
IBM Database 2 in an
Information Management
System environment

Over the years, the ISM Information Management Sys-
tem (IMSIVS) has been developed to meet expanding
user needs. During that time, a parallel development
has taken place. The relational data model grew from
Codd’s original theory to a practical data base proto-
type. Now a new data base management system, IBM
Database 2 (DB2), has been built on the relational
model. This paper discusses the implementation and
design considerations for the integration of IMS and
DE2 from the user’s viewpoint. It also presents the
attachment facilities from a design perspective.

T he IBM Information Management Systems, IMS/
vs, had its origins in I M S / ~ ~ O , which was an-

nounced in 1969. Over the years since its first devel-
opment, IMS has greatly improved in function to
support the rapidly growing need for data-commu-
nications-based applications.’ The data base part of
IMS/VS, known as IMS/DB or DL/] (Data Language/I),
is a hierarchical data base management system
(DBMS). In a hierarchical or tree data structure, each
application threads its way from data record to data
record accessing groups of fields called segments.
The connection between data records is established
via pointers. IMS/VS is referred to in this paper simply
as IMS.

In the late 1960s and early 1970s, Codd2 introduced
the relational data model as an alternative way of
structuring and managing data. Here, data are struc-

by J. R. Dash
R. N. Ojala

tured in two-dimensional tables and related by their
value only, not by pointers embedded between data
records. In the lexicon of data base terminology, this
structure has created the term nonnavigational data
structure because no programmer navigation is re-
quired to move through the data structure. In con-
junction with the data structure, the relational model
suggests data manipulation via a series of set-theo-
retic operators that help achieve significant econ-
omies in programming and end user access to data
bases. The new MVS data base management system
IBM Database 2 (D B ~) is built upon the relational
data model. Overall design principles of D B ~ are
discussed by Haderle3 and Kahn4 elsewhere in this
issue.

This paper discusses the linking of D B ~ with IMS (IMS/
vs, Version 1, Release 3). IMS application programs
can retrieve and update data in D B ~ tables using the
facilities discussed in this paper. Whereas some ap-
plication programs may access DL/] data bases only,
other programs may access both DL/] and D B ~ data,
or perhaps access D B ~ data only. Because the DBZ
system can be used by the Customer Information

Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL. VOL 23, NO 2,1984 DASH AND OJALA 165

Figure 1 MVS address spaces

Control System (CICS), Time Sharing Option (TSO),
and Query Management Facility (QMF) users on the
same host, data gathered by one system can be shared
easily by all systems within the same host. Figure 1
shows various MVS address spaces that may be used
with IMS.

We treat the subject of D B ~ in the IMS environment
principally in two parts. We first describe various
aspects of D B ~ in IMS from a user’s point of view. We
then look at the ~ ~ 2 - 1 ~ s attachment facilities from a
systems design perspective.

Use of DB2 in an IMS environment

Users of D B ~ in an IMS environment comprise appli-
cation analysts and programmers, data base design-
ers and administrators, systems programmers, secu-
rity administrators, operators, and end users. While
end users of IMS transaction programs do not see any
difference with D B ~ , business professionals will find
D B ~ and QMF to be effective tools for access to data
extracted from IMS production data bases.

Data base design. From a theoretical viewpoint, the
design of a data base on a logical level should not be
different for different data base management sys-
tems. The logical data base design should resolve
questions as to which records are best suited to model
the real business, which fields should go together in
a record type, when it is better to split a record type
into multiple record types, and what relationship
exists between record types. Data base design theo-
ries covering these steps are somewhat formalized in
the process termed normalization. 5” Normalization
guidelines are designed to reduce update anomalies

166 DASH AND OJALA

and data inconsistencies. These guidelines are not
exclusive to relational data base systems; they apply
as well to the design of record structures for such
nonrelational DBMSS as IMSIDB.

After the normalization process, there follows the
physical design task to structure these record types
into physical data bases according to the require-
ments, facilities, and peculiarities of the actual DBMS.
Although logical data base design should be inde-
pendent of the physical aspects of data structure,
usually the boundary is not as clean and distinct as
it should ideally be. During the logical design phase,
an experienced designer should take into account
the effect of options on the physical design. At least,
this had been the way the designer would proceed,
until the appearance of relational data base systems.

An important characteristic of relational D B M S is
the enhanced level of data independence (i.e., the
separation of the user’s view of data from its storage
representation). Data are always modeled as values
in actual tables. Therefore, many complex consid-
erations are eliminated, such as which relationships
should be implemented in the data structures (hier-
archies and networks) and which should still be
implemented as values (i.e., the decision between a
direct and a symbolic pointer in DLII). This leads to
a simplification in going from a logical design to a
physical design.

In summary, the results of the logical design of a set
of record structures map directly into a set of DB2
tables. The advantage of this type of design activity
is that D B ~ table structures have a better chance to
survive changing requirements and needs. This is in

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

contrast to a network or hierarchical system, where
there is the further step of deciding which relation-
ships should be implemented as part of the data
structure.

Data base implementation. When the resulting data
base design is implemented and defined to D B ~ , a
number of tasks are simplified. Logical objects are
clearly separated from physical ones. The data base
administrator can clearly define physical aspects
(e.g., which indexes, partitioning or not, page size,
or single or multiple tables per tablespace), and
application designers can provide such logical defi-
nitions as tables and views. Definitions of data base
structures can be accomplished directly from an on-
line terminal and with no disruption to current data
base operations. An example of the SQL CREATE
statement for an EMPLOYEE table is shown in Figure
2 and for a DEPARTMENT table in Figure 3. Data base
definitions take immediate effect in D B ~ because the
Data Definition Language (DDL) statements are proc-
essed instantly, resulting in updates to the D B ~ cata-
log. Additional columns can be added without re-
quiring unloading and reloading of the data base by
using the SQL ALTER statement. View definition may
insulate one design from subsequent changes. DB2 is
more forgiving of an incomplete data base design.
Thus, it is not so critical to make the design right
the first time.

D B ~ offers a uniform language (SQL) for both data
base access and definition. Having one consistent
language for these two tasks simplifies communica-
tion among persons who define the data bases and
those who will later access them. The uniformity of
language for data definition and data access has also
contributed to the fact that with SQL some aspects of
data base programming have been moved over to
data base definition. For example, the view definition
(DOIADMIN) shown in Figure 4 eliminates the need
for program code that otherwise would have been
necessary in order to combine the EMPLOYEE and
DEPARTMENT tables and to obtain the proper subset
of rows.

Finally, among the task simplifications, D B ~ provides
an authorization mechanism that allows data base
administration to be centralized, partially decentral-
ized, or completely decentralized. Portions of the
data base administration function can be parceled
out to different areas without giving up complete
control.

Application programming. An application program
in the IMS environment can have accesses to D B ~

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1 9 8 4

data intermixed with accesses to DL/I data. Com-
munication with an IMS terminal uses the DL/] mech-
anism. Transaction input is received using the DL/I,
GU, or CHKP call, and messages are sent to terminals
using ISRT or PURG calls. Applications running in the

The IMS end user should note no
differences if a transaction accesses

DB2 data.

IMS batch region have no access to D B ~ tables. Appli-
cations can, however, run as Batch Message Process-
ing (BMP) programs to communicate with D B ~ . The
IMS end user at the terminal should note no differ-
ences if a transaction accesses D B ~ data. No messages
relating to D B ~ are sent to the end user by IMS.

While details of application programming tech-
niques can be found elsewhere,' we describe here
some of the concepts and functions in D B ~ that are
new to the IMS programmer. Because relationships
in D B ~ tables are represented only by values in the
tables themselves, there are some significant advan-
tages. At the user level all relational access is accom-
plished through associative addressing by comparing
values. Data base requests to retrieve or update data
are always made through the use of actual values in
the tables. This simplifies operations on tables by not
requiring data base requests in terms of an implied
position, as in DL/] structures, and a movement along
the segments within the structure.

A consequence of access through field values only is
that all access is symmetrical. The programmer does
not code differently depending on what access path
is used. Access through different indexes, as an ex-
ample, is not different in the way one codes, as in
IMSIVS. The use of an index is determined completely
at the internal system level and is not specified by
the user in D B ~ . Therefore, indexes can be added or
deleted without affecting program logic.

The SQL language can be used as a stand-alone
language (via SPUFI in TSO/SPF), or it can also be
embedded into conventional host languages such as

DASH AND OJALA 167

Figure 2 Employee table showing definition statement and table contents after LOAD

CREATE TABLE EMPLOYEE

(EMPNO CHAR (6) NOT NULL,

LASTNAME VARCHAR (15) NOT NULL,

WORKDEPT CHAR (3) NOT NULL,

PHONENO CHAR (4) ,
JOBCODE DECIMAL(3),

EDUCLVL SMALLINT,

SEX CHAR(11,

SALARY DECIMAL(8,2));

EMFNO

000100

000140

000260

000310

000030

000060

000010

000220

000300

000020

000050

000070

000270

000150

LASTNAME

Spenser

Nicholls

Johnson

Setright

Kwan

Stern

Haas

Lut z

Smith

Thompsor

Geyer

Pulaski

Perez

Adamson

JORKDEPT

E21

co1

D2 1

Ell

co 1
Dl1

A00

Dl1

Ell

BO1

E01

D2 1

D2 1

Dl1

?HONENO

0972

1793

8953

3332

4738

6423

3978

0672

2095

3476

6789

7831

9001

45 10

JOBCODE

54

56

52

46

60

55

66

55

48

61

58

56

55

55

CDUCLVL

14

18

16

12

20

16

18

18

14

18

16

16

15

16

-

SEX

-

M

F

F

F

F

M

F

F

M

M

M

F

F

M

SALARY

26150

28420

17250

15900

38250

32250

52750

29840

17750

41250

40175

36170

27380

25280

168 DASH AND OJALA IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

Figure 3 Department table showing definition statement and table contents after LOAD (where c > indicates null value)

CREATE TABLE DEPARTMENT

(DEPTNO CHAR (3) NOT NULL,

DEPTNAME VARCHAR(36) NOT NULL,

MGRNO CHAR(6) 3

ADMRDEPT CHAR(3)) ;

IEPTNO DEPTNAME

A00

B O 1

co 1

D l 1

DO 1

D2 1

E01

E l l

E21

Sp i f fy Computer Co

P 1 anning

Info Center

Manufacturing

Dev Center

Admin Systems

Support Services

Operations

Software Support

'IGRNO

300010

300020

300030

300060

< >

000070

000050

000090

000100

LDMRDEP?

< >

A00

A0 0

DO 1

A0 0

DO 1

A00

E 0 1

EO 1

< > i n d i c a t e s NULL value.

COBOL, PL/I, or Assembler. This is an important of each table operation is itself a table. Therefore,
requirement for a relational language like SQL, and data base requests can be expressed so that results of
this property is characterized as the uniformly rela- one operation become the inputs to another. This
tional property.' set-at-a-time capability is extremely powerful com-

pared to record-at-a-time processing, where the cod-
SQL operations apply to entire collections (sets) of ing is required to be more detailed. This power is
rows from tables, not just individual rows. The result fully available to the interactive user of SQL.

IBM SYSTEMS JOURNAL, VOL 23, NO 2.1984 DASH AND OJALA 169

Figure 4 DOlADMlN view showing employees and departments reporting to Department ID DO1

CREATE VIEW DOlADMIN AS

SELECT EMPNO,LASTNAME,DEPTNO,DEPTNAME

FROM EMPLOYEE,DEPARTMENT

WHERE WORKDEPT = DEPTNO

AND ADMRDEPT = 'Dol'

EMPNO

000150

000220

000060

000260

000270

000070

LASTNAME

Adamson

Lutz

Stern

Johnson

Perez

Pulaski

IEPTNO

Dl1

Dl1

Dl1

D2 1

D2 1

D21

DEPTNAME

Manufacturing

Manufacturing

Manufacturing

Admin

Admin

Admin

For the embedded version of SQL (e.g., in COBOL and
PLII), the operations of insert, delete, and update
present no problems as set operations. Also, there is
no problem when retrieval operations return one
row as a result. However, when retrieval requests
return a set of rows to the application program, those
rows are accessed one at a time by using a cursor.
This is because the number of rows to be returned is
not known when the SQL statement is issued. The
cursor is a position holder in a set of rows, and this
limits the value of set operators in the host language
environments to some degree.

A single SELECT statement in DBZ (SPUFI) corresponds
to a series of GU, GN, and GNP calls in DLII. SELECT
statements using join conditions correspond to re-

trieval calls, depending on links carried in the hier-
archical structure (i.e., GNP and GN).

Data consistency facilities are generally a character-
istic of the implementation. With the current imple-
mentation of D B ~ , consistency of data across tables
in general has to be maintained by the programs and
procedures that operate on the data bases. To a
certain extent, this responsibility is simplified by the
language functions available in SQL. IMSIVS provides
some data consistency capabilities through its hier-
archical data structures and other capabilities
through the logical insert/replace/delete rules.

Primary key consistency in DBZ is accomplished by
specifying that a primary key column is not allowed

IBM SYSTEMS JOURNAL. VOL 23, NO 2,1994

to have null values and by specifying a unique index
for the column. IMS/VS requires keys to be present
and to be unique if so specified, but there are options
available to depart from this.

D B ~ provides built-in functions for summation
(SUM), ordering (ORDER BY), and basic statistics [Min-
imum (MIN) , Maximum (MAX), Average (AVG), and

DB2 provides a layered approach to
security,

COUNT]. There are no corresponding functions in
IMS/VS, and all such functions have to be coded in
application programs.

View definition can substitute for a considerable part
of programming by eliminating irrelevant data that
otherwise would have to be handled by program
code. The example in Figure 4 illustrates this point.
Also, if the same set of data is used in more than
one application, redundant coding can be eliminated
by establishing predefined view specification. The
SQL CREATE with CHECK OPTION for single-table views
can be used to protect against inserts or updates that
might destroy the very criteria on which the view is
based.

When program development is in a preliminary or
early stage, it is convenient to try out relational data
base request sequences directly from a terminal as a
stand-alone data base test without involvement of
an actual program. It is also convenient to set up
and test data outside the actual program through the
interactive terminal interface. This is possible be-
cause SQL is self-contained; i.e., it does not require a
host language in order to be used. For IMS users,
Batch Terminal Simulator (BTS) can also be used for
testing application programs containing SQL state-
ments.

Relational data bases offer the potential for addi-
tional benefits in data base design and application
development. One such area is frequently termed
semantic modeling. This refers to the incorporation

IBM SYSTEMS JOURNAL, VOL 23. NO 2,1984

of meaning into the formal structure of the data
base, that is, meaning understood by the system. An
example of a proposal based on the relational model
is Codd's RM/T work."

Data base security. Different approaches to security
are used by IMS and D B ~ . D B ~ provides a layered
approach to security that allows the installation to
distribute control of various functions to different
organizational units which may then distribute con-
trol of certain functions to subunits. IMS installations
can take advantage of such a scheme for distributed
authorization. Data base security in D B ~ is enforced
by two approaches: the view mechanism and the
GRANT/REVOKE facility.

View definitions are a powerful facility for simplify-
ing programming. A view need contain only the data
that a particular application has to deal with. From
a security viewpoint, this facility shields those data
that are irrelevant to a specific user. Security by
content, in this way, is not specified in procedural
program code but is available through the data defi-
nition facilities. Moreover, SQL built-in operators
may be used in views to restrict some users to such
aggregate data as averages and totals, without allow-
ing them to access individual values.

GRANT/REVOKE commands are available to restrict
users to performing specific operations against tables

EMPLOYEE TO P R m o l allows an application program-
mer to insert rows into an existing table. An author-
ization may be granted to a user WITH GRANT OP-
TION, thus allowing the user to pass on this authority
to other users. Authorization can be restricted to
specific operations on specific tables, columns, and
rows.

The SQL REVOKE statement is used to take away a
certain capability from a D B ~ user. For example, the
command REVOKE UPDATE ON DEPARTMENT FROM
PUBLIC illustrates the revocation of the UPDATE au-
thority from all USerS (PUBLIC) on the DEPARTMENT
table, where the system administrator had previously
granted this authority to all users.

Data base maintenance. After data bases acquire
production status, changing requirements sometimes
demand modifications to data base structures. The
more frequently a data base structure changes, the
more expensive the maintenance activities become.

Or views. The command GRANT INSERT ON TABLE

The reasons for these increased maintenance costs
include requirements (1) to change definitions, (2)
to run certain utilities, and (3) to make program
modifications. Changes to DL/I structures, such as

In DB2, maintenance caused by data
base changes has been simplified.

adding a new segment type, establishing new logical
relationships, changing pointer schemes, and adding
a new secondary index, can require significant main-
tenance activities.

In D B ~ , maintenance caused by data base changes
has been simplified. In one way, changes have a
lessened effect because all relationships are carried
through actual values in the tables and not through
links in an explicit data structure. Many changes to
tables do not require data bases to be unloaded and
reloaded. For example, new columns can be added
using the SQL ALTER TABLE statement in an interac-
tive session in TSO.

Also, indexes can be added to an existing table
dynamically, using the SQL CREATE INDEX in the DB2
Interactive environment (index-on-the-fly). There is
no requirement for running special utilities in an off-
line mode against the affected data bases.

View definitions can preserve a previous view of a
table against new column additions.

The running of data base maintenance utilities from
D B ~ Interactive (~ ~ 2 1) eliminates the need for sched-
uled outage of production data bases. The partition-
ing facility helps improve availability as does the
AREA facility in fast path data bases in IMS.

User data base recovery. The basic principle of data
base recovery is to maintain duplicated data. Dupli-
cation of the data base as well as the changes made
to it is required. This principle is true for both IMS
and D B ~ . In IMS, users periodically duplicate the data
base (image copy) as well as changes via the DL/I log
facility. Forward recovery is used for both logical

172 DASH AND O J A u

and physical errors, whereas backward recovery (un-
doing changes made to the data base) helps solve
logical errors in the data base.

The backup and recovery procedure is subject to
error, because the user must keep track of all image
copies, logs, and change accumulations. A very use-
ful tool in IMS is the Data Base Recovery Control
(DBRC), which keeps track of various data sets used
and creates JCL for the various jobs needed in the
backout and recovery process.

The equivalent of the DBRC function in D B ~ is pro-
vided by the D B ~ catalog and the Bootstrap Data Set
(BSDS). The various backup and recovery utilities for
D B ~ are the following: Image Copy (full or partial),
Incremental Image Copy, Merge Copy, and the Re-
covery utility. The D B ~ log becomes the nucleus for
the recovery process. Concepts of active DASD logging
and automatic archiving are incorporated. Figure 5
illustrates the recovery scenario with the associated
data sets. The D B ~ backup and recovery concept
allows the recovery of a table space, a partition, or a
group of pages. Two utilities are provided to main-
tain image copies of tablespaces. The recovery utility
may be used to recreate a tablespace from an image
copy and also to log records. Some differences be-
tween D B ~ and IMS are the following:

In IMS the base unit for recovery is a data base
data set, whereas in D B ~ the base unit of recovery
is a tablespace or part of a tablespace.
In IMS without DBRC it is possible to do a partial
recovery, i.e., restore a data base data set from an
image copy without applying logged changes. This
is sometimes used for regression tests. In D B ~ (and
in IMSIVS, Version 1, Release 3) a recovery consists
of restoring a data base data set and tablespace
from an image copy. Thereafter, all logged changes
are applied.
In IMS, index data sets have to be recovered sepa-
rately, whereas in D B ~ , indexes are not recovered
but rebuilt by using the DROP and CREATE INDEX
statements of SQL.
In D B ~ , there is no equivalent for the IMS change
accumulation utility where data base change rec-
ords from various log tapes are merged. The Merge
Copy utility of D B ~ is used to merge Image Copies
and Incremental Image Copies (IIC) to construct a
new full Image Copy or a composite IIC.
There is no batch backout utility in D B ~ as there
is in IMS. If dynamic backout fails, it is necessary
to perform a data base recovery or repair.

IBM SYSTEMS JOURNAL, VOL 23. NO 2.1984

End user access to data. One of the major advantages
of the relational model is the ability of the end user
to perform unanticipated queries. End users have
two ways of accessing D B ~ data: (1) using DB2 Inter-
active (DB~I) , or (2) using Query Management Facil-
ity (QMF). D B ~ users in TSO/SPF can choose DB2I and
then select SPUFI for an interactive session with DB2
data. SQL statements can be issued for an instanta-
neous response of results on the screen. QMF provides
a more powerful end user facility to do specialized
reporting and aggregating. Users can also specify
report formats and store them along with the queries
for repetitive work."

Current IMS users can use the Data Extract (DXT)
product to selectively extract from DL/I data bases
existing production data (as well as VSAM and SAM
data) and load them into D B ~ format for access via
~ ~ 2 1 or QMF. DXT also takes advantage of the infor-
mation in the IBM DB/DC Data Dictionary in prepar-
ing for the extract process. The extract approach is
useful where enterprises need to avoid end user
access directly to production data for performance
reasons."

Existing IMS production programs can be modified
to update D B ~ data bases with summary information.
The update may take place synchronously, by having
the program update the data base, or asynchro-
nously, by sending the information to a background
IMS transaction that can in turn update the DB2 data
base.

DB2 and IMS attachment facilities from a design
perspective

So far we have been describing the use of D B ~ in an
IMS environment. In the remainder of this paper we
discuss how D B ~ and IMS have been designed to work
together and what IMS installation personnel must
understand in order to use D B ~ . The MVS address
spaces used with D B ~ are shown in Figure 1.

Attachment overview. D B ~ and IMS are connected via
an attachment package. The designers of the D B ~ -
IMS attachment package carefully considered many
design tradeoffs. The design chosen stresses ease of
use and flexibility in preference to requiring an in-
stallation to predefine all DB2-related items to IMS.
The attachment between existing D B ~ and IMS sys-
tems can be installed without an IMS SYSGEN. Also,
the attachment package makes use of numerous
defaults to simplify installation and maintenance.
Once IMS and D B ~ are operational, they connect

IBM SYSTEMS JOURNAL. VOC 23, NO 2.1984

Figure 5 Data base recovery cycle

L w I
I

Y

~

RECOVERY ,,

automatically and process D B ~ requests from IMS
without operator assistance. Operator commands are
provided to monitor the status of the connection
between on-line message regions and D B ~ . In addi-
tion, records are produced that allow the installation
to monitor and account for IMs-related activity with
D B ~ . The capability exists for multiple D B ~ S to con-
nect to a single or multiple IMS systems in one host.

Defining DB2 to an existing IMS system. We now
describe the steps and considerations that installation
personnel must understand in order to install and
use D B ~ in an IMS environment. When D B ~ and IMS

DASH AND WALA 173

have been installed, the installation personnel per-
form the following three steps:

Define a subsystem member in IMS.PROCLIB. That
member specifies the D B ~ system(s) that can con-
nect to a specific IMS.
Place the name of the subsystem member on the
execute statement of the IMS control region JCL
procedure.
Place a DFSESL DD card specifying the D B ~ library
into the IMS control and each dependent region
JCL.

The default condition allows any IMS region to proc-
ess D B ~ transactions. The attachment code resides in
each IMS region and is loaded at message region

An IMS application program may
access and change IMS and DB2

resources.

initialization. For Batch Message Processing (BMP)
regions, the attachment code is loaded when an
application program issues the first SQL call. The
installation may control which message regions proc-
ess D B ~ transactions by using IMS class scheduling.

Operating IMS with DB2. IMS and D B ~ are both
started by an MVS operator command. They can be
started in any order, and they automatically connect
when both systems are operational. No additional
MVS or IMS operator action is required to activate the
connection between the systems for normal opera-
tions.

Once the connection is operational, the connection
may be stopped by an IMS or D B ~ command, either
in quiesce or force manner. Quiesce allows applica-
tion programs accessing D B ~ to terminate before the
connection is broken. The STOP D B ~ MODE(FORCE)
command causes work in progress to be abnormally
terminated. The D B ~ stop force command can be
used after a quiesce request. A wait-for-input BMP or
other programs may be connected to D B ~ , but they
may be waiting for another message or issuing IMS

174 DASH AND OJALA

requests. The STOP D B ~ MODE(QU1ESCE) command
request waits for these programs to terminate. It may
be necessary to terminate connected IMS regions via
an IMS stop region command. The D B ~ stop force
command can also be used to break the connection.

IMS provides commands to control and monitor the
connection between IMS and D B ~ . There are also D B ~ -
provided commands to control and monitor external
connections. The IMS command /SSR allows IMS op-
erators to issue D B ~ commands. A D B ~ command
entered by an IMS operator must pass both IMS and
D B ~ security checking. The automated operator fa-
cility of IMS may also be used to submit D B ~ com-
mands from IMS.

Security considerations between IMS and DB2. A
transaction scheduled by IMS must pass IMS security
checks first and then go through the D B ~ authoriza-
tion, if an SQL call is issued. The security identifica-
tion used by D B ~ depends on the security specified
for IMS.

For IMS message-driven programs, the authorization
ID is the sign-on name if IMS is using sign-on author-
ity. Otherwise, the authorization ID is the logical
terminal name. For IMS non-message-driven pro-
grams, the authorization I D is the name of the user
specified on the JOB card, if the Resource Access
Control Facility (RACF) is present. Otherwise the
Program Specification Block (PSB) name is used.

Coordinated recovery. An IMS application program
may access and change IMS and D B ~ resources. IMS
and D B ~ have coordinated recovery, which means
that the status of changes to IMS and D B ~ resources
made by an IMS application program is consistent.
The changes are either committed or aborted in both
IMS and D B ~ . If a failure occurs in the IMS application
program, in the IMS subsystem, in the D B ~ subsystem,
or in MVS, the resources involved are placed in a
consistent state. D B ~ provides utilities to recover from
disk media problems. The utilities are similar in
function, but operate independently of the IMS utili-
ties, as has already been discussed in the section on
user data base recovery.

Application design considerations. An application
program issuing SQL calls must be precompiled using
the D B ~ precompiler to create a Data Base Request
Module (DBRM). The DBRM is the input to the D B ~
BIND process which produces a D B ~ application plan
(or simply plan) that contains an optimized access
path for each SQL statement. Besides the access path,

OM SYSTEMS JOURNAL, VOL 23, NO 2 , 1 9 3

the plan also contains the tables to be accessed and
the appropriate locking information. The application
program must be compiled and then link-edited with
the IMS Release 3 language interface module.

When IMS schedules an application program, the
needed IMS resources are available. The DB2 re-
sources, however, may or may not be present, be-
cause the connection between an application pro-
gram and DB2 occurs only when the program issues
the first SQL call. The D B ~ plan name, which is
associated with the application program, is passed
by the IMS attached to D B ~ at this time. It is possible
that the D B ~ subsystem is not operational or the plan
requested is not valid. To handle such possibilities,
the installation can allow three options to the appli-
cation program. The options, described in the follow-
ing paragraphs, can be specified for the entire IMS
system, on the basis of IMs-dependent regions, or on
the basis of application program load modules.

The first option (the default) is for the application
program to receive an SQL return code indicating the
error. This allows the application program to notify
the terminal operator that an error has occurred.

The second option is to back out any activity the
program might have performed against DL& requeue
the message, and prevent the transaction from sched-
uling until the problem is fixed. The transaction must
be restarted by the operator when the problem is
fixed. This option is similar to what IMS does when
a PSB or IMS data base is not available. The message
is not lost.

The third option is to abnormally end the program,
back out any DL/I activity, and discard the message.

Also, at the first SQL call, D B ~ authorization checking
is performed. If the user is not authorized, the appli-
cation program receives an SQL error code indicating
the authorization error.

Currently in D B ~ , the size of a D B ~ plan is directly
proportional to the number and complexity of SQL
statements in that application program. Also, D B ~
obtains locks on the resources specified in the plan.
Thus, it is recommended to have small-size programs
performing specific functions.

D B ~ uses the IMS Resource Lock Manager (IRLM) for
locking. IMS can use program isolation locking or
IRLM locking. An application program referencing
both DL/I and SQL resources can end up with the
following situations regarding deadlock detection:

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

A true deadlock may be detected between multiple
programs referencing DL/] resources.
A true deadlock may be detected between multiple
programs referencing DB2 resources.
A potential deadlock between multiple programs
referencing both DL/] and D B ~ resources is detected
only by an IRLM time-out. The time-out value is a
D B ~ installation parameter, and, if set too small,
that value may give false deadlock conditions. The
installation should determine whether application
programs will access both DL/I and DBL data bases
and set the time-out value appropriately.

IMS and DB2 monitoring. IMS provides information
about D B ~ via the Data Communication (DC) moni-

~- ~ _ _

DB2 is designed to exploit the 31-bit
addressing architecture of MVS/XA.

~.

tor. The new monitor records contain information
about each call to D B ~ , including the time when the
call started and when it ended.

D B ~ provides a number of tools that monitor storage
space, tables, and application usage. For each new
message processed by IMS, or at the termination of
an application program, a D B ~ accounting record is
written to SMF. D B ~ accounting keeps track of elapsed
time, CPU time, SQL calls, locking information, buffer
pool information, application program termination
status-all on a user basis. The record also contains
the user ID (authorization ID), the D B ~ plan name,
the IMS Partition Specification 'Table (PST) number,
the IMS PSB name. the IMS subsystem name, and a
time stamp. The installation can use these tools to
determine the performance of IMS application pro-
grams accessing D B ~ tables.

MVSIXA considerations. D B ~ is designed to exploit
the 31-bit addressing architecture of MVS/XA, but it
can also run on ~ ~ ~ 1 3 7 0 , which uses 24-bit address-
ing. The MVS/370 24-bit addressing range is up to 16
megabytes, whereas the 31-bit addressing range of
MVS/XA is extended to 2 gigabytes. Programs oper-
ating in 24-bit addressing mode can access infor-
mation up to the 16-Mb line only.

D A ~ AND OJALA 175

The majority of D B ~ code and control blocks in MvS/
XA have moved above the 16-Mb line, and the
majority of D B ~ Common System Area (CSA) usage
has moved to the extended CSA above the 16-Mb
line. Thus, a D B ~ MVS/XA system uses less CSA space
below the line than a comparable non-Mvs/xA D B ~
system. Another benefit of running D B ~ in the MvS/
XA environment is that an installation can increase
the size of certain critical D B ~ storage pools to handle
more users and tune the system to be more respon-
sive.

In the MVS/XA environment, D B ~ exploits 31-bit ad-
dressing while communicating with IMS running in
a 24-bit mode. An IMS application program contin-
ues to operate in a 24-bit mode, because IMS does
not support the 3 I-bit application call interface to
DL/I or SQL.

Concluding remarks

In this paper, we have looked at D B ~ from an IMS
viewpoint. In the course of describing various facets
of this new environment, we have identified many
potential advantages that D B ~ can offer to the IMS
user.

One question, however, remains: How do these users
decide which applications to develop using D B ~ and
which to develop using DL/I? For the on-line part of
the application, IMS/DC facilities are used; but for the
data base part some selection criteria (between D B ~
and DL/I) should exist. Unfortunately the dividing
line between relational and nonrelational data base
applications is not very sharp. Many applications
may in fact be developed using both types of data
base management systems.

A considerable number of applications will continue
to be best served by a nonrelational DBMS like IMS/
DB. The nature of such applications is that they are
using predefined and stable data base structures in a
repetitive manner. For these applications, perform-
ance considerations and detailed tuning facilities
may be more important than flexibility in changing
and accessing data.

D B ~ data bases tend to be more suited for applications
where there is a clear need to use different and
varying relationships in the data and where ease of
change and high-level access to data is the more
important aspect.

As experience with D B ~ application systems grows
and the implementations of such systems mature, it

176 DASH AND OJAM

is likely that more and more applications will be
found to be best served by relational data base sys-
tems. In time, more and more environments will
discover that flexibility in access and data base
change are key factors in successful data base growth
and evolution.

Cited references

1. J. P. Strickland, P. P. Uhrowczik, and V. L. Watts, “IMS/VS
An evolving system,” IEM Systems Journal 21, No. 4, 490-
510 (1982).

2. E. F. Codd, “A relational model for large shared data banks,”
Communications oftheACM13, No. 6,377-387 (June 1970).

3. D. J. Haderle and R. D. Jackson, “IBM Database 2 overview,”
IBMSystems Journal 23, No. 2, 112-125 (1984, this issue).

4. S. Kahn, “An overview of three relational data base products,”
IBM Systems Journal 23, No. 2, 100-1 11 (1984, this issue).

5 . C. Been, P. A. Bernstein, and N. Goodman, “A sophisticated
introduction to database normalization theory,” Proceedings
of the 4th International Conference on Very Large Data Bases,
West Berlin (September 1978), pp. 113-124; available from
the Association for Computing Machinery, 11 33 Avenue of
the Americas, New York, NY 10036.

6. C. J. Date, An Introduction to Databasesystems (3rd Edition),
Addison-Wesley Publishing Company, Reading, MA (198 l),

7. W. Kent, “A simple guide to five normal forms in relational
database theory,” Communications of the ACM 26, No. 2,
120-125 (February 1983).

8. IBM DATABASE 2: Application Programming Guide for
IMS] VS Users, SC26-4079, IBM Corporation; available
through IBM branch offices.

9. E. F. Codd, “Extending the database relational model to
capture more meaning,” ACM Transactions on Database Sys-
lems 4, No. 4,397-434 (December 1979).

10. E. F. Codd, “Relational database: A practical foundation for
productivity,” Communications of the ACM 25, No. 2, 109-
1 17 (February 1982).

1 1. Query Management Facility: General Information Manual,
GC26-407 1, IBM Corporation; available through IBM branch
offices.

12. Data Extract: General Information Manual, GC26-4070, IBM
Corporation; available through IBM branch offices.

pp. 237-272.

General references

C. J. Date, An Introduction to Database Systems: Volume 11,
Addison-Wesley Publishing Company, Reading, MA (1983).
C. J. Date, “Relational database: Some topics for investigation,”
GUIDE 54, Anaheim, CA, May 1982, Session MP-29.
IBM DATABASE 2: General Information Manual, GC26-4073,
IBM Corporation; available through IBM branch offices.
IBMDATABASE 2: Data BaseAdministration Guide, SC26-4077,
IBM Corporation; available through IBM branch offices.
IBM DATABASE 2: Relational Concepts, GG24-158 1, IBM Cor-
poration; available through IBM branch offices.
IBM DATABASE 2: Systems Planning and Administration Guide,
SC26-4085, IBM Corporation; available through IBM branch of-
fices.

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

Reprint Order No. G32 1-52 16.

Jnan R. Dash IBM General Products Division, Santa Teresa
Laboratory, P.O. Box 50020, San Jose, California 95150. Mr.
Dash is an advisory planner in DB2 development. In 1974, he
joined IBM Canada at Toronto, where he held several positions in
Headquarters information systems and was responsible for design-
ing and implementing several data base application systems. Later,
he taught general data base and IMS courses to customers at the
Canadian Advanced Education Center in Montreal. Outside IBM,
he has worked as senior programmer analyst in Canada and data
base consultant in the U.S., where he was involved in teaching
IMS and designing data base applications. Since 198 1, he has been
part of the data systems planning organization. His current re-
sponsibility includes the DB2 product strategy. Mr. Dash received
a B.Sc. in mechanical engineering from India and an M.A.Sc. in
systems design from the University of Waterloo, Canada, in 1973.

Robert N. Ojala IBM General Products Division, Santa Teresa
Laboratory, P.O. Box 50020, San Jose, California 95150. Mr.
Ojala is an advisory programmer in the advanced data base group
at the Santa Teresa Laboratory. He received a B.S. degree in
business from the University of Minnesota in 1964. After gradua-
tion, Mr. Ojala participated in the design and implementation of
many on-line systems, including message switching, order collec-
tion, engineering document control, and engineering data collec-
tion. From 1969 until he joined IBM in 1978, Mr. Ojala was an
IMS systems programmer and IMS systems programming man-
ager. He was also very active in IMS application design and in the
IMS project at SHARE. At IBM, Mr. Ojala is one of the designers
and implementers of the IMS attach package. He has also worked
on the design of other components of DB2, including those for
statistics and accounting.

IBM SYSTEMS XWRNAL. VOL 23. NO 2,1984

