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This  paper  presents  the  various  forms of data recovery 
provided  by ISM Database 2 (DB2). It  describes  the 
OB2 recovery  log,  introduces the notion of a  unit of 
recovery,  and  discusses the two-phase  commit  proto- 
col  used by 082. Furthermore,  it  describes  what  type 
of information is logged, the Dl32 checkpoint  process, 
what  a  compensation  log  record  is,  and  how Dl32 han- 
dles undolredo processing,  media  recovery,  restart 
after  abnormal  system  termination,  and data unavaila- 
bility. 

T oday, more  and more organizations rely on  data 
processing systems to manage data critical to 

the day-to-day operation of the organization. In 
some cases, if data is unavailable, it  is impossible to 
proceed  with normal business operations. If data is 
inconsistent or  contains errors, such discrepancies 
can also seriously interfere with normal business 
operations. If Murphy’s law holds true (“Anything 
that can go  wrong will  go  wrong!”), and it seems 
from experience that it does, data will become una- 
vailable and errors are going to be introduced into 
the  data  at  one  time  or  another. 

If IBM’S relational data base management system, 
IBM Database 2 ( D B ~ ) ,  terminates abnormally prior 
to completing all work, the  data  that it manages 
becomes unavailable until D B ~  can be restarted, 
which will return  the  data  to  a consistent state. A 
system failure can be caused by hardware problems, 
certain software problems, and even by power out- 
ages. It is important  that D B ~  be able to restart 
quickly after a failure; it is even more important  that 
the  data be made consistent after a system  failure. 

Data errors can be divided into two types,  logical 
errors and physical errors. Logical errors include 
updates that should have been made  to  the  data base 
but were not, updates that were made  but should 
not have been, and updates that were made incor- 
rectly. Errors of this type can be caused by system 
failure, errors in the  data base manager, errors in 
various critical system components,  and even errors 
in the application programs that use the  Data Base 
Management System. Physical errors are caused by 
media or hardware malfunctions; e.g., data stored 
on disk cannot be read from the disk or written to 
it. What D B ~  does to recover from logical and phys- 
ical errors is addressed in  the remainder of this paper. 

The rest  of the paper is divided into three parts in 
addition to some conclusions that  the  author has 
reached concerning data recovery in D B ~ .  The first 
part is an overview of recovery. The second part 
describes DB2 logging, including what information is 
recorded in the log,  when it is recorded, and for what 
purpose. The  third  part discusses the various DB2 
recovery  processes. 

Overview 

As noted in  the  introduction,  data may be damaged 
in a variety  of  ways. The basic approach ta-recovery 
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used by D B ~  is to record all modifications made to 
data in the DBZ recovery  log. When data is updated, 
both the way it looked before the modification and 
the way it looked after the modification are recorded 
in  the log. The  contents of the log can  thus be  used 

The  recovery  log  records’  both 
system  status  information  and 

information  describing  changes 
made to data. 

either to  undo  an update or  to redo it. In this section, 
the D B ~  recovery  log and DBZ commit processing are 
described, and  the  notion of a “unit of recovery” is 
introduced. 

DB2 recovery log. The D B ~  recovery  log  is  used to 
record both system status information and infor- 
mation describing changes that  are made to data. 
The D B ~  recovery  log consists of an active portion, 
an archive portion,  and a special data set  called the 
Bootstrap Data Set (BSDS). The active log  resides in 
a set of  log buffers in main storage and  in a set of 
preallocated Virtual Storage Access Method (VSAM) 
entry-sequenced data sets. When an active log data 
set becomes full, an archive log data set is dynami- 
cally allocated, and  the active log data set  is off- 
loaded. The archive log is written via the Queued 
Sequential Access Method (QSAM) to  standard label 
tapes, a direct access storage device (DASD), or a Mass 
Storage System. After the archive operation is com- 
plete, the VSAM data set is available for use  as part of 
the active log again. 

When log records are required for  recovery, DBZ must 
determine which active or archive log data sets con- 
tain  the records. This information is kept in the BSDS 
along with information used to help restart the sys- 
tem after it terminates either normally or abnor- 
mally. The BSDS itself  is  off-loaded during an archive 
operation along with the active log data set being 
archived. 

Each portion of the log (i.e., the active log, the 
archive log, and  the BSDS) may optionally be dual- 
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copied. It is  highly recommended that  an installation 
maintain  dual copies in all production environ- 
ments, since one of the basic assumptions of  recovery 
is that  the integrity of the log can be depended upon. 

Each  log record written by DBZ has associated  with 
it a Relative Byte Address (RBA), which  is six bytes 
in length. The D B ~  log  is a linear address space of 248 
bytes, and each log record written begins at some 
offset from the beginning of the log. This offset is 
called the RBA of the log record. Note that  an RBA 
can be likened to a point in time; that is, the event 
described by a log record whose RBA is x occurred 
prior to  an event described by a log record whose 
RBA is x + n. Another basic assumption concerning 
the log and its use is that an RBA will never repeat. 
For all practical purposes this assumption is true, 
since if the DBZ log  were to grow at a rate of 234 bytes 
(1 6 gigabytes)  per day, it would fill in 44 years. 

Normally when a log record is written, it is simply 
moved into a log  buffer.  Log  buffers are written to 
disk as soon as one of the following  occurs: 

The log  is  explicitly  forced (i.e., all log data  up  to 
and including a specified REA is written to disk). 
The installation-specified maximum  number of 
log  buffers are full. 

When the log  is  forced and why it is  forced are 
discussed in subsequent sections of the paper. The 
amount of storage devoted to  the active log is under 
the control of the installation. By providing sufficient 
space on DASD for the active log, it is  possible (al- 
most) to guarantee that for most situations requiring 
rapid recovery, only information stored in  the active 
log  need  be referenced. 

Unit of recovery. A “unit of recovery” (UR) is the 
mechanism used by DBZ to track the progress of an 
application as it updates data stored in a data base. 
When an application program first attempts an up- 
date operation, D B ~  establishes a UR for the applica- 
tion. Application in this context includes both user- 
written programs and  the Query Management 
Facility’ (QMF-a separate product that uses DBZ) or 
DBZ? (an interactive interface to DBZ). The UR lasts 
until a point of consistency is reached. (Note that  an 
implicit point of consistency exists when the appli- 
cation first starts.) A point of consistency is that 
point at which, according to  the application program 
logic,  all data accessed and modified by the UR is in 
a consistent state. For example, a bank transaction 
might transfer funds from account A to account B. 
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The transaction would  first subtract the  amount of 
the transfer from account A and  then  add  the same 
amount  to  account B. After the second operation 
has been completed, the  data  in  the two accounts is 
consistent. At this  point  the application can signal 
D B ~  that  the  data is consistent and  the updates are 
to be committed. When this happens, the UR for the 
transaction ends. If the transaction continues to  run 
after this point, a new unit of recovery will  be 
established when it next attempts  to  update  the  data 
base. 

During  the period after the  update to A and before 
the update to B, the data in the two accounts is 
inconsistent and  uncommitted. D B ~  does not allow 
other applications to access uncommitted  data stored 
in D B ~  data bases.  After the point of consistency has 
been reached (and  the updates have been commit- 
ted), the two accounts can then be  accessed  by other 
applications. 

All updates made by a unit of recovery either are 
completed (and  committed)  or  are aborted, which 
means the updates are backed out  and appear  to 
other applications as though they were  never made 
(Figure 1 ) . 

When a UR is initiated, a begin-uR  log record is 
written. All subsequent log records that are generated 
on behalf  of the UR contain  the RBA value of the 
previous UR-related record in the log, thus linking 
together all log records for a single UR (see  Figure 2). 
When it is determined that a UR is to be committed 
or aborted, a log record is written (and forced to 
DASD) indicating the beginning of the  commit or 
abort process. The various phases of the  commit 
process are logged, as is the  end of the  commit or 
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records are used during restart to determine  the state 
of the UR at  the  time of  system termination. 

Commit processing. A single application may involve 
DB2 and  either TSO (the  Time Sharing Option of 
Mvs), Information Management System/Virtual 
Storage (IMSIVS), Customer  Information  Control Sys- 
tem/Operating System/Virtual Storage (c~cs/os/vs), 
or batch programs. Because D B ~  may operate in 
conjunction with another subsystem (IMS/VS and 
CICS/OS/~S) that also manages recoverable resources 
and has a recovery  log (separate from the D B ~  recov- 
ery log), it is necessary to coordinate  the recovery 
activity between D B ~  and the  other subsystem. For 
data  in  the two subsystems to remain consistent, it 
is necessary that corresponding updates  be  made  in 
both subsystems or  in neither. 

During  commit processing, one subsystem coordi- 
nates the process,  which consists of two phases. This 
subsystem  is  always IMS/VS or cIcs/os/vs. Neither TSO 
nor batch programs participate in  commit;  rather 
D B ~  unilaterally controls the  commit process. 

The first phase of commit processing  is known as 
the “prepare” phase, in which each subsystem deter- 
mines that  it  can  continue  the  commit process.  Each 
subsystem logs this event and forces the log to DASD. 
The second phase, known as the  “commit” phase,  is 
when each subsystem records in  the log the fact that 
the guarantee to  commit was made. 

Figure 3 shows the two-phase commit process.  At 
point 1, IMS or CICS begins  processing a transaction. 
At 2, a Structured Query Language (SQL) call is issued 
which attempts  to update data, causing 3, a begin- 
UR event, to  be logged in D B ~ .  At point 4, the 
requested update operation occurs. At 5, r~s/crcs 
initiates the  commit process and notifies D B ~ ,  which 
logs this event, performs its phase 1 processing,  logs 
its completion, and  then notifies IMS/CICS (at 7 and 
8) that it has completed phase 1. At 9 the irrevocable 
decision to  commit is made by IMs/cm,  and  this 
event is recorded in the IMS/CICS log (on stable stor- 
age).  At lo, IMS/CICS notifies D B ~  that  the decision is 
to  commit,  and D B ~  logs this (1 l), completes its phase 
2 processing,  logs the event, and notifies IMS/CICS of 
the completion (1 2 and 13). IMS/CICS then completes 
its phase 2 processing (14). 

Note that if either IMS/CICS or D B ~  fails  before point 
9, when the decision to  commit (or abort) is recorded 
in  the IMS/CICS recovery log, the UR will be aborted. 
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A failure of either system after 9 will result in the UR 
being committed. If D B ~  fails  between 7 and 1 1, the 
status of the UR is in doubt since D B ~  has no knowl- 
edge  of the decision at point 9. The  status of an  in- 
doubt UR is  resolved after D B ~  restarts and re-estab- 
lishes communication with IMSICICS. 

DB2 logging 

In addition to the UR control log records just de- 
scribed, other information is recorded in  the log for 
recovery purposes. Some of this information is  re- 
lated to a UR (e.g., log records describing the updates 
performed by the UR), and  some is not. Both  types 
play an  important part in  the recovery  process. Un- 
derstanding what  is  logged,  when it is  logged, and 
why it is  logged  is  necessary to understand data 
recovery in D B ~ .  

Open/close. Whenever a tablespace (a D B ~  object in 
which one  or more tables are stored) or an index- 
space (a D B ~  object in which an index defined on a 

table is stored) is opened or closed (the VSAM open 
or close ofthe data set(s) that  contain  the D B ~  object), 
this event is  logged. Note  that log records of this type 
are not related to a single UR since D B ~  supports 
multiple users  accessing the same data. Logging this 
information provides a set of delimiters for updates 
to  the  data object; i.e., there may  be information of 
interest in the log about  an object only for the period 
between the open log record and  the close  log record. 
Included in  the open log record is  sufficient infor- 
mation to enable the open operation to be performed 
again. The open log record is  used at restart time  to 
perform the open operation if it is  necessary. Since 
all pending I/O activity is completed prior to writing 
a close  log record, this record is  used during  the 
restart process to filter out records relating to  the 
closed object. 

Checkpoint. At periodic intervals, depending on the 
amount of log activity and  an installation-specified 
variable, D B ~  initiates what is  called a checkpoint 
operation, during which  system status information 
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is recorded on the log. This process occurs asynchro- 
nously with normal  data base activity and  does  not 

DB2 always  begins  the  restart 
process at the last complete 

checkpoint. 

prevent access to  any Ds2-managed data.  The check- 
point process consists of 

Writing a log record that  denotes  the beginning of 
the  checkpoint. 
Writing  a list of active URS in  the log. These log 
records describe the  current state of each active 
UR (in  commit processing, in abort,  or  in  neither). 
This  information,  along with other rra-related log 
records, is used at restart time  to determine 
whether or not any recovery actions  are required 
on behalf of active URS and, if so, what type of 
action. 
Writing  information  about each open tablespace 
and indexspace in the log. Included  in  the log 
records is sufficient information to perform the 
open  operation at restart time as well as  an indi- 
cation of the earliest point in  the log at which an 
outstanding  update  operation exists for the D B ~  
object. An update  operation  starts when the deci- 
sion is made  to perform the  update and completes 
when the page containing  the  update has been 
recorded on DASD. 
Writing  a log record that  denotes  the  end of the 
checkpoint. 
Updating  the active log data set information and 
the RBA of the  checkpoint log record in  the BSDS. 

D B ~  always begins the restart process at  the last 
complete  checkpoint. The frequency at which check- 
points  are  taken  thus has an effect on  the  amount of 
time  required to perform restart since it  tends to 
limit  the  quantity of  log data  that must  be processed. 
Since the frequency of checkpoints is determined by 
the  amount of information written in  the log, the 
more  update activity on a system, the  more often 
checkpoints will occur. The checkpoint process itself 

writes information  in  the log (the  amount of infor- 
mation is somewhat  dependent  on  the system load) 
and therefore adds overhead and decreases perform- 
ance. Yet, if the  checkpoint frequency is too large, 
the restart process may have to access the archive 
log. 

Writing pages to disk. D B ~  maintains  data base in- 
formation as rows stored  in pages on DASD. D B ~  also 
maintains indexes in pages which are also stored on 
DASD. When  a  particular row or index entry is to be 
accessed, the page containing  the row or index entry 
is read into  a  buffer  in  memory. D B ~  maintains  a 
pool of these buffers in  memory. Since SQL is a set- 
oriented language, it is possible to  update  many rows 
contained  in  many pages in  a  data base with a single 
statement. Also, since D B ~  allows more  than  one 
index to be defined on a table, it is  possible for an 
update to a single row to cause updates to more  than 
one  index. It would not be possible or desirable from 
a  performance  point of view to hold all of the up- 
dated pages in  memory  until  a  commit  point is 
reached; therefore, D B ~  will write uncommitted 
changes back to  the  data base in  order  to reclaim 
buffer pool space. This design then  makes  it neces- 
sary for D B ~  to be able to  undo  uncommitted  updates 
after a system failure. 

If a  required page is already in the buffer pool, no 
read operation need be performed. If the page  is not 
in  the pool, a  synchronous read operation is per- 
formed since the process cannot  continue  until  the 
page can  be accessed. Write operations, however, are 
usually performed asynchronously to  the process 
that performed the modification. Once  a page mod- 
ification is complete, the page becomes a  candidate 
for writing back to DASD. 

During  the modification process, D B ~  writes one  or 
more log records that describe the  update  operation. 
All data base modifications are logged as UR-related 
records. These records contain two types of infor- 
mation (where possible in  a single log record): 

umo-sufficient  information to  undo  an  uncom- 
mitted  update (e.g., the old value of an  updated 
column) 
REDO-sufficient information to be able to redo 
an operation (e.g., the  contents of a newly inserted 
row) 

These log records also include  information  that  iden- 
tifies the D B ~  object and  the page number  to which 
the log record applies. 
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The RBA of the log record written describing the 
most recent update is stored in  a special location in 
the page. When it becomes necessary to write a page 
back to DASD, D B ~  checks to see that  the log record 
whose RBA is stored in the page has been written to 
DASD and, if not, forces the log up  to  that point 
before writing the page to DASD. Since the log  is 

Compensation log records  describe 
the  redo  phase of an  undo 

operation. 

always written to DASD prior to  the page being writ- 
ten, it  is  possible for DBZ to back out or undo 
uncommitted updates using information contained 
in the log. 

Compensation  log  records. Compensation log  rec- 
ords (CLRS) describe the redo phase of an  undo 
operation. Since DBZ write operations are not per- 
formed synchronously, it is possible that  the  undo 
operation of an  uncommitted update which was 
originally externalized, might itself  be  lost if DBZ fails 
before the result of the  undo is written to DASD. 
Consider the following sequence without CLRS: 

A UR updates a row, changing a value in a  column 
from A to B. DBZ writes an  undo/redo log record 
which indicates that  the new column value  is B 
and  the old column value is  A. 
The log  is written to DASD. 
The page containing the row  is written to DASD. 
The UR aborts. 
The log record describing the  update is read, the 
page containing the row  is read, and  the update is 
backed out; i.e., the value in the  column is changed 
from B to A. 
The  end  abort log record for the UR is written, and 
the log  is  forced to DASD. 
The system  fails. Note that  the page containing 
the back-out uptake has not yet been written to 
DASD.  

If compensation log records are not written, then 
when the system  is restarted, the restart process will 
read the log record describing the update of the 
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column from A to B. This action will not cause an 
update since the row on DASD contains  a B. The log 
record indicating the UR completed an  abort will  be 
read indicating that it  is not necessary to process this 
UR. After the restart completes, the row contains an 
uncommitted update and is thus inconsistent. 

Compensation log records correct the problem as 
follows. 

. During the backout operation,  a CLR is written 
which has a new column value of A and  an old 
column value of B. 
The  end  abort log record is written, and the log  is 
forced (including the CLR just written) to DASD. 
The system  fails. The row stored on DASD still 
contains  the value B. 
The restart process will read the first  log record 
describing the update of A to B and  not perform 
an update. 
Next  it will read the CLR which will cause it to 
change the  column from B back to A, thus com- 
pleting the backout of the  uncommitted update. 

Recovery processes 

Any  recovery  process involves applying either undo 
log records or redo log records or both. Since these 
functions are common,  the rules for performing 
them  are given  below prior to  the discussion of the 
recovery  processes themselves. 

Undo/redo  processing. The RBA value stored in the 
header of a page uniquely identifies the log record 
that describes the last update operation made to  the 
page. Therefore, it is possible to  determine whether 
the update described by a log record was made to 
the page  by comparing the RBA in the page to  the 
RBA of the log record. If the RBA in the page  is  less 
than  the RBA of the log record, the change described 
by the log record was not applied to  the page. If the 
RBA in the page  is greater than or equal to  the RBA 
of the log record, the change was applied to  the page. 

The redo process simply determines whether the 
update described by the log record has been applied 
to  the page, and if it has not, performs the update 
and stores the RBA of the log record in the page to 
indicate that  the update has been made. 

The  undo process  is more complicated. If the update 
operation was performed, a CLR describing the undo 
of the update is written, the update is undone,  and 
the log RBA of the CLR is stored in  the page to indicate 
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to write a CLR that describes the  undo of the update, 
although the RBA in the page  is not modified. This is 
done so that  the  update  can be undone (after being 
redone) if media recovery (discussed shortly) is  nec- 
essary at a later time. 

The rules for performing undo operations, including 
the writing of compensation log records, follow: 

If the log record being  processed has only redo 
information, write an undo-only CLR for the op- 
posite operation. 
If the log record has both undo  and redo infor- 
mation, and if the RBA in  the page  is  less than  the 
RBA of the log record, write a redolundo CLR. The 
page  itself  is not modified  since the change de- 
scribed by the log record was not applied to  the 
page- 

* If the log record has both undo  and redo infor- 
mation, and if the RBA in the page  is greater than 
or equal to  the RBA of the log record, apply the 
change to  the page,  write a redo/undo CLR, and 
store the RBA of the CLR in  the page. 
If the log record has only undo  information, and 
if the RBA in  the page  is  less than  the RBA of the 
log record, write a redo CLR. The page  itself is not 
modified since the change described by the log 
record was not applied to  the page. 
If the log record has only undo  information,  and 
if the RBA in the page  is greater than  or equal to 
the RBA of the log record, apply the change to  the 
page, write a redo CLR, and move the RBA of the 
CLR to  the page. 

These rules assume that  the page can always  be 
accessed  successfully,  which  is not always the case 
(e.g., I/O error); however, compensation log records 
are always written even  if the page cannot be ac- 
cessed. This is  possible because the CLR can be writ- 
ten with only information contained in the log  record 
being processed. It is  necessary  in order to be able to 
perform media recovery on the object. 

The rules for redo processing are much simpler: 

If the log record contains redo information and 
the log RBA in  the page is less than  the RBA of the 
log record, apply the change to  the page and store 
the RBA of the log record in the page. 
If the log record contains redo information and 
the log RBA in the page  is greater than  or equal to 
the RBA of the log record, do nothing. 
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due  to a med$ failure (e.g., a bad track, head crash) 
or from some  other  error which makes the  data 
unusable. Media recovery consists of starting with a 
copy of the  data (called an image copy) which  was 
made  at a known point in  the log, and redoing all 
committed update operations using the  appropriate 
redo information  on  the log up to  the  point of failure. 

D B ~  supports two different types of image copies. The 
first,  called a full image copy, is simply a copy of a 
tablespace. The second, called an incremental image 
copy, makes a copy  of only the pages that have been 
updated since the last image copy  was made. This is 
accomplished as follows: 

When a page  is  first modified, D B ~  sets an indicator 
on corresponding to  the  data page in another page 
called a space map page, and sets an indicator on 
in the  data page  itself indicating that it has been 
modified. 
When an incremental image copy is taken, D B ~  
uses the indicators in the space map  to  determine 
which data pages to copy. It resets both  the indi- 
cator in the  data page and  the space map indicator 
when the copy has been made. 

An image copy can be made while other users have 
read-only access to  the  data or while other users have 
read/write access to  the  data. In the case  where read- 
only access is allowed, D B ~  saves the log RBA at  the 
point in  time when the image copy has completed 
in the D B ~  catalog and saves information about  the 
data set  which contains  the image copy. In the case 
where the  data may  be modified while the copy is 
being made, the RBA value saved corresponds to  one 
that existed  when the image copy process was initi- 
ated. The RBA thus saved becomes the starting posi- 
tion in the log for any subsequent media recovery 
operation that uses the corresponding image copy. 

In order to minimize the  amount of  log that must 
be  processed during media recovery, D B ~  remembers 
the log RBA when the first update is made  to a D B ~  
data object and also remembers the log RBA when 
the object is  closed. This information is stored for 
each object in a D B ~  directory as a list  of start/stop 
RBA values. Media recovery reads the start/stop RBAS 
associated  with the object being  recovered and only 
processes the log within the RBA ranges so defined. 

Media recovery involves applying redo log records. 
These records may be redos of committed updates, 
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and they may also be redos of uncommitted updates, 
which are always  succeeded by CLRS that are redo 
records for the  undo of the update. If compensation 
log records were not written, it  would  be  necessary 
to perform update operations, not knowing whether 
they  were committed  or not, and  then after deter- 
mining that  the UR was aborted, undo all of the 
updates that had just been made. 

Restart. When a hardware/software failure or a 
power outage causes an abnormal system termina- 
tion,  the state of the  data stored on DASD at  that  time 
is almost certainly inconsistent with that of data 
stored at  other times because of the way D B ~  per- 
forms write operations. I f  DBZ were to be started after 
a system failure without knowledge of the events in 
progress  when the failure occurred, the  data would 
be  exactly as it was at the  time of failure. 

When D B ~  is restarted after a system termination, it 
uses information recorded in  the log to restore the 
state of the system (including the  data bases) to  the 
point where it was at  the  time of termination,  and 
in fact requires only information stored in the log 
(i.e., no system directories, catalogs, etc., need  be 
accessed). This capability is important because DBZ 
maintains system directories and catalogs in data 
bases  of their own, which  may themselves require 
recovery actions during restart processing. If the 
termination was not normal, e.g., a power failure or 
system error, the  data bases may be in  an inconsistent 
state in that  committed updates may not have  been 
stored externally on DASD, and/or  uncommitted up- 
dates may have been recorded on DASD. If the ter- 
mination was  via a shutdown command, all activity 
was made quiescent (all URS were completed, all DBZ 
objects were  closed, and all updates were written to 
DASD) prior to  the  termination. Therefore, many of 
the steps below  result in no action being taken even 
though the same restart process  is  followed. 

Figure 4 presents a  summary of the restart process 
that pertains to the following discussion. Note that 
the figure  shows a checkpoint that started but  did 
not complete before the system termination. Any 
records associated with the incomplete checkpoint 
are ignored by D B ~ .  The D B ~  restart process  is out- 
lined as follows: 

a. Read the BSDS and  determine the RBA of the last 
complete checkpoint. 

b. Beginning at the start of the last complete check- 
point, (phase l), read the log in a forward direc- 
tion and  (at phase 2), 
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1 
Establish the  status of all URS at the time of the 
termination (i.e., whether the UR was active, in 
commit, or in abort) by using the UR infor- 
mation recorded in  the checkpoint and updat- 
ing this information with  Ua-related informa- 
tion recorded in the log  (e.g.,  begin UR, end 
UR, etc.). In the figure, URS 1 and 2 are  to be 
backed out since they have not  committed, 
URS 3 and 4 have completed commit,  and UR 
5 will complete commit processing during re- 
start because it entered phase 2 of commit 
before the system failure. 
Establish the set of all tablespaces and index- 
spaces that were open at  the  time of termina- 
tion by using checkpoint log records for D B ~  
objects as well as any open/close log records. 



Determine the earliest point in the log that 
contains records describing updates that may 
have to be redone because the pages may not 
have  been written to DASD. This is done by 
determining the  minimum value of the RBAS 
stored in the checkpoint records for D B ~  data 
objects and  the nBAs  of any open log records 
that are found. 

c. Start reading the log in a forward direction begin- 
ning at  the RBA determined in the previous step 
( 3 ) ,  and redo all updates that have not been 
completed (4). This process reads to  the  end of 
the log. 

d. Read the log in a backward direction and  undo 
the updates of all URS that were active or in abort 
at the time of termination (5). 

e. Force all updates to be externalized, and wait for 
all 110 operations to complete and take a check- 
point (6). 

The restart process is not complete until the  end 
checkpoint record has been written to the log.  If 
failure occurs during restart prior to  this  point, D B ~  
will terminate abnormally and  a subsequent restart 
will be necessary. Therefore, the restart process must 
provide for this  condition, which introduces addi- 
tional complexity in the process  itself. Consider the 
following: A un aborts for some reason, and  the 
system terminates abnormally. During  the restart 
process the updates performed by the UR are undone 
(including the writing of cuts),  and the UR completes 
abort processing. All  log records that describe this 
process are written to DASD, and then the system 
fails again, before the pages  which  were  modified 
during  the  undo process could be written to DASD. 
The resulting inconsistency will be corrected during 
a subsequent restart (which  hopefully completes suc- 
cessfully)  because, during  the forward recovery 
phase, CLRS describing the backout will  be  read and 
processed. 

Additional complications may  be introduced when 
D B ~  is connected to IMS/VS or  c~cs/os/vs. These com- 
plications occur when D B ~  fails  while connected to 
one of these subsystems and  one  or more URS have 
completed the processing  of phase 1 of commit 
(recorded in  the log) but have not started phase 2. 
The  status of a UR in this state is termed “in  doubt” 
because only the  commit  coordinator  (IMS  or CICS) 
knows whether the decision was made to commit  or 
abort  the UR. During D B ~  restart, all update opera- 
tions are  undone for a UR that has not completed 
phase I of commit. Likewise,  all updates for a UR 
that has begun phase 2 of commit  are redone. For  a 
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UR that is in doubt, D B ~  performs redo processing in 
anticipation of a decision to  commit (which is highly 
probable because the system failure interrupted  the 

082 attempts to include  both  redo 
and  undo  information  in  the  same 

log record. 

commit process) and locks all of the  data accessed 
by the UR to prevent other users from accessing 
uncommitted modifications. It is the responsibility 
of the coordinating subsystem to resolve the situa- 
tions that  are in doubt when it and DB2 reconnect. 

A further complication arises during the restart proc- 
essing  of a UR that is in doubt when individual undo 
and redo log records are processed. D B ~  attempts  to 
include both redo and  undo information in the same 
log record, but  this is not always  possible. Consider 
the case  where the redo record for an operation 
precedes the  undo record in the log. Remember  that 
during restart, D B ~  performs redo for an  “in-doubt” 
UR and that  during  the redo process, the RBA of the 
redo log record applied to  a page is stored in the 
page  itself. Later, when the status of the UR is  re- 
solved, the decision may be made to  abort  the UR. 
Then, when the  undo log record is read, it appears 
to  the  undo procedure that  the update operation was 
not performed because the RBA of the  undo record 
is greater than  the RBA of the redo record  which was 
stored in the page. This problem may be solved as 
follows:  If the RBA of the log record is greater than 
or equal to  the RBA of the page during restart when 
an undo-only log record is processed for an  “in- 
doubt” UR, the RBA of the  undo log record is stored 
in the page  even though no other updates are made 
to the page.  In the case where the  undo log record 
precedes the redo log record in the log, the processing 
of the redo record results in the RBA of the redo 
record being stored in the page. Thus, if the decision 
is made later to  abort  the UR,  the  undo process will 
work properly. 

On-line  recovery. If the  data stored in a page becomes 
logically inconsistent, D B ~  must restore the  data to a 
consistent state. One way  in which a page can be- 
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come inconsistent is  because  of  software failures that 
result in errors being introduced into  the page.  If this 
situation is detected by D B ~ ,  it marks the page as 
logically inconsistent and denies further access to  the 
page. This is  necessary to prevent access to incon- 
sistent data until the recovery  process completes. 

A second way that  data in a page can become incon- 
sistent is for a process to be aborted at  a critical point 
in time. Updates to pages are in general not atomic 
(Le.,  all or nothing) since they consist of distinct 
suboperations. For example, inserting a row into  a 
page requires moving the row into free  space within 
the page, writing a log record describing the insert, 
updating a page directory to point to  the newly 

When DB2 detects an  inconsistent 
page, it  initiates  an  internal  recovery 

operation. 

inserted record, updating the  amount of  free  space 
remaining in the page, and storing the RBA of the 
record in the page. This operation is not  atomic 
because a failure part way through will leave the 
update partially completed. Another example of a 
nonatomic operation is  space reclamation within a 
page after rows have been deleted. When space  recla- 
mation becomes necessary,  all the rows in the page 
are moved toward the beginning of the page,  leaving 
a contiguous free area at  the  end. For ease  of imple- 
mentation  and for performance reasons, it was de- 
cided not to log  all of the above actions and thus, if 
the process  is aborted at  a critical point, the normal 
undo process cannot recover the page to a consistent 
state. 

To detect this  condition, D B ~  marks the page (in  the 
page header) as being  logically inconsistent at the 
beginning of the update process and marks it logi- 
cally consistent again after the update completes. In 
the insert example given above, the page  is incon- 
sistent only after the log record has been written and 
until the RBA is stored in the page header. Although 
at first it might seem that  the simplest solution might 
be to throw away the copy of the page in memory, 
this could cause the loss  of committed updates that 
have  never  been written to DASD. 
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When D B ~  detects an inconsistent page, it initiates 
an internal recovery operation which  uses the log to 
perform forward recovery of the page  using the ver- 
sion stored on DASD as the base. When the recovery 
operation completes, the page  is marked consistent 
and  can be  accessed again. During the period when 
the page  is marked inconsistent, it is unavailable for 
access, and  a user attempting to access the page  will 
receive a resource-not-available return code. 

Unavailable  data. In certain error situations, DB2 will 
itself make data unavailable until the  data can be 
recovered. 

If D B ~  is unable to write a page to DASD because of a 
write 110 error, the page  is added to what is  called 
the write error range. Subsequent requests to access 
the page are denied, and  the user will  receive a 
resource-not-available return code. During abort  and 
restart, if D B ~  is unable to read a page  because of a 
read 110 error,  the page  is also added to  the write 
error range. This is necessary since the page cannot 
be  read and  the  undo/redo operation cannot be 
performed. 

Other situations in which D B ~  will make data un- 
available are during restart when a D B ~  object (i.e., a 
tablespace or indexspace) cannot be opened, or when 
an error is detected (e.g., an addressing error is 
detected by the CPIJ) while D B ~  is attempting to apply 
a log record to  a page that has been read. In both of 
these cases, D B ~  “stops” the D B ~  object (the tablespace 
or indexspace), thus making it unavailable for access. 
When the object is stopped by D B ~  during  the restart 
process, compensation log records will still  be written 
as discussed earlier. 

Data  made unavailable by D B ~  will  be made available 
again only after having been recovered. In the case 
of an 110 error, media recovery must be performed. 
In the case  where the D B ~  object is stopped, data may 
be  recovered by performing a “deferred restart” or 
via media recovery. Deferred restart is a process that 
uses the version of the D B ~  object that exists on DASD 
as the base and  then performs redo starting at  the 
point on  the log established for the D B ~  object from 
its checkpoint log record or open log record. The 
method chosen to recover the  data depends on the 
reason why the object was made unavailable. If the 
problem was caused because a disk  pack was not 
ready or was not  mounted, or some similar condi- 
tion, deferred restart would  be chosen (since it would 
probably require the processing of  fewer  log records). 
In the case of such problems as a head crash that 
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damaged a disk pack, or a fallback  if deferred restart 
failed, media recovery can be  used to make the D B ~  
object available again. 

Concluding  remarks 

Both the procedures that write  log records and those 
that perform undo/redo operations based on  them 
are fairly complex. The subjective cost of implemen- 
tation mentioned by Gray3 seems about right: “writ- 
ing a recoverable action is 30 percent harder and 
requires about 20 percent more code than a nonre- 
coverable action.”  The total cost in lines of code for 
data recovery in D B ~  is  very  close to that of System 
R, i.e., 11 percent for D B ~  versus 10 percent for 
System R.4 

Maintaining the active log on DASD allowed us to 
use the same log to perform undo operations during 
normal processing, as well as at restart time, and 
allowed us to use a single  log for both undo  and redo 
information. 

It is often the case that  an operation viewed exter- 
nally as a single update actually requires that more 
than one internal update operation be performed. 
Two approaches can be  followed to provide atomic- 
ity of an  update operation that consists of many 
lower-level update operations: 

Do things twice-first access and lock  all of the 
data items that have to be modified, and if every- 
thing is all right, re-access them  and perform the 
updates. 
Do things once-access, lock, and modify the 
data,  and if anything goes  wrong, invoke an inter- 
nal backout mechanism to  undo  the updates that 
have been performed. 

The second approach was chosen, not only because 
it performs better if most operations complete suc- 
cessfully, but also because it was easier to implement 
because much of the backout mechanism was al- 
ready required to support abort and restart. This 
backout mechanism is  used internally by D B ~  to give 
the appearance of atomicity to multirow operations; 
e.g., a multirow update operation either succeeds 
completely or  no rows are updated. It is also used to 
support updates to multiple indexes. An example of 
this is a table with three indexes, not all of which 
allow duplicate key values. The insertion of a row 
might meet the uniqueness criteria of the first two 
indexes but fail that of the  third,  at which time  the 
internal mechanism would be invoked to  undo  the 
two successful insertions. 
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We recognize that improvements can be made in the 
area of data recovery, and we also recognize the 
importance of this capability to  our users.  We expect 
that  as D B ~  evolves, additional procedures and tech- 
niques will  be developed to  continue  to improve this 
very important area. 
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