
IBM Database 2 
performance:  Design, 
implementation,  and  tuning 

by J. M. Cheng 
C. R. Loosley 
A. Shibamiya 
P.  S. Worthington 

The  larger  and  more  complex  a  relational data base, 
the  more  efficient the data base  management  system 
must be to maintain  an acceptable level  of perform- 
ance. The design  and  implementation of IBM Database 
2 (082) have  been  aimed toward this  objective.  Tech- 
niques  for  achieving  this  key  objective  in 082 are the 
subject  of this paper. Presented are performance-re- 
lated  strategies  in query processing  and  performance- 
related  design  tradeoffs. Data base and application d e  
sign  options  and  their  resolution  for  optimum perform 
ance are also  discussed.  Also  presented  are tech- 
niques to maintain  performance by application  moni- 
toring and tuning  and DB2  system tuning. 

I BM Database 2 (DBZ) is a relational data base 
management system',2 that supports both repeti- 

tive transactions and  ad hoc queries against large 
data bases.  In such a system, achieving acceptable 
performance for the different types of work  is a key 
design objective. Performance objectives for DBZ cen- 
tered around maximizing the level  of transaction 
concurrency while minimizing 

Number of instructions executed by the CPU. 
Number of Input/Output (110) operations. 
Time to perform the I/O operations. 
Failures due  to resource overcommitment. 

This paper describes how DBZ achieves these objec- 
tives and how a DBZ user can  monitor  and  tune  the 
performance of DBZ. 

The first part of this paper describes performance 
considerations in the design and implementation of 
Structured Query Language (SQL) query optimiza- 
tion, the use of compilation instead of interpretation 

in the processing of SQL, and the performance gain 
in dividing the processing into separate compilation 
and execution phases. Performance-related tradeoffs 
made in the design of DBZ components  are  then 
discussed.  Specific topics include the  data base  buffer 
pool algorithms, the use of virtual storage in multiple 
private address spaces, and  the DBZ sort implemen- 
tation. Next, the  options provided to a D B ~  user to 
optimize the performance of a data base and appli- 
cation are described. On  the  data base side, efficient 
uses  of DBZ tables and indexes are discussed. On  the 
application side, the uses of dynamic and static SQL, 
and various data base locking options are reviewed. 
DBZ utility options are also discussed. The final part 
of this paper is devoted to  the monitoring and  tuning 
of D B ~ .  Sections cover application monitoring, use 
of information from the DBZ catalog tables, DBZ 
storage management options, and  the D B ~  statistics 
facility. Sample reports showing DBZ accounting and 
statistics data  are presented, and some key data items 
are reviewed. 

Performance-related  strategies  in  query 
processing 

Several strategies are employed to optimize the per- 
formance of SQL statements. These strategies are 
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described under  the headings SQL query optimization, 
Automatic access path selection, and Bind and SQL 
compilation. 

SQL query optimization. SQL is a language that gives 
a user the power to  concentrate  on specifying  what 

Query optimization is very  important 
for a  successful  relational data base 

management  system. 

is to be retrieved, rather than how the information 
is to be retr ie~ed.~ Query optimization is very im- 
portant for a successful relational data base manage- 
ment system. Many optimization techniques have 
been  published4" or implemented in existing sys- 
tems.*"* In this section, some of the heuristic strat- 
egies employed by D B ~  for query processing are dis- 
cussed. 

A query may contain an arbitrary number of predi- 
cates (search criteria) joined by AND or OR conjunc- 
tors. The result of the evaluation of the predicates is 
either TRUE (the row should be returned) or FALSE 
(disregard the row). The SQL predicate is  very similar 
to  the IF condition of compiler languages. Therefore, 
the technique used to optimize the IF condition is 
also applied in the optimization of SQL predicates. 
For example, consider the following evaluation of 
the criteria: 

WHERE  PREDICATE1  AND  PREDICATEZ. 

if PREDICATEI yields FALSE, the evaluation of 
PREDICATEZ is skipped. SQL allows the negation of 
the search criteria, as in the following example: 

WHERE  NOT  (PREDICATE1  AND  PREDICATEZ) 

These search criteria cannot be materialized until 
the NOT operand is evaluated. Hence, DB2 decom- 
poses this into  the following criteria: 

WHERE  (NOT  PREDICATEI)  OR  (NOT  PREDICATEZ) 
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if PREDICATEI is FALSE, the result of (NOT 
PREDICATEI) is TRUE and  the evaluation of 
PREDICATE2 is skipped. 

D B ~  optimizes the performance of a noncorrelated 
subquery (i.e., a subquery that does not reference 
any column of a table in another query block) by 
evaluating the subquery once and saving the result 
of the subquery for subsequent evaluation in the 
main query. This is illustrated by the following  ex- 
ample: 

SELECT NAME,  ADDRESS FROM MAILLIST WHERE  NAME 
IN (SELECT CUSTNAME FROM CUSTOMERS 
WHERE  AMOUNTDUE > 1000) 

Here, the names of customers with more than $1000 
due are retrieved once. The names from MAILLIST 
are then checked against these customer names. 

Among the many ways of joining two tables, the 
nested-loop method and  the merge-join method have 
been shown to be near optimaL4 Both of these join 
methods have  been implemented in DBZ. In the 
nested-loop method, a row  is retrieved from one 
table, and  then all the rows in the  other table with 
matching values in the  join  column are retrieved. In 
the merge-join method, both tables are first sorted 
according to  the  join  column. Thereafter, the merge- 
join method is very similar to  that of the nested-loop 
method. However, since both tables are sorted, the 
scan of the second table for matching values in the 
join  column does not have to  start from the  top of 
the table for every join value. Furthermore,  the 
second table is scanned more efficiently  because it 
has  been sorted on  the  join  column,  and it is being 
scanned in join-column order. 

Automatic access path selection. DB2 supports two 
methods for retrieving rows from a table: table space 
scan and index scan. 

A table space  scan looks through the table space 
sequentially, whereas an index scan looks through 
the table space in index value order. An index can 
be  of the clustering or nonclustering type. When a 
table has a clustering index, D B ~  attempts  to allocate 
storage for the rows  of the table such that their 
physical ordering is the same as their corresponding 
index values. 

An index may be scanned for a particular key value 
or for a range  of key values if the index appears in a 
simple predicate, such as COLUMNI < 20. An index 
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may also be used without any key being supplied, in 
which  case the entire index and table space are 
scanned. Unlike Data Language/I (DLII), D B ~  does 
not read any page from the table space if it can 
retrieve the information from the index. For exam- 
ple, the following statement is  used to  count  the 
number of rows in a table: 

SELECT COUNT(*) FROM SOMETABLE 

DBZ scans the index to count  the  number of index 
entries without reading any  data pages in the table 
space. This method is  efficient for this type of query 
because the index is usually much smaller than  the 
table space. 

A table space scan may be better than  an index scan 
in  some  situations  and worse in others. For example, 
a table space scan on a table space with a single table 
is more efficient than  an index scan with no key 
value. On the  other hand, a clustering index scan on 
a small table in a large table space  which contains 
several tables is more efficient than a table space 
scan. 

To facilitate the process  of path selection, D B ~  pro- 
vides a utility called RUNSTATS to collect statistics on 
tables, table spaces, and indexes. The following sta- 
tistical information is included: 

Number of  rows in a table. 
Number of  pages occupied by a table. 
Number of  pages in a table space. 
Number of distinct key values in an index. 
Second highest  key value in an index. 
Second lowest  key  value in  an index. 
Number of index levels. 
Number of  leaf  pages in an index. 

When making the selection of an access path, differ- 
ent ways  of  accessing each table are examined, and 
a cost for each access path is derived from the 
accumulated statistics. The cost of an access path 
consists of a weighted sum of the calculated 110 and 
processor cost. The 110 cost is a function of the 
estimated number of  pages  read for a query, and  the 
processor cost is a function of the estimated number 
of calls to  the D B ~  component  that retrieves and 
filters the  data.  The least expensive access path is 
chosen to retrieve rows  of a single table. Finally, if 
the rows must be sorted, the cost of using an index 
to satisfy the  sort sequence is compared to  the least 
cost of retrieving the table plus the cost of sorting 
the rows. The less  expensive method is chosen. 
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For a query involving joins,  the order ofjoins signifi- 
cantly affects the performance of the query. Nor- 
mally, D B ~  examines all permutations of joining all 
the tables. The  permutation of joining two unrelated 
tables is not examined unless there are  no  other 
related tables to  join. (Two tables are unrelated if 
there are no  common join columns, in which  case a 
Cartesian product of the two tables is requested.) 
Both the nested-loop method and  the merge-join 
method are considered for the  joining of two tables. 
The  permutation  that gives the least total cost in 
joining all the tables is chosen. 

Bind and SQL compilation. DB2 provides the BIND 
and RUN subcommands to separate the processing 

An application  may be run  multiple 
times  if it has been bound  once. 

of static SQL statements  into two phases. The BIND 
process prepares SQL statements to be executed at 
RUN time  and consists of the following  steps: 

1. Reading data sets that  contain  the SQL statements 
extracted from the application program during 
precompilation. 

2 .  Saving the SQL statements  in  the D B ~  catalog. 
3. Processing each SQL statement. 

For an SQL data manipulative statement (e.g., SELECT, 
INSERT), information is retrieved from the DB2 cata- 
log for semantic  and capability validation and for 
access path selection. An application plan describing 
the execution sequence of the SQL statement is then 
generated and saved. 

For  an SQL data definitional (e.g., CREATE, DROP) or 
data control statement (e.g., GRANT, REVOKE), infor- 
mation is retrieved from the D B ~  catalog for synonym 
resolution and for the assignment of defaults, such 
as the default table space name. An internal form of 
the  statement is produced and saved for execution 
at RUN time. 

An application may be run multiple times if it has 
been bound once. Furthermore,  the BlNDing  of an 
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application may be scheduled for off hours to reduce 
the  demand for system resources during peak hours. 
An application plan may become invalid if, after the 
BIND process, the  authorization  to access an object 
is  revoked or such objects as synonyms, tables, or 
indexes used by the plan are  dropped.  The detection 

Performance  studies  have  shown 
that  query  compilation  is  more 

efficient  than  interpretation. 

of an invalid application plan at RUN time causes an 
automatic reBlND of the application program. 

For a dynamic SQL statement,  the bind process con- 
sists  of semantic and capability validation and access 
path selection only. This is  referred to as dynamic 
bind. 

Unlike DL& SQL is a compiled language. Therefore, 
at BIND time, an SQL statement is  parsed and opti- 
mized. Code is also generated for SQL data  manipu- 
lative statements. Even ad hoc queries are compiled 
before they are  run. For instance, a query returning 
one  hundred rows  of a table does not require an 
interpretation of the search criteria one hundred 
times. Performance ~ t u d i e s l ~ . ' ~  have shown that 
query compilation is more efficient than interpreta- 
tion. 

Performance-related  internal  design  tradeoffs 

Numerous performance-related tradeoffs  were made 
during the design and development phases of D B ~ ,  
with the goal  of providing the best  overall product 
for the intended application environments. Included 
among  the tradeoffs  between performance factors 
were those between CPU and I/O, between virtual 
storage and CPU, and tradeoffs among performance 
and reliability, availability, and serviceability. 

The allocation of  system  resources to D B ~  requests is 
controlled by D B ~  Resource Managers, several of 
which  were  designed  with performance goals in 
mind. Also, one significant performance-related 
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tradeoff concerned the use of Direct Access Storage 
Devices (DASD). In this section, the following aspects 
of DB2 resource management  are discussed: 

D B ~  use  of MVS cross-memory services. 
The process  of allocating resources to D B ~  requests. 
Environmental Descriptor Manager, which  keeps 
frequently used data base and plan descriptors in 
storage. 
Buffer Manager, which  keeps frequently used data 
base  pages in storage. 
Storage Manager, which allocates and frees virtual 
storage. 
D B ~  sort, which sorts records retrieved from the 
data base. 

The performance-related tradeoff concerns the 
amount  and placement of free space in D B ~  table 
spaces. The effect  of these design decisions on D B ~  
processor cost, 110 operations, and concurrency is 
discussed in the following  sections. In addition,  the 
D B ~  use  of virtual storage is described; greater con- 
currency requires increased use of virtual storage. 

Use of virtual  storage  in  multiple  private  address 
spaces 

MVS cross-memory architecture supports greater vir- 
tual storage by distributing code and  data  into mul- 
tiple private address spaces through the use  of  cross- 
memory operations. This is done instead of  keeping 
the codes and  data in one private address space or 
in the MVS common area. Although the hardware 
assist of cross-memory operations substantially re- 
duces the processor overhead for these operations, 
there still  exists residual overhead resulting from 
additional instructions executed in cross-memory 
mode and degradation in processor  speed resulting 
from cross-memory operations. Therefore, it  is im- 
portant  to minimize cross-memory overhead by 
placing frequently referenced code and  data in the 
MVS common area. The distribution of code and  data 
into  many address spaces  would increase cross-mem- 
ory  usage,  with resulting increased overhead. 

Figure 1 illustrates the way  by which D B ~  takes 
advantage of this MVS feature by operating out of the 
following two address spaces: (1)  Data Base Services 
Address  Space (DBAS), which contains code and  data 
related to  data base functions; and (2) System  Ser- 
vices  Address  Space (SSAS), which contains code and 
data related to such service functions as logging. 
Some common code and control blocks are placed 
in  the MVS common area. In most installations, the 
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Figure 1 DB2 use of MVS virtual storage 
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IMS Resource Lock Manager (IRLM) locks on DBZ 
data are placed in private address spaces of their 
own, so that outstanding DBZ locks do not take up 
storage in the MVS common area. A typical SQL FETCH 
request operates in three address spaces (application, 
DBAS, and  IRLM), and a typical UPDATE request op- 
erates in four address spaces (application, DBAS, SSAS, 
and IRLM). 

Resource  allocation and deallocation. Resources 
must be allocated to a transaction before any SQL 
statements can be issued. The allocation process 
consists of creating a DBZ internal task structure, 
known as an agent, to represent the transaction, 
acquiring storage and initializing control blocks for 
the agent, reading from DASD the application plan 
the agent will  use, opening data sets this agent might 
access, and obtaining data base  locks.  At transaction 
termination, these operations are reversed-the data 
base  locks are released, open data sets are closed 
(unIess otherwise indicated when the table space was 
defined), and  the storage for the control blocks is 
freed. Information that allows DBZ to  determine 
which data base  locks to obtain and which data sets 
to allocate and open is stored in the application plan. 

Work done  at allocation time need not be repeated 
for every SQL statement issued by the agent. Although 
this normally represents a savings  in  processor  cost 

IBM SYSTEMS XXIRNAL, VOC 23. NO 2, 1934 

and I/OS, it is not always true. For example, even 
though opening and closing data sets at allocation 
and deallocation time  means  that each data set  is 
opened only once per agent, many SQL statements 
may use that  data set. There is no savings,  however, 
if each SQL statement uses a different data set and 
each SQL statement is executed only once. If some of 
those SQL statements are not executed at all (or, for 
example, they are used only in error situations), data 
sets are being opened and closed, but never used. 

Obtaining data base  locks at allocation time may 
also reduce concurrency. This is  because data base 
locks acquired at allocation time  are not freed until 
deallocation time, even if the application COMMITS 
and releases other  data base  locks.  However, there is 
less chance of having to back out  the transaction 
because of a deadlock with another transaction. If 
locks cannot be obtained, the transaction waits at 
the allocation stage until the locks are freed. 
Separate copies of application plans (which are not 
re-entrant) are kept in virtual storage for each DBZ 
agent executing that plan. Keeping a copy  of an 
application plan in virtual storage means that DBZ 
does not have to reread the plan from DASD and 
relocate it in virtual storage for each SQL statement 
executed. That also means, however, that virtual 
storage must be allocated to  the plan even  when SQL 
statements  are  not being executed. Keeping the ap- 
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plication plan in virtual storage  is a tradeoff in which 
virtual storage is  used to minimize processor  cost 
and 110s. 

This use of virtual storage was an  important design 
consideration for the Query Management Facility 
(QMF), because QMF users  typically spend a great deal 
of time scrolling through output  or thinking about 
the next query to  run. They spend relatively little 
time actually executing SQL statements. For this rea- 
son, each time  the QMF user runs  a query, a copy  of 
the QMF application plan is allocated for the QMF 
user. As soon as all the  data in the QMF result  have 
been retrieved, this application plan is deallocated. 
Since QMF initially retrieves more rows  of data  than 
can be displayed on a single screen, QMF can often 
release  all D B ~  resources before the user starts to 
scroll through the screens of the query output. Thus, 
during the time the user  is composing queries and 
specifying QMF forms, D B ~  resource usage can often 
be avoided. 

Two D B ~  components have  been  designed  specifically 
to minimize processor cost and 110s through the use 
of virtual storage. These are the Environmental De- 
scriptor Manager and  the Buffer Manager. 

Environmental  Descriptor  Manager. During BIND for 
an application program, a D B ~  plan is created and 
stored in an internal D B ~  format called the Skeleton 
Cursor Table (SKCT) template in a D B ~  directory table 
space. During creation of a  data base, a  data base 
descriptor is stored in another D B ~  directory table 
space. The Environmental Descriptor Manager 
(EDM) is responsible for access to these plans and 
data base descriptors. A block of virtual storage, 
called the Environmental Descriptor Manager Pool 
(EDM pool), is  reserved  when D B ~  is started. This 
virtual storage is  used to store frequently used SKCT 
templates and  data base descriptors. The EDM pool 
is also used to hold a Cursor Table (CT) needed by 
each agent as it executes. 

The installation specifies the size  of the EDM pool, 
which must be at least  large enough to hold the CTS 
and  data base descriptors needed by each concurrent 
agent. If the EDM pool  is  larger than this minimum 
size,  it is  used to hold SKCT templates and  other  data 
base descriptors. When an agent is allocated, the 
pool  is searched to see whether the SKCT template 
and  data base descriptors are already in the pool. If 
so, they do not need to be  read from DASD. In this 
case,  storage  is allocated for a CT for this agent, and 
the SKCT template is copied to  the CT. If the SKCT 
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template or  data base descriptors are  not in the pool, 
it is necessary to allocate storage within the pool to 
hold the SKCT template or  data base descriptors and 
read them from the D B ~  directory. 

Often, some other SKCT templates or  data base de- 
scriptors have to be deleted to make room for this 
new SKCT template or  data base descriptor. This is 
done first by randomly deleting data base descriptors 
that are not being  used until enough storage  is avail- 
able for the storage request. Ifthere is  still not enough 
storage available, SKCT templates are deleted ran- 
domly. If no storage  is available after all data base 
descriptors and SKCT templates have been deleted, 
agent allocation fails, and  the appropriate subsystem 
(IMS, CICS, or the TSO user)  is notified. 

The EDM pool was originally designed to provide fast, 
inexpensive access to SKCT templates, and  data base 
descriptors. Therefore, more expensive  storage  re- 
placement algorithms, such as  least  recently  used 
(LRU), have not been implemented. Neither have 
more expensive storage management algorithms 
(such as subdividing SKCT templates and CTS into 
smaller units and keeping only the active part of this 
information in storage) been implemented. 

In ~ ~ ~ 1 3 7 0  systems, in which the EDM pool  may  be 
smaller than  the  optimal size, these design  tradeoffs 
may  have a significant influence on  the performance 
of the D B ~  system. If the EDM pool  is so small that 
SKCT templates have to be read frequently from the 
D B ~  directory, there may be an 110 bottleneck on  the 
DASD that  contains  the SKCT data set. Such a bottle- 
neck  may limit the  amount of  work D B ~  can process 
per hour. In addition,  the SKCT templates and  data 
base descriptors are read into  the  data base  buffer 
pool in 4096-byte blocks, thereby reducing the 
amount of the buffer  pool available for data base 
pages  used by transactions and queries. This method 
differs from the IMS design, in which descriptors are 
read in a single  block directly into  the IMS descriptor 
pools. 

Buffer  Manager. In D B ~ ,  as in most data base man- 
agement systems, virtual storage  is  reserved to hold 
copies of data base  pages. This virtual storage, which 
is  called the buferpool, contains the following  pages: 

In-use pages, which are currently being  read or 
updated by transactions. 
To-be-written pages, which contain updates from 
a transaction but which  have not been written to 
DASD. The updates may not yet  have  been COM- 
MITted  by the transaction. 
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Look-aside-buffering  pages, which are neither in 
use nor to be written. They are kept in virtual 
storage only because there is a possibility that they 
will  be  needed again. 

D B ~  allows multiple buffer  pools. Three buffer pools 
hold 4K-byte pages (4096 bytes of data), and  one 
buffer  pool holds 32K-byte pages (32 768  bytes of 
data). 

Assigning a separate buffer  pool to 32K-byte-page 
table spaces  allows D B ~  to read and write 32K-byte 

Updated  pages are normally kept  in 
the  buffer  pool  in  preference  to 

nonupdated  pages, 

blocks of data with a single 110. These large  pages are 
used for table spaces that  contain records longer than 
4K bytes. 

Installations are free to assign the three 4K-byte 
buffer pools to any table spaces  they  wish. The only 
restriction is that  the first  buffer  pool (BPO) is  used 
for the D B ~  system table spaces  (e.g., the D B ~  catalog, 
directory, and  the table space D B ~  uses for temporary 
storage). 

The Buffer Manager algorithms for reassigning and 
writing a buffer are complex. The basic algorithm is 
Least Recently Used (LRU) replacement, in which 
the page that has been  least  recently  used by a query 
or transaction is chosen to be  replaced in the buffer 
pool. This process  is known as stealing a  buffer. The 
simple stealing-a-buffer algorithm has been  modified 
to take into account other factors, such as the cost 
of stealing a buffer containing an updated page. 

One of the factors considered in the design of the 
Buffer Manager algorithms was the design of the 
internal 110 driver used  by D B ~  for I/O services. The 
internal 110 driver writes up  to thirty-two pages  of a 
data set  with a single Start I/O (SIO) instruction. 
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Although this is a highly  efficient way to schedule 
I/OS, it also means increased time to complete the I/ 
0, because multiple pages must be written. Thus D B ~  
must make a tradeoff  between frequently scheduling 
110s for a few  pages and infrequently scheduling I/OS 
for many pages. Although D B ~  agents do not usually 
have to wait for the completion of write I/OS, agents 
do have to wait for the completion of read 110s. If an 
agent issues a read to a device that has just been 
given  32  pages to write, the agent must wait for all 
32  pages to be written. 

Thus  the response time for a transaction can depend 
heavily on the D B ~  decision of  how many pages to 
write at  one time. 

A related consideration is the value and cost of 
keeping updated pages in virtual storage. Unlike 
pages that have been  read but not updated by a 
transaction, if the buffer containing an updated page 
is stolen and used for another page, it is  first  neces- 
sary to write the updated page  back to DASD. There- 
fore, if two pages are equally likely to be reused, it is 
better to keep the updated page in its buffer and steal 
the buffer containing the page that has not been 
updated. If, however, many pages from one table 
space are updated before  being written, the I/O takes 
a long time when they are eventually written. 

D B ~  schedules an updated page to be written when- 
ever too many buffers in  the buffer  pool are in use 
or waiting to be written or when too many buffers 
have  been updated for the dataset containing that 
page. Thus updated pages are normally kept in the 
buffer  pool in preference to  nonupdated pages,  when 
there are sufficient stealable buffers. 

A data base  page  is considered to be in use  if another 
D B ~  component, called the  Data Manager, has ac- 
quired the page and has not released it. The Data 
Manager can acquire and release the page  every time 
it accesses a record on that page. The  Data Manager, 
however, often accesses  several records on a page, 
and  the acquiring and releasing of the page for every 
access results in greater processor  cost for each ac- 
cess. Therefore, the  Data Manager normally acquires 
and releases each page only once while  it  reads all 
the records on the page. If, however, the time be- 
tween record accesses is  very  long (as it may  be in 
very complicated SQL joins), this interim may result 
in the page  being in use for a very  long period of 
time. In fact, other pages may be  replaced and reread 
by the Buffer Manager while this page remains un- 
accessed but in use. 



To alleviate this problem, when the  number of  steal- 
able buffers becomes very small, the Buffer Manager 
warns the  Data Manager that buffer space is critical. 
At this time, the  Data Manager starts acquiring and 
releasing each page  every time it accesses a record. 
The Buffer Manager also notifies the  Data Manager 

The  normal LRU algorithms are 
modified to use  information  available 

to  the  Data  Manager. 

when  sufficient stealable buffers are available again. 
In this way, the normal LRU algorithms are modified 
to take advantage of the additional information 
available to  the  Data Manager. 

Normally, when the Buffer Manager decides that it 
is time to  start writing updated pages, D B ~  service 
agents-known as asynchronous write  engines-are 
started. Each  write engine is responsible for calling 
the internal I/O driver to initiate writes to a single 
DB2 data set. When the writing completes, the pages 
that were written are no longer marked as “to-be- 
written,” and their buffers are available to be stolen. 
In this design, D B ~  agents do not normally have to 
wait for writing to complete, because the asynchro- 
nous write engine takes over that responsibility. 

In a small buffer  pool,  however, it is  possible that 
almost all  pages are in use or  to be written by the 
write  engines.  In this case, there are very  few buffers 
that can be stolen. In fact, if there were many con- 
current agents, it is  possible that suddenly there 
would be no buffers available to steal when an agent 
requested a page. Therefore, when there are very few 
stealable buffers, D B ~  agents start writing their up- 
dated pages synchronously. That is, when a transac- 
tion updates a page, it also waits for that page to be 
updated on DASD. The Buffer Manager algorithms 
have  been  designed to avoid this situation whenever 
possible,  because this can significantly degrade re- 
sponse time. 

Storage  Manager. A Storage Manager provides two 
performance-critical services to  other D B ~  compo- 
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nents: (1) it avoids expensive MVS GETMAINS and 
FREEMAINS to acquire storage from MVS, and (2) it 
provides a mechanism for separating storage used 
for different purposes into different D B ~  pools. The 
Storage Manager also monitors storage usage  by D B ~  
and MVS and ensures that  adequate storage is avail- 
able in the D B ~  address spaces for MVS services. The 
creator of a pool can specify such characteristics of 
the pool as the following: 

Whether the blocks  of storage in the pool are of 
fixed or variable length. This prevents storage 
fragmentation in fixed-length pools. 
Whether the storage pool is to be  used by multiple 
D B ~  agents. If the pool is not used in this way, it 
can be  released  when the agent is deallocated. 
Whether a best-fit algorithm is to be  used to ac- 
quire storage in a pool that  contains variable- 
length  blocks. If a best-fit algorithm is  used, the 
smallest (i.e., best) free  block that is  large enough 
to satisfy the request is chosen. This results in 
greater processor cost than  the first-fit algorithm 
in which any  (the first)  free  block that is  sufficient 
to satisfy the request is chosen. In D B ~ ,  all pools 
except the EDM pool are first-fit pools. The best-fit 
algorithm in the EDM pool reduces fragmentation 
resulting from a wide  range  of storage request sizes. 
Whether a pool theshold value is to be used. In 
threshold pools storage blocks are divided into two 
groups. Storage requests below a certain threshold 
size are satisfied from one  group of  storage  blocks, 
while requests above the threshold size are satisfied 
from the other. This algorithm is  used in the 
Relational Data System (RDS) pool, in which  re- 
quests tend to be either very small or quite large. 

D B ~  does not automatically return free  storage within 
its pools to MVS because it is assumed that this free 
storage will soon be reused within that pool. Keeping 
it avoids the cost of an MVS FREEMAIN and subsequent 
GETMAIN operations. Without some mechanism to 
manage the use of storage in  the ~vs/370 environ- 
ment, functions requiring storage might fail  even 
though D B ~  has sufficient  free storage available but 
in the wrong pool. Therefore, if D B ~  is executing 
under ~ ~ ~ 1 3 7 0 ,  it monitors its own acquisition of 
virtual storage as well as n o n - ~ ~ ~  acquisitions in the 
Data Base Services  Address  Space. 

The Storage Manager is also responsible for ensuring 
that a sufficient amount of virtual storage can be 
acquired by MVS for certain n o n - ~ ~ ~  requests, such 
as requests for space for control blocks for open data 
sets. Finally, the Storage Manager reserves  space for 
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DB2 must-complete functions, which, if they fail  (for 
example, because virtual storage is not available), 
cause D B ~  to  terminate. In particular, the Storage 
Manager reserves storage for the following: 

MVS services. 
Open data sets. The  amount of storage to reserve 
is determined from the installation parameter  that 
gives the  maximum  number of concurrently open 
data sets.  Of course, as D B ~  opens  data sets, a 
corresponding amount of storage is  released from 
this reserve. 
Critical D B ~  functions. The  amount of storage to 
reserve is determined from the installation param- 
eter that gives the maximum  number of concur- 
rent D B ~  threads. 

At  all times, the D B ~  Storage Manager tracks the 
amount of storage allocated and  the amount avail- 
able for use as working storage. If any request for 
storage can cause the storage available to fall  below 
the reserved amount,  a Short On Storage (sos) con- 
dition is  set and remains in  effect until  the available 
storage level  rises above the reserved amount.  This 
causes D B ~  to contract all internal storage pools 
(thereby returning any unused storage segments to 
MVS) when any request is made for additional stor- 
age. The  intent of this mechanism is to maintain 
sufficient storage available to satisfy the  requirements 
of all concurrently active threads. 

The D B ~  storage management scheme has also been 
designed to take precautions in case  of virtual storage 
overcommitment. If a storage request should cause 
available storage to fall  below the level required for 
completion of critical D B ~  functions  that  must  com- 
plete, that request is not granted unless it is made by 
such a  function. Any other request is rejected, thus 
causing the user task issuing the request to terminate 
abnormally. 

When D B ~  is not Short On Storage, each D B ~  pool is 
permitted to expand (i.e., GETMAIN more virtual 
storage from MVS) or  contract (FREEMAIN virtual 
storage to MVS) as necessary. 

DB2 Sort. DB2 must Sort rows  when an ORDER BY, 
GROUP BY, UNION, or DISTINCT command is  used in 
SQL calls and existing indexes cannot be  used. D B ~  
also needs to sort in the merge-join access method. 
Initially, vs Sort was  used  by D B ~ .  However, vs Sort 
as used  by D B ~  would require a  minimum of 256 
kilobytes of virtual storage in the DBAS for each 
concurrent  sort. vs Sort also imposes a relatively 
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large initial overhead, so that sorting of a small 
number of  rows, i.e., a few hundred  or less,  is  very 
expensive. The  number of rows to be sorted by D B ~  

DB2  sort uses much less virtual 
storage and yet  it  results in a  very 

efficient small sort. 

is expected to be much smaller than  that  in  the 
normal vs Sort applications because D B ~  typically 
sorts on selected columns of qualifying rows only. 

To avoid these two problems, D B ~  Sort has been 
written to replace vs Sort for sorting performed by 
D B ~ .  Sorting performed by D B ~  utilities continues to 
use vs Sort because they tend to sort many more 
rows, and  the sorting is done in the address space of 
the user invoking the utility and not in the DBAS. 

D B ~  Sort uses much less virtual storage (i.e., about 
eleven kilobytes minimum for each concurrent sort), 
and yet it results in a very  efficient small sort at the 
expense of large sort performance. For large sorts 
with many sort work file I/OS, e.g., sorting of tens of 
thousands of rows or more, vs Sort is much  more 
efficient because its device-dependent code is opti- 
mized for a given device, and it uses more extensive 
and sophisticated sort algorithms. 

The use of virtual storage by D B ~  Sort is made flexible 
by employing a  much larger sort work area  and  more 
buffers in the Multiple Virtual Storage/Extended 
Architecture (MVSIXA) environment, resulting in 
greatly improved large sort performance compared 
to the ~ ~ ~ 1 3 7 0  environment. 

Free  space in DB2 table  spaces  and  indexes. When 
data are initially loaded or subsequently reorganized 
in a table space, D B ~  leaves room in the pages in the 
table space for records that may be inserted later. 
This space is known asfree space. 

If no records are to be inserted, having no free space 
results in the most compact table spaces and indexes, 
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thus minimizing the  number of data pages, index 
pages, and index levels. This reduces access  cost as 
well as the DASD requirement. If,  however, a record 
is inserted and there is no free  space in the table 
space and index, the record must be placed at  the 
end of the table space. The corresponding index page 
must be split into two pages, one of which must be 
written at the  end of the index space. This page  split 
in the index leaf  page also results in new records and 
corresponding page splits in the nonleaf pages  in the 
index hierarchy. All this results in a disorganized 
table space and index, and degrades the performance 
of index scans, especially for scans of a clustered 
index. 

Because the values of the free  space parameters are 
fixed, their choice in the product design  significantly 
impacts performance. Initially, the following  free- 
space parameters were adopted: 

Data. Twenty percent free space within page and 
every sixth page  free, for 67 percent net usage 
immediately after Load. 
Zndex. Ten percent free space within page and 
every eleventh page  free, for 82 percent net usage 
immediately after Load. 

This would  have required 50 percent more 110s in a 
table space scan as well as 50 percent more DASD for 
data, as compared with the case in which no free 
space  had been provided. 

Because emphasis was shifting from transaction to 
query as the primary D B ~  environment during the 
product development cycle,  free-space parameters 
were changed to favor predominantly read-only data 
at the expense of relatively frequently inserted data. 

Zero free space is perfect for read-only data,  but any 
insert-however infrequent-immediately starts a 
mass disorganization of index and  data clustering. 
Any subsequent reorganization of data removes all 
free  space created as a result of page splits and causes 
a subsequent insert to start  another avalanche of 
disorganization. Thus  a compromise was made that 
involved five percent free space within a  data page 
and ten percent free space within an index page, but 
no free  pages. Instead of 50 percent more 110s and 
DASD, overhead due  to free space is  now only five 
percent. With this minimal free space, relatively 
frequently inserted data may require reorganization 
more frequently to maintain good performance 
when  accessed  via clustering indexes. 
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Data base design  options 

D B ~  provides options  that allow the user to make 
performance-related design  tradeoffs in the physical 
implementation and access to the  data base,  which 
are reviewed  here under  the headings Table spaces, 
Indexes, and Bufer pools. 

Table spaces. When allocating tables to table spaces, 
the designer must choose between  placing a table in 

Each  table  may be provided  with  any 
number of indexes. 

its own table space or grouping several  tables to- 
gether. In most cases  it  is better to have but one table 
in each table space. This arrangement has the advan- 
tage that  the performance effects  of such activities as 
locking, scanning, reorganizing, and recovering a 
table space are isolated to  the single table concerned. 
For unrelated tables that  are small but frequently 
used,  however, or related tables that  are often used 
together and have  been appropriately loaded to take 
advantage of clustered access, grouping into  a single 
table space may  offer performance, virtual storage, 
and DASD space advantages. 

Indexes. The principal decisions to be made in D B ~  
physical data base  design  involve the number  and 
location of indexes on the D B ~  tables. An index may 
be required to ensure uniqueness of certain columns, 
but  the most important reason  for indexes is to 
improve performance. When specifying an index, 
certain tradeoffs can be made. For example, an index 
can eliminate the need to scan a table to search for 
a particular row to retrieve or update, but this im- 
poses the additional cost of updating the index itself. 
An appropriate index removes the need for D B ~  to 
invoke a sort to satisfy an SQL GROUP BY or ORDER 
BY request. Each table may  be provided with any 
number of indexes,  where an index may  be  defined 
on a single column  or across multiple columns. 

Even though an index exists  for a given column in a 
table, one  cannot be sure that D B ~  will  use the index 
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to access that column. DBZ selects an access path and 
sometimes determines that it will  be more efficient 
to access the  data without using the index. If the 
table is  very small or if a high proportion of  rows in 

In  general,  the  larger  the  table  and 
the  lower  the  level of update  activity, 
the  greater  the  benefits of an  index. 

the table must be  accessed, it is probably cheaper to 
scan the entire table. In general, however, the larger 
the table and  the lower the level  of update activity 
against that table, the greater the performance bene- 
fits  of providing an index. 

For tables that  are scanned in index order and for 
any application that accesses multiple rows within 
some limited range by  key values, a clustering index 
can provide a significant performance enhancement. 
Even though a table may have several  indexes, only 
one of them  can be a clustering index. 

Two further index options influence performance: 
(1) the buffer  pool to be  used  (discussed later) and 
(2) the size  of the logical  page or subpage for index 
leaf  pages. When an index is updated, a lock will  be 
held on the logical  page. The default logical  page  size 
is 1K bytes, but  a smaller logical  page  size  may  be 
specified  if a high  level  of concurrent updating is 
expected for the index. If the index is seldom updated 
or  the level  of sharing is  very  low, a larger  logical 
page  size can be used.  Defining the logical  page  size 
requires the creator of the index to make a tradeoff 
between  lock contention .and processing cost. The 
smaller the logical  page  size, the lower the lock 
contention  and  the higher the CPU time requirement. 

Although D B ~  does not offer the option of the locking 
of an individual row,  by their choice of  logical page 
sizes  for indexes, DBZ users may obtain any desired 
granularity of locking as opposed to having to select 
from a small number of discrete locking  levels. 

Buffer pools. In addition to  the size  of  buffer  pools, 
as discussed later in connection with D B ~  storage 
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management, a buffer  pool option  that  can influence 
D B ~  performance is the allocation of tables and in- 
dexes to particular pools. A table space or  an index 
can be explicitly allocated to  a particular buffer  pool 
or allowed to default to BPO. Thus, for applications 
where performance is critical, a user  may consider 
assigning the accessed table space(s) and indexes to 
a separate buffer pool. Alternatively, a buffer  pool 
might be dedicated to indexes alone, to avoid con- 
tention for buffer space with data pages. One possible 
approach, if there is  sufficient storage available, is to 
use BPI and BPZ for performance-critical applications 
only, leaving BPO for D B ~  objects and  other applica- 
tion requirements. 

Application  design  options 

There are  a  number of DBZ options in the area of 
application design, the most important of which are 
reviewed here under  the headings Static  and  dynamic 
SQL, Controlling data consistency, and Locking op- 
tions. 

Static and dynamic SQL. If the installation is  using 
QMF, some QMF users might make repeated use  of 
stored queries. These queries will incur,  at each 
execution, the cost of the D B ~  dynamic bind process 
for a  dynamic SQL statement. The D B ~  user can 
identify these queries and convert them  to applica- 
tions containing static SQL statements, thereby elim- 
inating the repeated dynamic bind costs. 

During application program design, the user  gener- 
ally  knows  what functions the application has to 
perform and can complete the coding of the imbed- 
ded SQL statements. In these cases, static SQL is the 
appropriate choice. But if the user  wishes to  input 
additional SQL statements or create the final form of 
a SQL statement at execution time, this can be done 
through the use  of dynamic SQL statements. How- 
ever, the use of dynamic SQL statements in an appli- 
cation program imposes a performance cost on that 
program. In addition to executing the SQL statement, 
all the costs of the  dynamic bind process are incurred 
at each invocation of that statement by the program. 
If the same statement were coded as  a static SQL 
statement, these activities would take place only at 
program BIND time. But dynamic SQL can have some 
performance benefits. For example, in a large appli- 
cation program containing many SQL statements, it 
is  possible that some SQL statements  on rarely  used 
execution paths can be made dynamic. This has the 
advantage of reducing the plan size and deferring the 
acquisition of  locks for those statements until they 
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are actually  executed.  These  benefits  may offset the 
cost  of the occasional dynamic bind requirement. 

Controlling data consistency. To control data con- 
sistency  in the tables  accessed,  users  may  specify one 

DB2 uses  locks  to  minimize 
interference  between  concurrent 

users. 

of  two  isolation  level options at program BIND time: 
Cursor Stability (cs) or Repeatable  Read (RR). Cursor 
stability  ensures that a row read by one application 
will not be changed by another application while it 
is  being  used.  Selecting cursor stability  provides the 
greatest concurrency without loss of data consistency 
for  most applications that access a given  row  only 
once. To guarantee data consistency for those that 
access the same row  several  times, the repeatable 
read option must be  selected. This causes  all  pages 
accessed  by the application since the last commit 
point to be  locked. Thus concurrent use  of those 
tables is restricted, a situation that may  affect  overall 
throughput. 

Locking  options. D B ~  uses  locks to minimize inter- 
ference  between concurrent users and to prevent 
them from  accessing inconsistent data. The perform- 
ance cost  of  locking  is that it reduces the level  of 
data availability to users and so increases  response 
times.  From a performance point of  view, it is there- 
fore important to limit both the size of the objects 
locked and the duration of locking to  the minimum 
required. D B ~  itself attempts to achieve  this, but it 
provides additional options to the application de- 
signer. 

A D B ~  user normally specifies the locking granularity 
for a table  space  when the table  space  is created. This 
allows D B ~  to manage the process  of acquiring and 
releasing the appropriate locks on the basis of the 
desired  level  of data consistency  specified  for  each 
transaction that accesses that table space. The lock- 
ing options have the following  performance  impli- 
cations: 
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Three types of  lock  size are supported in the Create 

Lock  size TABLESPACE locks the entire table  space 
and offers the least concurrency. Lock  size PAGE 
locks the table space  in either an intent-share or 
intent-exclusive mode.  These  modes indicate that 
the pages of this table  space  may  be  locked during 
the life  of the transaction in either a share or an 
exclusive  mode. 
Table space  locks are obtained at PREPARE time 
and freed at COMMIT time for dynamic SQL Calls. 
For static SQL calls,  table  space  locks are obtained 
at transaction allocation time and freed at deallo- 
cation time. 
Because multiple transactions can be concurrently 
updating different pages in a given  table  space, 
PAGE lock  size  offers the best concurrency. Lock 
size ANY is the default lock  size and uses either 
PAGE or TABLESPACE lock  size; actual usage  de- 
pends on such parameters as isolation level (cursor 
stability or repeatable read), access path chosen 
(table space  scan,  index  scan, or unique index 
access  with equal predicate), and expected number 
of items to be  locked. 

Tablespace  Statement: PAGE,  TABLESPACE, Or ANY. 

The primary consideration in the selection of lock 
size  is the virtual storage  required  for  each outstand- 
ing  lock,  which is approximately 200 bytes. For 
example, if one transaction locks 10 000 pages in 
share mode with  repeatable  read  isolation level and 
another transaction locks 10 000 pages in a different 
table  space  in  exclusive mode with any isolation 
level,  roughly four megabytes  of virtual storage are 
taken up by these  two transactions alone.  Clearly, a 
tradeoff must be made here  between virtual storage 
and concurrency. 

A dynamic lock  escalation  facility could change  lock 
size  from  page  level to table-space level  when  exces- 
sive outstanding locks are held.  Since D B ~  does not 
currently support such a facility, the following  deci- 
sions were made  in the implementation of D B ~  to 
minimize the use  of virtual storage at the expense of 
concurrency: 

In  general, the default  lock  size ANY uses TABLE- 
SPACE lock  size  if there is a possibility of more 
than one outstanding lock  held. 
User-specified  lock  size PAGE is ovemdden in 
some  cases and replaced by lock  size TABLESPACE. 
This is sometimes required to enforce the repeat- 
able  read  isolation  level, but it still  results  in a 
tradeoff  between virtual storage and concurrency. 
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When coding an application program, the locking 
level may be escalated (from PAGE to TABLE) using 
the LOCK TABLE statement. As a general guideline, 
the use of this  option should be kept to a minimum 
because  it locks not only the referenced table but 
also all tables in that table space. However, it is 
available for those situations in which an application 
specifically must prevent concurrent use  of a table. 

DB2 utility options. To support large data bases, DB2 
utilities provide various options  that reduce the work 
required or subdivide them  into smaller pieces. The 

permit the table space to be shared by others for 
read-only operations. The CHANGE option allows the 
table space to be updated by others but it incurs 
additional CPU overhead for page locking. 

Application  monitoring  and  tuning 

The D B ~  Accounting Facility gathers data related to 
the execution of a thread and produces accounting 
data for each user ID on a thread basis. The account- 
ing information for each thread is  collected and 
written to  the System Management Facilities (SMF) 
at thread termination for later analysis by user- 
written programs. An accounting record is produced 
for every execution of a batch application program 
and for each instance of a user transaction or query. 

An  accounting record  is  produced Sample accounting report. To illustrate the  data 
for every  batch  application  program available, Figure 2 shows a sample report from a 

and for each  instance of a  user 
transaction or query. 

typical program which a DB2 user  might  write to 
analyze accounting data.  The report shows  average 
data for multiple executions of an application plan, 

purpose of these options is to ensure that a required 
piece of work or a subset can be completed within a 
given batch window. Examples of such options  are 
the following: 

Recovery may be limited to a set of  pages, a data 
set, or a table space. 
In place of Full Image Copy, Incremental Image 
Copy may be  used to copy only those pages up- 
dated since the last image copy. This option can 
be extremely advantageous when a small number 
of  pages has been updated in a large table space. 
A partitioned table space may be used instead of 
a simple table space to subdivide a large table 
space into smaller partitions. D B ~  utilities such as 
Load, Reorganize, and Image Copy can then op- 
erate on  one partition at a time. 
If it is not necessary, D B ~  utilities do  not have to 
operate on both the  data  and index together. If 
required, for example, Runstats, Reorganize, and 
Recover can operate on an index only. Likewise, 
Load can be performed either before or after cre- 
ating an index. 

D B ~  utilities support on-line use  by providing share 
level (SHRLEVEL) options for Runstats  and Image 
copy. The specifications Of the REFERENCE Option 

T R A N ~ ~ .  A similar report could be -compiled for a 
single application plan instance or for a summary by 
user ID. In the following sections, we note some of 
the key data items in the report that might be used 
for application monitoring and tuning, although we 
do not exhaustively describe the fields. The  data 
include the following major parts: 

Summary values shown on lines 13 through 15 
indicate the elapsed time for the transaction and 
the CPU time directly attributable to the user’s 
execution task or allied agent. Because of the use 
of cross-memory instructions, most of this is  usu- 
ally spent executing instructions in the D B ~  address 
spaces. However, MVS continues to accumulate 
that  time  in  the user’s  Address Space Control 
Block (ASCB). This allows the D B ~  accounting func- 
tion to capture a high percentage of the user’s CPU 
consumption. A sudden increase in these values 
compared to previous accounting data may indi- 
cate that a change has taken place either in  the 
D B ~  system or  in  the application, thus triggering 
further investigation. 

Lines 19 to 24 in the sample report indicate how 
many times the transaction was terminated suc- 
cessfully and unsuccessfully. 

SQL call summary shows the  counts of both ma- 
nipulative and definitional SQL statements per ap- 
plication execution, which should be  relatively 
stable from report to report. 
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Figure 2 DB2 accounting data summary 
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212.00 43.00 

Dead locks  1 

"_ d r o p  -- a l t e r  
0 
0 
0 
0 
0 
0 
0 

T imeou ts  

0 
0 
0 
0 

n/a 
n/a 
n /a  

0 
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mental binds (I-BINDS) shown on line 34. These 
occur if, at BIND time, the plan could not be 
completed, and the VALIDATE(RUN) parameter was 
specified. If this number is not zero, an increased 
response time can be expected for the transaction. 
All uses  of incremental bind should be investi- 
gated, and  the application plan should be rebound 
with the VALIDATE(BIND) parameter. 

Bufer Manager summary shows the application 
program’s interaction with the D B ~  Buffer Man- 
ager. The numbers printed on line 42 show  how 
many times the Buffer Manager requested a page, 
either to read data or to update data. These re- 
quests are for a specific  page  in the  data set and 
do not imply that an 110 was required. Read 110 
requests are counted on line 46. These numbers 
should be as low as possible and should be com- 
pared with previous reports. A sudden increase 
might  be the result  of a change in the application 
program. 

On line 44 the system  page  set  write counters are 
shown. These counters  are incremented every time 
a row residing in a system  page  is updated. These 
ratios should be monitored and compared with 
previous reports. 

Locking  summary shows  how many times an SQL 
statement was suspended or terminated because 
of  locking (line 48). Ideally,  all  values  shown 
should be zero. However, some degree of lock 
contention may be inevitable for certain applica- 
tion mixes that process common  data bases. 

These counts  are highly dependent on the locking 
protocol selected at  the table space  level, on the 
isolation level requested at BIND time, and on the 
number of  rows retrieved and/or updated. 

Although useful information about DB2 can be ob- 
tained from the D B ~  accounting record, users  may 
wish to merge  these records with other SMF records 
that contain application-program-related data. 

Using  the DB2 catalog  tables 

D B ~  keeps  in its catalog tables extensive information 
related to performance. This information is updated 
by application bind  as well as by such D B ~  defini- 
tional SQL calls as CREATE TABLE. Also, the RUNSTATS 
utility scans a target table space and its related in- 
dexes to collect statistics that are saved  in the D B ~  
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physical characteristics of  such data as the  number 
of  rows,  pages, and distinct key values. They are used 
by D B ~  in choosing the least-cost  access path.  Other 

Areas  occupied by dropped  tables 
cannot be reused  until 
reorganization  is  done. 

statistics may  be  used as performance indicators. By 
issuing queries against the catalog tables, it is possible 
to  determine  the need for tuning action. 

The following are examples of SQL statements  that 
may be issued against the catalog to obtain this 
information: 

SELECT PARTITION,  TSNAME,  FARINDREF,  NEARIN- 
DREF,CARD, PERCACTIVE, PERCDROPFROMSYSIBM.SYS- 
TABLEPART 

NEARINDREF and FARINDREF in SYSTABLEPART indi- 
cate the  number of  rows that are not in their original 
page  because of updates with larger variable-length 
rows. NEAR and FAR refer to the distance between 
the original and  current pages. Additional 110s are 
required for each row not on its original page.  When 
the sum of NEAR and FARINDREF exceeds a predeter- 
mined threshold, such  as one percent of the number 
of rows in the table space (i.e., the CARD value), 
reorganization of the table space should be consid- 
ered so as to improve access  cost as well as to reclaim 
wasted space. 

PERCACTIVE reports the percentage of space occupied 
by rows  of data from active tables. That is, PERCAC- 
TIVE is the percentage of the total space currently 
allocated to the table space that is occupied by active 
rows, as distinct from free  space and space previously 
occupied by deleted  rows and dropped tables. 

PERCDROP reports the percentage of space occupied 
by rows  of data from dropped tables. This percentage 
should be tracked to  determine when a reorganiza- 
tion should be performed to reclaim wasted space. 
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Areas occupied by dropped tables cannot be reused 
until this reorganization is done. 

SELECT TBNAME,NAME,CLUSTERING,CLUSTERED FROM 
SYSIBMSYSINDEXES 

CLUSTERING in SYSINDEXES when YES indicates that 
a CLUSTER is  specified in CREATE INDEX, but CLUS- 
TERED in SYSINDEXES when NO indicates that a table 
is not actually clustered by this index and that a 
table space reorganization should be considered 
either to establish initially or to restore the intended 
clustering order. 

SELECT IXNAME,FAROFFPOS,NEAROFFPOS,LEAFDIST 
FROM  SYSIBMSYSINDEXPART 

NEAROFFPOS and FAROFFPOS in SYSINDEXPART rep- 
resent the  number of times that  the next row in 
index sequence is not  on  the  same page as  the prior 
row. FAROFFPOS is much more critical than NEAR- 
OFFPOS in an index scan. FAROFFPOS should be 
tracked, and when  it reaches a given  threshold-ten 
percent of CARD, for example-a table space reor- 
ganization should be considered to improve the ac- 
cess  cost  of a clustering index scan. 

LEAFDIST in SYSINDEXPART represents 100 times the 
average number of  pages  between  successive  leaf 
pages during a sequential search of the index. That 
is, a LEAFDIST value of 100 means that  the next leaf 
page  is  always  physically adjacent to  the  current one. 
A value of 500 means  that,  on average, four pages 
exist  between the  current leaf  page and  the next one. 
The  number of index 110s is not affected by an 
increase in LEAFDIST, but I/O time may increase with 
LEAFDIST because  of increased DASD seek times. Re- 
organization should be considered when LEAFDIST 
increases beyond a certain threshold such as 10 000, 
for example. 

The isolation level and plan size of each application 
plan defined in the system can be obtained via the 
following: 

Select NAME,ISOLATION,PLSIZE from SYSIBMSYSPLAN 

Repeatable read isolation levels  of some plans may 
explain unusually great lock contention. Frequently 
used transactions having large plans could be the 
cause of 1/0 contention  on  the D B ~  directory data 
base. 

The  amount of DASD storage allocated to a storage 
group and  to each table space and index within a 
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storage group  can be found. This requires first run- 
ning the STOSPACE utility and  then issuing a query to 
retrieve NAME and SPACE from SYSSTOGROUP, 
SYSTABLESPACE, and SYSINDEXES. 

To determine whether a particular application plan 
makes use  of a given index, the following query 
might be used: 

SELECT BNAME,BTYPE,DNAME,DTYPE FROM  SYSIBM. 
SYSUSAGE 

For a given application plan (DNAME), the indexes 
used may be checked (BNAME). If a particular index 
(which the user expects to be used  by this applica- 
tion) does not appear in BNAME, the index is not 
used  by D B ~ .  The reason might be the particular form 
of SQL statement used, in which  case the user can 
rephrase the  statement in an attempt  to secure use 
of the index. Alternatively, the reason may be that 
the RUNSTATS utility has not been run against the 
table space in question. This forces D B ~  to use default 
assumptions about the physical characteristics of 
tables and indexes, which  may be quite different 
from the real data. 

Data base  buffer  pool assignments must be  carefully 
tracked in the M V S ~ ~ O  environment because  of  vir- 
tual storage constraints in the D B ~  data base  services 
address space.  Selecting NAME and BPOOL from SYS- 
DATABASE, SYSTABLESPACE and SYSINDEXES shows the 
allocation of D B ~  objects to buffer pools. The use  of 
small pools other  than BPO can result in excessive 
write 110s with a small number of  pages written per 
I/O (less than five, for example). Other consequences 
of small pools may be a low  buffer hit ratio  and high 
CPU overhead due  to  the incidence of buffer critical 
conditions. 

CLOSERULE in SYSTABLESPACE and SYSINDEXES indi- 
cates whether a data set is to be closed  when not  in 
use.  If frequently used table spaces or indexes have 
CLOSERULE=YES, this may explain a large amount of 
VSAM 110 to MVS catalogs and  the VSAM volume data 
set. On  the  other  hand, a large number of table 
spaces and indexes with CLOSERULE=NO may con- 
tribute  to virtual storage constraints in the D B ~  data 
base  services address space, particularly in the MVS/ 
370 environment. 

LOCKRULE in SYSTABLESPACE and PGSIZE in SYSIN- 
DEXES may be examined when investigating the ef- 
fects  of locking granularity on concurrency. Having 
LOCKRULE  TABLESPACE or ANY may be responsible 
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the logical  leaf  page  size, should be small -for any 

Larger  buffer  pools  can be used  to 
minimize  the  number of 1/0 

operations. 

index that is subject to frequent insertions or dele- 
tions. This minimizes locking contention  on leaf 
pages. 

DB2 system  tuning 

DB2 storage management. In an ~vs/370 environ- 
ment, the D B ~  user must allocate virtual storage in 
the D B ~  data base  services address space, where space 
is required for certain pools and system  areas. The 
storage available in this address space must be dis- 
tributed among the following areas: 

D B ~  code and MVS system areas. 

VSAM control blocks. Each concurrently open D B ~  
data set requires VSAM control blocks in  the private 
address space. Thus  an area must be available for 
all D B ~  catalog and directory table spaces.  Also 
required are user table spaces for which CLOSE- 
RULE=NO is  specified and any other user table 
spaces expected to remain in  common use. 

Environmental Descriptor Manager (EDM) pool. 
All D B ~  data bases  in use require space in the EDM 
pool for data base descriptors, and each concur- 
rently active plan must reside in the EDM pool. 
For efficient  use of the EDM pool, it should be  large 
enough to contain  the Skeleton Cursor Templates 
(SKCT) for frequently used plans. The reason for 
this is to minimize 110 operations required to load 
those SKCTS. In addition, some space must be 
allowed for fragmentation. 

The  bufer pools. Data base  buffer pools are areas 
of virtual storage which D B ~  uses during  the exe- 
cution of application plans to temporarily store 
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assigned by D B ~ ,  but  the  number varies within a 
range defined by the user. Given sufficient virtual 
and real  storage resources, larger buffer pools can 
be  used to minimize the  number of I/O operations 
required to access the D B ~  data bases. At least one 
Buffer Pool (BPO) must be provided that must be 
large enough to provide data base read and write 
buffers for all concurrently active threads. In a 
constrained environment, it is probably much 
more efficient to use all the available space for a 
single  buffer pool, rather than to attempt to par- 
tition that space into two or more smaller pools. 

DBZ working storage. D B ~  requires additional space 
for various buffers,  which are allocated in a num- 
ber of internal D B ~  pools. For dynamic SQL, the 
dynamic bind process  uses a variable amount of 
working storage. This storage increases with the 
complexity of the SQL statement being bound,  the 
number of tables referenced in that statement, and 
the  number of columns in those tables. 

After completion of dynamic bind (and for static 
SQL statements) there are further demands upon 
working storage during  the execution phase. Exe- 
cution of each SQL statement requires an incre- 
ment of storage. Also, the D B ~  sort-if invoked- 
uses a small base plus a variable number of 4K 
buffers, up  to 54K bytes in total. 

In an environment with QMF and dynamic SQL only, 
the EDM pool must be large enough to contain  the 
data base descriptors and multiple copies of the QMF 
plan-a relatively small plan of less than 30K bytes. 
In this environment, most of the available storage 
can  be allocated for use as working storage,  where it 
is required for the  dynamic bind process. 

Conversely, in a dedicated transaction environment, 
very little working storage is required, but  the appli- 
cation plans are normally much larger. Thus a dif- 
ferent distribution is required to avoid storage-re- 
lated failures. Clearly, in a mixed environment, with 
both queries and transactions, the question of allo- 
cating limited storage becomes even more difficult. 

To allow the user to manage these various require- 
ments, D B ~  provides a storage management scheme 
and a number of  user options. The DB2 Storage 
Manager monitors  the allocation of storage to con- 
currently executing threads. If the  demand for stor- 
age cannot be met, intermittent failures of  user tasks 
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may result. If such virtual-storage-related failures 
occur, the installation should reduce the  demand for 
virtual storage. This may  be  achieved by the follow- 
ing actions: 

Decreasing the  maximum  number of concurrent 

Reducing the size  of the buffer pool(s). 
Reducing the size  of the EDM pool. Such reduc- 
tions must be done carefully  because the space 
available for application plans must be sufficient 
for the  number of concurrent threads. 

threads. 

Thread  queuing. One way to reduce the  demand for 
storage  is to limit the  number of concurrent threads 
that can be active. The installation can use IMS or 
CICS facilities to control the  number of concurrent 
D B ~  agents in an IMs-only or cIcs-only environment, 
but there are no such mechanisms in TSO. To allow 
the option of limiting the  number of concurrent 
threads in all environments, D B ~  provides the follow- 
ing installation parameters: 

The  maximum  number of concurrent D B ~  con- 
nections (IDENTIFIES) from background jobs  and 
started tasks. 
The  maximum  number of concurrent D B ~  con- 
nections (IDENTIFIES) from TSO foreground. 
The  maximum  number of concurrent threads for 
DB2"including IMS, CICS, TSO (foreground and 
background), and utilities. 

When the  maximum  number of concurrent threads 
is reached, D B ~  queues up later requests to create a 
thread. The  queue is  serviced on a first-come  first- 
served  basis. 

Having a limit on  the  number of TSO IDENTIFIES 
permits the installation to control the population 
size  of  users  logged on to D B ~ .  The primary purpose 
for this is to permit the installation to maintain 
acceptable service  levels and limit the degree of 
queuing for D B ~  threads in a storage-constrained 
environment. 

No restrictions are provided by D B ~  to limit the 
number of IDENTIFIES from IMS or CICS. IMS and CICS 
perform one  or more IDENTIFIES to establish com- 
munication paths to D B ~ ,  but these do not  consume 
significant resources by themselves. When an SQL 
statement is  issued on behalf of a transaction, a 
thread is created (or for CICS, an existing thread may 
be used). It is the creation of a thread that signals a 
potential requirement for storage resources. Thus  the 
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mechanism provided controls the total number of 
concurrent D B ~  threads for all environments. 

The statistics facility. D B ~  records statistical data  to 
SMF or GTF at each checkpoint. Statistics for the 
System  Services  Address Space (SSAS) and for the 
Data Base Services  Address  Space (DBAS) are re- 
corded in separate records. 

Sample statistics reports. To illustrate the statistical 
data available, Figures 3 and 4 show sample reports 
from a typical program which a user might write to 
analyze statistical data.  The reports show total data 
for multiple D B ~  checkpoints. In the following  sec- 
tions we note some of the key data items that might 
be  used for application monitoring and tuning. We 
do not attempt an exhaustive description of each 
field. 

The sample report in Figure 3 shows data collected 
in the D B ~  System  Services  Address  Space (SSAS). The 
data were  assembled during  a period of approxi- 
mately fifty-three minutes. During this period, 9378 
transactions and queries were executed, as evidenced 
by the  count of threads created and summarized in 
the reporting period summary. Although this report 
shows total values, it is also useful to report the  other 
counts on a per-thread basis. The SSAS data include 
the following major parts. 

Record counts. These are  the numbers of SMF records 
written by the D B ~  Accounting and Statistics Facility. 
SSAS and DBAS counts (line 13) are occurrences of 
two statistics records during the reporting period. 
The ACCT count is the  number of SMF accounting 
records during  the  same period. The error codes 
indicate counts of records not written because of SMF 
buffer overrun (BUF), records not accepted by SMF 
(RNA), and SMF not active (ACT). 

CPU times. The TCB and SRB are components of C P U  
time  in seconds consumed in the System  Services 
Address Space and  the  Data Base Services  Address 
Space during  the reporting period (lines 13 and 14). 
Most  of the processing time of D B ~  users  is accounted 
for in their own address spaces. Only those tasks that 
execute under  the control of D B ~  itself-such as 
lomng or buffer  writing-are  reflected here. 

Subsystem Services Component (SSSC). This section 
contains  counts of connects to D B ~ .  It also contains 
counters for create and  terminate threads, and for 
successful prepare-to-commits, commits, aborts, and 
synchronizations. 
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Figure 3 Data collected in DB2 System  Services Address Space 
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P r i n t   t i m e  11/07/83 18:28:07 R e p o r t   P a g e  2 

D B 2   S T A T I S T I C A L   D A T A  FOR SYSTEM  SERVICES 
SUMMARY PAGE - TOTAL  DATA 

REPORTING  PERIOD  DB2  SUB-SYSTEM:  DSN 
.................................... 

F r o m :  09:00:43 D a t e :  10119183 T h r e a d s :  9378 
T o :  09:53:22 E l a p s e d  ti me 0 : 52 : 39 T h r d l s e c  2.97 

RECORD  COUNTS Wr i te  e r r o r  c o d e s  CPU  T IMES 
""""""""""" Desk  BUF  RNA  ACT ...................... 

SSAS  DSAS  ACCT  SMF 0 0 0  J o b s t e p   S R B t i m e  
GOOD 12 12 9371 0 0 0 SSAS 5.008 48.730 
BAD 0 0 0 0 0 0 DSAS 13.660 45.678 

sssc 

I d e n t i f y  25 COMMIT 0 Queued 0 E x i t  25 
CREATE 9378 A b o r t  24 EOT 1 
S i   g n o n  0 In-doubt 0 R e s o l v e  0 EOM 0 
T e r m - a l l  9372 Prepare 0 SYNCHs 9368 S S I C  26 

AGENT SERVICES  STORAGE  MANAGER 

"""""""""_""""""""""""""""~""""""""- 

""""""""""""""" """"""""""""""""" 

A l l o c  f a i l u r e s :  sos 
R e s - i  n v a l i  d 0 C o n t r a c t  i o n  178 
R e s - u n a v a i  1 0 C r i t i c a l  23 
A l l o c - d e a d l o c k  0 Abend 2 

LOG  MANAGER 
C a l l s :  Wr i tes :  R e a d s   f r o m :   A r c h i v e   L o g  : 
"""""""""""""""""""""""""""""""""--- 
Wait  0 C I S  c rea ted  1476 B u f f  244 O f f l o a d  0 
N o f o r c e  67015 Actv w r i t e s  4287 Actv 0 A l l o c - R  0 
F o r c e  48 96 Arch 0 Alloc-W 0 
BSDS 641 B u f f e r   w a i t s  0 R - d e l a y  0 

COMMAND DATA """""""""""""""""""""""""""""""""--- 
D I S P L A Y   S T A R T   S T O P   M I S C  

D a t a b a s e  0 D a t a b a s e  0 D a t a b a s e  0 R e c   B S D S  0 
T h r e a d  1 T r a c e  0 T r a c e  0 R e c   I N D O  0 
U t i l i t y  0 D B 2  0 D B 2  1 U n r  CMDS 0 

T e r   U T I L  0 



Figure 4 Data collected in OB2 Data  Base Services Address Space 

Print  time 11/07/83  18:28:07 Report  Page 2 
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48 

From: 09:00:43 Date 10/19/83 Threads 9378 
To: 09:53:22 Elapsed  time 00:52:39 Threadslsec 2.97 
SQL 
Manipulative:  Control I: Definitional: 

1. 
i " 

"""""""" """_ """_  """_ i- create --- drop -- alter 
Sel/Fch 102716 Lock-T 
Insert 10093 Grant 
Update 9779 Revoke 
Delete 2114 I-Bind 
Descrb 439 Comment 
Prpare 476 
Open 14410 
Close 9531 
BUFFER HANAGER 
""""""""""""" 

Current  active  buffers 
Getpage  requests  (GET) 
Read  1/0  operations  (RIO) 
Buffer  Pool  expansions 
Expanded  to  limit 
Storage  unavailable 
System  page  updates  (SWS) 
UW page  updates 
System  pages  written  (PWS) 
UW pages  written 
Write  1/0  operations  (WIO) 
Reads  with  paging 
Writes  with  paging 
Datasets  opened 
Read  1/0  per  thread 
Getpages  per  Read  110 

0 Table 37 
0 Index 0 
0 T-SPC 0 
0 Stgrp 0 
0 Dbase 0 

Synon 0 
View 0 

Pool 0 
"""" 

113 
629143 
166591 

0 
0 
0 

280894 
0 

27819 
0 

4010 
0 
0 

73 
17.76 
3.78 

Sys. pg. updates/pages  written 10.10 
Sys.  pages  written / WIO 6.94 
SERVICE CONTROLLER Dataselts open Allocation: """""""~"_ """C""" """""""- 

132 Attempts 9377 
PLANS  bound 147 Success 9377 

Auto  Bind:  Bind: Rebi nd: ""_""""" """""""- """""----- 
Attempts 0 Add 0 Commands 0 
Success 0 Replace 0 Attempts 0 
Inv. Res 0 Test 0 Plans 0 

LOCKING: Suspensions 1 495 Deadlocks 1 

0 0 
0 0 
0 0 
0 0 
0 n/a 
0 n/a 
0 n/a 

Authorization: 

Attempts 10106 
Success 10106 

"""""""- 

Free: 
"""""""- 
Commands 0 
Attempts 0 
Plans 0 

Timeouts 0 
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Agent services. These data include counts of  sus- 
pends, execution unit switches to  another SRB and 
TCB, and information on resource allocation. Most 
of the  data in this section relate to D B ~  internals and 
cannot be  used  for tuning purposes. The allocation 
failure counts (lines 26 through 28), however, are 
monitored and any nonzero values investigated. 

Storage Manager. The three Short On Storage (sos) 
counters  on lines 26 through 28 record the behavior 
of the D B ~  virtual storage management algorithm in 
the Data Base Services  Address  Space. The sos con- 
tractions count should be monitored together with 
the value  specified in the DB2 initialization param- 
eters as the  maximum  number of concurrent threads. 
As the  number of threads increases, the sos contrac- 
tions and sos critical counts will probably increase. 
It is  safe to increase the  number of threads as  long 
as the sos-abend count remains zero. 

Log Manager. This part contains information on 
read and write operations to  the recovery  log data 
sets. An important  count  to  monitor is the  number 
of reads from the archive log (line 35), which  is 
normally zero. 

The sample report in Figure 4 shows data collected 
in the D B ~  Data Base Services  Address  Space. These 
particular data were  assembled during the same pe- 
riod as the first report. During this period, multiple 
application programs and queries were executed. A 
total of 9378 threads were created. Although this 
report shows total values, it would also be useful to 
report these counts  on  a per-thread basis. The DBAS 
data include the following major parts. 

SQL call. Shown here are the  counts of SQL state- 
ments. The user should monitor  the  number of 
control statements, particularly the  number of LOCK 
TABLE statements, as well as definitional statements, 
because these statements can affect concurrency. In 
the sample report in Figure 4, no LOCK TABLE state- 
ments are shown as issued in the observed period. 
The sample report covers executions of both trans- 
actions and queries from QMF. Thus we can expect 
counters for some of the definitional SQL statements. 
Line 9 indicates that  a total of 37 CREATE TABLE 
statements were  issued. Further analysis will proba- 
bly  show that these are  the result of SAVE DATA 
commands  in QMF. 

Bufer Manager summary. The  number of  read and 
write 110s on  a system  basis are included in this 
category. This section shows information on the 
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Buffer Manager. In contrast to the  data collected by 
the Accounting Facility, the Statistics Facility does 
provide information on  the  number of  write I/OS 
initiated by the Buffer Manager during  the observed 
period. Line 2 1 shows the  number of  reads, and line 
29 indicates the  number of  writes  issued. The user 
should monitor these values as one indicator of the 
total workload being processed. Line 32 shows the 
number of times data sets were opened during the 
period. If this number is consistently high,  it may 
indicate that CLOSERULE=YES has been  specified for 
some frequently used table spaces. 

Service controller. These counts show activity in 
opening data sets, allocation and authorization of 
plans and  counts of binds, rebinds, and  automatic 
binds. If the  number of automatic binds is not zero, 
and  automatic binds were not expected, the user 
should find out what caused plans to become invalid. 
It may be that  an index was dropped either in error 
or without realizing  how many plans would  be  af- 
fected. 

Under  the heading Datasets Open is shown the  num- 
ber of currently open VSAM data sets (line 39) and 
the  maximum  number of concurrently open VSAM 
data sets during execution of D B ~ .  This number 
should be compared with the  maximum  number of 
open VSAM data sets for which storage has been 
reserved in the D B ~  initialization parameters. If the 
observed maximum is consistently lower than  the 
value specified, the user may decrease the reserved 
storage area in order to free virtual storage. 

Locking summary. These data are identical to those 
described earlier in  the sample accounting report, 
except that here they are summarized across all 
transactions and queries. 

Concluding remarks 

In this paper we have discussed performance-related 
strategies for query processing. This has included a 
discussion of the Structured Query Language (SQL) 
query optimization,  automatic access path selection, 
bind, and SQL compilation. We have also presented 
performance-related tradeoffs in  the internal design 
of D B ~  components, including those for resource 
allocation, the Environmental Descriptor Manager, 
the Buffer Manager, the Storage Manager, D B ~  sort, 
table spaces, indexes, and buffer pools. In addition 
to D B ~  component design options for improving 
performance, there are also such application design 
options for improved performance as static and dy- 



namic SQL, the control of data consistency, locking 
options, and DB2 utility options. Techniques for 
monitoring and  tuning  are presented for further 
observation and improvement of operational per- 
formance. We  have also discussed the collection and 
analysis of D B ~  accounting data  and  the use  of D B ~  
catalog tables for monitoring and improving per- 
formance. Regarding D B ~  system tuning, we have 
presented the collection and analysis of data  on 
storage management, thread queuing, and statistics. 
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