Ease of use: A system
design challenge

While it is becoming increasingly obvious that the fun-
damental architecture of a system has a profound in-
fluence on the quality of its human factors, the vast
majority of human factors studies concern the surface
of hardware (keyboards, screens) or the very surface
of the software (command names, menu formats). In
this paper, we discuss human factors and system ar-
chitecture. We offer best-guess guidelines for what a
system should be like and how it should be developed.
In addition, we suggest ways in which advances in
research and education could result in systems with
better human factors. This paper is based on an ad-
dress by L. M. Branscomb and a publication by the
authors in the Proceedings of the IFIP 9th World Com-
puter Congress, Paris, France, September 19-23, 1983.

As the end users of computer equipment con-
tinue to diversify, the first claim on the greater
computing power that improved microelectronics
can provide must be that of making computers easier
to learn and easier to use. It takes a smart machine
to serve a naive user well. Fortunately, technological
progress is enabling programmers to do things that
previously would have been too costly.

The personal computer, for example, has totally
changed the end user’s perception of what constitutes
an acceptable user interface and system behavior.
Integrated systems combining word processing, fi-
nancial analysis, graphics and data management
functions, and windows that display different tasks
simultaneously, are typical features of many inge-
nious programs being written to help any motivated,
intelligent person progress rapidly in accomplishing
useful tasks.

Despite the current fascination with stand-alone per-
sonal computers, however, the future undoubtedly
lies closer to cooperative processing between intelli-

224 BRaNSCOMB AND THOMAS

by L. M. Branscomb
J. C. Thomas

gent workstations and central-site computers. To
exploit the synergism that can result from taking
both these machines and properly allocating tasks
between them, the burgeoning research in human
factors issues must broaden its scope.

Though a significant number of questions remain in
the area of hardware human factors, much is known.
A body of knowledge also exists concerning such
software issues as the structure of command lan-
guages, menus, and error messages. A perusal of the
literature'~> confirms this focus, for the most part,
on the important but surface aspects of the user
interface.

Yet, anyone who has attempted to improve the
human factors of a computer system by altering the
surface structure after all the fundamental architec-
tural decisions have been made feels continuing frus-
tration. We know that the system architecture has
significant and widespread implications for user-
friendliness, but we know very little about how to
make fundamental architectural decisions differently
as a result of an emphasis on human factors. Exten-
sive study is needed to collect data for such decisions.

The purpose of this paper is to begin laying the
groundwork for that study by focusing attention on
relevant issues in four areas. First, we provide our
current best guesses about what a system architecture
should be like and offer guidelines for the system

© Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984




designer. Second, we suggest how a new set of soft-
ware development tools could not only increase the
productivity of the software development process,
but also increase the likelihood of developing a sys-
tem with good human factors. Third, we briefly point
out some areas of fundamental and applied research
that are needed before we can more adequately
articulate the impact of architecture on ease of use.
Fourth, we make some suggestions for changes in
educational policy.

Throughout this discussion, we attempt to go beyond
the usual description of the man-machine interface
to look at some of the more fundamental questions
about how computer systems ought to be conceived,
in the first instance, so that they will be easier to use.
Our concern here is not so much artificial intelli-
gence—the task of building a computer to reason as
we imagine people do—but what might be called
artificial personality—how to make the computer
behave the way we want it to.

What a system architecture should be like

People communicate via, not with, computer systems.
Alphonse Chapanis, at the Johns Hopkins Univer-
sity, was perhaps the first to point out that the phrase
“man-machine communications” is misleading. In-
stead, as he and others have suggested, it may help
to think of a terminal as a channel through which a
user communicates with other human beings—those
who designed and programmed the system and put
data in its memory. Some computer scientists, es-
pecially those attempting to build systems that ex-
hibit artificial intelligence, find that view limiting,.

Certainly, in the engineering sense, people do com-
municate with, as well as via, computers. But we
believe it is counterproductive for systems designers
to overlook obvious differences between human
beings communicating via a computer and infor-
mation transmission between two computers—be-
tween computer “thinking” and human thinking;
between computer “goals” and human goals.

There need be nothing ontologically more mysteri-
ous about helping people by incorporating relevant
information in computer systems than there is about
the process whereby experts write textbooks. Con-
sider John Seeley Brown’s* series of tests that quickly
determine what wrong algorithm a child is attempt-
ing to use to solve math problems. Children taking
these tests are, in a real sense, communicating with
the author of the tests. Similar diagnostic system

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

responses to untrained users of computers could be
a powerful help to people who want to learn by
trying, or are confused by the machine’s responses
to their actions.

The computer allows us to apply
human communications expertise to
the human communication process.

Enhancing the human communication process. Elec-
tronics allows us to communicate with people over
long distances. Yet, as currently constituted, elec-
tronic communication takes place over a much nar-
rower bandwidth than face-to-face communication
allows. In addition, the communications system it-
self often provides a less than obvious set of com-
mands, messages, protocols, and so on. Human fac-
tors research and experience are beginning to reduce
the unnecessary glitches to communications, and
further reductions in the cost of technology will allow
wider bandwidths as well.

The power of the computer, however, offers the
opportunity to do far more than simply reduce the
effective distance between people. The computer
allows us to apply human communications expertise
to the human communication process.’ Even the
most casual observation reveals that humans often
have difficulty in face-to-face communication. Some
of these difficulties can be traced back to human
cognitive difficulties such as keeping track of multi-
ple goal contexts, holding to cognitive complexity,
and clearly separating statements of feeling from
statements about the real world.

In today’s world, people are typically pursuing mul-
tiple goals in various contexts, and a computer could
help them deal with this complexity by providing
goal reminders. A computer filter could search for
terms that are likely to be oversimplifications in
social contexts, such as “never,” “always,” and
“should,” and could request clarification. A system

BRANSCOMB AND THOMAS 925




could encourage a separate channel for the expres-
sion of feelings if that is agreed upon as appropriate.
These aids might help people communicate more
effectively. The point for architecture is that a system
for person-to-person communication might well al-

The computer may be partly
responsible for the information
explosion, but it can offer solutions.

low the possibility of a third-party human arbitrator
to help the communication process. Analogously,
there might be access to code that performs some of
an arbitrator’s functions.

It may also be important for an electronic mail
system to lend itself to highly interactive “chit-chat,”
before “serious” information exchange commences.
Tests have shown® that the most rapid form of
communication when exchange of acquired knowl-
edge is attempted is in short, fragmented phrases of
a few words—highly redundant and highly interac-
tive. Also, a computer communication system may
seem threatening if the users are deprived of the
occasion to socialize, to establish the needed rela-
tionship.”

If we take as a premise the widespread existence of
computer networks, a number of interesting further
possibilities arise. The computer may be partly re-
sponsible for the information explosion, but it can
also offer potential solutions. For example, it may
be possible—given a graphics, video, and text ter-
minal with synthetic speech output—for one human
being to communicate thoughts much more quickly
and completely to another human being. Evidence
already suggests that rapidly presenting words and
pictures in the same place may allow faster reading
than ordinary scanning.

New ways of doing work. Once we postulate the
existence of such networks, we can imagine that

226 BRANSCOMB AND THOMAS

people will evolve new kinds of organizations for
doing work that take better account of the individual
knowledge that people possess, as well as differences
in abilities and preferences. For example, in solving
a problem requiring a creative solution, a group of
people may independently generate ideas. These peo-
ple could be chosen for their divergent thinking
ability and, over large networks, they could be cho-
sen from diverse cultural backgrounds. Indeed, they
may be largely self-selected.

By asking for suggestions independently, the system
could avoid premature clashes of opinion that might
occur with people of such diverse backgrounds. The
computer system could then automatically form the
union of these suggestions and distribute it for an-
other round of ideas.

Once a set of ideas were generated, a different set of
people—ones particularly good at judgment—
could be polled independently for their evaluations.
Such a process would not be appropriate for every
case that requires creative thinking, but it illustrates
just one of the ways® that computer networking could
allow different divisions of thought, labor, and com-
munication patterns than could exist in face-to-face
groups.

In nearly every large organization, there are informal
groups of people with common interests, and there
are also formal committees to solve problems not
covered by the hierarchical structure. Allowing such
groups to communicate via computer networks fo-
cuses the composition and work product of such
groups on those persons with relevant interests and
expertise. Communication via computer networks
also avoids irrelevant factors such as geographical
location or even preference for certain accents or
physical appearances that merely lowers the proba-
bility of success. This is already happening in orga-
nizations with large open-ended, peer-connected net-
works, such as the 1BM worldwide vNET, which con-
tains over 1000 host processors in over 125 cities in
some thirty countries.’

To the extent that networks—no less than single-
user systems—exhibit good human factors, they will
be used by people with relevant expertise. If network
structures constrain communication paths 1o the
official organization chart of the enterprise, the result
will be to decrease the effectiveness of the individuals
in the enterprise. Organizations do not function in
the way authority charts suggest.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984




Architectural guidelines

To the extent that arbitrary and unwieldy conven-
tions exist, the use of computer facilities will be gated
by expertise in knowing these conventions. It may
at first seem as though mandating a strict set of
standards for user interfaces should be done quickly.
Unfortunately, however, we do not have enough
knowledge about software human factors to do this
intelligently. The following sections do not present
proposals for standards but rather best-guess guide-
lines that are to be thought of as tools of thought for
designers and issues for research in human factors.

Separate the user interface. Perhaps the most im-

portant architectural guideline, given our current
state of ignorance, is to separate as cleanly as possible

Without changing the logic of the
system, messages should be
translatable into different languages.

the user interface from the rest of the system so that
future improvements can be made to the user inter-
face based on empirical data without requiring a
complete rewrite.

Imagine, for example, that one is designing a system
for helping office principals define problems. To the
extent possible, one should define the interface as a
set of states and transitions. Associated with each
state is a set of fundamental choices the user could
make, each of which will take the user to a new state.
Associated with the user’s choice is a pointer to a list
of feedback messages, and associated with the state
is a state-message list. Associated with each invalid
response in a given state is an error-message list.

Without changing the fundamental logic of the sys-
tem, the messages should be translatable into differ-
ent languages. Different interfaces should be ame-
nable to experimentation by simply specifying the
number of the item in the list that will be displayed.

1BM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

Figure 1 Simplified Audio Distribution System transition
table

LS]MPLIFIED ADS STATE TRANSITION TABLE

USER ACTION STATE TO WHICH SYSTEM
RESPONSE (ROUTINE CONTROL MESSAGE
(KEYNQO) CALLED) TRANSFERS NO. COMMENT
2 COSLINE TCUST 12 CUSTOMIZE
3 NONE TDISC 0 DISCONNECT
4 COSLINE XGET 0 GET
5 COSLINE XLIST 0 LISTEN
6 NONE EMPTY 6 UNDEFINED
7 COSLINE XRECD 0 RECORD
8 COSLINE XXMIT 0 TRANSMIT

Error message generator routines should have access
to the state as well as the user’s response. If empirical
observation later suggests that a single error message
can cover a variety of cases, such as the message
“Syntax error in line 20,” the messages can be col-
lapsed.

It is also possible that experience with prototypes
will reveal that certain user functions are really not
useful. This should translate into certain states that
are rarely visited. In such cases, it may be decided to
delete such states. With such a scheme, the interface
state table itself should provide useful information
to allow the programmer to delete such states easily
while minimizing unnoticed side-effects. To a great
extent, the 1BM Audio Distribution System follows
these principles.'®!! The interface is defined as a set
of states and transitions. (See Figure 1.) Associated
with each state is a set of fundamental choices the
user can make, each of which takes him to a new
state. Associated with the user’s choice is a pointer
to a feedback-message list, and associated with the
state is a state-message list.

During development, the system was amenable to
experimentation simply by changing the numbers of
the items on these lists. Now, without changing the
fundamental logic, messages are easily translatable
into different languages. In addition, error messages
that are discovered to be confusing can easily be
changed.

Layered interface. Various users of nearly any system
have different degrees of sophistication and experi-
ence, and the interface could reflect these differences.
For example, suppose that a menu-driven interface
may be necessary for the new or casual user, but that

BRANSCOMB AND THOMAS 297




Figure 2 Customizing the Audio Distribution System

CHANGE PLAYBACK SPEED
OF SYSTEM MESSAGES

r’ |

CUSTOMIZING ADS

PROFILE ~ MESSAGE
RATE &
SYSTEM

2 VERSION
CUSTOMIZE

~[J-

SELECT VERSION
THAT SUITS YOUR NEEDS

PROMPTED
BASIC

a command-driven interface is better for a person
who uses a system very often. Using the scheme
outlined earlier in this paper, one can have a flag in
each user’s profile that indicates which interface is
appropriate to that user. This indicator can be
changed either by user choice or by an algorithm in
the system based on the number of interactions
between user and system.

In addition to having an interface with both com-
mands and menus, there are other ways in which the
system can be different for different users. One can
also implement a layered interface by having several
groups of commands starting with a small group of
useful and fairly intuitive commands. Initially, the
user need only be told about these. Later, the system
can explain further branches.

Some of the ideas outlined here are also imple-
mented in the Audio Distribution System. In this
system there are both command interfaces and
menu-driven interfaces. Users can specify which in-
terface they prefer. The system messages, which in
this case are audio, can be played out at different
rates depending upon the user’s experience. (See

028 BRANSCOMB AND THOMAS

Figure 2.) Additional research along these lines has
shown empirically the value of restricting the options
available for new users.'?

Media translatability. In office systems for princi-
pals, there are individual differences in the preferred
type of media input and output. Some office princi-
pals are quite willing to type and can do so profi-
ciently; others insist on handwritten input or dictat-
ing. The details of the user interface must be some-
what different for these input media.

Different output media also have implications for
the user interface. For instance, messages that appear
on a visual display unit should probably contain the
most informative part of the message first to allow
rapid scanning. However, if the information is to be
provided by synthetic speech, it is probably better to
begin the message with a more predictable preface
that gives the listener time to “tune in” to the possible
endings of the sentence.

As another example, it is quite reasonable to present
twenty logically arranged menu items simultane-
ously on a visual display. However, an audio menu
of more than three or four items becomes impossibly
difficult to recall and use.

The application programmer should not have to
program in such a way that the code dealing with
these devices is intermixed with the code that deter-
mines the logical structure of the application. Rather
than specifying, for example, where on the screen an
item should appear, the application programmer
should only have to specify the relative importance
of various kinds of information. A separate part of
the design should deal with the issue of how to
display various kinds of information, given the par-
ticular 1/0 devices currently being used.

Behavioral observation hooks. Given our current
state of knowledge, there is no way that a designer
can be guaranteed to know how a tool will ultimately
be used. Therefore, it becomes extremely important
for systems not only to reflect educated guesses about
what a system should look like; it also becomes
necessary for them to be easily modifiable. Even if
the design is exactly right for today’s situations,
tomorrow will be different, with a slightly different
set of requirements. Therefore, it is very important
for the system to be adaptable.

If the system is going to adapt, we must ask, “Adapt
to what?” We hope that the system will adapt to the

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984




needs and preferences of the users. If this is to
happen, however, there must be some facility for
finding out what the users are doing. It would be
very useful, therefore, at least in prototypes, and
probably in products, to have the mechanisms avail-
able for keeping track of general trends in user
behavior.

For example, if there is an on-line help system avail-
able, it would be useful to know, for each help panel

It is difficult for a user of several
systems to recall the specific name
of a particular system.

that is called, what happens next. Does the user turn
off the machine, use the asked-about command with-
out error, ask for help on another item, or use the
command and make an error? Which of the allow-
able transitions between states does the user really
make use of ? Are there menu items that are simply
never chosen? If so, one might question whether they
really need to be there for as-yet-unencountered
emergencies or for symmetry. Of course, there is the
possibility that unused menu items are simply mis-
takes. One might question another design conse-
quence. If it turns out that one tenth of the links in
a network are used 95 percent of the time and they
turn out to be the slowest, one must question
whether this is a design accident, and whether the
other five percent requires the higher speed.

One may buy a cheaper dedicated line for commu-
nications, and this may seem like a tremendous
savings. But what are the behavioral data? How often
must people redial because a cheaper line is in use?
How many additional telephone calls are missed? If
one has such data, one can begin to calculate whether
the added human cost is worth the cheaper line
rental. Having facilities in the system to collect be-
havioral measurements also makes possible better
synonymity and adaptability. These properties are
discussed next.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

Synonymity. In natural language, we can refer to the
same thing in many ways. It is very difficult for a
casual user or even an expert user of several systems
to recall the specific name required in a particular
system. Quantitative work'? has shown that regard-
less of how well the name for a command or file is
chosen, there is a low probability that someone else
will spontaneously guess the same name (i.e., ap-
proximately 0.15).

These investigations suggest a general synonym table
as a means around this problem. When a user enters
any one of several names, the effect is the same.
Using such a scheme over a wide variety of problems,
a correct unique item is picked about 75 percent of
the time. In the vast majority of the other cases, a
disambiguating menu could appear which would
consist typically of two to four items.

Whenever an item is referred to frequently in a way
not anticipated by the synonym table, behavioral
recording facilities could automatically add that item
to the table.

A potential difficulty with this approach is that users
seem to assume a one-to-one mapping between
names and functions. Breaking this mapping could
have the effect of actually confusing the new user. A
less drastic proposal might be to include all com-
mand synonyms in the indices to manuals and in
on-line help systems with pointers to the correct
name. Thus users who wanted to “stop” or “end” a
session could quickly discover that they were to use
the LOGOFF command.

Adaptability. Given that one has the hooks in the
system for keeping track of the frequencies and
sequences of events, one has not only the data that
allow a more intelligent system redesign by a human
being, but also the beginnings of what is necessary
for a system that adapts itself to the changing needs
of its users.

The system as it appears to the user. Although it is
difficult to specify in general terms what an architec-
ture should be like internally, one can make some
further suggestions about how the interface should
appear to the user in fundamental terms.

Each of the possibilities presented in the following
four sections must be taken as an other-things-being-
equal suggestion. For example, if a system requires
fast response time, the impact of allowing the user
to back up one level may be too great to be worth
the increased ease of correcting errors.

BRANSCOMB AND THOMAS 990




Home base. 1t is characteristic of human problem-
solving behavior, in a wide variety of contexts, that
people often start over when given the chance. This
is also true where user interfaces allow it. For in-
stance, the CHART Ultility on GDDM, the Audio Dis-
tribution System, and the 1BM Personal Computer

Commands and options should form
logical, coherent gestalts.

all have the capability of starting over in a known
state. In each instance, these facilities are often re-
sorted to when a user becomes confused.

Undo. An undo or back-up function (sometimes
called “padded cell”) is very useful for two reasons.
Users may inadvertently hit a wrong key or otherwise
make an error of which they are immediately aware.
Or else they may choose a command or menu item
and not realize until the indicated action is taken
that it is not at all what they had expected on the
basis of the command name or the menu item
description. For these two situations, which are fairly
common, it should be quite easy for the user to back
up. Even the fairly intuitive notion of undo turns
out, upon closer examination, to need considerable
analysis and empirical research.'*

No garden-pathing. Imagine a system with which
you are trying to send a message to someone. The
system first asks you for the recipient’s ID. It then
asks you to type in your message. Then the system
asks you to confirm that you really want to send this
message. Only after all that does the system tell you
that the user specified does not exist on the system
(and, by the way, it erases your message). This is
leading the user down the garden path.

Although it may be easier for the programmer to do
all error checks at the end of some transaction, it is
more sensible in most interactive systems—particu-
larly where there 1s a fairly large probability of user
error—to check each user input as it is given.

230 BRANSCOMB AND THOMAS

Commands into structures. Commands and options
should form.logical, coherent gestalts. Work by sev-
eral investigators'® indicates that command func-
tions and the names given them should be reasonably
predictable. One example of unpredictability is a
system where mail is sent by typing SEND, but the
command to send a message is MESSAGE (unless the
recipient is on another node, in which case it is
RMESSAGE). Some query commands on the same
system are even less consistent: either Q T or QT to
learn the time, Q FILES (but not QFILES) to query files,
and ARCV Q to learn what is in archival storage.

Architectural considerations based on basic human
capabilities. In addition to the suggestions just given
about how a computer system should be internally
and how it should look to the user, a consideration
of the basic capacities of human beings offers further
suggestions for computer architecture.

Of course, an actual computer system must also be
designed with costs in mind. A system that costs so
much that no one can buy it is not well designed for
human factors. Therefore, the following suggestions
as to what the ideal computer system might be like
must be tempered with the realization of what is
currently practical.

One of the fundamental principles of human infor-
mation processing which has not been capitalized
upon is that people can input and output more
information when that information comes in and
goes out over more sensory channels. The more
separate dimensions there are available—for exam-
ple, in a mixed audio-visual display—the more in-
formation a person can perceive. Similarly, people
can communicate more information if they are able
to use facial, hand, and body muscles as well as their
vocal muscles for output.

Purely from the point of view of maximizing human
performance, regardless of system cost, all systems
today limit too severely the number of ways that
information may be provided to the person and the
number of ways that the person can provide infor-
mation to the system.

A second basic principle that is too often ignored in
system design is that people are generally error-
prone. Further, to avoid error by slowing down
requires successively larger slow-downs for small ad-
ditional gains in accuracy.

People can be very fast at being approximately ac-
curate and are painfully slow at being exactly accu-

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984




rate. (This explains much of the superiority of a good
word processor over a typewriter.) There are, of
course, times when one must be very accurate, but
theoretically, a user could transmit a larger amount
of information to a computer if the system were
designed to allow greater speed and less accuracy.

One example of planning for error is in an infor-
mation retrieval system. If we require the user to
specify exactly certain fields of information about a
required document to be retrieved, it may take an
exceptionally long time for the user to recall all the
parameters accurately. Suppose we allow an almost-
equal type of facility, in which the user can specify
what he recalls about a document immediately. Then
the system retrieves further information about pos-
sible candidate documents and displays them. Thus
the person can quickly home in on the exact docu-
ment desired. Other examples are the concepts of
the word processor and the erasing typewriter.

Development process

Apart from our suggestions of what the architecture
of a system should be, we also suggest that the
development process has a great influence on the
quality of the human factors of the resulting system.
The way to encourage architects of a computer sys-
tem (and the implementers, documenters, and
testers) to make reasonable decisions is to embed
into the development process a set of tools that meet
the following criteria:

e Make the developer’s job easier.

* Ensure consistency of viewpoint, definitions, and
conventions across developers.

¢ Lead the developer implicitly to use any best-guess
guidelines unless they are explicitly overridden.

* Provide for temporal integration of the develop-
ment process from architecting to implementing,
to documenting, to simulating or prototyping, to
end-user testing, to field testing.

Design tools. What should such design tools look
like? First, they would lead the designer through a
design process that would begin by forcing the de-
signer to consider questions that are key to ease of
use. For example, the tools may begin by asking the
designer to define the classes of users that the system
will ultimately serve, the users’ tasks, specifications
of tasks that have been analyzed in detail, and ad-
ditional studies required.

1BM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

Let us suppose that one type of task we are interested
in is that of supporting office principals in storing
and retrieving documents. Designers could be asked

We should ask the designer the
user’s goals for document storage
and retrieval.

a structured series of questions that prompt them to
specify their ideas and data about how office princi-
pals do, in fact, now store and retrieve documents;
how they can do this best, given their goals and what
we know of human capabilities; and how the system
intends to move users from their current mode of
doing things to the theoretical optimal mode.

Going deeper into the decision hierarchy, we would
ask the designer what the user’s goals for a document
storage and retrieval process are, and how the de-
signer knows this. The designer could proceed with-
out any empirical basis for saying what the user’s
goals are, but the system should force him to be
aware that that is what he is doing. If the designer
decides that it would be better to know the user’s
goals but is unable to provide any empirical basis for
stating them, the design system should be able to
suggest methods of collecting such data and to re-
trieve relevant background data that already exist.

A designer of a retrieval system, for example, should
be reminded by the system that for a literary refer-
ence, people do not generally remember the exact
date and often do not know the correct spelling of
the author’s name, but they are likely to have partial
knowledge of each one. This tells the designer that a
user should be able to provide some data about a
number of descriptors of a desired document so that
the system can do a best fit to the incomplete criteria
from among the stored documents.

This consideration suggests a number of interesting
problems in system design. Perhaps, if fast retrieval
is vital, a large storage capability is desirable, in
which documents are held in secondary storage,
while primary storage contains a set of parameters

BRANSCOMB AND THOMAS 231




and a verbal description for each document. Then a
preliminary match for the “nearest neighbors” to the
document as specified by the user can retrieve the
textual descriptions of those documents (including
the author’s name, exact title, date, topic, etc.) for
menu selection by the user.

Meanwhile, all these near-neighbor documents can
be moving from secondary to primary storage so that
once the user selects one, it can quickly be displayed.
If the choice of one of these documents is confirmed,
related documents (those by the same author or on
the same topic) can begin moving from secondary
to primary storage, based on the high probability
that they will be asked for next.

The point is not that such a system design decision
is the right one. Rather, it is that the system design
tools should force the designer to think about such
issues, examine whether empirical data are available,
encourage the collection of data, provide a number
of design suggestions, and then allow the designer to
make a choice. Such a system design tool requires
only current technology. The tool need not make
any design decisions, but merely serve as a structured
reminder and organizer.

Evolutionary systems. While much can be done to
induce the designer to pay attention to human fac-
tors, it can be argued that in a very real sense we
have not yet reached the point in the evolution of
computer systems where complex systems are de-
signed from scratch. A more accurate characteriza-
tion would be that they evolve, which seems to be a
term that J. Christopher Jones'® would apply. This
is not necessarily a bad thing, but we should be aware
of the world as it is at the same time we try to make
it a more rational one.

In some cases, evolutionary systems have proved
quite effective, e.g., the IBM internal VNET network
mentioned earlier. VNET began in a “bottom-up”
way when two laboratories working on a joint project
needed to exchange data. Soon other related sites
were added, until nearly all 1BM scientific and engi-
neering locations worldwide are now part of it.

No one designed VNET from the beginning. Various
users of the system designed various facilities and
pieces. Some facilities are used, and they flourish. In
other cases, someone built a function, offered it to
the community, and no one used it. Many problems
associated with designing for ease of use are avoided
when the users build the system. On the other hand,

9232 BRANSCOMB AND THOMAS

this evolutionary approach can result in inconsis-
tencies. If they prove severe enough to the users,
even inconsistencies can be ironed out.

One can imagine an extension of a system like VNET
to an entire society in which individuals or groups

Organizational, sociological, and
managerial issues become
intertwined with issues of system
design.

of users could propose software facilities in return
for using the software or hardware of others. Royalty
credits could be paid on the basis of use, and people
could use the network itself to solicit requirements
from other subgroups, conduct experiments, ask for
advice, and advertise potential services.

We are not recommending any particular system
structure here, but merely trying to point out that as
networks become more powerful, the organizational,
sociological, and managerial issues become more
deeply intertwined with issues of system design. The
more general point to be made once again is that
systems must be designed with the knowledge that
they will evolve. One happy trend in this direction
is the emphasis in teaching programmers to put a
top priority on writing structured, readable code,
rather than minimizing storage and execution speed
at the expense of making a house-of-cards type of
system.

Areas of needed research

Architecting for ease of use could benefit from basic
research in several areas. A primary difficulty in
producing a friendly system is that one cannot really
predict ease of use without controlled experiments
involving actual use by representative end users.

There are a number of analytic approaches that are
relevant to predicting whether an interface is difficult
to use. One of these approaches is Halstead’s software
science metrics. Halstead’s basic idea was to judge

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984




the complexity of a program, based on the numbers
of unique operators and operands and the total
number of operators and operands. When applied to
programs varying greatly in total complexity, such
metrics have a good correlation with time required
and errors.!” Halstead was beginning to extend his
work to predicting the ease of use of interfaces.'®!°

A second approach with the same goals in mind is
being pursued by Phyllis Reisner at 1BM San Jose
Research.? In her approach, an interface is specified
in terms of a Backus-Normal Form (BNF) description

Many simple natural language
statements form complex queries
and data base operations.

of the grammar the user needs to know in order to
use the interface. Further research could extend these
approaches and determine their practical utility.

Protocols of users have been analyzed at the 1BM
Thomas J. Watson Research Center in Yorktown
Heights, New York, and a number of fundamental
cognitive problems in learning to use new computer
systems have been identified.”!

In addition to this research in cognitive science, more
research is needed in several areas of computer sci-
ence and computational linguistics. One such area
involves techniques allowing the use of natural lan-
guages for interaction with a computer.

Many seemingly simple natural language statements
turn out to be rather complex in terms of the corre-
sponding statements in a formal query language and
the data base operations required.”? Consider the
example query, “Which employees do not have a
car?” A system not geared to that query would first
have to find all employees and all cars, match them
to identify owners of cars, and then subtract the
owners from all employees. An inexperienced user
might well have difficulty in so formalizing even this
simple inquiry.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

It also seems clear that systems need to be adaptive
in several other ways: adaptive to particular users,
adaptive to the same user over time, adaptive to the
changing needs of the organization, and adaptive to
changes in the hardware and software functions
available on a system. Yet, how do we make systems
that adapt?

Some excellent research has been done, for instance,
in making a checker-playing system that learned to
play better checkers through analyzing its experi-
ence.”® And work has been done on trying to emulate
some of the sophisticated genetic mechanisms for
adaptation known to the biologist.

Further research remains to be done on how to apply
these and other ideas in an actual operating system.
One could envision adaptive staging algorithms that
might look at particular users and their tasks to
discover whether they have patterns of data use that
would justify modifying the staging algorithms, given
those conditions.

It was suggested by Carroll and Thomas?* that met-
aphors are very useful as design guidelines. To the
extent that a system can be explained to new users
in terms of things that the user is already familiar
with, the system will be more readily comprehended.
Subsequent research has demonstrated the strength
of metaphorical knowledge. One experimental sub-
ject, for example, in learning to use a text editor was
explicitly instructed that one must backspace to
erase. After reading this, the subject refused to try it,
saying that backspacing does not erase. The subject
tried several other actions before finally resorting to
the backspace. Perhaps the classic example is the
ambiguity of a word processor key with a vertical
arrow that was disambiguated in instructions by the
words “scroll” or “window.” Yet it is rare that either
of these words appears on a key.

Suggestions for education

However good the tools of the developer, and how-
ever much is known about how to design an easy-
to-use system, for some time into the future there
will be a considerable amount of art involved in
designing a user-friendly system. Furthermore, de-
cisions affecting ease of use will be influenced by a
great many different people. For this reason, it will
be very important for every programmer, architect,
and documentation writer to have some appreciation
of human factors as a research and design discipline.
Yet most computer science and programming cur-
ricula fail in several ways.

BRANSCOMB AND THOMAS 233




There is rarely any explicit requirement for any
courses on human factors or basic psychology. It is
quite possible for a person to earn a Ph.D. in com-
puter science, anticipating a lifetime career building
tools for human beings to use, by spending several
years learning how computers work, and yet no time
learning how human beings work. Furthermore, the
examples used in computer science courses generally
do not make an explicit point about the importance
of human factors, nor do they even implicitly dem-
onstrate good human factors.

To the extent that artistic, musical,
and literary people are computer-
literate, the medium itself will reflect
the wide range of human
experience.

We suggest that textbooks and courses on system
architecture specifically ask the student to consider
the users and their tasks before designing the system.
We also suggest that these textbooks point out the
importance of human factors and illustrate good
human factors in the examples.

The other side of the coin is that the texture of the
computer communication tools of the future will
depend upon the people who design and use them.
To the extent that artistic, musical, and literary
people are computer-literate and make use of this
new medium, the medium itself will reflect the wide
range of human experience. To the extent that the
educational system isolates such people from com-
puters, so will the medium lack those qualities. To
the extent that everyone is capable of participating
in communicating via computer, we will have the
possibility of a more democratic society.

Several of our universities (e.g., Carnegie-Mellon
University, Massachusetts Institute of Technology,
and Brown University) are now engaged in rather
wide-scale experiments with networks. This is being
encouraged by industry and government. In fact, the
universities are probably ahead of industry and busi-

234 BRANSCOMB AND THOMAS

ness in peer open-ended human networking. This
gives them an obligation to structure their activity
and research so that they make a real scholarly
contribution to this issue in the broadest context.

Cited references

1. B. Schneiderman, Software Psychology, Winthrop Publishers,
Inc., Cambridge, MA (1980).

2. Conference Proceedings, Human Factors in Computer Sys-
tems, Gaithersburg, MD, March 1982, Institute for Computer
Science and Technology, National Bureau of Standards,
Washington, DC (1982).

3. S. K. Card, T. P. Moran, and A. Newell, The Psychology of
Human-Computer Interaction, Lawrence Erlbaum Associates,
Inc., Hillsdale, NJ (1983).

4. J. S. Brown and R. B. Burton, “Diagnostic models for proce-
dural bugs in basic mathematical skills,” Cognitive Science 2,
155-192 (1978).

5. J. C. Thomas, “The computer as an active communication
medium,” Proceedings of the Conference, Annual Meeting of
the Association for Computational Linguistics, Philadelphia
(June 1980).

6. A. Chapanis, “Prelude to 2001: explorations in human com-
munication,” American Psychologist 26, 949-961 (1971).

7. L. M. Branscomb, “Information: the ultimate frontier,” Sci-
ence 203, 143-147 (1980).

8. S. R. Hiliz and M. Turoft, The Network Nation: Human
Communication Via Computer, Addison-Wesley Publishing
Co., Reading, MA (1978).

9. L. M. Branscomb, “Bringing computing to people: the broad-
ening challenge,” Computer 5, No. 7, 68-75 (1982).

10. J. T. Richards and S. J. Boies, “The IBM audio distribution
system,” Proceedings, IEEE MIDCON Conference, Chicago,
IL, November 10-12, 1981, IEEE Service Center, 445 Hoes
Lane, Piscataway, NJ 08854 (1981).

11. J. D. Gould and S. J. Boies, “Speech filing—An office system
for principals,” IBM Systems Journal 23, No. 1, 65-81 (1984).

12. J. M. Carroll and C. Carrithers, “Training wheels on a user
interface,” to be published in ACM Communications (1984).

13. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais, “Statistical semantics: analysis of the potential per-
formance of keyword information systems,” Human Factors
and Computer Systems, J. C. Thomas and M. Schneider,
Editors, Ablex Publishing Corporation, Norwood, NJ (1984).

14. G. B. Leeman, 4 Formal Approach to Undo Operations in
Programming Languages, Research Report RC-10310, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY
10598 (1984).

15. J. M. Carroll, Learning, Using and Designing Command
Paradigms, Research Report RC-8141, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, NY 10598 (1980).

16. J. C. Jones, Design Methods, John Wiley & Sons, Inc., London
(1970).

17. J. M. Halstead, Elements of Software Science, Elsevier Science
Publishing Company, Inc., New York (1977).

18. J. M. Halstead, personal communication (1977).

19. J. C. Thomas, “Psychological issues in the design of database
query languages,” Designing for Human-Computer Commu-
nication, M. S. Sime, Editor, Academic Press, Inc., London
(1983).

20. P. Reisner, “Formal grammar and human factors design of an
interactive graphics system,” IEEE Transactions on Sofiware
Engineering SE-7, No. 2, 229-240 (1981).

1BM SYSTEMS JOURNAL, VOL 23, NO 3, 1984




21. R. L. Mack, C. H. Lewis, and J. M. Carroll, “Learning to use
word processors: problems and prospects,” to be published in
ACM Transactions on Office Information Systems.

22. H. Lehmann, “Interpretation of natural language in an infor-
mation system,” IBM Journal of Research and Development
22, No. 5, 560-572 (1978).

23. A. L. Samuel, “Some studies in machine learning using the
game of checkers. II—Recent progress,” IBM Journal of Re-
search and Development 11, No. 6, 601-617 (1967).

24. J. M. Carroll and J. C. Thomas, “Metaphor and the cognitive
representation of computing systems,” IEEE Transactions on
Systems, Man, and Cybernetics SMC-12, No. 2, 107-116
(1982).

Reprint Order No. G321-5220.

Lewis M. Branscomb /BM Corporate Headquarters, Armonk,
New York 10504. Dr. Branscomb is vice president and chief
scientist of IBM and a member of the Corporate Management
Board. A research physicist, he was appointed by President Carter
to the National Science Board in 1979 and has been its chairman
since 1980. Prior to joining IBM in 1972, Dr. Branscomb was
director of the National Bureau of Standards. He joined the Bureau
in 1951, served as chief of the NBS Atomic Physics Division, and
was co-founder and chairman of the Joint Institute for Laboratory
Astrophysics at the University of Colorado before his appointment
as director of NBS in 1969. Dr. Branscomb graduated from Duke
University in 1945 and earned his M.S. and Ph.D. degrees in
physics at Harvard University in 1947 and 1949. A member of the
National Academies of Sciences, Engineering, and Public Admin-
istration, and a former president of the American Physical Society,
he has served on numerous boards and commissions concerned
with science and public policy.

John C. Thomas IBM Research Division, Thomas J. Watson
Research Center, P. O. Box 218, Yorktown Heights, New York
10598. Dr. Thomas joined IBM in 1973. He currently manages
the Remote Information Access Systems group, whose goals are
to produce high quality text-to-speech conversion and to study
applications of speech synthesis. He spent two years on the staff of
the IBM Chief Scientist, Dr. Lewis M. Branscomb. Prior to that
assighment, Dr. Thomas was a Research Staff Member studying
the human factors of design, Query-by-Example, and the Audio
Distribution System. Before joining IBM, Dr. Thomas managed a
National Institute of Mental Health grant on the psychology of
aging at the Harvard Medical School. He is a licensed psychologist
and has over sixty professional papers and presentations in psy-
chology to his credit. He received his B.A. degree from Case-
Western Reserve University and his Ph.D. from the University of
Michigan. Dr. Thomas is a Fellow of the Institute for Rational-
Emotive Therapy and an adjunct full professor at Pace University.

IBM SYSTEMS JOURNAL, VOL 23, NO 3, 1984

BRANSCOMB AND THOMAS 235




