
IBM Database 2
performance: Design,
implementation, and tuning

by J. M. Cheng
C. R. Loosley
A. Shibamiya
P. S. Worthington

The larger and more complex a relational data base,
the more efficient the data base management system
must be to maintain an acceptable level of perform-
ance. The design and implementation of IBM Database
2 (082) have been aimed toward this objective. Tech-
niques for achieving this key objective in 082 are the
subject of this paper. Presented are performance-re-
lated strategies in query processing and performance-
related design tradeoffs. Data base and application d e
sign options and their resolution for optimum perform
ance are also discussed. Also presented are tech-
niques to maintain performance by application moni-
toring and tuning and DB2 system tuning.

I BM Database 2 (DBZ) is a relational data base
management system',2 that supports both repeti-

tive transactions and ad hoc queries against large
data bases. In such a system, achieving acceptable
performance for the different types of work is a key
design objective. Performance objectives for DBZ cen-
tered around maximizing the level of transaction
concurrency while minimizing

Number of instructions executed by the CPU.
Number of Input/Output (110) operations.
Time to perform the I/O operations.
Failures due to resource overcommitment.

This paper describes how DBZ achieves these objec-
tives and how a DBZ user can monitor and tune the
performance of DBZ.

The first part of this paper describes performance
considerations in the design and implementation of
Structured Query Language (SQL) query optimiza-
tion, the use of compilation instead of interpretation

in the processing of SQL, and the performance gain
in dividing the processing into separate compilation
and execution phases. Performance-related tradeoffs
made in the design of DBZ components are then
discussed. Specific topics include the data base buffer
pool algorithms, the use of virtual storage in multiple
private address spaces, and the DBZ sort implemen-
tation. Next, the options provided to a D B ~ user to
optimize the performance of a data base and appli-
cation are described. On the data base side, efficient
uses of DBZ tables and indexes are discussed. On the
application side, the uses of dynamic and static SQL,
and various data base locking options are reviewed.
DBZ utility options are also discussed. The final part
of this paper is devoted to the monitoring and tuning
of D B ~ . Sections cover application monitoring, use
of information from the DBZ catalog tables, DBZ
storage management options, and the D B ~ statistics
facility. Sample reports showing DBZ accounting and
statistics data are presented, and some key data items
are reviewed.

Performance-related strategies in query
processing

Several strategies are employed to optimize the per-
formance of SQL statements. These strategies are

Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

CHENG ET AL. 189 IBM SYSTEMS JOURNAL. VOL 23, NO 2, 1W

described under the headings SQL query optimization,
Automatic access path selection, and Bind and SQL
compilation.

SQL query optimization. SQL is a language that gives
a user the power to concentrate on specifying what

Query optimization is very important
for a successful relational data base

management system.

is to be retrieved, rather than how the information
is to be retr ie~ed.~ Query optimization is very im-
portant for a successful relational data base manage-
ment system. Many optimization techniques have
been published4" or implemented in existing sys-
tems.*"* In this section, some of the heuristic strat-
egies employed by D B ~ for query processing are dis-
cussed.

A query may contain an arbitrary number of predi-
cates (search criteria) joined by AND or OR conjunc-
tors. The result of the evaluation of the predicates is
either TRUE (the row should be returned) or FALSE
(disregard the row). The SQL predicate is very similar
to the IF condition of compiler languages. Therefore,
the technique used to optimize the IF condition is
also applied in the optimization of SQL predicates.
For example, consider the following evaluation of
the criteria:

WHERE PREDICATE1 AND PREDICATEZ.

if PREDICATEI yields FALSE, the evaluation of
PREDICATEZ is skipped. SQL allows the negation of
the search criteria, as in the following example:

WHERE NOT (PREDICATE1 AND PREDICATEZ)

These search criteria cannot be materialized until
the NOT operand is evaluated. Hence, DB2 decom-
poses this into the following criteria:

WHERE (NOT PREDICATEI) OR (NOT PREDICATEZ)

190 CHENG ET AL.

if PREDICATEI is FALSE, the result of (NOT
PREDICATEI) is TRUE and the evaluation of
PREDICATE2 is skipped.

D B ~ optimizes the performance of a noncorrelated
subquery (i.e., a subquery that does not reference
any column of a table in another query block) by
evaluating the subquery once and saving the result
of the subquery for subsequent evaluation in the
main query. This is illustrated by the following ex-
ample:

SELECT NAME, ADDRESS FROM MAILLIST WHERE NAME
IN (SELECT CUSTNAME FROM CUSTOMERS
WHERE AMOUNTDUE > 1000)

Here, the names of customers with more than $1000
due are retrieved once. The names from MAILLIST
are then checked against these customer names.

Among the many ways of joining two tables, the
nested-loop method and the merge-join method have
been shown to be near optimaL4 Both of these join
methods have been implemented in DBZ. In the
nested-loop method, a row is retrieved from one
table, and then all the rows in the other table with
matching values in the join column are retrieved. In
the merge-join method, both tables are first sorted
according to the join column. Thereafter, the merge-
join method is very similar to that of the nested-loop
method. However, since both tables are sorted, the
scan of the second table for matching values in the
join column does not have to start from the top of
the table for every join value. Furthermore, the
second table is scanned more efficiently because it
has been sorted on the join column, and it is being
scanned in join-column order.

Automatic access path selection. DB2 supports two
methods for retrieving rows from a table: table space
scan and index scan.

A table space scan looks through the table space
sequentially, whereas an index scan looks through
the table space in index value order. An index can
be of the clustering or nonclustering type. When a
table has a clustering index, D B ~ attempts to allocate
storage for the rows of the table such that their
physical ordering is the same as their corresponding
index values.

An index may be scanned for a particular key value
or for a range of key values if the index appears in a
simple predicate, such as COLUMNI < 20. An index

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 19%

may also be used without any key being supplied, in
which case the entire index and table space are
scanned. Unlike Data Language/I (DLII), D B ~ does
not read any page from the table space if it can
retrieve the information from the index. For exam-
ple, the following statement is used to count the
number of rows in a table:

SELECT COUNT(*) FROM SOMETABLE

DBZ scans the index to count the number of index
entries without reading any data pages in the table
space. This method is efficient for this type of query
because the index is usually much smaller than the
table space.

A table space scan may be better than an index scan
in some situations and worse in others. For example,
a table space scan on a table space with a single table
is more efficient than an index scan with no key
value. On the other hand, a clustering index scan on
a small table in a large table space which contains
several tables is more efficient than a table space
scan.

To facilitate the process of path selection, D B ~ pro-
vides a utility called RUNSTATS to collect statistics on
tables, table spaces, and indexes. The following sta-
tistical information is included:

Number of rows in a table.
Number of pages occupied by a table.
Number of pages in a table space.
Number of distinct key values in an index.
Second highest key value in an index.
Second lowest key value in an index.
Number of index levels.
Number of leaf pages in an index.

When making the selection of an access path, differ-
ent ways of accessing each table are examined, and
a cost for each access path is derived from the
accumulated statistics. The cost of an access path
consists of a weighted sum of the calculated 110 and
processor cost. The 110 cost is a function of the
estimated number of pages read for a query, and the
processor cost is a function of the estimated number
of calls to the D B ~ component that retrieves and
filters the data. The least expensive access path is
chosen to retrieve rows of a single table. Finally, if
the rows must be sorted, the cost of using an index
to satisfy the sort sequence is compared to the least
cost of retrieving the table plus the cost of sorting
the rows. The less expensive method is chosen.

IBM SYSTEMS XXIRNAL. VOL 23, No 2. 1984

For a query involving joins, the order ofjoins signifi-
cantly affects the performance of the query. Nor-
mally, D B ~ examines all permutations of joining all
the tables. The permutation of joining two unrelated
tables is not examined unless there are no other
related tables to join. (Two tables are unrelated if
there are no common join columns, in which case a
Cartesian product of the two tables is requested.)
Both the nested-loop method and the merge-join
method are considered for the joining of two tables.
The permutation that gives the least total cost in
joining all the tables is chosen.

Bind and SQL compilation. DB2 provides the BIND
and RUN subcommands to separate the processing

An application may be run multiple
times if it has been bound once.

of static SQL statements into two phases. The BIND
process prepares SQL statements to be executed at
RUN time and consists of the following steps:

1. Reading data sets that contain the SQL statements
extracted from the application program during
precompilation.

2 . Saving the SQL statements in the D B ~ catalog.
3. Processing each SQL statement.

For an SQL data manipulative statement (e.g., SELECT,
INSERT), information is retrieved from the DB2 cata-
log for semantic and capability validation and for
access path selection. An application plan describing
the execution sequence of the SQL statement is then
generated and saved.

For an SQL data definitional (e.g., CREATE, DROP) or
data control statement (e.g., GRANT, REVOKE), infor-
mation is retrieved from the D B ~ catalog for synonym
resolution and for the assignment of defaults, such
as the default table space name. An internal form of
the statement is produced and saved for execution
at RUN time.

An application may be run multiple times if it has
been bound once. Furthermore, the BlNDing of an

CHENG ET AL. 191

application may be scheduled for off hours to reduce
the demand for system resources during peak hours.
An application plan may become invalid if, after the
BIND process, the authorization to access an object
is revoked or such objects as synonyms, tables, or
indexes used by the plan are dropped. The detection

Performance studies have shown
that query compilation is more

efficient than interpretation.

of an invalid application plan at RUN time causes an
automatic reBlND of the application program.

For a dynamic SQL statement, the bind process con-
sists of semantic and capability validation and access
path selection only. This is referred to as dynamic
bind.

Unlike DL& SQL is a compiled language. Therefore,
at BIND time, an SQL statement is parsed and opti-
mized. Code is also generated for SQL data manipu-
lative statements. Even ad hoc queries are compiled
before they are run. For instance, a query returning
one hundred rows of a table does not require an
interpretation of the search criteria one hundred
times. Performance ~ t u d i e s l ~ . ' ~ have shown that
query compilation is more efficient than interpreta-
tion.

Performance-related internal design tradeoffs

Numerous performance-related tradeoffs were made
during the design and development phases of D B ~ ,
with the goal of providing the best overall product
for the intended application environments. Included
among the tradeoffs between performance factors
were those between CPU and I/O, between virtual
storage and CPU, and tradeoffs among performance
and reliability, availability, and serviceability.

The allocation of system resources to D B ~ requests is
controlled by D B ~ Resource Managers, several of
which were designed with performance goals in
mind. Also, one significant performance-related

192 CHENG ET AL

tradeoff concerned the use of Direct Access Storage
Devices (DASD). In this section, the following aspects
of DB2 resource management are discussed:

D B ~ use of MVS cross-memory services.
The process of allocating resources to D B ~ requests.
Environmental Descriptor Manager, which keeps
frequently used data base and plan descriptors in
storage.
Buffer Manager, which keeps frequently used data
base pages in storage.
Storage Manager, which allocates and frees virtual
storage.
D B ~ sort, which sorts records retrieved from the
data base.

The performance-related tradeoff concerns the
amount and placement of free space in D B ~ table
spaces. The effect of these design decisions on D B ~
processor cost, 110 operations, and concurrency is
discussed in the following sections. In addition, the
D B ~ use of virtual storage is described; greater con-
currency requires increased use of virtual storage.

Use of virtual storage in multiple private address
spaces

MVS cross-memory architecture supports greater vir-
tual storage by distributing code and data into mul-
tiple private address spaces through the use of cross-
memory operations. This is done instead of keeping
the codes and data in one private address space or
in the MVS common area. Although the hardware
assist of cross-memory operations substantially re-
duces the processor overhead for these operations,
there still exists residual overhead resulting from
additional instructions executed in cross-memory
mode and degradation in processor speed resulting
from cross-memory operations. Therefore, it is im-
portant to minimize cross-memory overhead by
placing frequently referenced code and data in the
MVS common area. The distribution of code and data
into many address spaces would increase cross-mem-
ory usage, with resulting increased overhead.

Figure 1 illustrates the way by which D B ~ takes
advantage of this MVS feature by operating out of the
following two address spaces: (1) Data Base Services
Address Space (DBAS), which contains code and data
related to data base functions; and (2) System Ser-
vices Address Space (SSAS), which contains code and
data related to such service functions as logging.
Some common code and control blocks are placed
in the MVS common area. In most installations, the

IBM SYSTEMS JOURNAL, VOL 23. NO 2, 1984

Figure 1 DB2 use of MVS virtual storage

DB2 ADDRESS SPACES

SYSTEM
SERVICES
ADDRESS
SPACE
(SSAS)

LOG BUFFERS

ACCESS
METHOD
SERVICES
(AMs)

CODE

DATA BASE
SERVICES
ADDRESS SPACE
(DBAS)

BUFFERS
DATA BASE

ENVIRONMENTAL
DESCRIPTOR
MANAGER
(g $)

WORK AREA

CODE

MVS COMMON AREA

CONTROL BLOCKS

CODE

OTHER ADDRESS SPACES

MVS SYSTEM AREA I

IMS Resource Lock Manager (IRLM) locks on DBZ
data are placed in private address spaces of their
own, so that outstanding DBZ locks do not take up
storage in the MVS common area. A typical SQL FETCH
request operates in three address spaces (application,
DBAS, and IRLM), and a typical UPDATE request op-
erates in four address spaces (application, DBAS, SSAS,
and IRLM).

Resource allocation and deallocation. Resources
must be allocated to a transaction before any SQL
statements can be issued. The allocation process
consists of creating a DBZ internal task structure,
known as an agent, to represent the transaction,
acquiring storage and initializing control blocks for
the agent, reading from DASD the application plan
the agent will use, opening data sets this agent might
access, and obtaining data base locks. At transaction
termination, these operations are reversed-the data
base locks are released, open data sets are closed
(unIess otherwise indicated when the table space was
defined), and the storage for the control blocks is
freed. Information that allows DBZ to determine
which data base locks to obtain and which data sets
to allocate and open is stored in the application plan.

Work done at allocation time need not be repeated
for every SQL statement issued by the agent. Although
this normally represents a savings in processor cost

IBM SYSTEMS XXIRNAL, VOC 23. NO 2, 1934

and I/OS, it is not always true. For example, even
though opening and closing data sets at allocation
and deallocation time means that each data set is
opened only once per agent, many SQL statements
may use that data set. There is no savings, however,
if each SQL statement uses a different data set and
each SQL statement is executed only once. If some of
those SQL statements are not executed at all (or, for
example, they are used only in error situations), data
sets are being opened and closed, but never used.

Obtaining data base locks at allocation time may
also reduce concurrency. This is because data base
locks acquired at allocation time are not freed until
deallocation time, even if the application COMMITS
and releases other data base locks. However, there is
less chance of having to back out the transaction
because of a deadlock with another transaction. If
locks cannot be obtained, the transaction waits at
the allocation stage until the locks are freed.
Separate copies of application plans (which are not
re-entrant) are kept in virtual storage for each DBZ
agent executing that plan. Keeping a copy of an
application plan in virtual storage means that DBZ
does not have to reread the plan from DASD and
relocate it in virtual storage for each SQL statement
executed. That also means, however, that virtual
storage must be allocated to the plan even when SQL
statements are not being executed. Keeping the ap-

CHENG ET AL. 193

plication plan in virtual storage is a tradeoff in which
virtual storage is used to minimize processor cost
and 110s.

This use of virtual storage was an important design
consideration for the Query Management Facility
(QMF), because QMF users typically spend a great deal
of time scrolling through output or thinking about
the next query to run. They spend relatively little
time actually executing SQL statements. For this rea-
son, each time the QMF user runs a query, a copy of
the QMF application plan is allocated for the QMF
user. As soon as all the data in the QMF result have
been retrieved, this application plan is deallocated.
Since QMF initially retrieves more rows of data than
can be displayed on a single screen, QMF can often
release all D B ~ resources before the user starts to
scroll through the screens of the query output. Thus,
during the time the user is composing queries and
specifying QMF forms, D B ~ resource usage can often
be avoided.

Two D B ~ components have been designed specifically
to minimize processor cost and 110s through the use
of virtual storage. These are the Environmental De-
scriptor Manager and the Buffer Manager.

Environmental Descriptor Manager. During BIND for
an application program, a D B ~ plan is created and
stored in an internal D B ~ format called the Skeleton
Cursor Table (SKCT) template in a D B ~ directory table
space. During creation of a data base, a data base
descriptor is stored in another D B ~ directory table
space. The Environmental Descriptor Manager
(EDM) is responsible for access to these plans and
data base descriptors. A block of virtual storage,
called the Environmental Descriptor Manager Pool
(EDM pool), is reserved when D B ~ is started. This
virtual storage is used to store frequently used SKCT
templates and data base descriptors. The EDM pool
is also used to hold a Cursor Table (CT) needed by
each agent as it executes.

The installation specifies the size of the EDM pool,
which must be at least large enough to hold the CTS
and data base descriptors needed by each concurrent
agent. If the EDM pool is larger than this minimum
size, it is used to hold SKCT templates and other data
base descriptors. When an agent is allocated, the
pool is searched to see whether the SKCT template
and data base descriptors are already in the pool. If
so, they do not need to be read from DASD. In this
case, storage is allocated for a CT for this agent, and
the SKCT template is copied to the CT. If the SKCT

194 CHENG ET AL

template or data base descriptors are not in the pool,
it is necessary to allocate storage within the pool to
hold the SKCT template or data base descriptors and
read them from the D B ~ directory.

Often, some other SKCT templates or data base de-
scriptors have to be deleted to make room for this
new SKCT template or data base descriptor. This is
done first by randomly deleting data base descriptors
that are not being used until enough storage is avail-
able for the storage request. Ifthere is still not enough
storage available, SKCT templates are deleted ran-
domly. If no storage is available after all data base
descriptors and SKCT templates have been deleted,
agent allocation fails, and the appropriate subsystem
(IMS, CICS, or the TSO user) is notified.

The EDM pool was originally designed to provide fast,
inexpensive access to SKCT templates, and data base
descriptors. Therefore, more expensive storage re-
placement algorithms, such as least recently used
(LRU), have not been implemented. Neither have
more expensive storage management algorithms
(such as subdividing SKCT templates and CTS into
smaller units and keeping only the active part of this
information in storage) been implemented.

In ~ ~ ~ 1 3 7 0 systems, in which the EDM pool may be
smaller than the optimal size, these design tradeoffs
may have a significant influence on the performance
of the D B ~ system. If the EDM pool is so small that
SKCT templates have to be read frequently from the
D B ~ directory, there may be an 110 bottleneck on the
DASD that contains the SKCT data set. Such a bottle-
neck may limit the amount of work D B ~ can process
per hour. In addition, the SKCT templates and data
base descriptors are read into the data base buffer
pool in 4096-byte blocks, thereby reducing the
amount of the buffer pool available for data base
pages used by transactions and queries. This method
differs from the IMS design, in which descriptors are
read in a single block directly into the IMS descriptor
pools.

Buffer Manager. In D B ~ , as in most data base man-
agement systems, virtual storage is reserved to hold
copies of data base pages. This virtual storage, which
is called the buferpool, contains the following pages:

In-use pages, which are currently being read or
updated by transactions.
To-be-written pages, which contain updates from
a transaction but which have not been written to
DASD. The updates may not yet have been COM-
MITted by the transaction.

IBM SYSTEMS X)URNAL. VOL 23. NO 2, 1984

Look-aside-buffering pages, which are neither in
use nor to be written. They are kept in virtual
storage only because there is a possibility that they
will be needed again.

D B ~ allows multiple buffer pools. Three buffer pools
hold 4K-byte pages (4096 bytes of data), and one
buffer pool holds 32K-byte pages (32 768 bytes of
data).

Assigning a separate buffer pool to 32K-byte-page
table spaces allows D B ~ to read and write 32K-byte

Updated pages are normally kept in
the buffer pool in preference to

nonupdated pages,

blocks of data with a single 110. These large pages are
used for table spaces that contain records longer than
4K bytes.

Installations are free to assign the three 4K-byte
buffer pools to any table spaces they wish. The only
restriction is that the first buffer pool (BPO) is used
for the D B ~ system table spaces (e.g., the D B ~ catalog,
directory, and the table space D B ~ uses for temporary
storage).

The Buffer Manager algorithms for reassigning and
writing a buffer are complex. The basic algorithm is
Least Recently Used (LRU) replacement, in which
the page that has been least recently used by a query
or transaction is chosen to be replaced in the buffer
pool. This process is known as stealing a buffer. The
simple stealing-a-buffer algorithm has been modified
to take into account other factors, such as the cost
of stealing a buffer containing an updated page.

One of the factors considered in the design of the
Buffer Manager algorithms was the design of the
internal 110 driver used by D B ~ for I/O services. The
internal 110 driver writes up to thirty-two pages of a
data set with a single Start I/O (SIO) instruction.

IBM SYSTEMS JOURNAL, VOL 23 NO 2. 1984

Although this is a highly efficient way to schedule
I/OS, it also means increased time to complete the I/
0, because multiple pages must be written. Thus D B ~
must make a tradeoff between frequently scheduling
110s for a few pages and infrequently scheduling I/OS
for many pages. Although D B ~ agents do not usually
have to wait for the completion of write I/OS, agents
do have to wait for the completion of read 110s. If an
agent issues a read to a device that has just been
given 32 pages to write, the agent must wait for all
32 pages to be written.

Thus the response time for a transaction can depend
heavily on the D B ~ decision of how many pages to
write at one time.

A related consideration is the value and cost of
keeping updated pages in virtual storage. Unlike
pages that have been read but not updated by a
transaction, if the buffer containing an updated page
is stolen and used for another page, it is first neces-
sary to write the updated page back to DASD. There-
fore, if two pages are equally likely to be reused, it is
better to keep the updated page in its buffer and steal
the buffer containing the page that has not been
updated. If, however, many pages from one table
space are updated before being written, the I/O takes
a long time when they are eventually written.

D B ~ schedules an updated page to be written when-
ever too many buffers in the buffer pool are in use
or waiting to be written or when too many buffers
have been updated for the dataset containing that
page. Thus updated pages are normally kept in the
buffer pool in preference to nonupdated pages, when
there are sufficient stealable buffers.

A data base page is considered to be in use if another
D B ~ component, called the Data Manager, has ac-
quired the page and has not released it. The Data
Manager can acquire and release the page every time
it accesses a record on that page. The Data Manager,
however, often accesses several records on a page,
and the acquiring and releasing of the page for every
access results in greater processor cost for each ac-
cess. Therefore, the Data Manager normally acquires
and releases each page only once while it reads all
the records on the page. If, however, the time be-
tween record accesses is very long (as it may be in
very complicated SQL joins), this interim may result
in the page being in use for a very long period of
time. In fact, other pages may be replaced and reread
by the Buffer Manager while this page remains un-
accessed but in use.

To alleviate this problem, when the number of steal-
able buffers becomes very small, the Buffer Manager
warns the Data Manager that buffer space is critical.
At this time, the Data Manager starts acquiring and
releasing each page every time it accesses a record.
The Buffer Manager also notifies the Data Manager

The normal LRU algorithms are
modified to use information available

to the Data Manager.

when sufficient stealable buffers are available again.
In this way, the normal LRU algorithms are modified
to take advantage of the additional information
available to the Data Manager.

Normally, when the Buffer Manager decides that it
is time to start writing updated pages, D B ~ service
agents-known as asynchronous write engines-are
started. Each write engine is responsible for calling
the internal I/O driver to initiate writes to a single
DB2 data set. When the writing completes, the pages
that were written are no longer marked as “to-be-
written,” and their buffers are available to be stolen.
In this design, D B ~ agents do not normally have to
wait for writing to complete, because the asynchro-
nous write engine takes over that responsibility.

In a small buffer pool, however, it is possible that
almost all pages are in use or to be written by the
write engines. In this case, there are very few buffers
that can be stolen. In fact, if there were many con-
current agents, it is possible that suddenly there
would be no buffers available to steal when an agent
requested a page. Therefore, when there are very few
stealable buffers, D B ~ agents start writing their up-
dated pages synchronously. That is, when a transac-
tion updates a page, it also waits for that page to be
updated on DASD. The Buffer Manager algorithms
have been designed to avoid this situation whenever
possible, because this can significantly degrade re-
sponse time.

Storage Manager. A Storage Manager provides two
performance-critical services to other D B ~ compo-

196 CHENG ET AL

nents: (1) it avoids expensive MVS GETMAINS and
FREEMAINS to acquire storage from MVS, and (2) it
provides a mechanism for separating storage used
for different purposes into different D B ~ pools. The
Storage Manager also monitors storage usage by D B ~
and MVS and ensures that adequate storage is avail-
able in the D B ~ address spaces for MVS services. The
creator of a pool can specify such characteristics of
the pool as the following:

Whether the blocks of storage in the pool are of
fixed or variable length. This prevents storage
fragmentation in fixed-length pools.
Whether the storage pool is to be used by multiple
D B ~ agents. If the pool is not used in this way, it
can be released when the agent is deallocated.
Whether a best-fit algorithm is to be used to ac-
quire storage in a pool that contains variable-
length blocks. If a best-fit algorithm is used, the
smallest (i.e., best) free block that is large enough
to satisfy the request is chosen. This results in
greater processor cost than the first-fit algorithm
in which any (the first) free block that is sufficient
to satisfy the request is chosen. In D B ~ , all pools
except the EDM pool are first-fit pools. The best-fit
algorithm in the EDM pool reduces fragmentation
resulting from a wide range of storage request sizes.
Whether a pool theshold value is to be used. In
threshold pools storage blocks are divided into two
groups. Storage requests below a certain threshold
size are satisfied from one group of storage blocks,
while requests above the threshold size are satisfied
from the other. This algorithm is used in the
Relational Data System (RDS) pool, in which re-
quests tend to be either very small or quite large.

D B ~ does not automatically return free storage within
its pools to MVS because it is assumed that this free
storage will soon be reused within that pool. Keeping
it avoids the cost of an MVS FREEMAIN and subsequent
GETMAIN operations. Without some mechanism to
manage the use of storage in the ~vs/370 environ-
ment, functions requiring storage might fail even
though D B ~ has sufficient free storage available but
in the wrong pool. Therefore, if D B ~ is executing
under ~ ~ ~ 1 3 7 0 , it monitors its own acquisition of
virtual storage as well as n o n - ~ ~ ~ acquisitions in the
Data Base Services Address Space.

The Storage Manager is also responsible for ensuring
that a sufficient amount of virtual storage can be
acquired by MVS for certain n o n - ~ ~ ~ requests, such
as requests for space for control blocks for open data
sets. Finally, the Storage Manager reserves space for

BM SYSTEMS JOURNAL, VOL 23. NO 2, 1984

DB2 must-complete functions, which, if they fail (for
example, because virtual storage is not available),
cause D B ~ to terminate. In particular, the Storage
Manager reserves storage for the following:

MVS services.
Open data sets. The amount of storage to reserve
is determined from the installation parameter that
gives the maximum number of concurrently open
data sets. Of course, as D B ~ opens data sets, a
corresponding amount of storage is released from
this reserve.
Critical D B ~ functions. The amount of storage to
reserve is determined from the installation param-
eter that gives the maximum number of concur-
rent D B ~ threads.

At all times, the D B ~ Storage Manager tracks the
amount of storage allocated and the amount avail-
able for use as working storage. If any request for
storage can cause the storage available to fall below
the reserved amount, a Short On Storage (sos) con-
dition is set and remains in effect until the available
storage level rises above the reserved amount. This
causes D B ~ to contract all internal storage pools
(thereby returning any unused storage segments to
MVS) when any request is made for additional stor-
age. The intent of this mechanism is to maintain
sufficient storage available to satisfy the requirements
of all concurrently active threads.

The D B ~ storage management scheme has also been
designed to take precautions in case of virtual storage
overcommitment. If a storage request should cause
available storage to fall below the level required for
completion of critical D B ~ functions that must com-
plete, that request is not granted unless it is made by
such a function. Any other request is rejected, thus
causing the user task issuing the request to terminate
abnormally.

When D B ~ is not Short On Storage, each D B ~ pool is
permitted to expand (i.e., GETMAIN more virtual
storage from MVS) or contract (FREEMAIN virtual
storage to MVS) as necessary.

DB2 Sort. DB2 must Sort rows when an ORDER BY,
GROUP BY, UNION, or DISTINCT command is used in
SQL calls and existing indexes cannot be used. D B ~
also needs to sort in the merge-join access method.
Initially, vs Sort was used by D B ~ . However, vs Sort
as used by D B ~ would require a minimum of 256
kilobytes of virtual storage in the DBAS for each
concurrent sort. vs Sort also imposes a relatively

IEM SYSTEMS JWRNAL. VOL 23. NO 2, 19%

large initial overhead, so that sorting of a small
number of rows, i.e., a few hundred or less, is very
expensive. The number of rows to be sorted by D B ~

DB2 sort uses much less virtual
storage and yet it results in a very

efficient small sort.

is expected to be much smaller than that in the
normal vs Sort applications because D B ~ typically
sorts on selected columns of qualifying rows only.

To avoid these two problems, D B ~ Sort has been
written to replace vs Sort for sorting performed by
D B ~ . Sorting performed by D B ~ utilities continues to
use vs Sort because they tend to sort many more
rows, and the sorting is done in the address space of
the user invoking the utility and not in the DBAS.

D B ~ Sort uses much less virtual storage (i.e., about
eleven kilobytes minimum for each concurrent sort),
and yet it results in a very efficient small sort at the
expense of large sort performance. For large sorts
with many sort work file I/OS, e.g., sorting of tens of
thousands of rows or more, vs Sort is much more
efficient because its device-dependent code is opti-
mized for a given device, and it uses more extensive
and sophisticated sort algorithms.

The use of virtual storage by D B ~ Sort is made flexible
by employing a much larger sort work area and more
buffers in the Multiple Virtual Storage/Extended
Architecture (MVSIXA) environment, resulting in
greatly improved large sort performance compared
to the ~ ~ ~ 1 3 7 0 environment.

Free space in DB2 table spaces and indexes. When
data are initially loaded or subsequently reorganized
in a table space, D B ~ leaves room in the pages in the
table space for records that may be inserted later.
This space is known asfree space.

If no records are to be inserted, having no free space
results in the most compact table spaces and indexes,

CHENG ET AL. 197

thus minimizing the number of data pages, index
pages, and index levels. This reduces access cost as
well as the DASD requirement. If, however, a record
is inserted and there is no free space in the table
space and index, the record must be placed at the
end of the table space. The corresponding index page
must be split into two pages, one of which must be
written at the end of the index space. This page split
in the index leaf page also results in new records and
corresponding page splits in the nonleaf pages in the
index hierarchy. All this results in a disorganized
table space and index, and degrades the performance
of index scans, especially for scans of a clustered
index.

Because the values of the free space parameters are
fixed, their choice in the product design significantly
impacts performance. Initially, the following free-
space parameters were adopted:

Data. Twenty percent free space within page and
every sixth page free, for 67 percent net usage
immediately after Load.
Zndex. Ten percent free space within page and
every eleventh page free, for 82 percent net usage
immediately after Load.

This would have required 50 percent more 110s in a
table space scan as well as 50 percent more DASD for
data, as compared with the case in which no free
space had been provided.

Because emphasis was shifting from transaction to
query as the primary D B ~ environment during the
product development cycle, free-space parameters
were changed to favor predominantly read-only data
at the expense of relatively frequently inserted data.

Zero free space is perfect for read-only data, but any
insert-however infrequent-immediately starts a
mass disorganization of index and data clustering.
Any subsequent reorganization of data removes all
free space created as a result of page splits and causes
a subsequent insert to start another avalanche of
disorganization. Thus a compromise was made that
involved five percent free space within a data page
and ten percent free space within an index page, but
no free pages. Instead of 50 percent more 110s and
DASD, overhead due to free space is now only five
percent. With this minimal free space, relatively
frequently inserted data may require reorganization
more frequently to maintain good performance
when accessed via clustering indexes.

198 CHENG ET AL.

Data base design options

D B ~ provides options that allow the user to make
performance-related design tradeoffs in the physical
implementation and access to the data base, which
are reviewed here under the headings Table spaces,
Indexes, and Bufer pools.

Table spaces. When allocating tables to table spaces,
the designer must choose between placing a table in

Each table may be provided with any
number of indexes.

its own table space or grouping several tables to-
gether. In most cases it is better to have but one table
in each table space. This arrangement has the advan-
tage that the performance effects of such activities as
locking, scanning, reorganizing, and recovering a
table space are isolated to the single table concerned.
For unrelated tables that are small but frequently
used, however, or related tables that are often used
together and have been appropriately loaded to take
advantage of clustered access, grouping into a single
table space may offer performance, virtual storage,
and DASD space advantages.

Indexes. The principal decisions to be made in D B ~
physical data base design involve the number and
location of indexes on the D B ~ tables. An index may
be required to ensure uniqueness of certain columns,
but the most important reason for indexes is to
improve performance. When specifying an index,
certain tradeoffs can be made. For example, an index
can eliminate the need to scan a table to search for
a particular row to retrieve or update, but this im-
poses the additional cost of updating the index itself.
An appropriate index removes the need for D B ~ to
invoke a sort to satisfy an SQL GROUP BY or ORDER
BY request. Each table may be provided with any
number of indexes, where an index may be defined
on a single column or across multiple columns.

Even though an index exists for a given column in a
table, one cannot be sure that D B ~ will use the index

IBM SYSTEMS JOURNAL, VOL 23. NO 2. 1984

to access that column. DBZ selects an access path and
sometimes determines that it will be more efficient
to access the data without using the index. If the
table is very small or if a high proportion of rows in

In general, the larger the table and
the lower the level of update activity,
the greater the benefits of an index.

the table must be accessed, it is probably cheaper to
scan the entire table. In general, however, the larger
the table and the lower the level of update activity
against that table, the greater the performance bene-
fits of providing an index.

For tables that are scanned in index order and for
any application that accesses multiple rows within
some limited range by key values, a clustering index
can provide a significant performance enhancement.
Even though a table may have several indexes, only
one of them can be a clustering index.

Two further index options influence performance:
(1) the buffer pool to be used (discussed later) and
(2) the size of the logical page or subpage for index
leaf pages. When an index is updated, a lock will be
held on the logical page. The default logical page size
is 1K bytes, but a smaller logical page size may be
specified if a high level of concurrent updating is
expected for the index. If the index is seldom updated
or the level of sharing is very low, a larger logical
page size can be used. Defining the logical page size
requires the creator of the index to make a tradeoff
between lock contention .and processing cost. The
smaller the logical page size, the lower the lock
contention and the higher the CPU time requirement.

Although D B ~ does not offer the option of the locking
of an individual row, by their choice of logical page
sizes for indexes, DBZ users may obtain any desired
granularity of locking as opposed to having to select
from a small number of discrete locking levels.

Buffer pools. In addition to the size of buffer pools,
as discussed later in connection with D B ~ storage

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

management, a buffer pool option that can influence
D B ~ performance is the allocation of tables and in-
dexes to particular pools. A table space or an index
can be explicitly allocated to a particular buffer pool
or allowed to default to BPO. Thus, for applications
where performance is critical, a user may consider
assigning the accessed table space(s) and indexes to
a separate buffer pool. Alternatively, a buffer pool
might be dedicated to indexes alone, to avoid con-
tention for buffer space with data pages. One possible
approach, if there is sufficient storage available, is to
use BPI and BPZ for performance-critical applications
only, leaving BPO for D B ~ objects and other applica-
tion requirements.

Application design options

There are a number of DBZ options in the area of
application design, the most important of which are
reviewed here under the headings Static and dynamic
SQL, Controlling data consistency, and Locking op-
tions.

Static and dynamic SQL. If the installation is using
QMF, some QMF users might make repeated use of
stored queries. These queries will incur, at each
execution, the cost of the D B ~ dynamic bind process
for a dynamic SQL statement. The D B ~ user can
identify these queries and convert them to applica-
tions containing static SQL statements, thereby elim-
inating the repeated dynamic bind costs.

During application program design, the user gener-
ally knows what functions the application has to
perform and can complete the coding of the imbed-
ded SQL statements. In these cases, static SQL is the
appropriate choice. But if the user wishes to input
additional SQL statements or create the final form of
a SQL statement at execution time, this can be done
through the use of dynamic SQL statements. How-
ever, the use of dynamic SQL statements in an appli-
cation program imposes a performance cost on that
program. In addition to executing the SQL statement,
all the costs of the dynamic bind process are incurred
at each invocation of that statement by the program.
If the same statement were coded as a static SQL
statement, these activities would take place only at
program BIND time. But dynamic SQL can have some
performance benefits. For example, in a large appli-
cation program containing many SQL statements, it
is possible that some SQL statements on rarely used
execution paths can be made dynamic. This has the
advantage of reducing the plan size and deferring the
acquisition of locks for those statements until they

CHENG ET AL. 199

are actually executed. These benefits may offset the
cost of the occasional dynamic bind requirement.

Controlling data consistency. To control data con-
sistency in the tables accessed, users may specify one

DB2 uses locks to minimize
interference between concurrent

users.

of two isolation level options at program BIND time:
Cursor Stability (cs) or Repeatable Read (RR). Cursor
stability ensures that a row read by one application
will not be changed by another application while it
is being used. Selecting cursor stability provides the
greatest concurrency without loss of data consistency
for most applications that access a given row only
once. To guarantee data consistency for those that
access the same row several times, the repeatable
read option must be selected. This causes all pages
accessed by the application since the last commit
point to be locked. Thus concurrent use of those
tables is restricted, a situation that may affect overall
throughput.

Locking options. D B ~ uses locks to minimize inter-
ference between concurrent users and to prevent
them from accessing inconsistent data. The perform-
ance cost of locking is that it reduces the level of
data availability to users and so increases response
times. From a performance point of view, it is there-
fore important to limit both the size of the objects
locked and the duration of locking to the minimum
required. D B ~ itself attempts to achieve this, but it
provides additional options to the application de-
signer.

A D B ~ user normally specifies the locking granularity
for a table space when the table space is created. This
allows D B ~ to manage the process of acquiring and
releasing the appropriate locks on the basis of the
desired level of data consistency specified for each
transaction that accesses that table space. The lock-
ing options have the following performance impli-
cations:

200 CHENG ET AL.

Three types of lock size are supported in the Create

Lock size TABLESPACE locks the entire table space
and offers the least concurrency. Lock size PAGE
locks the table space in either an intent-share or
intent-exclusive mode. These modes indicate that
the pages of this table space may be locked during
the life of the transaction in either a share or an
exclusive mode.
Table space locks are obtained at PREPARE time
and freed at COMMIT time for dynamic SQL Calls.
For static SQL calls, table space locks are obtained
at transaction allocation time and freed at deallo-
cation time.
Because multiple transactions can be concurrently
updating different pages in a given table space,
PAGE lock size offers the best concurrency. Lock
size ANY is the default lock size and uses either
PAGE or TABLESPACE lock size; actual usage de-
pends on such parameters as isolation level (cursor
stability or repeatable read), access path chosen
(table space scan, index scan, or unique index
access with equal predicate), and expected number
of items to be locked.

Tablespace Statement: PAGE, TABLESPACE, Or ANY.

The primary consideration in the selection of lock
size is the virtual storage required for each outstand-
ing lock, which is approximately 200 bytes. For
example, if one transaction locks 10 000 pages in
share mode with repeatable read isolation level and
another transaction locks 10 000 pages in a different
table space in exclusive mode with any isolation
level, roughly four megabytes of virtual storage are
taken up by these two transactions alone. Clearly, a
tradeoff must be made here between virtual storage
and concurrency.

A dynamic lock escalation facility could change lock
size from page level to table-space level when exces-
sive outstanding locks are held. Since D B ~ does not
currently support such a facility, the following deci-
sions were made in the implementation of D B ~ to
minimize the use of virtual storage at the expense of
concurrency:

In general, the default lock size ANY uses TABLE-
SPACE lock size if there is a possibility of more
than one outstanding lock held.
User-specified lock size PAGE is ovemdden in
some cases and replaced by lock size TABLESPACE.
This is sometimes required to enforce the repeat-
able read isolation level, but it still results in a
tradeoff between virtual storage and concurrency.

IBM SYSTEMS X)URNAL, VOC 23, NO 2. 1984

When coding an application program, the locking
level may be escalated (from PAGE to TABLE) using
the LOCK TABLE statement. As a general guideline,
the use of this option should be kept to a minimum
because it locks not only the referenced table but
also all tables in that table space. However, it is
available for those situations in which an application
specifically must prevent concurrent use of a table.

DB2 utility options. To support large data bases, DB2
utilities provide various options that reduce the work
required or subdivide them into smaller pieces. The

permit the table space to be shared by others for
read-only operations. The CHANGE option allows the
table space to be updated by others but it incurs
additional CPU overhead for page locking.

Application monitoring and tuning

The D B ~ Accounting Facility gathers data related to
the execution of a thread and produces accounting
data for each user ID on a thread basis. The account-
ing information for each thread is collected and
written to the System Management Facilities (SMF)
at thread termination for later analysis by user-
written programs. An accounting record is produced
for every execution of a batch application program
and for each instance of a user transaction or query.

An accounting record is produced Sample accounting report. To illustrate the data
for every batch application program available, Figure 2 shows a sample report from a

and for each instance of a user
transaction or query.

typical program which a DB2 user might write to
analyze accounting data. The report shows average
data for multiple executions of an application plan,

purpose of these options is to ensure that a required
piece of work or a subset can be completed within a
given batch window. Examples of such options are
the following:

Recovery may be limited to a set of pages, a data
set, or a table space.
In place of Full Image Copy, Incremental Image
Copy may be used to copy only those pages up-
dated since the last image copy. This option can
be extremely advantageous when a small number
of pages has been updated in a large table space.
A partitioned table space may be used instead of
a simple table space to subdivide a large table
space into smaller partitions. D B ~ utilities such as
Load, Reorganize, and Image Copy can then op-
erate on one partition at a time.
If it is not necessary, D B ~ utilities do not have to
operate on both the data and index together. If
required, for example, Runstats, Reorganize, and
Recover can operate on an index only. Likewise,
Load can be performed either before or after cre-
ating an index.

D B ~ utilities support on-line use by providing share
level (SHRLEVEL) options for Runstats and Image
copy. The specifications Of the REFERENCE Option

T R A N ~ ~ . A similar report could be -compiled for a
single application plan instance or for a summary by
user ID. In the following sections, we note some of
the key data items in the report that might be used
for application monitoring and tuning, although we
do not exhaustively describe the fields. The data
include the following major parts:

Summary values shown on lines 13 through 15
indicate the elapsed time for the transaction and
the CPU time directly attributable to the user’s
execution task or allied agent. Because of the use
of cross-memory instructions, most of this is usu-
ally spent executing instructions in the D B ~ address
spaces. However, MVS continues to accumulate
that time in the user’s Address Space Control
Block (ASCB). This allows the D B ~ accounting func-
tion to capture a high percentage of the user’s CPU
consumption. A sudden increase in these values
compared to previous accounting data may indi-
cate that a change has taken place either in the
D B ~ system or in the application, thus triggering
further investigation.

Lines 19 to 24 in the sample report indicate how
many times the transaction was terminated suc-
cessfully and unsuccessfully.

SQL call summary shows the counts of both ma-
nipulative and definitional SQL statements per ap-
plication execution, which should be relatively
stable from report to report.

IEM SYSTEMS JWRNAL. VOL 23. No 2. 1984 CHEffi ET A L . 201

Figure 2 DB2 accounting data summary

1
2
3
4
5
6
7
8
9

1 0
11
12
13
14
15
16
17
18
19
20
2 1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4 0
41
42
43
4 4
45
46
47
48

P r in t t ime 11 /07 /83 18 :28 :07 Repor t page 5

DB2 ACCOUNTING D A T A
USER SUB-TOTALS BY PLAN

REPORTING PERIOD DB2 SUB-SYSTEM: DSN

Star t 10 /19 /83 8 :10 :22
End 10/19/83 12:00:42 Elapsed 3:50:20

USER / P L A N S T A T I S T I C S

""""""""""""""""""""""""""""""""""-

""""""""""""""""""""""""""""""""""-
User USER004 Count 24 1 Mean TCB t ime 2 .45241s
P l a n TRAN27 Rate /hr 62 .78 Mean SRB t ime 0 .04080s

Mean e lapsed 11.20481s

ACCOUNTING I N V O C A T I O N S SUMMARY
""""""""""""""""""""""""""""""""""-
Normal : Abnormal: Work u n i t i n doub t :

New u s e r 0 Appl pgm ABEND 2 Appl pgm ABEND 0
D e a l l o c a t i o n 235 End o f memory 1 End o f memory 0
End o f t a s k 3 R e s o l v e i n d o u b t 0 R e s o l v e i n d o u b t 0
Appl p g m end 0 C a n c e l f o r c e 0 C a n c e l f o r c e 0

SQL CALL SUMMARY

"""""""""" """""""""" """"""""""

"""""_"""""""""""""""""""""""""""""
M a n i p u l a t i v e

(/ t r a n s a c t i o n)

S e l I F c h 61.70
I n s e r t 2.20
Update 1.90
D e l e t e 0.40
D e s c r i b e 0 . 0
P r e p a r e 0.0
Open 3.30
'C lose 2.12

""""""""

C o n t r o l D e f i n i t i o n a l
(t o t a l c o u n t s) (t o t a l c o u n t s) """""""_ """_ c r e a t e

Lock-T 3 Tab le 0
Grant 0 I n d e x 0
Revoke 0 T-spc 0
I - B i n d 1 S t g r p 0
Comment 0 Dbase 0

Synon 0
Commi t 0.99 View 0
Abor t 0 .01

"""""""_

BUFFER MANAGER (/ t r a n s a c t i o n)

Getpage reques ts
B u f f e r P o o l e x p a n s i o n s
System page updates

""""""""""""""~

UW page updates
Synch Read 110

LOCKING Suspenions 27

P o o l 0 P o o l 1
"""" """"

917.00 153.00
0 0

5.30 1.70
0 . 0 0.0

212.00 43.00

Dead locks 1

"_ d r o p -- a l t e r
0
0
0
0
0
0
0

T imeou ts

0
0
0
0

n/a
n/a
n /a

0

202 CHENG ET AL. IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1W

mental binds (I-BINDS) shown on line 34. These
occur if, at BIND time, the plan could not be
completed, and the VALIDATE(RUN) parameter was
specified. If this number is not zero, an increased
response time can be expected for the transaction.
All uses of incremental bind should be investi-
gated, and the application plan should be rebound
with the VALIDATE(BIND) parameter.

Bufer Manager summary shows the application
program’s interaction with the D B ~ Buffer Man-
ager. The numbers printed on line 42 show how
many times the Buffer Manager requested a page,
either to read data or to update data. These re-
quests are for a specific page in the data set and
do not imply that an 110 was required. Read 110
requests are counted on line 46. These numbers
should be as low as possible and should be com-
pared with previous reports. A sudden increase
might be the result of a change in the application
program.

On line 44 the system page set write counters are
shown. These counters are incremented every time
a row residing in a system page is updated. These
ratios should be monitored and compared with
previous reports.

Locking summary shows how many times an SQL
statement was suspended or terminated because
of locking (line 48). Ideally, all values shown
should be zero. However, some degree of lock
contention may be inevitable for certain applica-
tion mixes that process common data bases.

These counts are highly dependent on the locking
protocol selected at the table space level, on the
isolation level requested at BIND time, and on the
number of rows retrieved and/or updated.

Although useful information about DB2 can be ob-
tained from the D B ~ accounting record, users may
wish to merge these records with other SMF records
that contain application-program-related data.

Using the DB2 catalog tables

D B ~ keeps in its catalog tables extensive information
related to performance. This information is updated
by application bind as well as by such D B ~ defini-
tional SQL calls as CREATE TABLE. Also, the RUNSTATS
utility scans a target table space and its related in-
dexes to collect statistics that are saved in the D B ~

IEM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

physical characteristics of such data as the number
of rows, pages, and distinct key values. They are used
by D B ~ in choosing the least-cost access path. Other

Areas occupied by dropped tables
cannot be reused until
reorganization is done.

statistics may be used as performance indicators. By
issuing queries against the catalog tables, it is possible
to determine the need for tuning action.

The following are examples of SQL statements that
may be issued against the catalog to obtain this
information:

SELECT PARTITION, TSNAME, FARINDREF, NEARIN-
DREF,CARD, PERCACTIVE, PERCDROPFROMSYSIBM.SYS-
TABLEPART

NEARINDREF and FARINDREF in SYSTABLEPART indi-
cate the number of rows that are not in their original
page because of updates with larger variable-length
rows. NEAR and FAR refer to the distance between
the original and current pages. Additional 110s are
required for each row not on its original page. When
the sum of NEAR and FARINDREF exceeds a predeter-
mined threshold, such as one percent of the number
of rows in the table space (i.e., the CARD value),
reorganization of the table space should be consid-
ered so as to improve access cost as well as to reclaim
wasted space.

PERCACTIVE reports the percentage of space occupied
by rows of data from active tables. That is, PERCAC-
TIVE is the percentage of the total space currently
allocated to the table space that is occupied by active
rows, as distinct from free space and space previously
occupied by deleted rows and dropped tables.

PERCDROP reports the percentage of space occupied
by rows of data from dropped tables. This percentage
should be tracked to determine when a reorganiza-
tion should be performed to reclaim wasted space.

CHENG ET AL 203

Areas occupied by dropped tables cannot be reused
until this reorganization is done.

SELECT TBNAME,NAME,CLUSTERING,CLUSTERED FROM
SYSIBMSYSINDEXES

CLUSTERING in SYSINDEXES when YES indicates that
a CLUSTER is specified in CREATE INDEX, but CLUS-
TERED in SYSINDEXES when NO indicates that a table
is not actually clustered by this index and that a
table space reorganization should be considered
either to establish initially or to restore the intended
clustering order.

SELECT IXNAME,FAROFFPOS,NEAROFFPOS,LEAFDIST
FROM SYSIBMSYSINDEXPART

NEAROFFPOS and FAROFFPOS in SYSINDEXPART rep-
resent the number of times that the next row in
index sequence is not on the same page as the prior
row. FAROFFPOS is much more critical than NEAR-
OFFPOS in an index scan. FAROFFPOS should be
tracked, and when it reaches a given threshold-ten
percent of CARD, for example-a table space reor-
ganization should be considered to improve the ac-
cess cost of a clustering index scan.

LEAFDIST in SYSINDEXPART represents 100 times the
average number of pages between successive leaf
pages during a sequential search of the index. That
is, a LEAFDIST value of 100 means that the next leaf
page is always physically adjacent to the current one.
A value of 500 means that, on average, four pages
exist between the current leaf page and the next one.
The number of index 110s is not affected by an
increase in LEAFDIST, but I/O time may increase with
LEAFDIST because of increased DASD seek times. Re-
organization should be considered when LEAFDIST
increases beyond a certain threshold such as 10 000,
for example.

The isolation level and plan size of each application
plan defined in the system can be obtained via the
following:

Select NAME,ISOLATION,PLSIZE from SYSIBMSYSPLAN

Repeatable read isolation levels of some plans may
explain unusually great lock contention. Frequently
used transactions having large plans could be the
cause of 1/0 contention on the D B ~ directory data
base.

The amount of DASD storage allocated to a storage
group and to each table space and index within a

204 CHENG ET AL

storage group can be found. This requires first run-
ning the STOSPACE utility and then issuing a query to
retrieve NAME and SPACE from SYSSTOGROUP,
SYSTABLESPACE, and SYSINDEXES.

To determine whether a particular application plan
makes use of a given index, the following query
might be used:

SELECT BNAME,BTYPE,DNAME,DTYPE FROM SYSIBM.
SYSUSAGE

For a given application plan (DNAME), the indexes
used may be checked (BNAME). If a particular index
(which the user expects to be used by this applica-
tion) does not appear in BNAME, the index is not
used by D B ~ . The reason might be the particular form
of SQL statement used, in which case the user can
rephrase the statement in an attempt to secure use
of the index. Alternatively, the reason may be that
the RUNSTATS utility has not been run against the
table space in question. This forces D B ~ to use default
assumptions about the physical characteristics of
tables and indexes, which may be quite different
from the real data.

Data base buffer pool assignments must be carefully
tracked in the M V S ~ ~ O environment because of vir-
tual storage constraints in the D B ~ data base services
address space. Selecting NAME and BPOOL from SYS-
DATABASE, SYSTABLESPACE and SYSINDEXES shows the
allocation of D B ~ objects to buffer pools. The use of
small pools other than BPO can result in excessive
write 110s with a small number of pages written per
I/O (less than five, for example). Other consequences
of small pools may be a low buffer hit ratio and high
CPU overhead due to the incidence of buffer critical
conditions.

CLOSERULE in SYSTABLESPACE and SYSINDEXES indi-
cates whether a data set is to be closed when not in
use. If frequently used table spaces or indexes have
CLOSERULE=YES, this may explain a large amount of
VSAM 110 to MVS catalogs and the VSAM volume data
set. On the other hand, a large number of table
spaces and indexes with CLOSERULE=NO may con-
tribute to virtual storage constraints in the D B ~ data
base services address space, particularly in the MVS/
370 environment.

LOCKRULE in SYSTABLESPACE and PGSIZE in SYSIN-
DEXES may be examined when investigating the ef-
fects of locking granularity on concurrency. Having
LOCKRULE TABLESPACE or ANY may be responsible

IBM SYSTEMS JOURNAL, VOL 23. NO 2. 1984

the logical leaf page size, should be small -for any

Larger buffer pools can be used to
minimize the number of 1/0

operations.

index that is subject to frequent insertions or dele-
tions. This minimizes locking contention on leaf
pages.

DB2 system tuning

DB2 storage management. In an ~vs/370 environ-
ment, the D B ~ user must allocate virtual storage in
the D B ~ data base services address space, where space
is required for certain pools and system areas. The
storage available in this address space must be dis-
tributed among the following areas:

D B ~ code and MVS system areas.

VSAM control blocks. Each concurrently open D B ~
data set requires VSAM control blocks in the private
address space. Thus an area must be available for
all D B ~ catalog and directory table spaces. Also
required are user table spaces for which CLOSE-
RULE=NO is specified and any other user table
spaces expected to remain in common use.

Environmental Descriptor Manager (EDM) pool.
All D B ~ data bases in use require space in the EDM
pool for data base descriptors, and each concur-
rently active plan must reside in the EDM pool.
For efficient use of the EDM pool, it should be large
enough to contain the Skeleton Cursor Templates
(SKCT) for frequently used plans. The reason for
this is to minimize 110 operations required to load
those SKCTS. In addition, some space must be
allowed for fragmentation.

The bufer pools. Data base buffer pools are areas
of virtual storage which D B ~ uses during the exe-
cution of application plans to temporarily store

IBM SYSTEMS JCURNAL. VOL 23. NO 2. 1984

assigned by D B ~ , but the number varies within a
range defined by the user. Given sufficient virtual
and real storage resources, larger buffer pools can
be used to minimize the number of I/O operations
required to access the D B ~ data bases. At least one
Buffer Pool (BPO) must be provided that must be
large enough to provide data base read and write
buffers for all concurrently active threads. In a
constrained environment, it is probably much
more efficient to use all the available space for a
single buffer pool, rather than to attempt to par-
tition that space into two or more smaller pools.

DBZ working storage. D B ~ requires additional space
for various buffers, which are allocated in a num-
ber of internal D B ~ pools. For dynamic SQL, the
dynamic bind process uses a variable amount of
working storage. This storage increases with the
complexity of the SQL statement being bound, the
number of tables referenced in that statement, and
the number of columns in those tables.

After completion of dynamic bind (and for static
SQL statements) there are further demands upon
working storage during the execution phase. Exe-
cution of each SQL statement requires an incre-
ment of storage. Also, the D B ~ sort-if invoked-
uses a small base plus a variable number of 4K
buffers, up to 54K bytes in total.

In an environment with QMF and dynamic SQL only,
the EDM pool must be large enough to contain the
data base descriptors and multiple copies of the QMF
plan-a relatively small plan of less than 30K bytes.
In this environment, most of the available storage
can be allocated for use as working storage, where it
is required for the dynamic bind process.

Conversely, in a dedicated transaction environment,
very little working storage is required, but the appli-
cation plans are normally much larger. Thus a dif-
ferent distribution is required to avoid storage-re-
lated failures. Clearly, in a mixed environment, with
both queries and transactions, the question of allo-
cating limited storage becomes even more difficult.

To allow the user to manage these various require-
ments, D B ~ provides a storage management scheme
and a number of user options. The DB2 Storage
Manager monitors the allocation of storage to con-
currently executing threads. If the demand for stor-
age cannot be met, intermittent failures of user tasks

CHEW ET AL. 205

may result. If such virtual-storage-related failures
occur, the installation should reduce the demand for
virtual storage. This may be achieved by the follow-
ing actions:

Decreasing the maximum number of concurrent

Reducing the size of the buffer pool(s).
Reducing the size of the EDM pool. Such reduc-
tions must be done carefully because the space
available for application plans must be sufficient
for the number of concurrent threads.

threads.

Thread queuing. One way to reduce the demand for
storage is to limit the number of concurrent threads
that can be active. The installation can use IMS or
CICS facilities to control the number of concurrent
D B ~ agents in an IMs-only or cIcs-only environment,
but there are no such mechanisms in TSO. To allow
the option of limiting the number of concurrent
threads in all environments, D B ~ provides the follow-
ing installation parameters:

The maximum number of concurrent D B ~ con-
nections (IDENTIFIES) from background jobs and
started tasks.
The maximum number of concurrent D B ~ con-
nections (IDENTIFIES) from TSO foreground.
The maximum number of concurrent threads for
DB2"including IMS, CICS, TSO (foreground and
background), and utilities.

When the maximum number of concurrent threads
is reached, D B ~ queues up later requests to create a
thread. The queue is serviced on a first-come first-
served basis.

Having a limit on the number of TSO IDENTIFIES
permits the installation to control the population
size of users logged on to D B ~ . The primary purpose
for this is to permit the installation to maintain
acceptable service levels and limit the degree of
queuing for D B ~ threads in a storage-constrained
environment.

No restrictions are provided by D B ~ to limit the
number of IDENTIFIES from IMS or CICS. IMS and CICS
perform one or more IDENTIFIES to establish com-
munication paths to D B ~ , but these do not consume
significant resources by themselves. When an SQL
statement is issued on behalf of a transaction, a
thread is created (or for CICS, an existing thread may
be used). It is the creation of a thread that signals a
potential requirement for storage resources. Thus the

206 CHEW ET AL.

mechanism provided controls the total number of
concurrent D B ~ threads for all environments.

The statistics facility. D B ~ records statistical data to
SMF or GTF at each checkpoint. Statistics for the
System Services Address Space (SSAS) and for the
Data Base Services Address Space (DBAS) are re-
corded in separate records.

Sample statistics reports. To illustrate the statistical
data available, Figures 3 and 4 show sample reports
from a typical program which a user might write to
analyze statistical data. The reports show total data
for multiple D B ~ checkpoints. In the following sec-
tions we note some of the key data items that might
be used for application monitoring and tuning. We
do not attempt an exhaustive description of each
field.

The sample report in Figure 3 shows data collected
in the D B ~ System Services Address Space (SSAS). The
data were assembled during a period of approxi-
mately fifty-three minutes. During this period, 9378
transactions and queries were executed, as evidenced
by the count of threads created and summarized in
the reporting period summary. Although this report
shows total values, it is also useful to report the other
counts on a per-thread basis. The SSAS data include
the following major parts.

Record counts. These are the numbers of SMF records
written by the D B ~ Accounting and Statistics Facility.
SSAS and DBAS counts (line 13) are occurrences of
two statistics records during the reporting period.
The ACCT count is the number of SMF accounting
records during the same period. The error codes
indicate counts of records not written because of SMF
buffer overrun (BUF), records not accepted by SMF
(RNA), and SMF not active (ACT).

CPU times. The TCB and SRB are components of C P U
time in seconds consumed in the System Services
Address Space and the Data Base Services Address
Space during the reporting period (lines 13 and 14).
Most of the processing time of D B ~ users is accounted
for in their own address spaces. Only those tasks that
execute under the control of D B ~ itself-such as
lomng or buffer writing-are reflected here.

Subsystem Services Component (SSSC). This section
contains counts of connects to D B ~ . It also contains
counters for create and terminate threads, and for
successful prepare-to-commits, commits, aborts, and
synchronizations.

IBM SYSTEMS JOURNAL, VOL 23. NO 2, 1984

Figure 3 Data collected in DB2 System Services Address Space

-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4 0
41
42
43
44

P r i n t t i m e 11/07/83 18:28:07 R e p o r t P a g e 2

D B 2 S T A T I S T I C A L D A T A FOR SYSTEM SERVICES
SUMMARY PAGE - TOTAL DATA

REPORTING PERIOD DB2 SUB-SYSTEM: DSN
....................................

F r o m : 09:00:43 D a t e : 10119183 T h r e a d s : 9378
T o : 09:53:22 E l a p s e d ti me 0 : 52 : 39 T h r d l s e c 2.97

RECORD COUNTS Wr i te e r r o r c o d e s CPU T IMES
""""""""""" Desk BUF RNA ACT

SSAS DSAS ACCT SMF 0 0 0 J o b s t e p S R B t i m e
GOOD 12 12 9371 0 0 0 SSAS 5.008 48.730
BAD 0 0 0 0 0 0 DSAS 13.660 45.678

sssc

I d e n t i f y 25 COMMIT 0 Queued 0 E x i t 25
CREATE 9378 A b o r t 24 EOT 1
S i g n o n 0 In-doubt 0 R e s o l v e 0 EOM 0
T e r m - a l l 9372 Prepare 0 SYNCHs 9368 S S I C 26

AGENT SERVICES STORAGE MANAGER

"""""""""_""""""""""""""""~""""""""-

""""""""""""""" """""""""""""""""

A l l o c f a i l u r e s : sos
R e s - i n v a l i d 0 C o n t r a c t i o n 178
R e s - u n a v a i 1 0 C r i t i c a l 23
A l l o c - d e a d l o c k 0 Abend 2

LOG MANAGER
C a l l s : Wr i tes : R e a d s f r o m : A r c h i v e L o g :
"""""""""""""""""""""""""""""""""---
Wait 0 C I S c rea ted 1476 B u f f 244 O f f l o a d 0
N o f o r c e 67015 Actv w r i t e s 4287 Actv 0 A l l o c - R 0
F o r c e 48 96 Arch 0 Alloc-W 0
BSDS 641 B u f f e r w a i t s 0 R - d e l a y 0

COMMAND DATA """""""""""""""""""""""""""""""""---
D I S P L A Y S T A R T S T O P M I S C

D a t a b a s e 0 D a t a b a s e 0 D a t a b a s e 0 R e c B S D S 0
T h r e a d 1 T r a c e 0 T r a c e 0 R e c I N D O 0
U t i l i t y 0 D B 2 0 D B 2 1 U n r CMDS 0

T e r U T I L 0

Figure 4 Data collected in OB2 Data Base Services Address Space

Print time 11/07/83 18:28:07 Report Page 2
1 DBZ STATISTICAL DATA FOR DATA BASE SERVICES
2 SUMMARY PAGE - TOTAL DATA
3 REPORTING PERIOD DB2 SUB-SYSTEM: DSN
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4 0
41
42
43
4 4
4 5
4 6
47
48

From: 09:00:43 Date 10/19/83 Threads 9378
To: 09:53:22 Elapsed time 00:52:39 Threadslsec 2.97
SQL
Manipulative: Control I: Definitional:

1.
i "

"""""""" """_ """_ """_ i- create --- drop -- alter
Sel/Fch 102716 Lock-T
Insert 10093 Grant
Update 9779 Revoke
Delete 2114 I-Bind
Descrb 439 Comment
Prpare 476
Open 14410
Close 9531
BUFFER HANAGER
"""""""""""""

Current active buffers
Getpage requests (GET)
Read 1/0 operations (RIO)
Buffer Pool expansions
Expanded to limit
Storage unavailable
System page updates (SWS)
UW page updates
System pages written (PWS)
UW pages written
Write 1/0 operations (WIO)
Reads with paging
Writes with paging
Datasets opened
Read 1/0 per thread
Getpages per Read 110

0 Table 37
0 Index 0
0 T-SPC 0
0 Stgrp 0
0 Dbase 0

Synon 0
View 0

Pool 0
""""

113
629143
166591

0
0
0

280894
0

27819
0

4010
0
0

73
17.76
3.78

Sys. pg. updates/pages written 10.10
Sys. pages written / WIO 6.94
SERVICE CONTROLLER Dataselts open Allocation: """""""~"_ """C""" """""""-

132 Attempts 9377
PLANS bound 147 Success 9377

Auto Bind: Bind: Rebi nd: ""_""""" """""""- """""-----
Attempts 0 Add 0 Commands 0
Success 0 Replace 0 Attempts 0
Inv. Res 0 Test 0 Plans 0

LOCKING: Suspensions 1 495 Deadlocks 1

0 0
0 0
0 0
0 0
0 n/a
0 n/a
0 n/a

Authorization:

Attempts 10106
Success 10106

"""""""-

Free:
"""""""-
Commands 0
Attempts 0
Plans 0

Timeouts 0

IBM SYSTEMS JOURNAL, VOL 23, NO 2. 1984

Agent services. These data include counts of sus-
pends, execution unit switches to another SRB and
TCB, and information on resource allocation. Most
of the data in this section relate to D B ~ internals and
cannot be used for tuning purposes. The allocation
failure counts (lines 26 through 28), however, are
monitored and any nonzero values investigated.

Storage Manager. The three Short On Storage (sos)
counters on lines 26 through 28 record the behavior
of the D B ~ virtual storage management algorithm in
the Data Base Services Address Space. The sos con-
tractions count should be monitored together with
the value specified in the DB2 initialization param-
eters as the maximum number of concurrent threads.
As the number of threads increases, the sos contrac-
tions and sos critical counts will probably increase.
It is safe to increase the number of threads as long
as the sos-abend count remains zero.

Log Manager. This part contains information on
read and write operations to the recovery log data
sets. An important count to monitor is the number
of reads from the archive log (line 35), which is
normally zero.

The sample report in Figure 4 shows data collected
in the D B ~ Data Base Services Address Space. These
particular data were assembled during the same pe-
riod as the first report. During this period, multiple
application programs and queries were executed. A
total of 9378 threads were created. Although this
report shows total values, it would also be useful to
report these counts on a per-thread basis. The DBAS
data include the following major parts.

SQL call. Shown here are the counts of SQL state-
ments. The user should monitor the number of
control statements, particularly the number of LOCK
TABLE statements, as well as definitional statements,
because these statements can affect concurrency. In
the sample report in Figure 4, no LOCK TABLE state-
ments are shown as issued in the observed period.
The sample report covers executions of both trans-
actions and queries from QMF. Thus we can expect
counters for some of the definitional SQL statements.
Line 9 indicates that a total of 37 CREATE TABLE
statements were issued. Further analysis will proba-
bly show that these are the result of SAVE DATA
commands in QMF.

Bufer Manager summary. The number of read and
write 110s on a system basis are included in this
category. This section shows information on the

IBM SYSTEMS XXIRNAL, VOL 23, No 2. 1984

Buffer Manager. In contrast to the data collected by
the Accounting Facility, the Statistics Facility does
provide information on the number of write I/OS
initiated by the Buffer Manager during the observed
period. Line 2 1 shows the number of reads, and line
29 indicates the number of writes issued. The user
should monitor these values as one indicator of the
total workload being processed. Line 32 shows the
number of times data sets were opened during the
period. If this number is consistently high, it may
indicate that CLOSERULE=YES has been specified for
some frequently used table spaces.

Service controller. These counts show activity in
opening data sets, allocation and authorization of
plans and counts of binds, rebinds, and automatic
binds. If the number of automatic binds is not zero,
and automatic binds were not expected, the user
should find out what caused plans to become invalid.
It may be that an index was dropped either in error
or without realizing how many plans would be af-
fected.

Under the heading Datasets Open is shown the num-
ber of currently open VSAM data sets (line 39) and
the maximum number of concurrently open VSAM
data sets during execution of D B ~ . This number
should be compared with the maximum number of
open VSAM data sets for which storage has been
reserved in the D B ~ initialization parameters. If the
observed maximum is consistently lower than the
value specified, the user may decrease the reserved
storage area in order to free virtual storage.

Locking summary. These data are identical to those
described earlier in the sample accounting report,
except that here they are summarized across all
transactions and queries.

Concluding remarks

In this paper we have discussed performance-related
strategies for query processing. This has included a
discussion of the Structured Query Language (SQL)
query optimization, automatic access path selection,
bind, and SQL compilation. We have also presented
performance-related tradeoffs in the internal design
of D B ~ components, including those for resource
allocation, the Environmental Descriptor Manager,
the Buffer Manager, the Storage Manager, D B ~ sort,
table spaces, indexes, and buffer pools. In addition
to D B ~ component design options for improving
performance, there are also such application design
options for improved performance as static and dy-

namic SQL, the control of data consistency, locking
options, and DB2 utility options. Techniques for
monitoring and tuning are presented for further
observation and improvement of operational per-
formance. We have also discussed the collection and
analysis of D B ~ accounting data and the use of D B ~
catalog tables for monitoring and improving per-
formance. Regarding D B ~ system tuning, we have
presented the collection and analysis of data on
storage management, thread queuing, and statistics.

Cited references

1. M. M. Astrahan and D. D. Chamberlin, “Implementation of

ACM 18, No. 10,580-588 (October 1975).
a structured English query language,” Communications of the

2. H. M. Weiss, “The ORACLE data base management system,”
Mini-Micro Systems, 1 11-1 14 (August 1980).

3. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lone,
P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B.
W. Wade, and V. Watson, “System R A relational approach
to data base management,” ACM Transactions on Database
Systems 1, No. 2, 97-137 (June 1976).

4. M. W. Blasgen and K. P. Eswaran, On the Evaluation of
Queries in a Relational Database System, Research Report

CA 95193 (April 1976).
RJ-1745, IBM Research Division, 5600 Cottle Road, San Jose,

5. P. Buneman, R. E. Frankel, and R. Nikhil, “An implemen-
tation technique for database query languages,” ACM Trans-
actions on Database Systems 7, No. 2, 164-186 (June 1982).

6. W. Kim, “On optimizing an SQGlike nested query,” ACM
Transactions on Database Systems I, No. 3, 443-469 (Sep
tember 1982).

7. E. Wong and K. Youssefi, “Decomposition-A strategy for
query processing,” ACM Transactions on Database Systems
1, No. 3, 223-241 (September 1976).

8. Y. E. Lien, “Design and implementation of a relational data-
base on a minicomputer,” Proceedings of the ACM Annual
Conference, ACM, New York, 1977.

9. A. Makinouchi, M. Tezuka, H. Kitakami, and S. Adachi,
“The optimization strategy for query evaluation in RDB/VI ,”
Proceedings- Very Large Data Bases, 7th International Con-
ference on Very Large Data Bases, Cannes, France (September
9-11, 1981), pp. 518-529. IEEE Catalog No. 81CH1701-2;
available from the IEEE Service Center, Piscataway,
NJ 08854.

10. P. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lone,
and T. G. Price, “Access path selection in a relational database
management system,” Proceedings of ‘79 SIGMOD Confir-
ence, 1979. Available from ACM Headquarters, 11 W. 42nd
St., New York, NY 10036.

1 1. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design
and implementation of INGRES,” ACM Transactions on
Database Systems 1, No. 3, 189-222 (September 1976).

12. J. A. Weeldreyer and 0. D. Friesen, “Multics relational data
store: An implementation of a relational data base manager,”
Proceedings of the 11th Hawaii International Conference on
System Science, 1978, pp. 52-66.

13. M. Stonebraker, J. Woodfill, J. Ranstrom, M. Murphy, M.
Meyer, and E. Allman, “Performance enhancements to a
relational database system,” ACM Transactions on Database
Systems 8, No. 2, 189-222 (June 1983).

210 CHENG ET AL.

14. D. D. Chamberlin, M. M. Astrahan, R. A. Lone, J. W. Mehl,
T. G. Price, M. Schkolnick, P. G. Selinger, D. R. Slutz, B. W.
Wade, and R. A. Yost, Support for Repetitive Transactions
and Ad-hoc Query in System R, Research Report RJ-2551,
IBM Research Division, 5600 Cottle Road, San Jose,
CA 95193 (May 1979).

Reprint Order No. G321-5218.

Josephine M. Cheng IBM General Products Division, Santa
Teresa Laboratory, P.O. Box 50020, San Jose, CA 95150. Ms.
Cheng joined IBM at the Santa Teresa Laboratory in 1977. Since
1978, she has worked on the Advanced Data Base Project on data
base management physical services. In 1979, she worked on the
data base management logical services. She is currently working
on IBM Database 2 advanced functions development. She received
the B.S. degree iq mathematics and computer sciences and the
M.S. in computer sciences from the University of California, Los
Angeles, in 1975 and 1977, respectively.

Christopher R. Loosley IBM General Products Division, Santa
Teresa Laboratory, P.O. Box 50020, San Jose, California 95150.
Mr. Loosley is an advisory programmer on the Advanced Data
Base Project of the General Products Division. He joined IBM
United Kingdom in 1970, working as a systems engineer and
specializing in DB/DC and operating system performance. He
later transferred to the United Kingdom Field System Centre,
where he established a program of performance monitoring for all
UK IMS/VS customers. Since 1978, he has worked on relational
data base performance at the Santa Teresa Laboratory. Mr. Loosley
received his bachelor’s degree in pure mathematics and statistics
from the University College of Wales, Aberystwyth.

Akira Shibamiya IBM General Products Division, Santa Teresa
Laboratory, P.O. Box 50020, San Jose, California 95150. Mr.
Shibamiya joined IBM at Kingston, New York, in 1965 to work
on the development of the General Purpose System Simulator
(GPSS). He later worked on the Computer System Simulator
(CSS). Since transfemng to San Jose in 1967, he has been involved
with performance evaluation of data management and data base
products as well as hardware devices. Mr. Shibamiya received a
B.S. in engineering science from Stanford University in 1964 and
an MS. in applied mathematics from Harvard University in 1965.

Patricia S. Worthington IBM General Products Division, Santa
Teresa Laboratory, P.O. Box 50020, San Jose, California 95150.
Ms. Worthington joined IBM in 1976 at the Santa Teresa Labo-
ratory, where she worked on the programming language APL. She
began working on performance analysis of QMF and DB2 in 1979.
Ms. Worthington received a B.S. in mathematics and an M.S. in
computer science from Stanford University in 1976.

IBM SYSTEMS JOURNAL, VOL 23, No 2, 1984

