CUSTOMIZING ADS 

NORMAL 

MESSAGE 
RATE & 
SYSTEM 
VERSION 

CUSTOMIZE I 

SELECT VERSION 
THAT SUITS YOUR NEEDS 

a command-driven interface is better for a person 
who  uses a system  very often. Using the scheme 
outlined earlier in  this paper, one  can have a flag in 
each user’s  profile that indicates which interface is 
appropriate  to  that user. This indicator can be 
changed either by user choice or by an algorithm in 
the system  based on  the  number of interactions 
between  user and system. 

In addition  to having an interface with both com- 
mands  and  menus, there are  other ways in which the 
system can be different for different users. One  can 
also implement  a layered interface by having several 
groups of commands starting with a small group of 
useful and fairly intuitive commands. Initially, the 
user  need only be told about these. Later, the system 
can explain further branches. 

Some of the ideas outlined here are also imple- 
mented in the Audio Distribution System. In this 
system there are  both  command interfaces and 
menu-driven interfaces. Users can specify  which in- 
terface they prefer. The system  messages,  which in 
this case are  audio,  can be  played out  at different 
rates depending upon the user’s experience. (See 

228 BRANSCOMB  AND  THOMAS 

Figure 2.) Additional research along these lines has 
shown empirically the value of restricting the options 
available for new users.” 

Media translatability. In office systems for princi- 
pals, there are individual differences in the preferred 
type of media input  and  output. Some office princi- 
pals are  quite willing to type and can do so profi- 
ciently; others insist on handwritten input  or dictat- 
ing. The details of the user interface must be some- 
what different for these input media. 

Different output media also have implications for 
the user interface. For instance, messages that appear 
on a visual display unit should probably contain  the 
most informative part of the message  first to allow 
rapid scanning. However, if the  information is to be 
provided by synthetic speech, it is probably better to 
begin the message  with a more predictable preface 
that gives the listener time  to  “tune  in”  to  the possible 
endings of the sentence. 

As another example, it is quite reasonable to present 
twenty logically arranged menu items simultane- 
ously on a visual display. However, an  audio  menu 
of more  than three or four items becomes impossibly 
difficult to recall and use. 

The application programmer should not have to 
program in such a way that  the code dealing with 
these devices is intermixed with the code that deter- 
mines the logical structure of the application. Rather 
than specifying, for example, where on  the screen an 
item should appear,  the application programmer 
should only have to specify the relative importance 
of various kinds of information.  A separate part of 
the design should deal with the issue of  how to 
display various kinds of information, given the  par- 
ticular 110 devices currently being  used. 

Behavioral  observation hooks. Given our  current 
state of  knowledge, there is no way that  a designer 
can be guaranteed to know how a tool will ultimately 
be used. Therefore, it becomes extremely important 
for systems not only to reflect educated guesses about 
what a system should look like; it also becomes 
necessary for them to be easily modifiable. Even  if 
the design is exactly  right for today’s situations, 
tomorrow will be different, with a slightly different 
set of requirements. Therefore, it is  very important 
for the system to be adaptable. 

If the system is going to adapt, we must ask, “Adapt 
to what?” We hope that  the system will adapt  to  the 

IBM SYSTEMS JOURNAL,  VOL 23, NO 3, 1984 



needs and preferences of the users.  If this is to 
happen, however, there must be some facility for 
finding out what the users are doing. It would  be 
very  useful, therefore, at least in prototypes, and 
probably in products, to have the mechanisms avail- 
able for keeping track of general trends in user 
behavior. 

For example, if there is an on-line help system avail- 
able, it would be useful to know, for each help panel 

It is difficult  for  a  user  of several 
systems  to  recall  the  specific  name 

of a  particular  system. 

that is called, what happens next. Does the user turn 
offthe machine, use the asked-about command with- 
out error, ask for help on another item, or use the 
command  and make an error? Which  of the allow- 
able transitions between states does the user  really 
make use of? Are there menu items that  are simply 
never chosen? If so, one might question whether they 
really  need to be there for as-yet-unencountered 
emergencies or for symmetry. Of course, there is the 
possibility that unused menu items are simply mis- 
takes. One might question another design conse- 
quence. If it turns  out  that  one  tenth of the links in 
a network are used 95 percent of the  time  and they 
turn  out  to be the slowest, one must question 
whether this is a design accident, and whether the 
other five percent requires the higher speed. 

One may  buy a cheaper dedicated line for commu- 
nications, and this may seem  like a  tremendous 
savings.  But  what are the behavioral data? How often 
must people redial because a cheaper line is in use? 
How many additional telephone calls are missed? If 
one has such data,  one  can begin to calculate whether 
the added human cost  is worth the cheaper line 
rental. Having facilities in the system to collect  be- 
havioral measurements also makes possible better 
synonymity and adaptability. These properties are 
discussed next. 

IBM SYSTEMS  JOURNAL. VOL 23. NO 3. 1984 

Synonymity. In natural language, we can refer to  the 
same thing  in  many ways. It is very  difficult for a 
casual user or even an expert user of several systems 
to recall the specific name required in  a particular 
system. Quantitative  workL3 has shown that regard- 
less  of  how  well the  name for a  command or file is 
chosen, there is a low probability that someone else 
will spontaneously guess the same name (Le., ap- 
proximately 0.15). 

These investigations suggest a general synonym table 
as a means around this problem. When a user enters 
any  one of several names, the effect is the same. 
Using such a scheme over a wide variety of problems, 
a correct unique item is  picked about 75 percent of 
the  time. In the vast majority of the  other cases, a 
disambiguating menu could appear which  would 
consist typically of two to four items. 

Whenever an item is referred to frequently in a way 
not anticipated by the synonym table, behavioral 
recording facilities could automatically add  that item 
to  the table. 

A potential difficulty  with this approach is that users 
seem to assume a one-to-one mapping between 
names and functions. Breaking this mapping could 
have the effect of actually confusing the new user. A 
less drastic proposal might be to include all com- 
mand synonyms in the indices to  manuals  and  in 
on-line help systems with pointers to  the correct 
name. Thus users  who wanted to “stop”  or  “end”  a 
session could quickly discover that they were to use 
the LOGOFF command. 

Adaptability. Given that  one has the hooks in  the 
system for keeping track of the frequencies and 
sequences of events, one has not  only  the  data  that 
allow a more intelligent system  redesign by a  human 
being, but also the beginnings of  what  is  necessary 
for a system that  adapts itself to  the changing needs 
of its users. 

The system as it appears to the  user. Although it is 
difficult to specify in general terms what an architec- 
ture should be like internally, one  can make some 
further suggestions about how the interface should 
appear to the user in fundamental terms. 

Each  of the possibilities presented in  the following 
four sections must be taken as an other-things-being- 
equal suggestion. For example, if a system requires 
fast response time, the impact of allowing the user 
to back up  one level may be too great to be worth 
the increased ease  of correcting errors. 

BRANSCOMB AND THOMAS 229 



Home base. It is characteristic of human problem- 
solving  behavior,  in a wide  variety of contexts, that 
people often start over  when  given the chance. This 
is also true where  user  interfaces  allow it. For in- 

tribution System, and the IBM Personal Computer 
stance, the CHART Utility on GDDM, the Audio Dis- 

Commands  and  options  should  form 
logical,  coherent  gestalts. 

all  have the capability of starting over in a known 
state. In each instance, these  facilities are often  re- 
sorted to when a user  becomes  confused. 

Undo. An undo or back-up function (sometimes 
called “padded cell”) is  very  useful  for  two  reasons. 
Users  may inadvertently hit a wrong  key or otherwise 
make an error of which  they are immediately aware. 
Or else they  may  choose a command or menu item 
and not  realize until the indicated action is taken 
that it is not at all  what  they had expected on the 
basis  of the command name or the menu item 
description. For these  two situations, which are fairly 
common, it should be quite easy  for the user to back 
up. Even the fairly intuitive notion of undo  turns 
out, upon closer examination, to need considerable 
analysis and empirical re~earch.’~ 

No garden-pathing. Imagine a system  with  which 
you  are trying to send a message to someone. The 
system  first  asks  you  for the recipient’s ID. It then 
asks  you to type in your message. Then the system 
asks  you to confirm that you  really  want to send this 
message. Only after all that does the system  tell  you 
that the user  specified does not exist on the system 
(and, by the way, it erases your message). This is 
leading the user  down the garden path. 

Although it may  be  easier  for the programmer to do 
all error checks at the end of some transaction, it is 
more sensible  in  most interactive systems-particu- 
larly  where there is a fairly  large  probability  of  user 
error-to  check  each  user input as it is  given. 

Commands into structures. Commands and options 
should form.logica1, coherent gestalts.  Work by sev- 
eral inve~tigators’~ indicates that command func- 
tions and the names given them should be reasonably 
predictable. One example of unpredictability is a 
system  where  mail  is sent by typing SEND, but the 
command to send a message  is MESSAGE (Unless the 
recipient is on  another node,  in  which  case it is 
RMESSAGE). Some query commands on the same 
system are even  less consistent: either Q T or QT to 
learn the time, Q FILES (but not QFILES) to query files, 
and ARCV Q to learn what is in  archival  storage. 

Architectural considerations  based on basic  human 
capabilities. In addition to the suggestions just given 
about how a computer system should be internally 
and how it should look to the user, a consideration 
of the basic capacities of human beings offers further 
suggestions  for computer architecture. 

Of course, an actual computer system must also  be 
designed  with  costs  in mind. A system that costs so 
much that no one can buy it is not well  designed  for 
human factors. Therefore, the following  suggestions 
as to what the ideal computer system  might  be  like 
must be tempered with the realization of what  is 
currently practical. 

One of the fundamental principles of human infor- 
mation processing  which  has not been  capitalized 
upon is that people can input and  output more 
information when that information comes in and 
goes out over more sensory channels. The more 
separate dimensions there are available-for exam- 
ple, in a mixed  audio-visual display-the more in- 
formation a person can perceive.  Similarly,  people 
can communicate more information if they are able 
to use facial, hand, and body  muscles as well as their 
vocal  muscles  for output. 

Purely  from the point of view  of maximizing human 
performance, regardless of system  cost,  all  systems 
today limit too severely the number of  ways that 
information may  be  provided to the person and the 
number of  ways that the person can provide infor- 
mation to the system. 

A second  basic principle that is too often  ignored in 
system  design  is that people are generally error- 
prone. Further, to avoid error by slowing down 
requires successively  larger  slow-downs  for  small ad- 
ditional gains in accuracy. 

People  can  be  very  fast at being approximately ac- 
curate and are painfully slow at being  exactly accu- 

IBM SYSTEMS JOURNAL. VOL 23, NO 3, 1984 



rate. (This explains much of the superiority of a good 
word processor over a typewriter.) There are, of 
course, times when one  must be very accurate, but 
theoretically, a user could transmit  a larger amount 
of information  to  a  computer if the system  were 
designed to allow greater speed and less accuracy. 

One example of planning for error is in  an infor- 
mation retrieval system. If  we require the user to 
specify exactly certain fields  of information about  a 
required document  to be retrieved, it may take an 
exceptionally long time for the user to recall all the 
parameters accurately. Suppose we allow an almost- 
equal type of  facility, in which the user can specify 
what he  recalls about  a  document immediately. Then 
the system retrieves further  information  about pos- 
sible candidate  documents and displays them.  Thus 
the person can quickly home in on the exact docu- 
ment desired. Other examples are  the concepts of 
the word processor and  the erasing typewriter. 

Development process 

Apart from our suggestions  of  what the architecture 
of a system should be, we also suggest that  the 
development process has a great influence on  the 
quality of the  human factors of the resulting system. 
The way to encourage architects of a  computer sys- 
tem (and  the implementers, documenters, and 
testers) to make reasonable decisions is to embed 
into  the development process a set of tools that meet 
the following criteria: 

Make the developer’s job easier. 
Ensure consistency of viewpoint, definitions, and 
conventions across developers. 
Lead the developer implicitly to use any best-guess 
guidelines unless they are explicitly overridden. 
Provide for temporal integration of the develop- 
ment process from architecting to implementing, 
to documenting,  to simulating or prototyping, to 
end-user testing, to field testing. 

Design tools. What should such design tools look 
like? First, they would  lead the designer through a 
design  process that would begin by forcing the de- 
signer to consider questions that  are key to ease  of 
use. For example, the tools may begin by asking the 
designer to define the classes  of  users that  the system 
will ultimately serve, the users’ tasks, specifications 
of tasks that have  been analyzed in detail, and ad- 
ditional studies required. 

IBM SYSTEMS JOURNAL. VOL 23. NO 3, 1994 

Let us suppose that  one type of task we are interested 
in is that of supporting office principals in storing 
and retrieving documents. Designers could be  asked 

We  should ask  the  designer  the 
user’s  goals for document storage 

and  retrieval. 

a structured series  of questions that  prompt them to 
specify their ideas and  data  about how office princi- 
pals do, in fact, now store and retrieve documents; 
how they can do this best,  given their goals and what 
we know of human capabilities; and how the system 
intends to move users from their current mode of 
doing things to  the theoretical optimal mode. 

Going deeper into  the decision hierarchy, we would 
ask the designer what the user’s  goals for a  document 
storage and retrieval process are, and how the de- 
signer knows this. The designer could proceed with- 
out  any empirical basis for saying  what the user’s 
goals are, but  the system should force him to be 
aware that  that is what he  is doing. If the designer 
decides that it would be better to know the user’s 
goals but is unable to provide any empirical basis for 
stating them,  the design  system should be able to 
suggest methods of collecting such data  and  to re- 
trieve relevant background data  that already exist. 

A designer  of a retrieval system, for example, should 
be reminded by the system that for a literary refer- 
ence, people do not generally remember the exact 
date  and often do not know the correct spelling  of 
the author’s name, but they are likely to have partial 
knowledge of each one. This tells the designer that  a 
user should be able to provide some  data  about  a 
number of descriptors of a desired document so that 
the system can do a best  fit to  the incomplete criteria 
from among  the stored documents. 

This consideration suggests a number of interesting 
problems in system design. Perhaps, if fast retrieval 
is vital, a large storage capability is desirable, in 
which documents  are held in secondary storage, 
while primary storage contains  a set of parameters 

BRANSCOMB AND THOMAS 231 



232 

and  a verbal description for each document.  Then  a 
preliminary match for the “nearest neighbors” to  the 
document as specified by the user can retrieve the 
textual descriptions of those documents (including 
the author’s name, exact title, date, topic, etc.) for 
menu selection by the user. 

Meanwhile, all these near-neighbor documents  can 
be moving from secondary to primary storage so that 
once the user  selects one, it can quickly be displayed. 
If the choice of one of these documents is confirmed, 
related documents (those by the same author  or  on 
the same topic) can begin moving from secondary 
to primary storage, based on  the high probability 
that they will  be asked for next. 

The point is not  that such a system  design decision 
is the right one. Rather, it is that  the system design 
tools should force the designer to  think  about such 
issues, examine whether empirical data  are available, 
encourage the collection of data, provide a  number 
of design  suggestions, and  then allow the designer to 
make  a choice. Such a system design tool requires 
only current technology. The tool need not  make 
any design decisions, but merely serve as  a structured 
reminder and organizer. 

Evolutionary systems. While much  can be done  to 
induce the designer to pay attention  to  human fac- 
tors, it can be argued that in a very real sense we 
have not yet reached the point in the evolution of 
computer systems where complex systems are de- 
signed from scratch. A more accurate characteriza- 
tion would  be that they evolve, which seems to be a 
term that  J. Christopher Jones16 would apply. This 
is not necessarily a bad thing, but we should be aware 
of the world as it is at  the same time we try to make 
it a more rational one. 

In some cases, evolutionary systems have proved 
quite effective,  e.g., the IBM internal VNET network 
mentioned earlier. VNET began in a “bottom-up’’ 
way when two laboratories working on  a  joint project 
needed to exchange data. Soon other related sites 
were added, until nearly all IBM scientific and engi- 
neering locations worldwide are now part of it. 

No one designed VNET from the beginning. Various 
users of the system designed various facilities and 
pieces. Some facilities are used, and they flourish. In 
other cases, someone built a  function, offered  it to 
the  community,  and no one used it. Many problems 
associated with designing for ease of use are avoided 
when the users build the system. On the  other  hand, 

BRANSCOMB  AND  THOMAS 

this evolutionary approach  can result in inconsis- 
tencies. If they prove severe enough to  the users, 
even inconsistencies can be ironed out. 

One  can imagine an extension of a system like VNET 
to  an entire society in which individuals or groups 

Organizational,  sociological,  and 
managerial  issues  become 

intertwined with issues of system 
design. 

of users could propose software facilities in return 
for using the software or hardware of others. Royalty 
credits could be paid on  the basis  of  use, and people 
could use the network itself to solicit requirements 
from other subgroups, conduct experiments, ask for 
advice, and advertise potential services. 

We are  not recommending any particular system 
structure here, but merely trying to point out  that as 
networks become more powerful, the organizational, 
sociological, and managerial issues become more 
deeply intertwined with  issues  of  system  design. The 
more general point to be made once again is that 
systems must be designed with the knowledge that 
they will evolve. One happy trend in this direction 
is the emphasis in teaching programmers to  put  a 
top priority on writing structured, readable code, 
rather than minimizing storage and execution speed 
at the expense of making a house-of-cards type of 
system. 

Areas of needed research 

Architecting for ease of  use could benefit from basic 
research  in  several areas. A primary difficulty in 
producing a friendly system is that  one  cannot really 
predict ease of use without controlled experiments 
involving actual use  by representative end users. 

There are a  number of analytic approaches that  are 
relevant to predicting whether an interface is  difficult 
to use. One of these approaches is  Halstead’s software 
science metrics. Halstead’s  basic idea was to judge 

IBM  SYSTEMS JOURNAL,  VOL 23, NO 3. 1 9 8 4  



the complexity of a program, based on  the  numbers 
of unique operators and operands and  the total 
number of operators and operands. When applied to 
programs varying greatly in total complexity, such 
metrics have a good correlation with time required 
and errors.” Halstead was beginning to extend his 
work to predicting the ease of  use  of 

A second approach with the same goals in  mind is 
being pursued by Phyllis Reisner at IBM San Jose 
Research.*’ In her approach, an interface is  specified 
in  terms of a Backus-Normal Form (BNF) description 

Many  simple  natural  language 
statements  form  complex  queries 

and  data  base  operations. 

of the  grammar  the user needs to know in order to 
use the interface. Further research could extend these 
approaches and  determine their practical utility. 

Protocols of users have been analyzed at  the IBM 
Thomas  J. Watson Research Center in Yorktown 
Heights, New York, and  a  number of fundamental 
cognitive problems in learning to use  new computer 
systems have been identified.21 

In addition to this research in cognitive science, more 
research  is needed in several areas of computer sci- 
ence and  computational linguistics. One such area 
involves techniques allowing the use  of natural lan- 
guages for interaction with a  computer. 

Many seemingly simple natural language statements 
turn  out  to be rather complex in terms of the corre- 
sponding statements in a formal query language and 
the  data base operations required.22 Consider the 
example query, “Which employees do not have a 
car?” A system not geared to that query would  first 
have to find all employees and all curs, match them 
to identify owners of curs, and then subtract the 
owners from all employees. An inexperienced user 
might well have  difficulty  in so formalizing even this 
simple inquiry. 

It also seems clear that systems need to be adaptive 
in several other ways: adaptive to particular users, 
adaptive to  the same user over time, adaptive to  the 
changmg needs of the organization, and adaptive to 
changes in the hardware and software functions 
available on a system. Yet, how do we make systems 
that adapt? 

Some excellent research has been done, for instance, 
in making a checker-playing system that learned to 
play better checkers through analyzing its experi- 
e n ~ e . ’ ~  And  work has been done on trying to emulate 
some of the sophisticated genetic mechanisms for 
adaptation known to  the biologist. 

Further research remains to be done  on how to apply 
these and  other ideas in  an actual operating system. 
One could envision adaptive staging algorithms that 
might look at particular users and  their tasks to 
discover whether they have patterns of data use that 
would justify modifying the staging algorithms, given 
those conditions. 

It was suggested by Carroll and Thomas24  that met- 
aphors are very  useful as design guidelines. To the 
extent that  a system can be explained to new users 
in terms of things that  the user  is already familiar 
with, the system will  be more readily comprehended. 
Subsequent research has demonstrated  the strength 
of metaphorical knowledge. One experimental sub- 
ject, for example, in learning to use a text editor was 
explicitly instructed that  one  must backspace to 
erase.  After reading this, the subject refused to try it, 
saying that backspacing does not erase. The subject 
tried several other actions before  finally resorting to 
the backspace. Perhaps the classic example is the 
ambiguity of a word processor key with a vertical 
arrow that was disambiguated in instructions by the 
words “scroll” or “window.” Yet it is rare that either 
of these words appears on  a key. 

Suggestions for education 

However  good the tools of the developer, and how- 
ever much is known about how to design an easy- 
to-use system, for some  time  into  the future there 
will be a considerable amount of art involved in 
designing a user-friendly system. Furthermore, de- 
cisions affecting  ease  of  use will be influenced by a 
great many different people. For this reason, it will 
be  very important for every programmer, architect, 
and  documentation writer to have some appreciation 
of human factors as a research and design discipline. 
Yet most computer science and programming cur- 
ricula fail in several  ways. 

BRANSCOMB AND THOMAS 233 IBM SYSTEMS JOURNAL, VOL 23, NO 3, 19@4 



There is  rarely any explicit requirement for any 
courses on  human factors or basic  psychology. It is 
quite possible for a person to earn a Ph.D. in com- 
puter science, anticipating a lifetime career building 
tools for human beings to use, by spending several 
years learning how computers work, and yet no time 
learning how human beings  work. Furthermore,  the 
examples used in  computer science courses generally 
do not  make an explicit point about  the  importance 
of human factors, nor do they even implicitly dem- 
onstrate good human factors. 

To the  extent  that  artistic,  musical, 
and  literary  people  are  computer- 

literate,  the  medium  itself will reflect 
the  wide  range  of  human 

experience. 

We suggest that textbooks and courses on system 
architecture specifically ask the  student to consider 
the users and their tasks before designing the system. 
We also suggest that these textbooks point out  the 
importance of human factors and illustrate good 
human factors in the examples. 

The  other side of the coin is that  the texture of the 
computer  communication tools of the future will 
depend upon  the people who design and use them. 
To the extent that artistic, musical, and literary 
people are computer-literate and make use of this 
new medium,  the  medium itself will reflect !the wide 

educational system isolates such people from com- 
puters, so will the  medium lack those qualities. To 
the extent that everyone is capable of participating 
in communicating via computer, we  will have the 
possibility  of a more democratic society. 

Several  of our universities (e.g., Camegis-Mellon 
University, Massachusetts Institute of Technology, 
and Brown University) are now  engaged in rather 
wide-scale experiments with  networks. This is being 
encouraged by industry and government. In fact, the 
universities are probably ahead of industry and busi- 

I range of human experience. To the  extent:  that  the 

234 BRANSCOMB AN0 THOMAS 

ness in peer open-ended human networking. This 
gives them an obligation to  structure their activity 
and research so that they make a real scholarly 
contribution  to this issue in the broadest context. 

Cited  references 

1. B. Schneiderman, Software Psychology, Winthrop Publishers, 
Inc., Cambridge, MA (1980). 

2. Conference Proceedings, Human Factors in Computer Sys- 
tems, Gaithersburg, MD, March 1982, Institute for Computer 
Science and Technology, National Bureau  of Standards, 
Washington, DC (1982). 

3. S. K. Card, T. P. Moran, and A.  Newell, The Psychology of 
Human-Computer Interaction, Lawrence Erlbaum Associates, 
Inc., Hillsdale,  NJ (1983). 

4. J. S. Brown and R. B. Burton, “Diagnostic models  for  proce- 
dural bugs in basic mathematical skills,” Cognitive Science 2, 

5 .  J. C. Thomas, “The computer as  an active communication 
medium,” Proceedings of the Conference, Annual Meeting  of 
the Association  for Computational Linguistics, Philadelphia 
(June 1980). 

6. A. Chapanis, “Prelude to 2001: explorations in human com- 
munication,” American Psychologist 26, 949-96 1 ( 1  97 I). 

7. L. M. Branscomb, “Information: the ultimate frontier,” Sci- 
ence 203, 143-  147 ( 1980). 

8. S .  R. Hiltz and M. Turoff, The Network Nation: Human 
Communication Via Computer, Addison-Wesley  Publishing 
Co., Reading, MA (1978). 

9. L. M. Branscomb, “Bringing computing to people: the broad- 
ening challenge,” Computer 5, No. 7, 68-75 (1982). 

IO. J. T. Richards and S. J. Boies, “The IBM audio distribution 
system,” Proceedings, IEEE MIDCON Conference, Chicago, 
IL, November 10-12, I98 I ,  IEEE  Service Center, 445 Hoes 
Lane, Piscataway, NJ 08854 (1981). 

1 1. J. D. Could  and S. J. Boies,  “Speech  filing-An  office  system 
for principals,” IBMSystems Journal 23, No. I ,  65-81 (1984). 

12. J. M. Carroll and C. Camthers, “Training wheels on a user 
interface,” to be published  in ACM  Communications (1984). 

13. G. W. Furnas, T. K. Landauer, L.  M. Gomez, and S. T. 
Dumais, “Statistical semantics:  analysis of the potential per- 
formance of  keyword information systems,” Human Factors 
and Computer Systems, J. C. Thomas and M. Schneider, 
Editors,  Ablex Publishing Corporation, Nonvood, NJ (1984). 

14. G. B. Leeman, A Formal Approach to Undo Operations in 
Programming Languages, Research Report RC-103 IO,  IBM 
Thomas J. Watson  Research Center, Yorktown  Heights,  NY 
10598 (1984). 

15. J. M. Carroll, Learning, Using and Designing Command 
Paradigms, Research Report RC-8 I4 I ,  IBM Thomas J. Wat- 
son  Research Center, Yorktown Heights, NY 10598 (1980). 

16. J. C. Jones, Design Methods, John Wiley & Sons, Inc., London 
(1970). 

17. J.  M. Halstead, Elements of Software Science, Elsevier  Science 
Publishing Company, Inc., New York (1977). 

18. J. M. Halstead, personal communication ( 1  977). 
19. J. C. Thomas, “Psychological  issues  in the design  of database 

query languages,” Designing for Human-Computer Comrnu- 
nication, M. S. Sime, Editor, Academic  Press, Inc., London 
(1983). 

20. P. Reisner, “Formal grammar and human factors  design of  an 
interactive graphics system,” IEEE Transactions on Software 
Engineering SE-7, No. 2, 229-240 (1981). 

155-192 (1978). 

BM SYSTEMS JOURNAL, VOL 23, NO 3, 1984 



21. R. L. Mack, C. H. Lewis, and J. M. Carroll, "Learning to use 
word  processors: problems and prospects," to be  published in 
ACM Transaclions on Ofice Information Systems. 

22. H. Lehmann, "Interpretation of natural language in an infor- 
mation system," IBM  Journal of Research and Development 

23. A. L. Samuel, "Some studies in machine learning using the 
game  of  checkers. 11-Recent progress," IBM Journal  of Re- 
search and Development 11, No. 6, 601-617 (1967). 

24. J. M. Carroll and J. C. Thomas, "Metaphor and  the cognitive 
representation of computing systems," IEEE Transactions on 
Systems, Man, and Cybernetics SMC-12, No. 2, 107-116 
(1982). 

22, NO. 5, 560-572 (1978). 

Reprint Order No. G321-5220. 

Lewis M. Branscomb IBM Corporate Headquarters, Armonk, 
New  York 10504. Dr. Branscomb is vice president and chief 
scientist of  IBM and a member of the Corporate Management 
Board. A research  physicist,  he  was appointed by President Carter 
to the National Science  Board in 1979 and has been its chairman 
since 1980. Prior to joining IBM in 1972, Dr. Branscomb was 
director of the National Bureau of Standards. He joined the Bureau 
in 195 I ,  served as chief of the NBS Atomic Physics  Division, and 
was co-founder and chairman of the Joint Institute for Laboratory 
Astrophysics at the University  of Colorado before  his appointment 
as director of NBS in 1969. Dr. Branscomb graduated from Duke 
University in 1945 and earned his  M.S. and Ph.D. degrees in 
physics at Harvard University in 1947 and 1949. A member of the 
National Academies  of  Sciences,  Engineering, and Public Admin- 
istration, and a former president of the American Physical  Society, 
he has served on numerous boards and commissions concerned 
with  science and public policy. 

John C. Thomas IBM  Research Division, Thomas J. Watson 
Research Center, P. 0. Box 218, Yorktown Heights, New York 
10598. Dr. Thomas joined IBM in 1973. He currently manages 
the Remote Information Access  Systems group, whose  goals are 
to produce high quality text-to-speech conversion and  to study 
applications of  speech  synthesis. He spent two  years on  the staff of 
the IBM Chief  Scientist, Dr. Lewis M.  Branscomb. Prior to that 
assignment, Dr. Thomas was a Research  Staff Member studying 
the human factors of  design,  Query-by-Example, and the Audio 
Distribution System.  Before joining IBM, Dr. Thomas managed a 
National Institute of Mental Health grant on  the psychology  of 
aging at the Harvard Medical School. He is a licensed  psychologist 
and has over  sixty  professional papers and presentations in  psy- 
chology to his credit. He  received  his  B.A.  degree  from  Case- 
Western  Reserve  University and his Ph.D. from the University  of 
Michigan. Dr. Thomas is a Fellow  of the Institute for Rational- 
Emotive Therapy and an adjunct full  professor at Pace  University. 

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984 BRANSCOMB AND MOMAS 235 


