Managing IBM Database 2
buffers to maximize
performance

The relational data base system, IBM Database 2
(DB2), has a component that manages data buffering.
This paper describes the design considerations of the
Buffer Manager and the tradeoffs involved in managing
the allocation of DB2 buffers to maximize performance.

BM Database 2 (pB2)"? is 1BM’s relational data

base system for the Mvs/xA (Multiple Virtual Stor-
age/Extended Architecture) or MVS/370 operating sys-
tems, and the Buffer Manager (BM) is a component
within DB2 which manages data buffering between
DASD (direct access storage device) and virtual mem-
ory. It controls DB2 data in a consistent manner with
respect to data integrity and data recovery. It makes
the virtual storage copies of DB2 data available to
other DB2 components.

IBM uses its own scheduling algorithm to manage the
allocation of DB2 buffers to data base data as needed.
To move data effectively between DASD and DB2
buffers, BM transfers data in 4K or 32K blocks. BM
also provides a look-ahead facility to gain high per-
formance for sequential processing applications. To
increase the probability of 1/0 batching, BM provides
a deferred write facility to defer the externalization
of committed changes until BM decides that it is
required to do so. In addition, BM provides functions
to perform data base open/close processing and par-
ticipates in DB2 restart and recovery processes.

In the following sections we first briefly describe the
physical organization of the DB2 data base system
and then discuss in detail the design considerations
for each of the BM functions mentioned above.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

by J. Z. Teng
R. A. Gumaer

Data base physical organization

The DB2 data is stored in one or more DB2 data bases.
A DB2 data base, once defined, is the highest-level
logical construct involved in subdividing data. Each
data base consists of one or more physical data
entities termed “tablespaces” or “indexspaces,”
which may be made on line or off line. Each table-
space contains rows of one or more DB2 tables. An
indexspace contains a DB2 index structure that im-
proves access time to the data stored in an associated
table. Within the scope of BM, the tablespace is
physically treated the same as an indexspace. There-
fore, for ease of reference, the name “pageset” is
defined to represent either a tablespace or an in-
dexspace.

Each pageset consists of a set of Virtual Storage
Access Method (vsaM)® Entry Sequenced Data Sets
(Espss) and can contain a maximum of 64 gigabytes
of data. Each pageset is formatted into fixed-size
units termed “pages” with a page size of either 4K
bytes or 32K bytes. All pages within a pageset must
have the same page size, and they are uniquely
identified by their relative page number. DB2 does
not allow a table record to span multiple pages.
Therefore, it is necessary to use 32K pages when the
rows are too large to be contained within 4K pages.

© Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and 1BM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

TENG AND GUMAER 211

To allow DB2 installations to have better control of
the physical organization of their data bases based
on different requirements, DB2 provides two kinds of

Data buffering is dependent on the
pattern of references.

pagesets: partitioned and nonpartitioned (simple).
The major differences between a partitioned pageset
and a simple pageset are as follows:

Partitioned pageset:

e A partition is a VSAM ESDS data set.

¢ The maximum partition size can be one, two, or
four gigabytes.

A maximum of 64 partitions (based on the parti-
tion size) can be defined.

Partitions can be on or off line independently, and
they can be on different device types.

A partitioned pageset can only contain a single
table, and data may be partitioned by key ranges.
Partitions can individually be reorganized by DB2
Utilities.

Simple pageset:

¢ A simple pageset can contain up to 32 VSAM ESDS
data sets (two gigabytes each).

o All data sets allocated to a simple pageset must be
on the same device type, and they are all required
to be on line when accessed.

¢ A simple pageset can contain multiple tables.

Open/close processing

Before referencing or modifying a page within a
pageset, the pageset and its underlying VSAM data
set(s) must be opened. BM provides functions to
physically or logically open or close pagesets and
their underlying data sets. Normally, a pageset will
be closed when there are no current users of the
pageset. For performance considerations, it is desir-
able to have frequently referenced pagesets stay open,
once opened. To facilitate this, pB2 allows installa-

212 TENG AND GUMAER

tions to specify CLOSE(YES | NO) when the pageset is
created (through an sQL (Structured Query Lan-
guage) DDL statement). This attribute can also be
modified if requirements change. CLOSE(NO) pagesets
stay open until the pageset (or its containing data
base) is specified in a DB2 STOP DATABASE command
or until the DB2 system is terminated.

Buffer pools

pB2 is designed to support large data bases with
applications that might require a large number of
1/0 operations. It is desirable to minimize physical
1/0 activity whenever possible. Therefore, data base
buffering is used by DB2 to transfer data between
DASD and virtual memory. The unit of transfer be-
tween DASD and the DB2 buffers is a page. bB2 buffers
are managed by BM, which supplies the virtual copies
of the DB2 data as requested.

Data buffering is dependent on the pattern of refer-
ences. It is assumed that a requested data page has a
high probability of being accessed again within a
short period of time. Ideally, the buffer containing
the data page will still be available, and no buffer
fault will be required. A buffer fault is used to indi-
cate that an access to the data base is needed because
a requested page has not been found in the buffer
pool.

pB2 employs a multiple buffer pool concept by sup-
porting three buffer pools of 4K buffers and one
buffer pool of 32K buffers. DB2 installations are
required to select a buffer pool when the pageset
(tablespace or indexspace) is created. A facility is also
provided by DB2 to allow installations to alter the
selection of the 4K-page-size buffer pool after the
pageset has been created. This concept of multiple
buffer pools allows installations to tune their data
base systems by allocating their data bases among
the various buffer pools.

To best use available virtual storage, DB2 buffer pools
are dynamically constructed during the process of
opening the first pageset requiring use of a particular
pool. A buffer pool will be deleted when it no longer
has users. In a data base system that supports only
fixed-size buffer pools, where the buffer pool size has
to be predetermined before the system is started, the
predefined size may not be able to handle all con-
current processes. Processing units may be abnor-
mally ended because of unavailable buffer resources.
To overcome this problem, the pB2 buffer manager
allows the installation to define the minimum and

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

maximum sizes for each buffer pool. BM will use the
minimum size to create the buffer pool and provides
a facility to expand the buffer pool temporarily when
required (e.g., when all buffers are held) if the pool’s
maximum size has not yet been reached. The tem-
porarily expanded buffer pool will be contracted
when the processing unit that caused pool expansion
commits or aborts. Note that the DB2 pool expan-
sion/contraction logic involves physically acquiring
and releasing storage from the Mvs storage pool.
Because these operations are expensive, the buffer
pool minimum size should be adjusted to avoid
excessive use of this function. BM collects various
performance monitoring data to assist the installa-
tions in determining the buffer pool size attributes.
This data will be described in a later section.

Buffer allocation algorithm

For a virtual memory data base system, the buffer
space normally resides in pageable virtual memory.
Therefore, double paging (data base paging and
memory paging) is expected to occur if there is not
enough real memory to back the data base buffers
(see Figure 1).

Tuel* has done an analysis of buffer paging in virtual
storage systems. He concluded that system perform-
ance degrades considerably when the virtual buffer
requirements are larger than available real storage.
His result was based on the assumption that the cost
of memory paging is the same as that of data base
paging. His experiment was also based on a buffer
search algorithm in which the amount of memory
paging was heavily dependent on the number of
virtual buffers allocated. In reality, the cost of mem-
ory paging is less than that of data base paging
because high-speed auxiliary storage devices are nor-
mally used as the memory paging area. However,
memory paging is still expensive and should be
avoided. The effect of double paging has led us to
design the buffer allocation algorithm of BM to min-
imize buffer paging as well as memory paging.

Lang® has analyzed the behavior of data base buffer-
ing using various buffer allocation algorithms. He
concluded that the best data base buffer model is to
use prefix tables to do a buffer search and to use the
Least Recently Used (LRU) algorithm to replace
buffers. He further indicated that his results are
applicable to data bases of any size and any locality
characteristics. For the BM of DB2, it was decided to
use LRU as the buffer replacement algorithm and to
use a pointer array concept to do a buffer search.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Figure 1 Double paging data base buffer system

DATABASE

BUFFER
VIRTUAL PAGES

BUFFER
PAGING

| DATABASE
1 MAPPING

MEMORY
- EvoRy | PAGING
. MAPPING
.
PAGING
BUFFER DEVICE

REAL PAGES

The use of a pointer array minimizes the amount of
memory paging caused by a buffer search request.
Each pointer array element is also called a buffer
control block, and it contains the necessary buffer
control information and the address of the associated
data buffer. To shorten further the path length to do
a buffer search, BM uses a hashing technique to locate
pointer array elements. This is especially important
when large buffer pools are supported. In an attempt
to improve concurrency when doing buffer searches,
BM serializes on the appropriate hash anchor. Thus,
buffers residing on different hash anchors are allowed
to be searched or updated concurrently.

As indicated in Lorie’s paper,® System R’# forces
some pages to remain in the buffer pool, independent
of how the normal LRU algorithm functions. Each
process attempts to keep (i.e., fixing pages and not
releasing them) a certain number of pages in the
buffer pool for its own look-aside purposes. The
process is informed to unfix its look-aside pages when
the buffer pool is short of reassignable buffers. DB2
provides a similar facility to improve processing
performance when the associated buffer pool is not
short of reassignable buffers.

RDS Sort’ also uses BM functions for sorting tempo-
rary work files. Temporary work files are constantly
being used or reused as a temporary merging area.
Therefore, read 1/0s are unnecessary when the initial
contents of the data pages can be ignored. To im-
prove sort performance, BM provides a special service
which allows pages to be accessed without reading
them from DASD.

TENG AND GUMAER 213

As mentioned earlier, BM provides a facility to tem-
porarily expand or contract buffer pools. However,
due to the potential shortage of virtual storage, it is
unable to guarantee that the expansion is always
successful when a buffer is required. There are cases
where a buffer is required to satisfy a “must-com-
plete” DB2 process and unavailability of a buffer
would cause DB2 to be abnormally terminated. In
order to support these “must-complete” functions,
BM provides a buffer-enqueue facility that enqueues
the process, which is waiting for a buffer, until a free
buffer becomes available. To avoid the problem of
deadlock (i.e., waiting for a buffer while the “must-

To overcome the synchronous write
problems, DB2 supports two basic
write protocols.

complete” process is holding all allocated buffers),
the “must-complete” DB2 process is limited to hold-
ing just one buffer at a time. The “must-complete”
status is indicated by BM invokers through the nor-
mal page access function.

Write protocols

Data buffers that have been modified must even-
tually be written back to their respective data bases.
In a data base system that only supports synchronous
write protocols, write 1/0s must be performed under
the process during commit for changes that had been
made prior to the commit point. This operation not
only prolongs the time to do commit processing
because of write 170 delays, but also stops other
processes that need to update the same set of pages.

To overcome the synchronous write problems, DB2
supports two basic write protocols. They are desig-
nated as “system page write protocol” and “uw (Unit
of Work) page write protocol,” respectively. Uw page
write protocol is available only to the pB2 Utility
component and is not available to SQL transactions.
“Unit of Work” is equivalent to one DB2 thread.’
Writes can be initiated prior to, during, or after phase
2 of commit,>'® depending on whether the system

214 Tenc anD Gumaer

page write or the Uw write protocol is used. Selection
of a particular write protocol has implications in the
areas of locking, logging, and recovery.

System page write protocol and deferred write proc-
essing. DB2 data base pages controlled by the system
page write protocols of BM are called system pages.
System pages can be written at any time, except
during actual update. Control of these writes is asyn-
chronous to transaction processing, and therefore,
the write can occur either before or after the updating
transaction commit point. The fact that write proc-
essing can occur prior to commit processing requires
that undo information be logged so that uncommit-
ted changes residing on DASD can be backed out in
cases of transaction abort or a system crash. The
redo information is also required to support the
possibility of not externalizing committed changes
because of the system crash.

System pages are normally enqueued, when updated,
on the system Deferred Write Queue (DWQ) for later
batched write processing—as opposed to writing
them immediately. This delay minimizes the num-
ber of write operations required for frequently up-
dated pages. The disadvantage here is that buffers on
the DwQ are unavailable for reuse, thereby increasing
the potential for a transaction abort because of buffer
unavailability. For this reason, the buffer manager
will immediately write system pages upon update
completion whenever the buffer pool is short of
reassignable buffers.

A deferred write processor engine is used to process
write 1/0 requests for pages eligible to be written from
the pwqQ. Because of the restrictions of the internal
1/0 driver used by DB2, 1/0 processing can only be
batched on an individual vsam data set basis. To
maximize 1/0 concurrency, the deferred write proc-
essor attempts to schedule asynchronously or reuse
as many as possible of the write engines provided by
DB2 to perform write operations. The deferred write
processor will use itself as a synchronous write engine
if all asynchronous write engines are busy.

For ease in relating 1/0 requests by individual data
set, the DWQ is structured as a queue of data-set-
related queues. For situations where the process must
write out all or certain updated pages (i.e., Check-
point, Pageset Close Processing), those pages will be
dequeued from the bwqQ, and writes will be initiated.
Otherwise, for situations where the process is not
required to write out updated pages, the decision to
trigger the deferred write processing is based on the

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

amount of buffer space dedicated to the deferred
write buffers. The objective is to keep a certain
amount of buffer space available for read operations
and for reassignments by scheduling write operations
as required.

UW page write protocol. Data base pages processed
by pB2 Utilities for which writes are controlled by
the Uw write protocols are called uw pages. UwW
pages, when updated, are controlled exclusively by
the transaction process. They are only written during
(not prior to) phase 2 of coMMIT. This precludes the
need for undo logging since no uncommitted
changes will ever appear on DASD that would require
backout because of an abort or system crash.

Sequential prefetch

In a data base system, the data referencing behavior
has great performance impact on data base buffering.
Rodriguez-Rosell'! had done an empirical study on
the data referencing behavior using iMs (Information
Management System)'? as the data base system. He
indicated that strong sequentiality was found in data
base reference strings. He also pointed out that se-
quentiality of access is a predictable consequence of
data base organization and transaction processing.
Therefore, if a process has knowledge of the data
organization and decides to access it sequentially, it
is desirable to have the data base buffer manager
take certain actions to minimize the 1/0 delays for
this type of process. This fact has led BM to provide
support for sequential-type processing. The DB2 util-
ities (e.g., LOAD, IMAGE COPY, ..., etc.) notify BM
whenever sequential processing is to be done.

As noted in the paper by Sacco and Schkolnick,'? a
problem exists in cases where the buffer pool is
shared by concurrent random and sequential proc-
esses. The LrRu buffer replacement technique is in-
adequate to support the transactions performing ran-
dom access if the sequential process has a higher
demand rate for new pages. This results in a higher
buffer paging rate for the entire data base system.
Therefore, the pB2 Buffer Manager (BM) provides
support to minimize the effect of this problem. The
support is based on the assumptions that the proba-
bility of reaccess to sequentially processed pages is
much less than the probability of reaccess to ran-
domly processed pages and that the buffer pool’s use
is primarily for random processing with only occa-
sional bursts of sequential processing. What basically
happens is that a secondary LRU chain called the
“Sequential LRU Chain” (SLRU) is employed. Buffers

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

released from sequential processing are placed on
the SLRU chain (as well as on the tail of the normal
LRU chain). Buffers required to satisfy sequential
access requests are obtained from the SLRU chain (if

Prefetch occurs asynchronously as a
side function of the buffer manager
page access function.

the number of buffers residing on SLRU is greater
than the “sequential steal” threshold value “Q”).
Otherwise the buffers are obtained from the head of
the normal LRU chain. This logic gives buffers re-
cently used for sequential access a higher steal prior-
ity for new sequential requests than buffers last used
for random access, without altering buffer steal prior-
ity for new random requests. This minimizes the
monopolization effect of sequential processing. The
“sequential steal” threshold value Q is predeter-
mined by BM and is not specifiable by DB2 installa-
tions.

For sequential processing applications, the data that
must be referenced is known ahead of time. It is
desirable to have the data available in buffers when
it is being referenced. Smith'* proposed a general
prefetching algorithm: If a requested data page is not
in the buffer pool, schedule an 1,0 request to prefetch
n pages following the requested page. For a truly
sequential process, Smith’s proposal can only reduce
1/0 delays by a factor of # (i.e., batching 1/0 operations
in multiples of #n pages). To extend his concept to
improve 1/0 throughput for a truly sequential proc-
ess, BM provides the asynchronous prefetch facility.

Prefetch occurs asynchronously as a side function of
the buffer manager page access function. It is accom-
plished by scheduling an asynchronous execution
unit that acquires necessary buffers from the buffer
pool, loads them with the required data, and then
releases them to LRU status. Note that the prefetched
buffers are not placed on the SLRU chain until they
are individually accessed. This is done to minimize
the stealing of prefetched buffers that have not yet
been accessed.

TENG AND GUMAER 215

Figure 2 Sequential prefetch logic flow

PAGE ACCESS
R

NORMAL PAGE ACCESS
PROCESSING

ASYNCHRO%%%}S\IBYHO
TCH SCHEDULE

RES&EET(E:D & REQUEST TO READ PFQ
RPN EVENLY DIVISIBLE == PAGES FROM RPN +1AND
BY PFQ & BUFFER YES RELEASE ALL PREFETCHED
POOL NOT PAGES TO THE LRU CHAIN
CRITICAL

SEQUENTIAL

NO EXIT

EXIT

To prevent multiple prefetches from being scheduled
for the same pages by the same sequential process,
the number of consecutive pages prefetched (PFQ)
must be a value that is a power of two. BM will only
schedule prefetch when the requested page number
(RPN) is evenly divisible by the prQ. Prefetch will
start at the currently requested RPN plus one. The
last page prefetched is the next sequential page whose
RPN is evenly divisible by the prQ. This ensures that
once a prefetch sequence has been initialized, all
subsequent pages will have been prefetched prior to
access as long as the sequence remains unbroken.
Figure 2 shows the logic flow of the BM sequential
prefetch algorithm.

Buffer pool performance tuning

For the purpose of studying the behavior of DB2
buffer pools, BM collects the performance monitoring
data listed in Table 1. GET is incremented by one
each time the BM page access function is requested.
The incrementing does not include those page access
requests performed within the look-aside buffers of
each process (i.e., buffers fixed by each process for
future references). Thus, GET tends to be lower than
the total number of pages referenced. However, GET
is valuable when studying the effectiveness of the BM
buffer look-aside capability. RIO is incremented by
one each time a requested data page has not been
found in the buffer pool, and a read 1/0 operation is
required to access the data base. The ratio RIO/GET
could be used as an indication of the efficiency of
the buffer look-aside capability. The level of effi-

216 TENG AND GUMAER

ciency increases as the ratio approaches zero. Factors
that can affect this ratio are

1. Buffer pool size

2. Locality of reference across the mix of applica-
tions accessing the data base data assigned to this
buffer pool

Increasing 1 and/or 2 could result in the lowering of
this ratio (raising the efficiency level of the look-aside
capability of the buffer pool).

sws is incremented by one each time a data base
logical record residing in a system page is updated.
PWS is incremented by one each time a system page
is written to pAsD. Each update of a system page
does not necessarily result in a page write (multiple
updates are allowed per system page write). The ratio
Pws/sws could be used as an indication of the effi-
ciency of the BM deferred write logic. The level of
efficiency increases as the ratio approaches zero.
User-controllable factors that can affect this ratio are

1. Buffer pool size

2. Level of concurrent buffer pool usage by multiple
transaction instances (each accessing different
data base data)

3. Transaction rate of transaction instances which
update the data base pages

Increasing 1 and/or 3 and/or decreasing 2 could
result in the lowering of this ratio (raising the number
of updates per system page write).

Similarly, swu and pwu are used to collect update
counts for Uw pages. However, Uw pages are exclu-
sively held by the process until it commits. There-

Table 1 Performance monitoring data

GET Number of page access requests received
RIO Number of read I/O operations performed

SwWS Number of requests received to fix System pages
for update

PWS Number of System pages written to DASD

SWuU Number of requests received to fix UW pages for
update

PWU Number of UW pages written to DASD

WwIO Number of write 1/O operations performed

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

fore, each Uw page write can only contain updates
by the same process within the scope of a commit,
and so the ratio of pwu/swu should always approx-
imate one.

wIO is incremented by one each time a data base

write request is performed by the internal 1/0 driver.
The ratio wio/(pws + PwU) could be used to mea-

BM does not perform any direct
restart function for DB2.

sure the efficiency of batching write 1/0 operations.
The level of efficiency increases as this ratio ap-
proaches zero. Factors that can affect this ratio are

1. Buffer pool size

2. Level of concurrent buffer pool usage by multiple
transaction instances (each accessing different
data base data)

Increasing 1 and/or decreasing 2 could result in the
lowering of this ratio (raising the number of pages
written per write request to the internal 1/0 driver).

The role of BM in DB2 restart

BM does not perform any direct restart function for
DB2. However, it provides pageset, data set, and page
processing services for use by the bB2 Data Manager
(DM) component, which controls pageset-related re-
start processing. Services provided by BM are as
follows:

1. “Pageset and data set” log records. These records
are produced at DB2 checkpoint time, and when-
ever a pageset or its data set are opened or closed.
They are used by the DM to control pageset/data
set open and close during restart.

The BM page access protocols are used during
restart. These protocols are used by the p™m to
perform the 1/0 operations needed to recover DB2
data during restart.

N

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

To help DB2 restart from the most recent checkpoint,
BM writes checkpoint log records for each recoverable
pageset found to be open. This information will be
used at restart to reopen those pagesets that were
open at checkpoint time. Within each checkpoint
log record group, BM supplies a checkpoint log that
indicates the log starting point for the associated
pageset-related processing. BM provides logic to de-
termine, for each pageset, the most recent checkpoint
log record RBA value that precedes the oldest update
log record corresponding to those updated pages that
may not yet have been externalized. This is required
to ensure that these pages are included within the
scope of recovery.

The role of BM in media failure recovery

BM provides the following support for media failure
recovery:

1. Initial detection of media failures through receipt
of 1/0 error return codes from the internal 1/0
driver. Whenever this occurs, relevant informa-
tion is collected and saved to be used by the DB2
RECOVER Ultility in recovering DB2 data.

2. A write error page range for each data set. Access
to pages within this range is prohibited for proc-
esses other than the RECOVER Utility.

3. A service to record special log-range entries for
recoverable pagesets that are modified. These log-
range entries are used during the RECOVER process
to bypass DB2 log records that need not be proc-
essed.

Data availability is very critical to the success of a
data base system. For large data bases, off-line recov-
ery would be tedious and would cause large amounts
of data to be unavailable for an extended period.
Thus, it is preferable for the system to do on-line
recovery of interrupted transaction processes.

DB2 data pages may be broken by interrupted trans-
action processes. For this type of broken page con-
dition, DB2 automatically does on-line recovery. Bro-
ken pages are detected either at the pageset critical
function cleanup process of BM (which is scheduled
when data pages could not be written back to DASD
for a long period of time due to interrupted trans-
action processes) or when the pageset is being closed.
Prior to initiating the recovery process, BM ensures
that no read or write activities are in progress against
the associated pageset. Then BM invokes a DM-sup-
ported log recovery service to reconstruct the page(s)
from the DB2 log.

TENG AND GUMAER 217

Concluding remarks

This paper has described the design considerations
of the pB2 Buffer Manager and its role in the DB2
system. As noted above, BM plays a very important
role in DB2 data integrity and data recovery. It also
has great impact on overall DB2 system performance.

DB2 is IBM’s first relational data base system running
in the Mvs/370 and Mvs/XA environments. At the
moment, there are no published reports on the be-
havior of DB2 buffer management. It is anticipated
that a deeper understanding of this behavior will
occur over time. We hope to identify additional
enhancements to improve DB2 performance.

We also hope that data processing personnel will
now better understand the role of buffer manage-
ment in a data base system. This knowledge should
help pB2 produce a well-planned design for DB2
applications. In addition, the information in this
paper should assist DB2 installations in the perform-
ance tuning of their DB2 systems.

Acknowledgments

The authors gratefully acknowledge the efforts of R.
A. Crus, D.J. Haderle, H. W. Herron, M. M. Roney,
A. Shibamiya, and P. S. Worthington in reviewing
the paper and for contributing valuable suggestions.
The authors also thank DB2 management, specifically
M. J. Bohl, M. M. Roney, and G. R. Young, for
their support.

Cited references

t. DB2 General Information Manual, $370-20, IBM Corpora-
tion; available through IBM branch offices.

2. S. Kahn, “An overview of three relational data base products,”
1BM Systems Journal 23, No. 2, 100-111 (1984, this issue).

3. OS/VS VSAM Programmer’s Guide, GC26-3838, IBM Cor-
poration; available through IBM branch offices.

4. W.G. Tuel, Jr., “An analysis of buffer paging in virtual storage
systems,” IBM Journal of Research and Development 20, No.
S, 518-520 (September 1976).

5. T. Lang et al., “Database buffer paging in virtual storage
systems,” ACM Transactions on Database Systems 2, No. 4,
339-351 (December 1977).

6. R. Lorie, “Physical integrity in a large segmented database,”
ACM Transactions on Database Systems 2, No. 1, 91-104
(March 1977).

7. M. M. Astrahan et al., “System R: A relational approach to
database management,” ACM Transactions on Database Sys-
tems 1, No. 2, 97-137 (June 1976).

8. M. W. Blasgen et al., System R: An Architectural Update,
Research Report RJ-2581, IBM Research Division, 5600 Cot-
tle Road, San Jose, CA 95193 (July 1979).

218 TENG AND GUMAER

9. D.J. Haderle and R. D. Jackson, “IBM Database 2 overview,”
IBM Systems Journal 23, No. 2, 112-125 (1984, this issue).

10. R. A. Crus, “Data recovery in IBM Database 2,” IBM Systems
Journal 23, No. 2, 178-188 (1984, this issue).

11. J. Rodriguez-Rosell, “Empirical data reference behavior in
data base systems,” Computer 9, No. 11, 9-13 (November
1976).

12. IMS/360 General Information Manual, GH20-0765, IBM
Corporation; available through IBM branch offices.

13. G. M. Sacco and M. Schkolnick, A Mechanism for Managing
the Buffer Pool in a Relational Database System using the Hot
Set Model, Research Report RJ-3354, IBM Research Division,
5600 Cottle Road, San Jose, CA 95193 (December 1981).

14. A. J. Smith, Sequentiality and Prefetching in Data Base Sys-
tems, Research Report RJ-1743, IBM Research Division, 5600
Cottle Road, San Jose, CA 95193 (March 1976).

Reprint Order No. G321-5219.

James Z. Teng IBM General Products Division, Santa Teresa
Laboratory, P.O. Box 50020, San Jose, California 95150. Dr. Teng
is an advisory programmer at IBM’s Santa Teresa Laboratory. He
started his career at Sperry UNIVAC in Roseville, Minnesota, in
1976. He was involved in the design and development of UNI-
VAC’s Functional Mathematical Programming System (FMPS) in
the areas of mixed integer programming. In 1978, Dr. Teng joined
IBM, where he worked on the Business Information System (BIS)
project at the Santa Teresa Laboratory. He was involved in the
design and development of various financial systems such as
BISPLAN (a tool for project planning), the Cost Measurement
System, and the Labor Distribution System. In 1980, he joined
the Database 2 development group. Since then, he has been
involved in the design and development of the Buffer Manager
component. Dr. Teng received a B.S. degree in mathematical
statistics from Tamkang University, Taiwan, in 1970. He received
an M.S. degree in computer science and a Ph.D. degree in statistics
from the University of Wisconsin, Madison, in 1975 and 1978,
respectively.

Robert A. Gumaer BM General Products Division, Santa Teresa
Laboratory, P.O. Box 50020, San Jose, California 95150. Mr.
Gumaer joined IBM in 1955 as a customer engineer in Pittsburgh,
Pennsylvania. Since transferring to San Jose in 1969, he has
worked on the design and development of various data manage-
ment and data base management products, including VSAM and
DB2. Mr. Gumaer is currently an advisory programmer in the
Storage Management Department at the Santa Teresa Laboratory.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

