
TSO Attach: A multipurpose
communication channel to
IBM Database 2

by K. R. Hammond
M. R. Zimowski

TSO Attach provides IBM Database 2 capabilities in a
productive work environment that appears as a natural
extension of the Time Sharing Option (TSO) and the
Interactive System Productivity Facility (ISPF). It was
designed and built with careful consideration for the
varied and complex user group for which it was in-
tended. Ease of use and ease of development and
maintenance were among the significant factors in the
design. These factors and others are addressed in this
paper, which discusses the basic design decisions
made in building the TSO Attachment Facility.

A s general-purpose data base management sys-
tems evolve, data base capabilities are being

made more available to users within their primary
working environments. At the same time, a con-
scious effort is being made to ensure that user inter-
faces do not appear as highly stylized complex pro-
tocols. Rather, they are being designed as natural
extensions of existing user environments. Also, data
base capabilities are being presented through these
interfaces in a manner consistent with the skills and
working habits of the intended audience. Reducing
the amount of learning required prior to their use is
an important concern. In addition, an increased
emphasis is placed on satisfying more and more of
the needs of larger segments of the user community.
A primary objective is to promote increased user
productivity.

System R’ and INGRES’ are the earliest relational
data base management systems that used this ap-
proach. Both of these prototypes permitted access to

data through interactive interfaces that supported
unified data manipulation and data definition lan-
guages. System R uses Structured Query Language
(SQL) and INGRES uses QUEW Language (QUEL). The
earliest approaches supported a linear syntax
whereby a single statement could be entered in a
straight-line fashion. Later approaches introduced
interfaces that were more graphic in nature; Query-
by-Example (Q B E) ~ and CUPID^ are well-known ex-
amples. In addition, each of the prototypes permitted
its language to be embedded within application pro-
grams written in the programming languages most
commonly used by the anticipated user communi-
ties. The syntax used in embedding the data manip-
ulation and data definition statements was designed
to appear as a natural extension of the application
programming lang~age .~

IBM Database 2 (D B ~) furthers the goal of making
data base capabilities available to users within the
environments that they utilize daily. This goal is
accomplished through attachment facilities, which
connect the user’s environment to DBZ. D B ~ has
attachment facilities for the most commonly used
Multiple Virtual Storage (MVS) environments: Cus-
tomer Information Control System (crcs), Informa-

0 Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL. VOL 23 NO 2.1984

Figure 1 Basic structure of TSO attachment facility

r
I
I

I
I
I
I

I
I

I
I
I
L

I ADDRESS SPACE
BOUNDARY

TSO ADDRESS SPACE

COMMAND
PROGESSOR

- """

E SPUFl ISPF I I I

""_"" 2 i
tion Management System (IMS), and Time Sharing
Option (TSO). TSO users access DB2 by using the TSO
Attachment Facility. It makes the set of external
controls and services required for D B ~ application
development, operation, and maintenance available
to TSO users. In addition, it transforms the TSO envi-
ronment into a D B ~ transaction environment. This
paper describes TSO Attach by first presenting the
functional requirements and usability objectives of
the TSO attachment package. It then discusses the
manner in which these requirements and objectives
were addressed, emphasizing the significant design
decisions that were made.

Figure 1 presents an overview of the structure of TSO
Attach. Each TSO user has a separate TSO address
space, including a copy of the TSO Attach code. TSO
Attach consists of three main blocks of code: the
D S N ~ command processor, Database 2 Interactive
(D B ~ I) , and SQL Processor Using File Input (SPUFI).
These three are described later in the paper. ~ ~ 2 1 ,
which includes SPUFI, runs only under the Interactive
System Productivity Facility. DSN runs as part of
~ ~ 2 1 or by itself. Note that there are two communi-
cations paths to D B ~ .

Functional requirements and usability objectives

A typical TSO installation serves a wide range of users
and provides various ways of invoking TSO services
and user applications. Likewise, a primary require-
ment of TSO Attach was to satisfy the D B ~ processing

needs of a varied audience, while naturally extending
and taking advantage of the invocation flexibility of
the TSO environment. Ease of use was identified as a
D B ~ product objective from the very beginning. Ac-
cordingly, TSO Attach was engineered with an ardent
consideration for ease of use. In addition, the imple-
mentation of TSO Attach was guided by the more
traditional concerns for ease of development and
maintenance.

Versatility. TSO Attach was designed primarily to
satisfy the D B ~ processing needs of data processing
professionals, with a special concern for the needs of
application programmers, data base administrators,
system administrators, and D B ~ operators. It was to
be a comprehensive D B ~ application programming
environment for TSO users. Further, D B ~ application
development facilities were to be provided for the
IMS and CICS transaction environments. These facil-
ities were to include the capabilities for generating
table declarations, precompiling application pro-
grams, creating and controlling application plans,
compiling or assembling, and link-editing applica-
tion programs. However, only programs written for
the TSO environment were to be executable from TSO
Attach. CICS and IMS programs were to run in their
respective environments.

Another requirement was to permit on-line process-
ing of SQL statements. One objective of this facility
was to enhance the application development envi-
ronment by permitting early debugging of SQL state-
ments that were to be embedded in application
programs. Also, the on-line SQL processing facility
was expected to include functions to create and save
command streams for later execution, as well as to
include a basic report formatting capability.

A further objective was to provide an interface for
use by data base and system administrators. Data
base administration requires the use of Data Defini-
tion Language (DDL) SQL statements for the decla-
ration of data bases and objects within data bases.
Additional DDL statements permit an installation to
enhance or modify previous definitions. Further-
more, authorization to access data base objects must
be explicitly granted and controlled. System admin-
istration requires similar DDL usage to control system
objects such as storage groups and buffer pools. The
basic requirement for these users was a facility to
execute the appropriate SQL statements for the crea-
tion of D B ~ objects and for the granting and revoking
of authorizations from the TSO environment. It
seemed most natural to provide this capability on

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

line. In addition, we anticipated that the ability to
execute individual statements or groups of state-
ments, with the capability of either backing out or
committing them at appropriate user-selected points
in time, would simplify the data base and system
administration tasks. Another requirement was the
ability to invoke the D B ~ utilities from TSO. This
requirement was also primarily for data base and
system administrators. A final requirement was the
ability to execute D B ~ commands from the TSO en-
vironment.

The TSO environment supports several user interfaces
and permits a great deal of flexibility in their invo-
cation. We intended that TSO Attach appear as an

The design of TSO Attach was
guided by several usability

objectives.

integrated part of the TSO environment, taking full
advantage of the user interfaces and invocation flex-
ibility. TSO Attach commands were to be imple-
mented using the standard TSO command processor
interface. A linear syntax interface was to be intro-
duced for TSO users who like to enter commands in
a linear fashion, a line at a time. An Interactive
System Productivity Facility (ISPF) panel interface
was to be included for TSO users who prefer ISPF.
Duplication of functional capabilities was to be pro-
vided as seemed appropriate. Execution through
command lists (CLISTS), and in both foreground and
background, was to be supported whenever possible.

Ease of use. The design of TSO Attach was guided by
several usability objectives. It was to appear as a
natural extension of the MVSITSO environment. It
was to require little training before use, and to pro-
vide on-line “help” during use. TSO Attach was to
permit users to tune their session characteristics to
meet their particular needs. Furthermore, TSO Attach
was to provide clear and meaningful feedback de-
scribing the system response to any user request.

IBM SYSTEMS JOURNAL. VOL 23. NO 2,1984

Ease of development and maintenance. From the
beginning, we designed TSO Attach with a concern
for ease of development and ease of maintenance.
We used available TSO and ISPF capabilities whenever
possible. We tried to avoid needless duplication of
effort. TSO debugging aids were used and extended as
deemed necessary. In addition, specialized tools, de-
signed to ease the serviceability task, were imple-
mented where our development needs and experi-
ence indicated that they would be worthwhile.

Versatility

A key requirement of TSO Attach was to perform
many different functions for many different users.
This need is reflected in many of our fundamental
design decisions. It was apparent that the functional
requirements could be handled by a group of com-
mands. Different jobs naturally require different
commands or groups of commands. It seemed that
the set of all TSO D B ~ commands could be handled
by a single standard TSO command processor. One
processor allows different users to work in the same
command environment but to select only the sub-
commands that they need for their current task. We
chose the name “DSN” for this general-purpose com-
mand processor. DSN became our basic mechanism
for serving the needs of a large and varied user
community.6

Different commands for different users. Specific DSN
subcommands were introduced for the various antic-
ipated users. For application programmers, the DSN
command processor has a RUN subcommand. When
a program runs, DSN makes the necessary connection
to D B ~ , then passes control to the application. Appli-
cations must be bound before they can run. The
BIND subcommand does this. The REBIND and FREE
subcommands work with the BIND subcommand to
perform the basic functions of plan creation, modi-
fication, and deletion.

The TSO environment was chosen as the environ-
ment where users prepare their programs for execu-
tion. Included are CICS and IMS users, as well as TSO
users. This decision was based on the presence of
useful system services (ISPF, parsing, foreground,
background, etc.) and the simple fact that all MVS
users have TSO. Support for this function is provided
by DSN and some auxiliary CLISTS. Program prepa-
ration is a multistep process. It begins with the PL/I
macro phase (for PL/I programs only), then does the
D B ~ precompile, performs the BIND, compiles or

HAMMJND AND ZIMJWSKI 153

assembles the program, and finally link-edits it. For
TSO applications, the preparation process continues
by executing the program. We wanted to provide
automated program preparation support because of
the complexity (BIND and precompile) that D B ~ adds
to the already sufficiently complex preparation proc-
ess.

In order to facilitate access to D B ~ controls, the
decision was made for DSN to support most of the
DB2 operator commands. This support offers the
flexibility of multiple operator consoles. So, with
Only one exception, TSO users can control and inter-

SPUFI is an ISPF panel option that
permits on-line processing of SQL

statements.

rogate D B ~ from TSO. The exception is the -START

DSN must be connected to D B ~ to do any work. It
cannot be connected (“identified”) unless D B ~ is ac-
tive. The only way around this restriction would
have been to include knowledge of the MVS subsys-
tem interface in DSN. Inclusion of this knowledge
would have added significantly to the overall com-
plexity of DSN while returning a fairly minor pay-
back. We decided against it.

Data base administrators (DBAS) need to perform
certain utility functions. DBZ provides an extensive
collection of utility programs for this purpose. TSO
Attach helps users invoke these programs. The util-
ities run only in background mode and so require
appropriate Job Control Language (JCL) to support
their execution. TSO Attach has an on-line service for
building and customizing the JCL for these runs. DSN
also participates in this service. In particular, it lets
users terminate jobs or display their status. We de-
cided against on-line support for the commands of
individual utilities because the commands tend to be
long and complex (suggesting that they be stored)
and because the utilities tend to be long-running

DB2 command. DSN does not Support -START because

154 HAMMOND AND ZIMOWSKI

jobs. We did not think that users would want to tie
up their terminals waiting for utility jobs to com-
plete.

DBAs and system administrators have other require-
ments. Some of them are not handled by the DSN
subcommands. The need to execute SQL statements
(without writing a program) is a prime example. To
process these statements, we wrote the SQL Processor
Using File Input (SPUFI).

On-line SQL. SPUFI is an ISPF panel option that
permits on-line processing of SQL statements. Unlike
the Query Management Facility (QMF),’ which is a
query facility for a broad spectrum of users, SPUFI is
an interactive interface for application programmers,
data base administrators, and system administrators.
Thus, many of our design decisions were guided by
the assumption that users would have considerable
data processing experience.

As a selectable option of an ISPF panel, SPUFI is easily
accessible within the TSO/ISPF programming devel-
opment environment. This accessibility allows ap-
plication programmers to readily invoke SPUFI. SPUFI
was designed to aid their efforts in several different
ways. To begin, SQL statements can be entered and
executed, permitting early debugging of SQL Data
Manipulation Language (DML) statements that are
to be embedded in application programs. It can be
done before the application program is even written,
let alone compiled or debugged.

Deciding to use ISPF EDIT and BROWSE was a major
design decision in the implementation of SPUFI. Us-
ing ISPF EDIT, one or more SQL statements can be
entered and saved in a user-specified data set. When
this data set containing SQL statements is executed,
the results are stored in another user-specified data
set. SPUFI invokes BROWSE against this data set, so
that users can examine the results. Thus, command
streams of SQL statements can be created and saved,
permitting easily repeated cycles of modification,
execution, and analysis of results, until the SQL state-
ments produce exactly the results needed in the
application. It also allows repeated execution of
SPUFI input data sets. This capability is particularly
useful for DBAS or system administrators, who re-
peatedly require the same information. A new output
data set may be specified to receive the results of
each input data set executed, or the same output
data set may be reused again and again. Both input
and output data sets are named and selected for use
in the fashion typical of TSO ISPF panels. Thus, SPUFI

IBM SYSTEMS JOURNAL, VOL 23, NO 2.1984

data set naming and selection conventions are iden-
tical to those that already exist in the TSO environ-
ment.

The results of command stream executions may be
selectively committed or rolled back for the current
user-defined interval. This decision allows SPUFI to
provide a truly experimental environment. Tentative
sequences of SQL statements can be attempted, and
the results can be scrutinized for the desired effect.
The results may then be committed for future use or
discarded. Also, the degree to which one user’s com-
mitted changes are made visible within another
user’s session can be controlled. Thus, the effects of
varying levels of isolation on SQL statement execu-
tion can be understood prior to actual execution of
the completed application programs.

Also, we designed SPUFI to aid application develop-
ment in other ways. The D B ~ catalog is a D B ~ data
base. Therefore, application programmers can use
SPUFI to query the D B ~ catalog for information. Re-
quests for information about tables, such as column
names or column attributes, or for verification that
requested indexes are available, are easily fulfilled.
In addition, the on-line help facility allows applica-
tion programmers to look up the syntax of SQL
statements at the terminal. Information is also avail-
able concerning SQL return and warning codes.

SPUFI provides these same capabilities for data base
administrators and system administrators. Any of
the SQL DDL statements can be executed from a SPUFI
input data set. D B ~ data bases, tablespaces, tables,
indexes, storage groups, and buffer pools can be
created, dropped, or altered. In addition, any of the
GRANT and REVOKE SQL authorization statements
may be executed from a SPUFI input data set. Thus,
data base designs and system configurations that are
intended for application programmers or end users
can be defined and tested, or just experimented with.
Further, each of the SQL statements required to es-
tablish a particular data base design or system con-
figuration can be saved in a single data set. Related
statements can be kept together, providing a single
repository of definitions for easy execution and mod-
ification.

The creation of a data base design or system config-
uration can also be accomplished while other users
continue to use the D B ~ subsystem. Such creation is
done by postponing the COMMIT until the entire
definitional sequence is complete. Only then are the
effects apparent. Thus, partially prepared environ-

IBM SYSTEMS JOURNAL, VOL 23. NO 2.1!3@4

ments are not visible to the intended users. If an
error occurs in the definitional process, the portion
of the definitional sequence that was completed can
easily be rolled back. Each of these design decisions
contributes to the flexibility required in an environ-
ment where experimentation is the norm. An AU-
TOCOMMIT option is also provided. This automati-
cally commits all SQL statement results upon suc-
cessful execution of the input data set. Any SQL error
that occurs during the execution of an input data set
causes automatic ROLLBACK processing.

As mentioned above, SPUFI results are stored in the
data set the user specifies. A basic results-formatting
capability is included to display the execution results.
SPUFI output begins by echoing the SQL statement
from the input data set. For Select statements, data
values are placed beneath appropriate column head-
ings. An execution summary, including the SQL re-
turn code and, if applicable, the number of rows
manipulated, is provided for each SQL statement
processed. Unusual situations such as data value or
row truncation are reported. Comments present in
the input data set are echoed in the output data set.
SQL statement execution results can thus be delimited
by user remarks. A final summary for the current
SPUFI invocation is also provided. This summary
includes information such as the number of SQL
statements processed, input records read, and output
records written. An example is given in Figure 2.
Although very basic when compared to the elaborate
QMF report formatter, the SPUFI results-formatting
facility was designed to provide the essential execu-
tion results in a concise and readable fashion, suita-
ble for the intended audience.

Another design decision of note was to make SPUFI
part of the ISPF environment. This decision permits
easy access to available TSO/ISPF capabilities. System
administrators, for example, can look up volume
and VSAM catalog information. Data base adminis-
trators can experiment with different EDIT and VAL-
IDATION procedures. They can also verify tablespace
and index primary and secondary space allocations.
The ISPF panel print facility can be used to obtain a
printed copy of both SPUFI input and output data
sets. In general, the proximity to ISPF gives SPUFI
users the full power of the ISPF Program Develop-
ment Facility.

Multiple environments. Another fundamental way
of being versatile is to run in more than one envi-
ronment. Fortunately, TSO comes with a fine selec-
tion of software features and tools that made this

HAMMOND AND ZIMOWSKI 155

Figure 2 An example of SPUFl output

SELECT NAME,COLNO,COLTYPE,LENGTH
FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME='SYSDATABASE';

0 0 0 0 0 1 0 0
00000200
00000300 """"-+""""-+""""-+""""-+""""-+""""-+""""-+""""-+

NAME COLNO COLTYPE LENGTH

NAME
-""""+""""-+""""-+""""-+""""-+""""-+""""-+""""-+

CREATOR
1 CHAR
2 CHAR

8

STGROUP
8

3 CHAR
BPOOL 4 CHAR
D B l D 5 SMALLINT

8

I BMREQD
2

6 CHAR
DSNE6101 NUMBER OF ROWS DISPLAYED I S 6

1

DSNE6161 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE I S 1 0 0
""""-+-""""+"-"""-"""""-+""""-+""""-+""""-+

DSNE6171 COMMIT PERFORMED, SQLCODE IS 0
""""-+""""-+""""-+""""-+""""-+""""-+""""-+""""-+

DSNE6161 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
-""""+""""~+-"~"""--+"""~"+""""~+""""~+""""~+
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE6201 NUMBER OF SQL STATEMENTS PROCESSED IS 1
OSNE6211 NUMBER OF INPUT RECORDS READ I S 3
DSNE6221 NUMBER OF OUTPUT RECORDS WRITTEN I S 24

a

goal relatively easy to achieve. For example, the DSN
command processor was originally coded to run in
TSO foreground. However, the TSO Terminal Monitor
Program runs in either foreground or background.
This capability means that DSN can run in fore-
ground or background. The only DSN capabilities
that are not supported in background are attention
processing and prompting from the parse routines.
These capabilities are not required in background
processing as it is defined today.* The ability to run
the DSN command processor in background permits
users to be more productive without adding com-
plexity. They do not need to learn a different lan-
guage for each environment. The same command
set does the job, only without tying up the terminal
in the way foreground sessions do.

Another TSO facility that made it easy for us to write
code that can run in different environments was the
CLIST processor. It is easy to invoke DSN from a CLIST.
The CLIST needs a DSN command, followed by a
series of DSN subcommands, and finally, an END
subcommand to terminate the D B ~ session. Although
many people are probably in the habit of running
CLISTS in foreground, they can also run in back-
ground as long as the proper responses to CLIST
prompts are known in advance. Figure 3 shows a JCL

156 HAMMOND AND ZIMOWSKI

stream that invokes DSN, runs a program, and ter-
minates the DSN session. This is followed by a CLIST
invocation; the CLIST manages a second DSN session.
In the figure, the JCL stream invokes the DSN com-
mand processor in background mode. Notice that
the GO step invokes the TSO Terminal Monitor Pro-
gram, which accepts standard TSO commands in its
input stream (the lines following the SYSTSIN DD
statement). After the DSN command processor runs
the program named PROGA, it calls a CLIST,
"H443722.TSO.CLIST(TEST)," which rebinds two plans
and runs two programs, PROGB and PROGC.

Thus, we support linear syntax for DSN subcom-
mands in three different environments: foreground,
background, and CLISTS. For some users this will be
sufficient, but many users prefer full-screen syntax
to linear syntax, so we wanted to include a panel
interface in the TSO Attach package. We were pleased
to discover that ISPF provides excellent facilities for
building panel dialogs.

We call the full-screen syntax portion of TSO Attach
Database 2 Interactive (or ~ ~ 2 1) . Refer to Figures
4A-4F to see samples of the D B ~ I panels. Figure 4A
shows the ISPF primary option panel. It is normally
the first panel seen on entering ISPF. Enter an "8" on

IBM SYSTEMS X)URNAL, VOL 23. NO 2.1984

Figure 3 JCL stream invoking DSN

//SAMPLE JOB ,
// NOTIFY=H443722,USER=H443722,REGlON=3OOK,
// MSGCLASS=Z TIME=(0 5 9) ...
))* T H I S J C L I N V O K E S A PROGRAM CALLED PLANA, THEN RUNS A C L I S T

..
>>GO EXEC PGM= I K J E F T O l , DYNAMNBR=20
/ /SYSTSPRT DD SYSOUT=*
/ /SYSTSIN DD *
DSN SYSTEM(SSTR)

RUN PROGRAM(PR0GA) L IBRARY(’H443722.TSO.LOAD’) PLAN(PLANA)

WYY**H****YXX**YY******/

EXEC ‘H443722 .TSO.CLIST(TEST) ’
END

/*

*
/* T H I S C L I S T DEMONSTRATES THE WAY TO INVOKE THE DSN COMMAND
/* PROCESSOR FROM A C L I S T . T H I S C L I S T CAN RUN E I T H E R I N FOREGROUNC) */
/* OR BACKGROUND. I T R E S I D E S I N DATA SET ‘ H 4 4 3 7 2 2 . T S O . C L I S T (T E S T) . */
DATA

*i
/ *Y*YI Ix***ccx******************************~************************** /

DSN SYSTEM(SSTR)
REBl ND PLAN(PLANB, PLANC)
RUN PROGRAM(PR0GB) L I B R A R Y (’ H 4 4 3 7 2 2 . T S O . L O A D ’) PLAN(PLANB)
RUN PROGRAM(PR0GC) L I B R A R Y (’ H 4 4 3 7 2 2 . T S O . L O A D ’) PLAN(PLANC)

FND
ENDDATA
EX1 T

this panel to see the D B ~ I primary option panel,
which is shown in Figure 4B. Use the DB21 panel to
choose the particular D B ~ I function to be performed.
If a “4” is entered, the first program preparation
panel will appear, as seen in Figure 4C. This panel
is used to begin the program preparation process.
The first step is precompilation. The program prep-
aration process continues with the panel in Figure
4D. It is used to bind, compile, link, and run a
program. This panel is reached by typing YES on line
5 of the panel shown in Figure 4C and then pressing
the enter key. Figure 4E is the main SPUFI panel. It
is reached by entering a “1” from the main DB21
panel (Figure 4B). Figure 4F shows the SPUFI defaults
panel. It controls the format of SPUFI output. This
panel is reached by typing YES on line 10 of the main
SPUFI panel and pressing the enter key.

~ ~ 2 1 adds a subtree of panels to the ISPF panel tree.
These panels support the DSN functions, program
preparation, and the D B ~ utilities. SPUFI is also a D B ~ I
panel option. Figure 5 shows the DBZI section of the

IBM SYSTEMS JOURNAL. VOL 23, NO 2.1984

ISPF panel tree. With it to round out our possible
environments, users have the flexibility to use the
product in the way that suits them best. From the
ISPF primary option panel, D B ~ I can be entered by
selecting option 8. From there, the function needed
is chosen. For example, typing a “5” and pressing
the enter key can run a program.

Ease of use

TSO Attach was designed to be easy to use. Although
we assumed that most TSO Attach users would be
experienced computer users, we still wanted to min-
imize the amount of knowledge they needed to have
already, or to gain, in order to use it effectively. In
doing that we supported another product objective:
to minimize the length of time needed to start doing
productive work.

A full-screen interface. For new TSO Attach users,
our main strategy was DBZI. The full-screen syntax
of D B ~ I can help new users in many ways. For any

HAMMOND AND ZIMOWSKI 157

Figure 4 (A) lSPF primary option panel; (e) DB21 primary option panel; (C) Program Preparation panel 1; (D) Program Preparation
panel 2; (E) SPUFl panel 1; (F) SPUFl panel 2.

given task, it lists the possible parameters. It describes
the permitted values for each parameter and provides
defaults when possible. In addition, brief explana-
tions of the different fields appear on the panels.
More complete explanations can be seen by pressing
the Help key. DB21 remembers field values from
session to session, eliminating the need for users to
do the remembering or to look up information.

Further, by using ISPF as the base for D B ~ I , we were
extending an environment that is familiar to and
well liked by many users. This avoided the need to
introduce users to a new environment. For most
users, we think that ~ ~ 2 1 will be the preferred work
environment.

A linear syntax interface. Some users prefer linear
syntax. These users tend to be good typists and to
know the product and particularly the command
syntax well. Some users will want to run in back-
ground mode. And, of course, there will be users
whose systems do not include ISPF. For all these
people, we provided the basic linear syntax DSN
command processor. They will be able to accomplish
most of the TSO Attach functions (SPUFI being the
notable exception) without entering ISPF.

Human factors. To ensure that the human factors of
the project were reasonable, we carefully considered
various corporate human factors guidelines that had
been developed previously as the result of extensive

158 HAMMOND AND ZIMOWSKI IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

Figure 5 DE21 section of the ISPF/PDF panel tree

testing and research. They were especially important
when we chose designs for our panels. The panels
were carefully reviewed by many people to optimize
their human factors. The panels were made as sim-
ple, yet as informative and flexible, as possible. This
consideration required many compromises. For ex-
ample, in the interest of simplicity and keeping the
number of panels low, we decided that we would not
support all the capabilities of the DSN command
processor. Although some DSN subcommands have
parameters that are lists of potentially “infinite”
length, DB2I handles only short versions of these lists.
Lists are generally easy to process in linear syntax
but awkward on entry panels. The shortened list
capability kept our overall panel structure signifi-
cantly smaller and simpler.

An on-line Help facility. Perhaps the single most
important thing that can be done to help users is to
provide an on-line Help facility. It should be acces-
sible from whichever environment is currently exe-
cuting. Since TSO Attach runs interactively either as
part of ISPF (DB~I) , or just in TSO (DSN), we needed
help for both environments. For ~ ~ 2 1 , there are
almost 500 ISPF Help panels. There are Help panels

IBM SYSTEMS JOURNAL, VOL 23. NO 2,1984

that correspond to particular tasks being done, and
panels that contain information like SQL syntax and
the meanings of SQL return codes. For DSN users, we
use the TSO Help facility. This Help is less extensive
than the ISPF Help facility, but again, the presump-
tior was that the DSN users would already know
ccmmand syntax. Otherwise, they would be using
the D B ~ I panels. Of course, all this information (DSN
and DB21) is contained in the various reference man-
uals that accompany ~ ~ 2 . ~ 3 ”

User-initiated program interruptions. Some of our
human factors effort has had a more technical flavor.
For example, in order to allow users to interrupt
program execution when D B ~ is processing an SQL
request, we had to design the attach code in what
might appear to be an odd structure. Rather than
running under a single task (TCB), we use a two-task
structure. When DSN starts, it performs some initial-
ization, and then attaches a second load module.
Without this second task, it would not have been
possible to interrupt the execution of the TSO Attach
TCB when it is executing in the D B ~ address spaces,
without losing our connection to DB2. This property
is fundamental to MVS.

HAMMOND AND ZIMOWSKI 159

Asynchronous communication with DB2. Another
significant technical problem we had to solve was to
provide a communications channel from D B ~ to the

One of the basic ideas that appears
in various forms throughout the
attach facility is centralization.

attach code. Under normal circumstances, the attach
code makes requests to D B ~ , D B ~ performs the re-
quested service, then returns control to the applica-
tion program or the attachment facility. The com-
munication direction is from TSO Attach to D B ~ .
However, there are situations in which D B ~ may need
to communicate in the opposite direction. For ex-
ample, if the operator issues the -STOP D B ~ command
with the QUIESCE option, D B ~ has an unanticipated
need for TSO users to conclude their D B ~ sessions as
soon as conveniently possible. Good human factors
required us to ask users to end their sessions, rather
than just having us terminate their sessions. This
option permits users to finish their current tasks and
then to end their sessions. If the users cooperate, and
there is no urgent need to terminate the TSO sessions
quickly, the QUIESCE option will eventually make the
system quiescent. However, there are some situations
in which only limited delay is tolerable, or in which
users ignore requests to terminate their sessions. In
these cases the D B ~ operator will need a stronger
command: the -STOP D B ~ command with the FORCE
option. To implement these STOP options, we used a
combination of MVS WAIT and POST macros to permit
asynchronous communication from D B ~ to TSO At-
tach. The important point here is that for good
human factors, we had to build a two-way commu-
nications channel between TSO Attach and DB~.

TSO commands from DSN. Another way we made
the product easier to use was by allowing users to
issue TSO commands from within the DSN command
processor. Whenever DSN reads in a new command,
it searches its list of known commands. If it finds a
match, it does the work requested by the command.
If no match occurs, it attempts to attach the com-
mand. If a TSO command processor by that name is

160 HAMMOND AND ZIMOWSKI

found,'' it will execute. Otherwise, an error message
is issued. This feature lets users do most of their
work under the umbrella of the TSO Attach package;
it is not necessary to be continually changing envi-
ronments in order to complete a complex job.

Ease of development and maintenance

TSO Attach had to be written in a limited amount of
time by a limited number of people. There was little
time for wasted or duplicated effort. We had to design
a high-quality package that could be developed and
maintained with a minimum of effort. To accom-
plish this task, we adapted various ideas and practices
that have made our work more efficient.

Shared and centralized code. One of the basic ideas
that appears in various forms throughout the attach
facility is centralization. DSN was implemented as a
single, centralized processor. One advantage this
structure has over a group of command processors
is that a single processor can provide common ser-
vices that are needed by each of the basic functions.
In other words, we avoided the need to duplicate
code that would have done the same job in different
command processors. The D B ~ connection services
are a good example. Talking to D B ~ directly from
TSO, without an attachment facility, is not such an
easy thing. A complex connection protocol must be
rigorously followed. It is necessary to carefully man-
age a number of control blocks and parameter lists.
Timing is important; just the right D B ~ service re-
quests must be made at just the right time. As it is,
approximately 15 percent of the TSO Attach code is
devoted to managing the connection. All the DSN
subcommands share this code.

However, because of a technical problem, SPUFI had
to establish its own connection to D B ~ . In fact, SPUFI
could be described as a separate attachment facility.
It can run without any notion of DSN. Thus, a fairly
large piece of code is duplicated in SPUFI and DSN.
This aspect is probably the least satisfactory of all
the aspects of the TSO Attach design. Unfortunately,
there was no alternative.

Another area where centralization cut our coding
and maintenance effort was attention handling. We
needed an attention routine to let users interrupt the
execution of their programs. The attention routine
we coded serves all the subcommands of the DSN
command processor. Error and abnormal end proc-
essing is also conveniently handled by a centralized
approach. A single ESTAE and a single ESTAI exit

IEM SYSTEMS JOURNAL, VOL 23. NO 2.1984

routine are shared by all the DSN subcommands.
These exit routines make it possible to trap and
handle abnormal ends, whether caused by the appli-
cation or by the system.

Similarly, our message-generation subsystem bene-
fits by centralization. By grouping all the message
text into a small number of data sets (that contain
nothing but message text), we made it much easier
to translate our messages into foreign languages.
Foreign language translation of decentralized mes-
sages would have required recompilation of all the
TSO Attach modules. Such recompilation would have

Inclusion of a tracing facility made
the development and maintenance

effort much easier.

been especially undesirable since a basic part of the
D B ~ maintenance strategy was not to ship source
code, let alone PLS compilers.’*

A basic implementation strategy we adopted at the
very beginning was to take advantage of whatever
services were provided as part of the TSO environ-
ment. This strategy minimized duplicate coding and
maintenance effort. It led us to use the TSO scanning,
parsing, dynamic allocation, and message-writing
services rather than writing our own. TSO Test was
our main debugging facility. The CLIST and batch
job submission facilities enabled us to automate
much of our extensive testing effort. Most of our
compilation was done in background mode, so we
could keep working in foreground while we waited
for compiles to complete. All in all, TSO services
helped to reduce our overall development effort. We
also expect that they will reduce the maintenance
effort.

ISPF Dialog Management Services makes it easy to
create, to display, to read from, and to write to ISPF
panels. Panel images are essentially constructed as
they are to appear. Panel logic initializes and controls
the entry of values into fields on the panels. A high-
level command language makes it easy to display
and read from the panels. ISPF variable services per-

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

mit easy initialization and recall of variable values
from previous sessions. The ISPF profile and shared
variable support provide a mechanism for defining
installation defaults. Finally, ISPF EDIT and BROWSE
provide a powerful file processing capability, permit-
ting easy implementation of the SPUFI input and
output data set processing facilities. Thus, the ISPF
environment provided numerous services that re-
duced the effort required to implement ~ ~ 2 1 , our
full-screen interface. In particular, we did not have
to design and write our own screen handler and
dialog manager.

Tracing and debugging facilities. The inclusion of a
tracing facility made the development and mainte-
nance effort much easier. TSO Attach has an extensive
tracing facility. We provide four different types of
tracing: one for DSN, one for the CLISTS, and two for
SPUFI. These tracing mechanisms make it very easy
for us to pinpoint the general area of a problem.
Frequently, they lead us to the exact problem. They
often enable us to fix a problem without resorting to
a storage dump.

When tracing, DSN normally writes its trace messages
to the terminal. However, by allocating a DSNTRACE
data set, the trace stream can be collected in a data
set or sent to a printer. DSN trace messages include a
module identifier and four other substitutable to-
kens. One of the tokens explains what the others
mean.

One special class of DSN trace messages has been
especially useful-these are the “wall messages.” DSN
emits one of these messages just before it makes each
D B ~ service request and just after control returns
from D B ~ . Figure 6 shows part of a sample DSN trace
stream that includes the wall messages that appear
before and after a TERMINATE thread call. The wall
messages have been exceedingly useful for debugging
problems when it was not clear if the problem was
in TSO Attach or D B ~ code. We had to make this
decision frequently. Many users started by invoking
the TSO Attach code; then if something went wrong
(and in the early phases of testing, things went
wrong), they were much inclined to blame us, even
though the problem was in the underlying D B ~ code.
The walls drew a clear line between our problems
and theirs. They helped us avoid many fruitless hours
of trying to fix problems in D B ~ by “debugging” TSO
Attach code.

The DB2I CLISTS trace by using the CONTROL State-
ment provided in the CLIST language. This option

HAMMOND AND ZIMOWSKI 161

Figure 6 Sample DSN trace stream showing ''wall messages"

DSNETPO
DSNET20
DSNETPO
DSNETPO
DSNETPO
DSNET20
DSNET2O
DSNETPO
DSNET20
DSNETPO
DSNETPO
DSNETPO
DSNETPO
DSNET20
DSNET20
OSNETPO
DSNETPO
DSNETPO
DSNET20
DSNETZO
DSNET20
DSNET20
DSNETPO
DSNET20
DSNETPO
DSNET20
DSNET2O
DSNET20
DSNETPO
DSNET2.0
DSNET20
DSNET20
DSNET2O
DSNET20
DSNET20
DSNETPO
DSNET2O
OSNETPO
DSNET2O
DSNETZO
DSNET20
DSNET20
OSNET20

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DSNECPl3
DSNECP13
DSNECPl3
DSNECPl3
DSNECPl3
DSNECP28
DSNECP28
DSNECP28
DSNECP28
DSNECP28
DSNECP28
DSNECP28
OSNECP28
DSNECP28
DSNECP28
OSNETRAP
DSNETRAP
DSNECP28
DSNECP28
OSNECPZB
OSNECP28
DSNECP28
DSNECP28
DSNECP28
DSNECP28
DSNECP28
OSNETRAP
DSNETRAP
DSNETRAP
DSNETRAP
DSNECP16
DSNECP18
DSNECPl8
DSNECP18
DSNECP18
DSNECPl8
DSNECP18
DSNECP18
DSNECP18
DSNECP18
DSNECP18
DSNECPl8
DSNECP18

C l B P L N l O : T S O A P l X'OOOOOOOO' X'OOOOOOOO'
ci Bc6d I 0 I ~ 4 4 3 7 2 2 xiOOOOOOOo~ x i O O O ~ o O o o ~
ZINDOUBT :NO X'OOOOOOOO' X'OOOOOOOO
R6=. CIBCTRTN= X '0013F7D8' X 'EZEBD5C3'

AFTER DSNECPl3, CIBCTRTN=, CIBCTFRB= X1E2E8D5C3' X'0013FD38'
E X l i D S N E C P l 3 X ' 0 0 0 0 0 0 0 0 ' X ' 0 0 1 3 F D 3 8 '

BEFORE SQL CALL NUMBER ONE CIBFRMLI= DSNETRAP= X ' 8 0 1 5 F 6 9 8 ' X ' 8 0 1 5 f 6 9 8 '
HERE COMES THE FRB <<<<<<<<<<<<<<<< CiBRFRB= X '8013FD38 ' X'OOOOOOOO
FRBRAL(PTR) , FRBRALE(BIN15) FRBFVLE(BIN15) X'OOOO?OOO' X ' 0 0 0 3 0 0 0 1 '
FRBPARM(PTR), FRBPCNT(BIN15) 'X '001671EO' X'OOOOOOO?
FRBRCl(BIN15) . FRBRC2(CHAR4) X'OOOOOOOO' X'OOOOOOOO
FRRFRACK! x'oooooooo' x'oooooooo'

FRBRAL(PTR) , FRBRALE(BIN15) . FRBFVLE(BIN15) X'OOOO?OOO' X ' 0 0 0 3 0 0 0 1 '
FRBPARMf PTRI . FRBPCNTfB IN15) X '001671EO' X'OOOOOOOO
F R B R C l (B I N l j j , FRBRC2(CHAR4j 'X'OOOOOOOO' X'OOOOOOOO'
FRBFBACK:
FRBFBACK PTR(31),FRBRHPC X'OOOOOOOO' X'OOOOOOOO'

ADOR(DSNAPRH)=: ADOR(OSNETRAP)= X '8014B198 ' X '8015F698 '
F R B Q U A L (B I N 1 5) F R B R S V l (B I N 1 5) X'OOOOOOO1' X'OOOOOOOO'

E X I T OSNECP28, RETURNING TO DSNELI FRBRCl,FRBRC2 X'OOOOOOOO' X'OOOO?OOO'

AFTER SQL CALL=====================RCl,FB~CK== X'OOOOOOOO' X'OOOOOOOO'
BEFORE SQL CALL=======================FRB R1== X ' 8 0 1 3 F O 3 8 ' X ' 0 0 1 3 F 8 0 8

BEFORE SQL CALL=======================FRB,R~== ~ ' 8 0 1 3 ~ 0 3 8 ' ~ ' 0 0 1 3 ~ 8 0 8 '
AFTER SQL CALL=====================RC1,FBACK== X'OOOOOOOO' X'OOOOOOOO'
AFTER L INK GOO0 R15= R1= X'OOOOOOOO' X ' 0 0 1 3 F B 7 ? '
ENTER DSNECP18, 'CIBTRhOP= X'EZE8D5C3' X'OOOOOOOO
CIBTRMOP NOT BLANK CIBTRMOP= X'EZE8D5C3' X'OOOOOO?O' '1
FRB F I E L D S FOLLOW i C I B F R B) : X ' 0 0 1 3 F 0 3 8 ' X'OOOOOOOO
FRBRAL(PTR) , FRBRALE(BIN15) , FRBFVLE(BIN15) X'OOOO?OOO' X 'OOO10001' MESSAGES
FRBPARM(PTR) , FRBPCNT(BIN15) X '0013F360 ' X'OOOOOOO?
FRBRCl (BIN15) , FRBRC2(CHAR4) X'OOOOOOOO' X'OOOOOOOO
FRBFEACK(PTR) FRBRHPC(BIN32) X'OOOOOOOO' X'OOOOOOOO~

BEFORE TERMINATE OB2 CALL===============TRMOP= X 'E2E805C3 ' X'OOOOOOOO'
F R B Q U A L (B I N 1 5 j . F R B R S V l (B I N 1 5) X'OOOOOOO1' X'OOOOOOOO

AFTER TERMINATE OB2 CALL====================== X ' O O O O O O ~ O ' X'OOOOOOOO' 3
FRB F I E L D S FOLLOW I C I B F R B I : X ' 0 0 1 3 F 0 3 8 ' X'OOOOOOOO'

x'oooooooo' x'oooooooo'

WALL

J
FRBRAL(PTR) , FRBRALE(B iN15) , FRBFVLE(BIN15) X'OOOOOOOO' X 'OOO10001'

causes all the CLIST statements to be echoed to the
terminal as they execute. Actually, we see two copies
of each line. The first shows the line before variable
substitution has occurred, the second shows the line
after the symbolic variables have been replaced by
their values.

SPUFI has two tracing mechanisms. We call one SPUFI
tracing, the other, SPUFI debugging. Either or both
can be selected. In SPUFI tracing, an ISPF Services call
is used to write trace information to the ISPF LOG.
Entry to and exit from each SPUFI module, as well
as significant internal events, are traced. In SPUFI
debugging, ISPF Service calls display SPUFI debug
panels. SPLIFI debug panels display the contents of
interesting storage areas at predefined points in time.
From a single debug panel, the scope of future panel
displays can be expanded or contracted. Also, any of
the debug panels may be requested from any other

debug panel. Thus, storage areas normally viewed at
earlier or later points in time can be redisplayed
when desired. In addition, most storage areas can be
changed by typing over values displayed on the
debug panels. This is a very powerful debugging
mechanism.

Resilient program design. The design of the main
SPUFI control module is a further instance of our
attempt to ease the burden of development and
maintenance. This module implements a finite-state
machine." A state exists for displaying and modify-
ing the SPUFI processing panel and for each SPUFI
processing option selectable from that panel. Hence,
additional states exist for displaying and changing
defaults, editing the input data set, executing SQL
statements, committing execution results, and
browsing the output data set. Figure 7 presents a
simplified version of the state diagram.

162 HAMMOND AND ZIMOWSKI IEM SYSTEMS JOURNAL, VOL 23, NO 2.1984

Figure 7 Simplified SPUFI state diagram
~~ ~

I -
0 0 I 1-1 NORMAL COMPLETION

L I
t t t 1

NORMAL COMPLETION
OR

PANEL NOT REQUESTED
DISPLAY DEFAULTS

NORMALCOMPLETION
BUT DATA SET NOT MODIFIED
OR
FUROR

NORMAL COMPLETION
AND DATA SET MODIFIED
OR
EDIT NOT REQUESTED

FAILURE TO CONNECT TO DE2

DYNAMIC ALLOCATION ERROR
J

NORMAL

LLBACK ERROR

SE NOT REQUIRED

BROWSE ERROR

The finite-state machine model guided the imple-
mentation of each state as a well-defined independ-
ent functional entity. Each state can be selected and
executed separately. This independence allows a
modularization of SPUFI function, which makes the
implementation easy to understand and maintain.

Likewise, the transition from one state to another is
based on the finite-state machine concept. The cur-
rent state is driven to a particular next state by an
input value. For example, suppose the user requests
only a subset of the SPUFI processing options,
namely, to execute a predefined input data set and
to browse the results. The initial state is to display
the SPUFI processing panel. The expected transitions

to subsequent states follow the normal execution
sequence (change the defaults, edit the input data
set, execute the SQL statements, commit the execu-
tion results, and browse the output data set) of the
selected processing options. In this case, the request
to execute an input data set causes a transition to
the state for executing SQL statements. For this ex-
ample, the expected next transition would be the
browse output state, followed by the standard last
transition back to the display SPUFI processing panel
state. Transitions between states are well-defined and
crisply expressed.

This approach also makes it easier to handle both
anticipated and unanticipated errors. Transitions to

IBM SYSTEMS JOURNAL, VOL 23. NO 2,19@4 HAMMOND AND ZIMOWSKI 163

states that display error responses and request addi-
tional or new information (e.g., back to the display
SPUFI processing panel state) are easy to implement,
and can be conceptualized separately from the details
of a particular state’s function. This approach also
allows error processing to be developed in stages or
enhanced, by merely adding additional transitions
between states. SPUFI development profited from this
design and implementation approach. Future main-
tenance efforts should benefit as well.

Summary

In building the TSO Attachment Facility, our basic
design goal was to provide a work environment for
many of the personnel associated with the use, main-
tenance, and control of a large and complex data
base system. Other important design goals included
ease of development, ease of maintenance, and ease
of use.

Our design solution was to build the DSN command
processor and the D B ~ I and SPUFI interfaces that
complement it. These three parts support a rich
command language, in both full-screen and linear
syntax. They make it possible for users to tailor their
work environment to suit themselves. The modular
construction and shared code in TSO Attach mini-
mized the amount of code we had to write. This
construction, and the extensive debugging tools built
into TSO Attach, make it easier to maintain. Much
consideration was given to the design of command
syntax, panels, and error messages to produce a
product that would be easy to use. As a result, TSO
Attach provides a productive user interface to D B ~
that appears as a natural extension of the TSO/ISPF
environment.

Acknowledgments

Aside from the authors, several other developers
participated in the design and development of TSO
Attach. We would like to acknowledge the contri-
butions of T. G. Messinger, T. H. Sawyer, S. K.
Fang, J. T. Heglar, and D. A. Weil. We also wish to
acknowledge the management support and direction
provided by H. L. Reeves, R. A. Reinsch, and H.
Leonard.

Cited references and notes

1. M. M. Astrahan et al., “System R: Relational approach to
database management,” ACM Transactions on Database Sys-
tems 1, No. 2, 97-137 (June 1967).

164 HAMMOND AND ZIMOWSKI

2. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design
and implementation of INGRES,” ACM Transactions on
Database Systems 1, No. 3,189-222 (September 1976).

3. M. M. Zloof, “Query-by-Example,” Proceedings of the AFIPS
1975 National Computer Conference 44, 431-437, AFIPS
Press, Montvale, NJ (May 1975).

4. N. McDonald and M. Stonebraker, “CUPID-The friendly
query language,” Proceedings of the ACM-Pacific-75 Confer-
ence, San Francisco, CA (April 1975), pp. 127-131.

5. M. Stonebraker and L. Rowe, Observations On Data Manip-
ulation Languages and Their Embedding in General Purpose
Programming Languages, Memorandum UCB/ERL M77/53,
Electronics Research Laboratory, University of California,
Berkeley, CA (July 1977).

6. DSN is the system prefix used in naming many of the objects
associated with DB2. For example, all DB2 error messages
begin with the string DSN.

7. Query Management Facility: General Information, GC26-
407 I , IBM Corporation (1983); available through IBM branch
offices.

8. When the user enters an invalid parameter on a command in
foreground, the TSO parsing service, which we use extensively,
will ask him or her to reenter the invalid parameter. It can

9. IBM Database 2 Application Programming Guide for TSO
even suggest possible values to enter.

Users, SC26-408 1, IBM Corporation (1983); available through

10. IBM Database 2 Reference, SC26-4078, IBM Corporation
IBM branch offices.

(1983); available through IBM branch offices.
1 I . TSO commands are normally implemented as TSO command

processors. There is at least one load module, residing in either
a system, project, or personal library, to process each com-

12. DB2 is mostly written in PLS. PLS is a PL/I-like proprietary
mand.

language used by the IBM Corporation for product develop
ment. The language is not available to the public.

13. P. J. Denning, J. B. Dennis, and J. E. Qualitz, Machines,
Languages, and Computation, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1978).

Reprint Order No. G321-5215.

Kenneth R. Hammond IBM General Products Division, Santa
Teresa Laboratory, P.O. Box 50020, San Jose, California 95150.
Mr. Hammond is a senior associate DB2 development program-
mer working at the Santa Teresa Laboratory. He began working
on the TSO Attach Component in early 1980. Prior to this
assignment, he attended the University of California at Berkeley,
where he obtained the undergraduate degree in computer science.
While attending college, he worked for IBM as a computer operator
and computer programmer.

Melvin R. Zimowski IBM General Products Division, Santa Ter-
esa Laboratory, P.O. Box 50020, San Jose, California 95150. Mr.
Zimowski is a staff programmer in Advanced Database Develop
ment. He joined IBM in 1974 at Endicott, New York, where he
participated in the development of final test systems for the logic
and memory chips of the 4300 series of computers. He has worked
with the Advanced Database group since 1980. In 1973, Mr.
Zimowski completed courses of study for B.A. and M.A. degrees
in mathematics at the State University of New York at Bingham-
ton. He also received an MS. degree in computer science from
the University of California at Berkeley in 1980.

IBM SYSTEMS JOURNAL, VOL 23. NO 2 , i W

