Data recovery in IBM
Database 2

This paper presents the various forms of data recovery
provided by IBM Database 2 (DB2). It describes the
DB2 recovery log, introduces the notion of a unit of
recovery, and discusses the two-phase commit proto-
col used by DB2. Furthermore, it describes what type
of information is logged, the DB2 checkpoint process,
what a compensation log record is, and how DB2 han-
dles undo/redo processing, media recovery, restart
after abnormal system termination, and data unavaila-
bility.

Today, more and more organizations rely on data
processing systems to manage data critical to
the day-to-day operation of the organization. In
some cases, if data is unavailable, it is impossible to
proceed with normal business operations. If data is
inconsistent or contains errors, such discrepancies
can also seriously interfere with normal business
operations. If Murphy’s law holds true (“Anything
that can go wrong will go wrong!”), and it seems
from experience that it does, data will become una-
vailable and errors are going to be introduced into
the data at one time or another.

If 1BM’s relational data base management system,
1BM Database 2 (DB2), terminates abnormally prior
to completing all work, the data that it manages
becomes unavailable until DB2 can be restarted,
which will return the data to a consistent state. A
system failure can be caused by hardware problems,
certain software problems, and even by power out-
ages. It is important that DB2 be able to restart
quickly after a failure; it is even more important that
the data be made consistent after a system failure.

178 crus

by R. A. Crus

Data errors can be divided into two types, logical
errors and physical errors. Logical errors include
updates that should have been made to the data base
but were not, updates that were made but should
not have been, and updates that were made incor-
rectly. Errors of this type can be caused by system
failure, errors in the data base manager, errors in
various critical system components, and even errors
in the application programs that use the Data Base
Management System. Physical errors are caused by
media or hardware malfunctions; e.g., data stored
on disk cannot be read from the disk or written to
it. What DB2 does to recover from logical and phys-
ical errors is addressed in the remainder of this paper.

The rest of the paper is divided into three parts in
addition to some conclusions that the author has
reached concerning data recovery in DB2. The first
part is an overview of recovery. The second part
describes DB2 logging, including what information is
recorded in the log, when it is recorded, and for what
purpose. The third part discusses the various DB2
TECOVETY ProCesses.

Overview

As noted in the introduction, data may be damaged
in a variety of ways. The basic approach to.recovery

© Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

used by DB2 is to record all modifications made to
data in the DB2 recovery log. When data is updated,
both the way it looked before the modification and
the way it looked after the modification are recorded
in the log. The contents of the log can thus be used

The recovery log records both

system status information and

information describing changes
made to data.

either to undo an update or to redo it. In this section,
the DB2 recovery log and DB2 commit processing are
described, and the notion of a “unit of recovery” is
introduced.

DB2 recovery log. The DB2 recovery log is used to
record both system status information and infor-
mation describing changes that are made to data.
The DB2 recovery log consists of an active portion,
an archive portion, and a special data set called the
Bootstrap Data Set (BsDS). The active log resides in
a set of log buffers in main storage and in a set of
preallocated Virtual Storage Access Method (vsaM)
entry-sequenced data sets. When an active log data
set becomes full, an archive log data set is dynami-
cally allocated, and the active log data set is off-
loaded. The archive log is written via the Queued
Sequential Access Method (QsaM) to standard label
tapes, a direct access storage device (DASD), or a Mass
Storage System. After the archive operation is com-
plete, the vsaM data set is available for use as part of
the active log again.

When log records are required for recovery, DB2 must
determine which active or archive log data sets con-
tain the records. This information is kept in the BSDS
along with information used to help restart the sys-
tem after it terminates either normally or abnor-
mally. The Bsps itself is off-loaded during an archive
operation along with the active log data set being
archived.

Each portion of the log (i.e., the active log, the
archive log, and the BSDS) may optionally be dual-

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

copied. It is highly recommended that an installation
maintain dual copies in all production environ-
ments, since one of the basic assumptions of recovery
is that the integrity of the log can be depended upon.

Each log record written by DB2 has associated with
it a Relative Byte Address (RBA), which is six bytes
in length. The DB2 log is a linear address space of 2*®
bytes, and each log record written begins at some
offset from the beginning of the log. This offset is
called the rBA of the log record. Note that an RBA
can be likened to a point in time; that is, the event
described by a log record whose RBA is x occurred
prior to an event described by a log record whose
RBA is x + n. Another basic assumption concerning
the log and its use is that an RBA will never repeat.
For all practical purposes this assumption is true,
since if the DB2 log were to grow at a rate of 2** bytes
(16 gigabytes) per day, it would fill in 44 years.

Normally when a log record is written, it is simply
moved into a log buffer. Log buffers are written to
disk as soon as one of the following occurs:

¢ The log is explicitly forced (i.e., all log data up to
and including a specified RBA is written to disk).

¢ The installation-specified maximum number of
log buffers are full.

When the log is forced and why it is forced are
discussed in subsequent sections of the paper. The
amount of storage devoted to the active log is under
the control of the installation. By providing sufficient
space on DASD for the active log, it is possible (al-
most) to guarantee that for most situations requiring
rapid recovery, only information stored in the active
log need be referenced.

Unit of recovery. A “unit of recovery” (UR) is the
mechanism used by DB2 to track the progress of an
application as it updates data stored in a data base.
When an application program first attempts an up-
date operation, DB2 establishes a UR for the applica-
tion. Application in this context includes both user-
written programs and the Query Management
Facility! (QMrF—a separate product that uses DB2) or
DB21” (an interactive interface to DB2). The UR lasts
until a point of consistency is reached. (Note that an
implicit point of consistency exists when the appli-
cation first starts.) A point of consistency is that
point at which, according to the application program
logic, all data accessed and modified by the UR is in
a consistent state. For example, a bank transaction
might transfer funds from account A to account B.

crus 179

180 crus

Figure 1 Paints of consistency

POINT OF DATA BASE NEW POINT OF
CONSISTENCY ~ UPDATE CONSISTENCY
GO
X >,< X NEW POINT OF
i CONSISTENCY
1
]
' COMMIT
ses BEGIN UR ! e
H BEGIN END
i ABORT ABORT
I
UR THAT i
ABORTS ¢ X X 4
BACK OUT
DATA BASE
UPDATE
TIME

The transaction would first subtract the amount of
the transfer from account A and then add the same
amount to account B. After the second operation
has been completed, the data in the two accounts is
consistent. At this point the application can signal
DB2 that the data is consistent and the updates are
to be committed. When this happens, the UR for the
transaction ends. If the transaction continues to run
after this point, a new unit of recovery will be
established when it next attempts to update the data
base.

During the period after the update to A and before
the update to B, the data in the two accounts is
inconsistent and uncommitted. DB2 does not allow
other applications to access uncommitted data stored
in DB2 data bases. After the point of consistency has
been reached (and the updates have been commit-
ted), the two accounts can then be accessed by other
applications.

All updates made by a unit of recovery either are
completed (and committed) or are aborted, which
means the updates are backed out and appear to
other applications as though they were never made
(Figure 1).

When a UR is initiated, a begin-UR log record is
written. All subsequent log records that are generated
on behalf of the UR contain the RBA value of the
previous UR-related record in the log, thus linking
together all log records for a single UR (see Figure 2).
When it is determined that a UR is to be committed
or aborted, a log record is written (and forced to
DASD) indicating the beginning of the commit or
abort process. The various phases of the commit
process are logged, as is the end of the commit or

abort process (which is also forced to DASD). These
records are used during restart to determine the state
of the UR at the time of system termination.

Commit processing. A single application may involve
D82 and either Tso (the Time Sharing Option of
Mvs), Information Management System/Virtual
Storage (1Ms/vs), Customer Information Control Sys-
tem/Operating System/Virtual Storage (CICS/08/Vs),
or batch programs. Because DB2 may operate in
conjunction with another subsystem (IMs/vs and
CICS/08/vs) that also manages recoverable resources
and has a recovery log (separate from the DB2 recov-
ery log), it is necessary to coordinate the recovery
activity between DB2 and the other subsystem. For
data in the two subsystems to remain consistent, it
is necessary that corresponding updates be made in
both subsystems or in neither.

During commit processing, one subsystem coordi-
nates the process, which consists of two phases. This
subsystem is always IMS/V$ or CICS/0s,vS. Neither TsO
nor batch programs participate in commit; rather
DB2 unilaterally controls the commit process.

The first phase of commit processing is known as
the “prepare” phase, in which each subsystem deter-
mines that it can continue the commit process. Each
subsystem logs this event and forces the log to DASD.
The second phase, known as the “commit” phase, is
when each subsystem records in the log the fact that
the guarantee to commit was made.

Figure 3 shows the two-phase commit process. At
point 1, IMS or CICS begins processing a transaction.
At 2, a Structured Query Language (sQL) call is issued
which attempts to update data, causing 3, a begin-
UR event, to be logged in DB2. At point 4, the
requested update operation occurs. At 5, IMS/CICS
initiates the commit process and notifies DB2, which
logs this event, performs its phase ! processing, logs
its completion, and then notifies IMS/CICS (at 7 and
8) that it has completed phase 1. At 9 the irrevocable
decision to commit is made by IMS/CICS, and this
event is recorded in the MS/CICS log (on stable stor-
age). At 10, mms/cIcs notifies DB2 that the decision is
to commit, and DB2 logs this (11), completes its phase
2 processing, logs the event, and notifies IMS/CICS of
the completion (12 and 13). iMs/CicS then completes
its phase 2 processing (14).

Note that if either iMs/CIcS or DB2 fails before point

9, when the decision to commit (or abort) is recorded
in the 1Ms/CICS recovery log, the UR will be aborted.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Figure 2 UR-related log records

BEGIN UR LOG RECORD BEGIN UR LOG RECORD LOG RECORD
LOG LOGRECORD | eee eee LOG RECORD
1 t t t t
i 1]] 1
: : : :]
UR #1 | BEGIN UR 1 DATA BASE UPDATE ! | DATA BASE UPDATE s
1 1
UR #2 1 BEGINUR 1 DATA BASE UPDATE
Figure 3 Two-phase commit
OLD POINT COMMIT PROCESS INSTANT OF NEW POINT OF
OF CONSISTENCY BEGINS COMMIT CONSISTENCY
PHASE 1 PROCESSING PHASE 2 PROCESSING :
IMS OR 1 2 5 8 9 10 13 14
cIcs
soe SQL DATA e
CALL BASE
UPDATE
DB2 3 4 1 . 12
PHASE 1 DB2 PHASE 2
PROCESSING INDOUBT PROCESSING
OLD POINT OF
CONSISTENCY NEW POINT OF
(BEGIN UR) CONSISTENCY

TIME

A failure of either system after 9 will result in the UR
being committed. If DB2 fails between 7 and 11, the
status of the UR is in doubt since DB2 has no knowl-
edge of the decision at point 9. The status of an in-
doubt UR is resolved after pB2 restarts and re-estab-
lishes communication with IMS/CICS.

DB2 logging

In addition to the UR control log records just de-
scribed, other information is recorded in the log for
recovery purposes. Some of this information is re-
lated to a UR (e.g., log records describing the updates
performed by the UR), and some is not. Both types
play an important part in the recovery process. Un-
derstanding what is logged, when it is logged, and
why it is logged is necessary to understand data
recovery in DB2.

Open/close. Whenever a tablespace (a DB2 object in

which one or more tables are stored) or an index-
space (a DB2 object in which an index defined on a

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

table is stored) is opened or closed (the vsaM open
or close of the data set(s) that contain the DB2 object),
this event is logged. Note that log records of this type
are not related to a single UR since DB2 supports
multiple users accessing the same data. Logging this
information provides a set of delimiters for updates
to the data object; i.e., there may be information of
interest in the log about an object only for the period
between the open log record and the close log record.
Included in the open log record is sufficient infor-
mation to enable the open operation to be performed
again. The open log record is used at restart time to
perform the open operation if it is necessary. Since
all pending 1/0 activity is completed prior to writing
a close log record, this record is used during the
restart process to filter out records relating to the
closed object.

Checkpoint. At periodic intervals, depending on the
amount of log activity and an installation-specified
variable, DB2 initiates what is called a checkpoint
operation, during which system status information

crus 181

is recorded on the log. This process occurs asynchro-
nously with normal data base activity and does not

DB2 always begins the restart
process at the last complete
checkpoint.

prevent access to any DB2-managed data. The check-
point process consists of

* Writing a log record that denotes the beginning of
the checkpoint.
% Writing a list of active URs in the log. These log
records describe the current state of each active
UR (in commit processing, in abort, or in neither).
This information, along with other URr-related log
records, is used at restart time to determine
whether or not any recovery actions are required
on behalf of active URs and, if so, what type of
action.
Writing information about each open tablespace
and indexspace in the log. Included in the log
records is sufficient information to perform the
open operation at restart time as well as an indi-
cation of the earliest point in the log at which an
outstanding update operation exists for the DB2
object. An update operation starts when the deci-
sion is made to perform the update and completes
when the page containing the update has been
recorded on DASD.
* Writing a log record that denotes the end of the
checkpoint.
* Updating the active log data set information and
the rRBA of the checkpoint log record in the BSDS.

DB2 always begins the restart process at the last
complete checkpoint. The frequency at which check-
points are taken thus has an effect on the amount of
time required to perform restart since it tends to
limit the quantity of log data that must be processed.
Since the frequency of checkpoints is determined by
the amount of information written in the log, the
more update activity on a system, the more often
checkpoints will occur, The checkpoint process itself

182 crus

writes information in the log (the amount of infor-
mation is somewhat dependent on the system load)
and therefore adds overhead and decreases perform-
ance. Yet, if the checkpoint frequency is too large,
the restart process may have to access the archive
log.

Writing pages to disk. DB2 maintains data base in-
formation as rows stored in pages on DASD. DB2 also
maintains indexes in pages which are also stored on
DASD. When a particular row or index entry is to be
accessed, the page containing the row or index entry
is read into a buffer in memory. DB2 maintains a
pool of these buffers in memory. Since sQL is a set-
oriented language, it is possible to update many rows
contained in many pages in a data base with a single
statement. Also, since DB2 allows more than one
index to be defined on a table, it is possible for an
update to a single row to cause updates to more than
one index. It would not be possible or desirable from
a performance point of view to hold all of the up-
dated pages in memory until a commit point is
reached; therefore, DB2 will write uncommitted
changes back to the data base in order to reclaim
buffer pool space. This design then makes it neces-
sary for DB2 to be able to undo uncommitted updates
after a system failure.

If a required page is already in the buffer pool, no
read operation need be performed. If the page is not
in the pool, a synchronous read operation is per-
formed since the process cannot continue until the
page can be accessed. Write operations, however, are
usually performed asynchronously to the process
that performed the modification. Once a page mod-
ification is complete, the page becomes a candidate
for writing back to DASD.

During the modification process, DB2 writes one or
more log records that describe the update operation.
All data base modifications are logged as UR-related
records. These records contain two types of infor-
mation (where possible in a single log record):

« UNDO—sufficient information to undo an uncom-
mitted update (e.g., the old value of an updated
column)

* REDO—sufficient information to be able to redo
an operation (e.g., the contents of a newly inserted
row)

These log records also include information that iden-

tifies the DB2 object and the page number to which
the log record applies.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

The rBA of the log record written describing the
most recent update is stored in a special location in
the page. When it becomes necessary to write a page
back to DASD, DB2 checks to see that the log record
whose RBA is stored in the page has been written to
DASD and, if not, forces the log up to that point
before writing the page to DASD. Since the log is

Compensation log records describe
the redo phase of an undo
operation.

always written to DASD prior to the page being writ-
ten, it is possible for pB2 to back out or undo
uncommitted updates using information contained
in the log.

Compensation log records. Compensation log rec-
ords (CLRs) describe the redo phase of an undo
operation. Since DB2 write operations are not per-
formed synchronously, it is possible that the undo
operation of an uncommitted update which was
originally externalized, might itself be lost if DB2 fails
before the result of the undo is written to DASD.
Consider the following sequence without CLRs:

* A UR updates a row, changing a value in a column

from A to B. DB2 writes an undo/redo log record

which indicates that the new column value is B

and the old column value is A.

The log is written t0 DASD.

The page containing the row is written to DASD.

The UR aborts.

The log record describing the update is read, the

page containing the row is read, and the update is

backed out; i.e., the value in the column is changed

from B to A.

¢ The end abort log record for the UR is written, and
the log 1s forced to DASD.

e The system fails. Note that the page containing
the back-out uptake has not yet been written to
DASD.

If compensation log records are not written, then
when the system is restarted, the restart process will
read the log record describing the update of the

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

column from A to B. This action will not cause an
update since the row on DASD contains a B. The log
record indicating the UR completed an abort will be
read indicating that it is not necessary to process this
UR. After the restart completes, the row contains an
uncommitted update and is thus inconsistent.

Compensation log records correct the problem as
follows.

* During the backout operation, a CLR is written
which has a new column value of A and an old
column value of B.

e The end abort log record is written, and the log is
forced (including the CLR just written) to DASD.

e The system fails, The row stored on DASD still
contains the value B.

e The restart process will read the first log record
describing the update of A to B and not perform
an update.

e Next it will read the cLR which will cause it to
change the column from B back to A, thus com-
pleting the backout of the uncommitted update.

Recovery processes

Any recovery process involves applying either undo
log records or redo log records or both. Since these
functions are common, the rules for performing
them are given below prior to the discussion of the
recovery processes themselves.

Undo/redo processing. The RBA value stored in the
header of a page uniquely identifies the log record
that describes the last update operation made to the
page. Therefore, it is possible to determine whether
the update described by a log record was made to
the page by comparing the RBA in the page to the
RBA of the log record. If the RBA in the page is less
than the rBA of the log record, the change described
by the log record was not applied to the page. If the
RBA 1n the page is greater than or equal to the RBA
of the log record, the change was applied to the page.

The redo process simply determines whether the
update described by the log record has been applied
to the page, and if it has not, performs the update
and stores the RBA of the log record in the page to
indicate that the update has been made.

The undo process is more complicated. If the update
operation was performed, a CLR describing the undo
of the update is written, the update is undone, and
the log rRBA of the CLR is stored in the page to indicate

crus 183

that the undo operation was performed. Even if the
update operation was not performed, it is necessary
to write a CLR that describes the undo of the update,
although the RBA in the page is not modified. This is
done so that the update can be undone (after being
redone) if media recovery (discussed shortly) is nec-
essary at a later time.

The rules for performing undo operations, including
the writing of compensation log records, follow:

 If the log record being processed has only redo
information, write an undo-only CLR for the op-
posite operation.

e If the log record has both undo and redo infor-
mation, and if the RBA in the page is less than the
RBA of the log record, write a redo/undo cLRr. The
page itself is not modified since the change de-
scribed by the log record was not applied to the
page.

« If the log record has both undo and redo infor-
mation, and if the RBA in the page is greater than
or equal to the RBA of the log record, apply the
change to the page, write a redo/undo CLR, and
store the RBA of the CLR in the page.

e If the log record has only undo information, and
if the RBA in the page is less than the rRBA of the
log record, write a redo CLR. The page itself is not
modified since the change described by the log
record was not applied to the page.

e If the log record has only undo information, and
if the rRBA in the page is greater than or equal to
the rBA of the log record, apply the change to the
page, write a redo CLR, and move the RBA of the
CLR to the page.

These rules assume that the page can always be
accessed successfully, which is not always the case
(e.g., 1/0 error); however, compensation log records
are always written even if the page cannot be ac-
cessed. This is possible because the CLR can be writ-
ten with only information contained in the log record
being processed. It is necessary in order to be able to
perform media recovery on the object.

The rules for redo processing are much simpler:

e If the log record contains redo information and
the log RBA in the page is less than the RBA of the
log record, apply the change to the page and store
the RBA of the log record in the page.

e If the log record contains redo information and
the log RBA in the page is greater than or equal to
the RBA of the log record, do nothing,.

184 crus

Media recovery. Media recovery is generally used to
recover from physical errors, i.e., data has been lost
due to a media failure (e.g., a bad track, head crash)
or from some other error which makes the data
unusable. Media recovery consists of starting with a
copy of the data (called an image copy) which was
made at a known point in the log, and redoing all
committed update operations using the appropriate
redo information on the log up to the point of failure.

DB2 supports two different types of image copies. The
first, called a full image copy, is simply a copy of a
tablespace. The second, called an incremental image
copy, makes a copy of only the pages that have been
updated since the last image copy was made. This is
accomplished as follows:

e When a page is first modified, DB2 sets an indicator
on corresponding to the data page in another page
called a space map page, and sets an indicator on
in the data page itself indicating that it has been
modified.

e When an incremental image copy is taken, DB2
uses the indicators in the space map to determine
which data pages to copy. It resets both the indi-
cator in the data page and the space map indicator
when the copy has been made.

An image copy can be made while other users have
read-only access to the data or while other users have
read/write access to the data. In the case where read-
only access is allowed, DB2 saves the log RBA at the
point in time when the image copy has completed
in the DB2 catalog and saves information about the
data set which contains the image copy. In the case
where the data may be modified while the copy is
being made, the RBA value saved corresponds to one
that existed when the image copy process was initi-
ated. The RBA thus saved becomes the starting posi-
tion in the log for any subsequent media recovery
operation that uses the corresponding image copy.

In order to minimize the amount of log that must
be processed during media recovery, DB2 remembers
the log RBA when the first update is made to a DB2
data object and also remembers the log RBA when
the object is closed. This information is stored for
each object in a DB2 directory as a list of start/stop
RBA values. Media recovery reads the start/stop RBAS
associated with the object being recovered and only
processes the log within the RBA ranges so defined.

Media recovery involves applying redo log records.
These records may be redos of committed updates,

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

and they may also be redos of uncommitted updates,
which are always succeeded by CLRs that are redo
records for the undo of the update. If compensation
log records were not written, it would be necessary
to perform update operations, not knowing whether
they were committed or not, and then after deter-
mining that the UR was aborted, undo all of the
updates that had just been made.

Restart. When a hardware/software failure or a
power outage causes an abnormal system termina-
tion, the state of the data stored on DASD at that time
is almost certainly inconsistent with that of data
stored at other times because of the way DB2 per-
forms write operations. If DB2 were to be started after
a system failure without knowledge of the events in
progress when the failure occurred, the data would
be exactly as it was at the time of failure.

When DB2 is restarted after a system termination, it
uses information recorded in the log to restore the
state of the system (including the data bases) to the
point where it was at the time of termination, and
in fact requires only information stored in the log
(i.e., no system directories, catalogs, etc., need be
accessed). This capability is important because DB2
maintains system directories and catalogs in data
bases of their own, which may themselves require
recovery actions during restart processing. If the
termination was not normal, e.g., a power failure or
system error, the data bases may be in an inconsistent
state in that committed updates may not have been
stored externally on DASD, and/or uncommitted up-
dates may have been recorded on pasD. If the ter-
mination was via a shutdown command, all activity
was made quiescent (all UrRs were completed, all DB2
objects were closed, and all updates were written to
DASD) prior to the termination. Therefore, many of
the steps below result in no action being taken even
though the same restart process is followed.

Figure 4 presents a summary of the restart process
that pertains to the following discussion. Note that
the figure shows a checkpoint that started but did
not complete before the system termination. Any
records associated with the incomplete checkpoint
are ignored by DB2. The DB2 restart process is out-
lined as follows:

a. Read the BSDs and determine the RBA of the last
complete checkpoint.

b. Beginning at the start of the last complete check-
point, (phase 1), read the log in a forward direc-
tion and (at phase 2),

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

Figure 4 Summary of restart processing

BEGIN
PHASE 2 OF
comMmIT

UR5 F $
UR4 F —
x-

UR1 L

XX

BEGIN 1 I END
CHECKPOINT

t

RESTART BEGIN]
CHECKPOINT

PHASES

SYSTEM
FAILURE

1. POSITION TO
LAST COMPLETE
CHECKPOINT

2. RECONSTRUCT
SYSTEM STATUS

3. POSITION TO
EARLIEST t
POINT
REQUIRED TO REDO
UPDATES THAT MAY
NOT HAVE BEEN
WRITTEN TO DISK

4. REDO ALL
UPDATES NOT
COMPLETED
INCLUDING
ALL ACTIVE URs
THAT ARE TOBE
COMMITTED

5.UNDO
UPDATES FOR
ALL ACTIVE URs
THAT ARE TO
BE ABORTED

6. COMPLETE
ALL1/O
ACTIVITY AND

TAKE A
CHECKPOINT

+, Establish the status of all URs at the time of the
termination (i.e., whether the UR was active, in
commit, or in abort) by using the UR infor-
mation recorded in the checkpoint and updat-
ing this information with UR-related informa-
tion recorded in the log (e.g., begin UR, end
UR, etc.). In the figure, URs | and 2 are to be
backed out since they have not committed,
URs 3 and 4 have completed commit, and UR
5 will complete commit processing during re-
start because it entered phase 2 of commit
before the system failure.

«, Establish the set of all tablespaces and index-
spaces that were open at the time of termina-
tion by using checkpoint log records for DB2
objects as well as any open/close log records.

crus 185

» Determine the earliest point in the log that
contains records describing updates that may
have to be redone because the pages may not
have been written to DASD. This is done by
determining the minimum value of the rBAs
stored in the checkpoint records for pDB2 data
objects and the rRBAs of any open log records
that are found.

c. Start reading the log in a forward direction begin-
ning at the RBA determined in the previous step
(3), and redo all updates that have not been
completed (4). This process reads to the end of
the log.

d. Read the log in a backward direction and undo
the updates of all URs that were active or in abort
at the time of termination (5).

e. Force all updates to be externalized, and wait for
all 1/0 operations to complete and take a check-
point (6).

The restart process is not complete until the end
checkpoint record has been written to the log. If
failure occurs during restart prior to this point, DB2
will terminate abnormally and a subsequent restart
will be necessary. Therefore, the restart process must
provide for this condition, which introduces addi-
tional complexity in the process itself. Consider the
following: A UR aborts for some reason, and the
system terminates abnormally. During the restart
process the updates performed by the UR are undone
(including the writing of CLRs), and the UR completes
abort processing. All log records that describe this
process are written to DASD, and then the system
fails again, before the pages which were modified
during the undo process could be written to DASD.
The resulting inconsistency will be corrected during
a subsequent restart (which hopefully completes suc-
cessfully) because, during the forward recovery
phase, CLRs describing the backout will be read and
processed.

Additional complications may be introduced when
DB2 is connected to 1MS/vS or CIcS/0s/vs. These com-
plications occur when DB2 fails while connected to
one of these subsystems and one or more URs have
completed the processing of phase 1 of commit
{recorded in the log) but have not started phase 2.
The status of a UR in this state is termed “in doubt”
because only the commit coordinator (IMS or CICS)
knows whether the decision was made to commit or
abort the UR. During DB2 restart, all update opera-
tions are undone for a UR that has not completed
phase 1 of commit. Likewise, all updates for a UR
that has begun phase 2 of commit are redone. For a

186 crus

UR that is in doubt, DB2 performs redo processing in
anticipation of a decision to commit (which is highly
probable because the system failure interrupted the

DB2 attempts to include both redo
and undo information in the same
log record.

-
commit process) and locks all of the data accessed
by the UR to prevent other users from accessing
uncommitted modifications. It is the responsibility

of the coordinating subsystem to resolve the situa-
tions that are in doubt when it and DB2 reconnect.

A further complication arises during the restart proc-
essing of a UR that is in doubt when individual undo
and redo log records are processed. DB2 attempts to
include both redo and undo information in the same
log record, but this is not always possible. Consider
the case where the redo record for an operation
precedes the undo record in the log. Remember that
during restart, pB2 performs redo for an “in-doubt”
UR and that during the redo process, the RBA of the
redo log record applied to a page is stored in the
page itself. Later, when the status of the UR is re-
solved, the decision may be made to abort the UR.
Then, when the undo log record is read, it appears
to the undo procedure that the update operation was
not performed because the rBA of the undo record
is greater than the rRBA of the redo record which was
stored in the page. This problem may be solved as
follows: If the rRBA of the log record is greater than
or equal to the RBA of the page during restart when
an undo-only log record is processed for an “in-
doubt” UR, the RBA of the undo log record is stored
in the page even though no other updates are made
to the page. In the case where the undo log record
precedes the redo log record in the log, the processing
of the redo record results in the rRBA of the redo
record being stored in the page. Thus, if the decision
is made later to abort the UR, the undo process will
work properly.

On-line recovery. If the data stored in a page becomes

logically inconsistent, DB2 must restore the data to a
consistent state. One way in which a page can be-

BM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

come inconsistent is because of software failures that
result in errors being introduced into the page. If this
situation is detected by DB2, it marks the page as
logically inconsistent and denies further access to the
page. This is necessary to prevent access to incon-
sistent data until the recovery process completes.

A second way that data in a page can become incon-
sistent is for a process to be aborted at a critical point
in time. Updates to pages are in general not atomic
(i.e., all or nothing) since they consist of distinct
suboperations. For example, inserting a row into a
page requires moving the row into free space within
the page, writing a log record describing the insert,
updating a page directory to point to the newly

When DB2 detects an inconsistent
page, it initiates an internal recovery
operation.

inserted record, updating the amount of free space
remaining in the page, and storing the RBA of the
record in the page. This operation is not atomic
because a failure part way through will leave the
update partially completed. Another example of a
nonatomic operation is space reclamation within a
page after rows have been deleted. When space recla-
mation becomes necessary, all the rows in the page
are moved toward the beginning of the page, leaving
a contiguous free area at the end. For ease of imple-
mentation and for performance reasons, it was de-
cided not to log all of the above actions and thus, if
the process is aborted at a critical point, the normal
undo process cannot recover the page to a consistent
state.

To detect this condition, DB2 marks the page (in the
page header) as being logically inconsistent at the
beginning of the update process and marks it logi-
cally consistent again after the update completes. In
the insert example given above, the page is incon-
sistent only after the log record has been written and
until the RBA is stored in the page header. Although
at first it might seem that the simplest solution might
be to throw away the copy of the page in memory,
this could cause the loss of committed updates that
have never been written to DASD.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

When DB2 detects an inconsistent page, it initiates
an internal recovery operation which uses the log to
perform forward recovery of the page using the ver-
sion stored on DASD as the base. When the recovery
operation completes, the page is marked consistent
and can be accessed again. During the period when
the page is marked inconsistent, it is unavailable for
access, and a user attempting to access the page will
receive a resource-not-available return code.

Unavailable data. In certain error situations, DB2 will
itself make data unavailable until the data can be
recovered.

If DB2 is unable to write a page to DASD because of a
write 1/0 error, the page is added to what is called
the write error range. Subsequent requests to access
the page are denied, and the user will receive a
resource-not-available return code. During abort and
restart, if DB2 is unable to read a page because of a
read 1/0 error, the page is also added to the write
error range. This is necessary since the page cannot
be read and the undo/redo operation cannot be
performed.

Other situations in which DB2 will make data un-
available are during restart when a DB2 object (i.e., a
tablespace or indexspace) cannot be opened, or when
an error is detected (e.g., an addressing error is
detected by the cpuU) while DB2 is attempting to apply
a log record to a page that has been read. In both of
these cases, DB2 “stops” the DB2 object (the tablespace
or indexspace), thus making it unavailable for access.
When the object is stopped by DB2 during the restart
process, compensation log records will still be written
as discussed earlier.

Data made unavailable by D2 will be made available
again only after having been recovered. In the case
of an 1/0 error, media recovery must be performed.
In the case where the DB2 object is stopped, data may
be recovered by performing a “deferred restart” or
via media recovery. Deferred restart is a process that
uses the version of the DB2 object that exists on DASD
as the base and then performs redo starting at the
point on the log established for the DB2 object from
its checkpoint log record or open log record. The
method chosen to recover the data depends on the
reason why the object was made unavailable. If the
problem was caused because a disk pack was not
ready or was not mounted, or some similar condi-
tion, deferred restart would be chosen (since it would
probably require the processing of fewer log records).
In the case of such problems as a head crash that

crus 187

damaged a disk pack, or a fallback if deferred restart
failed, media recovery can be used to make the DB2
object available again.

Concluding remarks

Both the procedures that write log records and those
that perform undo/redo operations based on them
are fairly complex. The subjective cost of implemen-
tation mentioned by Gray? seems about right: “writ-
ing a recoverable action is 30 percent harder and
requires about 20 percent more code than a nonre-
coverable action.” The total cost in lines of code for
data recovery in DB2 is very close to that of System
R, i.e., 11 percent for pB2 versus 10 percent for
System R.*

Maintaining the active log on pasD allowed us to
use the same log to perform undo operations during
normal processing, as well as at restart time, and
allowed us to use a single log for both undo and redo
information.

It is often the case that an operation viewed exter-
nally as a single update actually requires that more
than one internal update operation be performed.
Two approaches can be followed to provide atomic-
ity of an update operation that consists of many
lower-level update operations:

» Do things twice—first access and lock all of the
data items that have to be modified, and if every-
thing is all right, re-access them and perform the
updates.

e Do things once—access, lock, and modify the
data, and if anything goes wrong, invoke an inter-
nal backout mechanism to undo the updates that
have been performed.

The second approach was chosen, not only because
it performs better if most operations complete suc-
cessfully, but also because it was easier to implement
because much of the backout mechanism was al-
ready required to support abort and restart. This
backout mechanism is used internally by DB2 to give
the appearance of atomicity to multirow operations;
e.g., a multirow update operation either succeeds
completely or no rows are updated. It is also used to
support updates to multiple indexes. An example of
this is a table with three indexes, not all of which
allow duplicate key values. The insertion of a row
might meet the uniqueness criteria of the first two
indexes but fail that of the third, at which time the
internal mechanism would be invoked to undo the
two successful insertions.

188 crus

We recognize that improvements can be made in the
area of data recovery, and we also recognize the
importance of this capability to our users. We expect
that as DB2 evolves, additional procedures and tech-
niques will be developed to continue to improve this
very important area.

Cited references

1. J. J. Sordi, “The Query Management Facility,” IBM Systems
Journal 23, No. 2, 126150 (1984, this issue).

2. K. R. Hammond and M. R. Zimowski, “TSO Attach: A
multipurpose communication channel to IBM Database 2,”
IBM Systems Journal 23, No. 2, 151-164 (1984, this issue).

3. J. Gray, P. McJones, M. Blasgen, R. Lorie, T. Price, F.
Putzolu, and 1. Traiger, The Recovery Manager of a Data
Management System, Research Report RJ-2623, IBM Re-
search Division, 5600 Cottle Road, San Jose, CA 95193 (Au-
gust 15, 1979).

4. M. W. Blasgen et al., “System R: An architectural overview,”
IBM Systems Journal 20, No. 1, 41-62 (1981).

General references

W. C. McGee, “The information management system IMS/VS,”
IBM Systems Journal 16, No. 2, 84-168 (1977).

IBM Database 2 General Information, $370-20, IBM Corporation;
available through IBM branch offices.

J. P. Strickland, P. P. Uhrowczik, and V. L. Watts, “IMS/VS: An
evolving system,” IBM Systems Journal 21, No. 4, 490-510
(1982).

Reprint Order No. G321-5217.

Richard A. Crus IBM General Products Division, Santa Teresa
Laboratory, P.O. Box 50020, San Jose, California 95150. Mr. Crus
joined IBM in 1965. He has been involved with the architecture
and with the design and development of DB2 since its inception
and was the technical team leader for the data manager component
of DB2. Mr. Crus is currently an advisory programmer in the DB2
Advanced Development Department. He has a B.A. in mathe-
matics from the University of Utah.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1984

