
The Query Management
Facility

by J. J. Sordi

Data from a relational data base can be displayed in
reports, changed, and otherwise controlled using a
program called Query Management Facility (QMF). An
overview of this program is presented and is followed
by a discussion comparing equivalent forms of various
queries expressed in two distinctly different languages.
Both languages are designed for use with relational
data and are supported by QMF.

T he Query Management Facility (QMF)’-* pro-
vides a full-screen, interactive environment to

query, define, and control relational data contained
in either the I B M Database 2 (~ 8 2) ~ or the Structured
Query Language/Data System (SQLIDS)~ data base
systems. QMF is used from a visual display terminal
and is functional only when installed with either D B ~
or SQL/DS.

Relational data contained in D B ~ and in SQL/DS is
perceived to exist in table form as shown in Table 1.
A considerable understanding of QMF can be ob-
tained knowing no more than that about relational
data; however, an understanding of some of the more
complex applications of QMF requires some addi-
tional background. Other papers in this issue of the
IBM Systems Journal address the D B ~ data base sys-
tem and provide some of that background. G. Sand-
berg’s “A primer on relational data base concepts”’
and C. J. Date’s book, An Introduction to Database
Systems,6 are other good sources.

QMF provides a means of retrieving and displaying
data and of inserting, deleting, and updating data
using either a form of the Query-by-Example (QBE)
language”lo conceived by M. M. Zloof at IBM’S

Thomas J. Watson Research Center or the Struc-
tured Query Language (SQL)334*’1”3 developed at IBM’S
San Jose Research Center. Although both QBE and
SQL are designed specifically for use with relational
data, they offer the QMF user a distinct choice be-
tween two languages that are very different in form
and syntax.

This paper provides a QMF overview and discusses
the types of queries that may be created using either
QBE or SQL. It also shows the equivalent QBE and SQL
syntax that may be used to create such queries. See
References 1 and 2 for more detailed descriptions of
QMF.

QMF overview

Every QMF session begins (and ends) with the QMF
home panel shown in Figure 1. QMF items can be
viewed by pressing the associated PF keys shown at
the bottom of the display. Messages from QMF such
as “OK, you may enter a command,” will appear on
the message line, just above the COMMAND line.

QMF retrievals. Using the QUERY PF key displays
the last query created during a session. If none has
been created (as would be the case upon first viewing
the home panel), a blank panel that accommodates
the entry of either a QBE query or an SQL query is
displayed. A blank QBE panel is shown in Figure 2.

Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 2.1984

I

/%i%/ ;% 1%
/%%%/ /%%%/ /%%%I

/%%%/ /%%%I /%%%I
/%%%I /%%%I /%%%I 1%

/%%i/ ;%%%I j%%il ;%x%/ 1%
%%I /%%%/ /%%%/ /%%%/ /%%%I

QMF HOME PANEL

%%%/ ;%%%I ;%%%I I%%%/
/ /%"A%/ I%%%/ /YA%/
I%%%/ /%%%I I%%%/ x/ /%%%I ITA%/

%%/ /%%%/
/%%%I

/YA%/ /%%%I

QUERY
MANAGEMENT

FACILITY

Release 1.0
(c) Copyright IBM CORP 1982

You may type your commands on t h e
command l i n e , o r u s e t h e PF keys.
To g e t h e l p , p r e s s PF1 o r t y p e HELP.

%%%I
PF keys: l=HELP 3=END 6=QUERY 9=FORM 10=PROC ll=PROFILE 1FREPORT
OK, you may e n t e r a command.
COMMAND => -

PETRA DAVIS
FRANK CANTRELL
CAROL CAMPBELL
JANET HILL
ANGEL0 DIVISIERO
WILLIAM JAMES
RICHARD GOMEZ
ANN MARIE SWANSON
RANDOLPH DREW
JANET COULD
TIMOTHY HAROLDSON
STEVE WHITE
JAMES VANZANT
JOSEPH RUSSELL
PAMELA GRIFFITH
VERNON COLLINS
SHARON ROSTEGE

Table 1 The employee table

NAME EN0 DNO MGR SAL OTlME

715
529
299
349
284
209
182
125
362
238
579
382
234
787
36 1
948
27 1

46
77
46
12
51
87
51
46
23
77
12
87
46
87
23
73
51

299
182
182
182
299
238
014
182
299
182
299
238
182
299
238
299
238

10750
9650
17500
8000
6800
5500
25500
13500
I1700
2 1000
12500
16500
11000
18000
8500
12400
6 100

500
800

1200
1500
250

1340
1 1 0 0

-

-

-
-
-
780
2300
1280
650
40

L

The intersection of every row and column ofa table contains a data element or a null. A null signifies the absence of a value and is represented by a dash (-).

IBM SYSTEMS JOURNAL, VOL 23, NO 2.1984
SORDI 127

Figure 2 Blank QBE query panel

Figure 3 QBE retrieval query

QBE QUERY MOD

EMP I NAME I EN0 I DNO 1 MGR I SAL 1 OTIME
""""+"""""-+"""-+""-+""-+""""+""""

p. I I I AO. I I >12000 I

I FIED LINE 1

1=HELP 2=RUN 3=END 4=ENL 5=REDUCE 6=DRAW 7=BA 8=FO 9=FORM lO=LE 11=RI 12=REPORT

COMMAND => - SCROLL => PAGE

128 SORDI IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

In order to create the QBE retrieval in Figure 3 from
a blank panel, the DRAW command is used to obtain
a "skeleton" of the EMP table by keying in EMP on
the command line and pressing the DRAW PF key (or
by keying in DRAW EMP on the command line and
pressing ENTER). A skeleton of the EMP table will
appear on the display, and the user completes the
query by keying in the "P.", "AO.", and ">12000"
at the appropriate locations in the skeleton.

The PAGE option in the lower right corner of the
display shows the scrolling increment. That is, if the
query were more than one page (screen-full) long,
pressing PF key 8 would scroll forward by one page.
The scroll option may be changed simply by keying
over PAGE. For example, one may key in HALF for a
half-page scroll, or 10 for a scroll of 10 lines at a
time. The line number in the upper right corner
indicates which line of the query is at the top of the
display. For example, if the top nine lines were
scrolled off the top of the display, 10 would appear
as the first query line number on the display.

The query in Figure 3 asks for the name, employee
number, department number, manager number, sal-
ary, and overtime pay of each employee who has a
salary greater than $12 000. It also indicates that the

results should appear in ascending order by depart-
ment number.

The MODIFIED notation on the first line appears when
the query is modified from the way it first appeared
on the display. In this case, simply making entries
into the blank QBE panel causes the appearance of
the MODIFIED notation.

When the query is run by pressing the RUN PF key,
the report in Figure 4 containing the results of the
retrieval replaces the query on the display. The POS
notation in the upper right corner indicates the left-
and right-character position of the report on the
display. In this case, the leftmost position is 1 and
the rightmost position is 79. If a report is wider than
the display, it may be scrolled left and right.

Using the QUERY PF key from the home panel may
produce a blank SQL panel rather than a blank QBE
panel. The SQL query in Figure 5 , entered into a
blank SQL panel, is semantically equivalent to the
preceding QBE query and will produce an exact du-
plicate of the report shown in Figure 4.

Pressing the QUERY PF key causes the last query
created during a session to be displayed. If none has

~~

Figure 4 Ouery report

REPORT

NAME
"""""""""

TIEIOTHY HAROLDSON
CAROL CAMPBELL
ANN MARIE SWANSON
RICHARD GOMEZ
VERNON COLLINS
JANET GOULD
STEVE WHITE
JOSEPH RUSSELL *** END Wr.E;

EN0 DNO NGR

579 12 299
299 46 182
125 46 182
182 51 014
948 73 299
238 77 182
382 87 238
787 8 7 299

"- "_ "_ SAL

12500
17500
13500
25500
12400
2 1000
16500
18000

""_ OTIME ""_ - -
1340

650
-
-
-

2300

l=HELP 3=END 4=PRINT 6=QUERY 7=BACMJARD 8=FORWARD 9=FORM lO=LEFT 11=RIGHT
This is the report from your RUN command.
COMMAND => - SCROLL =-> PAGE

IBM SYSTEMS JOURNAL, VOL 23. No 2.1984 m m 129

Figure 5 SOL retrieval query

SQL QUERY MODIFIED LINE 1

SELECT NAME,ENO,DNO,MGR,SAL,OTIME
FROM EMP
WHERE SAL > 12000
ORDER BY DNO

*** END *H

1=HELP 2=RUN 3=END O=PRINT 5zRESET 7=BACK 8=FOR 9=FORM 10=INS 11=DEL 12=REpORT

COMMAND -> SCROLL => PAGE

Figure 6 OMF form

FORM

Column Descriptions:
NUM COLUMN HEADING

Page width is now: 48
USAGE INDENT WIDTH EDIT "- """_ """ _"" ""

1 NAME 2 18 C
2 EN0 2 3 L
3 DNO 2 3 L
4 MGR 2 3 L
5 SAL 2 5 L
6 OTIME 2 4 L

* END *
Control Break Text: Do you want OUTLINE? => YES

1 "> 2 =>
3 => 4 -">
5 => 6 ">

PAGE HEADING =>
PAGE FOOTING =>

l=HELP 3=END 4=PRINT 5=RESET 6=QUERY 7=BACKWARD 8=FORWARD 12=REPORT
OK, FORM is displayed.
COMMAND => SCROLL => PAGE

been created, as when the QMF home panel first
appears at the beginning of a session, a blank QBE or
SQL panel appears, depending upon the choice indi-
cated in a user's profile.

A user's profile can be displayed by pressing the
PROFILE PF key from the home panel, and the lan-
guage choice can be changed by simply keying in
QBE or SQL over the current choice. The change
applies only for the current session, unless the SAVE
command is used to save the modified profile.

An empty QBE or SQL panel may also be obtained at
any time during a session by using the RESET com-
mand. If no language is given in the RESET command,
a blank panel will appear according to the profile
choice. A choice may be given in the RESET com-
mand. For example,

RESET QUERY (LANGUAGE = QBE)

will give a blank QBE panel, no matter what is spec-
ified in the user's profile.

The report form. QMF produces a form that describes
the format of the report that was produced as the
result of a retrieval. The form may be viewed by
pressing the FORM PF key after the report is produced.
For the report in Figure 4, the form will appear on
the display as shown in Figure 6.

The INDENT column gives the number of blanks that
precede each column. The EDIT column gives the
edit characteristics of each column-either character
(C) or numeral with no decimal places (L) in this
example. The USAGE, Control Break Text, and OUT-
LINE are options for which there are no entries in the
form produced for the report in Figure 4. They may
be used to produce a modified report (as will be
discussed shortly). The column names, indentations,
etc., may be changed to produce a modified report

Figure 7 Modified QMF form

FORM MODIFIED

Column Descriptions: Page width is now: 73
NUM COLUMN HEADING USAGE INDENT WIDTH EDIT "- """_ """ ""_ ""

1 EMPLOYEE-NAME 2 18 C
2 EN0 OMIT 2 3 L
3 DEPARTMENT-NUMBER 10 10 L
4 MANAGER 2 8 L
5 SALARY 2 6 L
6 OVERTIME 2 8 L

+rk+ END ***
Control Break Text: Do you want OUTLINE? => YES

1 "> 2 =>
3 => 4 =>
5 "> 6 ">

PAGE HEADING => EMPLOYEES MAKING OVER 12000
PAGE FOOTING ->

1=HELP 3=END 4=PRINT 5=RESET 6=QUERY 7zBACKWARD 8=FORWARD 12=REPORT
OK, FORM displayed.
COMMAND => SCROLL => PAGE

by simply keying in the changes on the FORM panel,
as for example in Figure 7.

After keying in the changes to produce this modified
form, the REPORT PF key may be used to display data
from the last retrieval run, as shown in Figure 8.

Other types of reports can be produced from the
same data. For instance, BREAKI can be keyed in
under USAGE and next to DNO. This will cause a
break to occur after each department number
change. If SUM is entered next to SAL, a summary of
salaries by department will appear at each control
break along with any control break text given in the
form. If OUTLINE is set to YES, the break values for
DNO will not be repeated for each detail line. These
and other changes to the preceding form would
produce a summary report like the one in Figure 9.
See Reference 2 for more detailed information on
the form options and types of reports that can be
produced using QMF.

If different data is needed to produce the desired
report, pressing the QUERY PF key will display the
last retrieval, which may then be modified and run
to retrieve different data.

The current query, form, and retrieved data may be
saved at any time by using the SAVE command. For
instance, after a satisfactory report is produced, one
may choose to save the form, the retrieved data, and
the query that produced the data. A second form (or
third, etc.) may then be produced and saved to view
the same data in a different report. At a later time,
the saved query may be run again to retrieve current
data, and the saved forms used to produce reports
from the current data. The ERASE command may be
used at any time to erase items when they are no
longer useful.

Insert, update, and delete queries. Either QBE or SQL
can be used to insert or delete rows in tables or to
update the contents of a particular row and column.
In the following query, for example, QBE is used to
insert three new employees in the employee table:

luery

'HECTOR URESTI'
'DONALD WURM
'JAMES MOON

ID ***

Figure 8 Report using a modified form

REPORT LINE 1 POS 1 79
EMPLOYEES MAKING OVER 12000

EMPLOYEE DEPARTMENT
NAME NUMBER MANAGER SALARY OVERTIME

TIMOTHY HAROLDSON 12 299 12500 -
CAROL CAMPBELL 46 182 17500 -
ANN MARIE SWANSON 46 182 13500 1340
RICHARD GOMEZ 51 014 25500 -
VERNON COLLINS 73 299 12400 650
JANET GOULD 77 182 21000 -
STEVE WHITE 87 238 16500 -
JOSEPH RUSSELL 87 299 18000 2300

""""""""" """"" """- """ """"

?kJr* END J r 4 4

l=HELP 3=END 4=PRINT 6=QUERY 7=BACKWARD 8=FORWARD 9=FORM 10=LEFT 11=RIGHT
OK, Report is displayed.
COMMAND => SCROLL => PAGE

132 SORDl IBM SYSTEMS JOURNAL, VOL 23. NO 2.1984

Figure 9 Report with a control break

REPORT

DEPARTMENT
NUMBER

12
"""""

46

73

77

87

LINE 1 POS 1 79
EMPLOYEES MAKING OVER 12000

EMPLOYEE
NAME MANAGER
""""""""" """_
TIMOTHY HAROLDSON 299

SUM OF SALARIES IN DEPT 12

CAROL CAMPBELL 182
ANN MARIE SWANSON 182

SUM OF SALARIES IN DEPT 46

VERNON COLLINS 299

SUM OF SALARIES IN DEPT 73

JANET GOULD 182

SUM OF SALARIES IN DEPT 77

STEVE WHITE 238
JOSEPH RUSSELL 299

SUM OF SALARIES IN DEPT 87

SUM OF SALARIES BY DEPARTMENT

SALARY
""""

$12,500

$12,500

$17,500
$13,500

$31,000

$12,400

$12,400

$21,500

$21,500

$16,500
$18,000

$34,500

""""

""""

""""

""""

""""

" -~
$111,900

PAGE 1 *Vd END j;jrlr

l=HELP 2=RUN 3=END 4=PRINT 6=DRAW 7=BACKWARD 8=FORWARD 9=FORM 10=INSERT
1 l=DELETE 12=REPORT

COMMAND => SCROLL => PAGE

The ENO, DNO, and MGR columns are set to null for QMF procedures. In QMF, a series of commands that
each new row entered into the table because no constitute a procedure may be created using a PROC
values were given for these columns. Even though panel, and the entire procedure may be saved and
the OTIME column was not named in the query, it run periodically. Depressing the PROC PF key pro-
too gets a null for each new row. vides the user with a blank PROC panel similar to a

blank QBE or SQL panel. Figure 10 is the monthly
Examples of QBE and SQL update, insert, and delete report procedure, MONTHLY, that may have been
queries appear later in this paper. keyed in or previously saved and now displayed.

IBM SYSTEMS JOURNAL, VOL 23. NO 2.1984 SORDI 133

When this procedure is run, it runs a saved retrieval
called ED that uses a saved form called EMP-DEPT to
produce a report. This report is printed before the
results of the retrieval are saved in a table called

Only the owner of a table may
initially grant authority to others to
retrieve, update, delete, or insert

data in the table.

EMPDEPT. Then it runs a saved retrieval called DL
using a saved form called DIV-LOC to produce a
report. This report is then printed before the results
of the retrieval are saved in a table called DIVLOC.

Table definitions and user authority. In the interest
of saving space, SQL and QBE queries in this and the
remaining parts of the paper will appear out of the
context of the QMF display.

The preceding queries in this paper presume the
existence and the accessibility of the tables being
queried. Other QMF queries may be used to create or
drop table definitions and to grant or revoke users’
authority to manipulate data in such tables. Only
the SQL syntax is available to express these types of
functions.

The following SQL query, which is entered on a panel
such as the one in Figure 5, grants Jones authority
to delete rows from the DEPT table:

GRANT DELETE ON DEPT TO JONES

Only the owner of a table may initially grant author-
ity to others to retrieve, update, delete, or insert data
in the table. A table name in a query must be
qualified by the owner’s name, unless the person
creating the query is also the owner. For example, if
Smith owns the DEPT table, Jones can delete rows
from the table only if Smith has granted delete
authority to Jones. Even so, Jones must qualify the
name of the table with the owner’s name, as in the
following query, in which the sales department is

deleted from the DEPT table:

SMITHUDEPT 1 YA-4rsE 1
The name of the table, DEPT, is qualified by the
owner’s name, SMITH.

Table definitions may be created using a CREATE
query; however, a typical user may create a new table
and table definition by saving data resulting from a
retrieval. The table definition for such a new table is
automatically created and saved by QMF, using the
definitions of the retrieved data. Other users, a data
base administrator for example, might originate a
new table definition by using an SQL CREATE as
follows:

CREATE TABLE EMP
(NAME CHAR(18),
E N 0 CHAR(3),
DNO CHAR(3),
MGR CHAR(3),
SAL INTEGER,
OTIME INTEGER)

Query and procedure variables. One may pass values
to a query or procedure that replaces variable names
appearing in a query or procedure. Typically, a pre-
viously created and saved procedure or query is run
periodically with different values passed for each run.
For example, the following query may have been
saved as INSERT3:

EMP I NAME

&NAME1
&NAME2

I. &NAME3
&NO2
&NO3

J

The variable names begin with &. Variables may be
passed as part of the RUN command, or entered into
a QMF prompt panel. For example, the command
R U N INSERT^, with no variables, will result in a
prompt panel as shown in Figure 1 1. The user may
then key in the parameters and press the ENTER key.

Other QMF functions. A number of QMF topics are
not addressed in this overview, including

HELP panels and prompts to help a user correct
errors or to provide tutorial information about
user-selected topics
Views and synonyms
The user profile options
The export and import of items between users

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

Figure 10 Procedure on PROC panel

PROC

RUN ED (FORM = EMP-DEPT)
PRINT REPORT
SAVE DATA AS EMPDEPT
RUN DL (FORM = DIV-LOC)
PRINT REPORT
SAVE DATA AS DIVLOC
Jr Em *f&

MONTHLY LINE 1

1=HELP 2=RUN 3=END 4=PRINT 6=QUERY 7zBACKWARD 8=FORWARD 9=FOM
10=INSERT 11=DELETE 12=REPORT
OK, PROC is displayed.
COMMAND => SCROLL => PAGE

Figure 11 Parameters prompt panel

RUN COMMAND PROMPT - - VALUES OF VARIABLES

Your RUN command runs a query or procedure with var iables
t h a t need values . Fi l l in the value for each var iable named
below, a f t e r t h e a r r o w . Then p res s ENTER. The message a t t h e
bottom gives the name o f t h e f i r s t v a r i a b l e t h a t n e e d s a value.

&NAME 1
&NO 1
&NAME2
&NO2
&NAME 3
&NO3

- ->
->
”>
”>
”>
->

- -
-
-
-
-

l=HELP 3=END, o r t y p e HELP o r END =>
Variable &name1 needs a value.
COMMAND => SCROLL => PAGE

SORDI 135
IBM SYSTEMS JOURNAL, VOL 23. NO 2.1984

Table 2 Simple retrieval result

NAME DNO SAL

PETRA DAViS 46 10750
FRANK CANTRELL I1 9650
CAROL CAMPBELL 46 17500
JANET HILL 12 8000
ANGEL0 DlVISlERO 5 1 6800
WILLIAM JAMES 87 5 500
RICHARD GOMEZ 51 25500
ANN MARIE SWANSON 46 13500
RANDOLPH DREW 23 117oO
JANET GOULD 77 21000
TIMOTHY HAROLDSON 12 12500
STEVE WHITE 87 16500
JAMES VANZANT 46 1 I O 0 0
JOSEPH RUSSELL 87 18000
PAMELA GRJFFTTH 23 8500
VERNON COLLINS 73 12400
SHARON ROSTEGE 51 6100

The use of comments in queries

The reader should refer to Reference 2 for details on
these topics.

Classification of QBE and SOL query types

The QMF user must be able to identify every appli-
cation with a particular query type and then choose
either QBE or SQL to create the query.

The task becomes much easier if the user has an
understanding of the different classifications of query
types and of how either the SQL or QBE language may
be used to create a query. The remainder of this
paper classifies the different types of queries that may
be created using either QBE or SQL, and shows many
semantically equivalent QBE and SQL examples. The
tables referred to in the examples appear in the
Appendix.

Simple retrievals. A simple retrimal retrieves data
from and references a single table. As an example,
here we are to retrieve the names, department num-
bers, and salaries of those employees in the EMP
table:

SELECT NAME, DNO, SAL
FROM EMP

EMP NAME DNO SAL
P. I

The names of columns in a table from which data is

to be retrieved may appear in any order in the query.
The information in Table 2 is produced as a result
of the preceding retrieval.

The QBE query may also be created using P.’s under
the column names as follows:

EMP I NAME I E N 0 I DNO 1 MGR 1 SAL 1 OTIME
I P. I I P. I I P. I

If the P. appears under the table name, EMP, as in
the first example of a simple retrieval, data elements
for all of the named columns are displayed. If the P.
appears under column names as given above, only
data elements for those columns are displayed.

Typically, a user will DRAW a table, causing all of
the column names for the table to appear on the
display. The user then simply enters the P.’s under
the appropriate columns.

Duplicate rows. Data retrieved from a table may
contain duplicate rows. A row is a duplicate of
another row if the data elements in respective col-
umns of both rows are identical. Using DISTINCT or
UNQ. will retrieve data from rows that have no
duplicates and from single copies of rows that do
have duplicates.

Here we retrieve the division numbers and locations
of all departments in the DEPT table, excluding du-
plicate rows from the report:

SELECT DISTINCT DIV,LOC
FROM DEPT

DEPT DIV LOC

P.UNQ. I

This eliminates the duplicates from the report as
follows:

DIV LOC
510 SJ
- -

404 SA
121 LC
131 LC
302 LC
20 1 MI
1 1 1 SJ
1 1 1 LC

Duplicate rows may be retained in the report by
omitting the DISTINCT and UNQ. qualifiers as below:

IBM SYSTEMS JOURNAL, VOL 23, No 2.1984

1 1

P.

This retains the duplicate rows:

"
DIV LOC
510 SJ
404 SA
404 SA
510 SJ
121 LC
121 LC
131 LC
302 LC
20 I MI
20 I M!
20 I MI '

1 1 1 SJ
1 1 1 SJ
131 LG
1 1 1 LC

Conditional retrieval of data. In the preceding ex-
amples, data was selectively retrieved from columns
by naming only those columns. One may also limit
the data retrieved from the rows of tables. We now
retrieve the names, salaries, and department num-
bers of those employees in Department 46 with
salaries greater than $15 000:

SELECT NAME, SAL, DNO
FROM EMP
WHERE SAL > I 5000
AND DNO = 46

Conditions in QBE may also be expressed using a
CONDITIONS box obtained by keying COND into the
command line and pressing the DRAW PF key. The
conditions are then keyed into the CONDITIONS box
as in the following example. The names, salaries,
and overtime pay of those employees with overtime
incomes greater than $1200 or salaries greater than
$20 000 are to be retrieved:

SELECT NAME, SAL, OTIME
FROM EMP
WHERE OTIME > 1200
OR SAL > 20000

EMP OTIME SAL NAME

P. I I -21K 1 -1250

CONDITIONS

-1250 > 1200 OR - 21K > 20000

The names -21K and -1250 in the QBE query
represent the data elements in the SAL and OTIME
columns. They are also examples of the data ele-
ments that they represent. That is, 2 1 K is an example
of the selected SAL data elements and 1250 is an
example of the selected OTIME elements. These
names, which begin with an underscore (J, are
called example element names and are originated by
the creator of the query.

Figure 12 Retrieval using expressions
~ ~~

SELECT NAME,SAL+OTIME ""+""-+"""""-

W H E R E DNO = 46
AND SAL > 15000 EMP I NAME 1 SAL 1 OTIME 1 DNO I
ORDER BY 2

P . I -SM I -S+-O AO. I

""-+"""+""""+"""-+""-
I -SM I -s I -0 I 46 I

I CONDITIONS I I"""""""

IBM SYSTEMS JOURNAL, VOC 23. NO 2 , l W SORDI 137

When an example element name is not part of a
condition in a table skeleton, it may be used any-
where else to identify the row and column of the
table skeleton in which it appears.

Use of sort in simple retrievals. Retrieved rows of
data in a report may be ordered by data in one or

Retrieved rows of data in a
report may be ordered by data in

one or more of the columns in
the retrieval.

more of the columns in the retrieval. Below
we first retrieve the names, salaries, and department
numbers of those employees with salaries greater
than $20 000, then sort the report by department
number in descending order and by name in ascend-
ing order:

SELECT NAME, SAL, DNO
FROM EMP
WHERE SAL > 20000
ORDER BY DNO DESC, NAME

EMP NAME SAL DNO

P. I AO(2). I >20000 I DO(1).

The SQL sort column names in the ORDER BY clause
may be followed by either ASC or DESC for ascending
and descending order. If neither is used, ASC is as-
sumed. The sort is done by the values in the first
column named in the ORDER BY clause and then by
the second column named.

The QBE sort columns are indicated by AO for as-
cending and DO for descending. The sort is done by
the column that has the lowest integer value in a sort
operator and then by the column that has the next
highest value in a sort operator.

Rows may be ordered using only data that will be in
the report. Since the employee number ENO is not in
the report produced by the preceding retrieval, it
may not be used as a sort field.

138 SORDI

Using expressions for report data. Thus far, the data
elements that have appeared in a report were data
elements copied from a table. It is possible to use an
arithmetic expression that refers to data elements
from a table and to use the value obtained from an
evaluation of the expression as a single entry in the
report, as shown in Figure 12. In this example, we
retrieve the name and the sum of the salary and
overtime pay of each employee with a salary greater
than $15 000 in Department 46 and order the report
by the sum. The SQL ORDER BY clause must use an
index to the select list when the sort is done on an
expression.

QBE requires a skeleton that represents the report
when any data element in the report is not derived
from a single data element in a table. In this example,
-SM, "s, and -0 are used in the report skeleton to
refer to the NAME, SAL, and OTIME columns of the
EMP table.

Dependent retrievals. In simple retrievals, data re-
trieved from a row may depend upon conditions that
refer to data in the same row. In a dependent re-
trieval, data retrieved from a row will depend upon
data in other rows, usually in rows of other tables.
In the following example, we retrieve the names,
salaries, and department numbers of those employ-
ees whose departments are located in San Jose (sJ):

SELECT NAME,SAL,DNO
FROM EMP
WHERE DNO = ANY

(SELECT DNUM
FROM DEPT
WHERE LOC = 'SJ')

EMP NAME SAL DNO

P. I I -D

DEPT DNUM LOC

I -D I SJ

In this case, the user recognizes that the data to be
retrieved is in one table, just as in a simple retrieval.
However, a simple retrieval will not do because the
condition for retrieval is dependent upon data in
other rows. In this case, the other rows are in the
DEPT table.

The dependent query form of QBE is characterized
by the link from the EMP row to the DEPT row forged
by using the example element name, -D, in both
rows. Using the same name indicates a link on the
same values in both tables. That is, data is retrieved

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

from each row in EMP for which there is a row in
DEPT with the same department number and a lo-
cation of San Jose.

The dependent query form of SQL is characterized
by the use of a subquery. The subquery is part of the

The dependent query form of SQL is
characterized by the use of a

subquery,

condition expressed in the SQL WHERE clause. In this
example, the subquery identifies a subset of rows
from the DEPT table that indicate locations in San
Jose.

Dependent retrievals using rows in the same table.
Retrieval from the rows of a table can be dependent
upon data in different rows of the same table. For
example, here we retrieve the names, salaries, man-
ager numbers, and employee numbers of those em-
ployees having salaries larger than those of their
managers:

SELECT NAME,SAL,MGR,ENO
FROM EMP EMPl
WHERE MGR = ANY

(SELECT E N 0
FROM EMP EMP2
WHERE EMP I .SAL > EMP2.SAL)

EMP NAME SAL

P. Y%+-Eri -MS

In this case, the user recognizes that the data to be
retrieved is in the same table and that the data on
the manager’s salary is in different rows of the table.

The SQL user must provide alternate names for EMP
(EMPI and EMPZ) so that the distinction can be made
between the employee’s salary and the manager’s
salary. The distinction in QBE is clear from the loca-
tion of the example element names in different rows.

IBM SYSTEMS JOURNAL. VOL 23 NO 2,1984

Join retrievals. In simple and dependent retrievals,
data is retrieved from only one table. One may
retrieve data from more than one table by concep-
tually joining the tables to form a single table. Such
a query is called join retrieval. Figure 13 depicts this
type of query, in which the names, department
names, and locations of those employees in Depart-
ment 77 and Division 404 are retrieved.

The user must recognize that data to be retrieved is
in different tables and that a join is needed to get
data from both tables into the report.

In QBE, a join is implied when example element
names that reference data elements in both EMP and
DEPT appear in the same row of a report skeleton.

The SQL query implies a join of EMP and DEPT
because both are named in the FROM clause. It is
possible to force a join using SQL, even when a join
table is not referenced in the SELECT and WHERE
clauses, by simply naming the table in the FROM
clause. Of course, one should not create such a query
because the join is not necessary.

Union retrievals. Data elements from the columns
of different tables may be retrieved into the same
columns of a report by using a union retrieval. Figure
14 illustrates this type of retrieval, in which we
retrieve the names and salaries of those employees
in Department 46 and in Division 405, and order
the report by salary. In this type of application, the
user must recognize that the data to be retrieved into
the same columns of the report is in different tables.

In essence, a union contains separate queries, the
results of which are united to form a single report.
A union, by definition, does not contain duplicates.
That is, all duplicates in a report are removed as the
result of a union, and the use of DISTINCT or UNQ. in
the query is meaningless.

Equivalent join and dependent queries in SQL. In
SQL, it is possible to create a join retrieval that
performs the same function as a dependent retrieval.
That is, an application requires that data be retrieved
from each row of a single table, and retrieval is
dependent upon data in other rows of the same or a
different table. Rather than use a dependent retrieval,
the table that would have appeared in a subquery is
joined with the table from which the data is retrieved.
If duplicates are not retained, either a join or de-
pendent SQL retrieval will produce the same result.
For example, in Figure 15 we retrieve the names,

salaries, and department numbers of those employ-
ees located in San Jose.

For performance reasons, when either an SQL join or
an sqL-dependent query give the same result, it is
best to choose the SQL join form. Care must be taken,
however, when duplicates are retained, as will be
discussed below.

Note that the equivalent QBE syntax is the same for
either SQL query in the example of Figure 15. It is
not necessary for the user to try to create an equiv-
alent join form using QBE because the QBE-dependent
form is optimized for best performance.

When duplicate rows are retained, using an SQL join
query instead of an SQL dependent query may not
produce the same results. For example, the following
dependent query retrieves duplicate division num-
bers and division names from HQLOC of those divi-
sions located in Scranton that have a department in
Los Gatos (LG):

SELECT DV#,DIV
FROM HQLOC
WHERE LOCN = 'SCRANTON'
AND DV# = ANY

(SELECT DIV
FROM DEPT
WHERE LOC = 'LG)

HQLoC DV# DIV LOCN
I P.-D I P. 1 SCRANTON

DEPT I DIV I LOC
I -D 1 LG

The following table is produced:

DV# - DIV
I 2 I MANUFETURING
302 PERSONNEL
12 1 MANUFACTURING
12 1 MANUFACTURING
302 PERSONNEL

The following query, in which duplicates are selected
using a join, is not the equivalent of the preceding

Figure 13 Join retrieval

SELECT NAM!Z,DNAME,LOC
FROM EMP, DEPT
WHERE DNO = 77
AND DIV = 404
AND DNO = DNUM
ORDER BY NAME

I I I I
I

p. I -E AO. I -D I -L I
""""+""""+""-+""-

EMP I NAME 1 DNO I
""+"""-+""- I

I -E I " I
DEPT I DNUM I DIV I LOC I DNAME I
""-+"""+""-+""-+"""- I

I " I 404 I -L I -D I
I CONDITIONS I

I -M = 7 7 I
I""""""" I

produces the following:

NAME DNAME LOC
""""""" """"""_
FRANK CANTRELL ACCOUNTING SA
JANET GOULD ACCOUNTING SA

"-

140 SORDI IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

Figure 14 Union retrieval

SELECT NAME,SAL
FROM EMP
WHERE DNO = 46
UNION
SELECT NAME,SAL
FROM HQLOC
WHERE DV# = 405
ORDER BY 2

produces :

NAME """"""""_
PETRA DAVIS
JAMES VANZANT
ANN MARIE SWANSON
CAROL CAMPBELL
MICHAEL DOUGLAS
JOHN JONES
GEOFFREY ME1

SAL

10750
11000
13500
17500
22000
24000
26000

"-"

I I I
I

P. I -E I -S AO. I
P. I -D I -HS I

""+"""-+""""

HQLOC I NAME I SAL I DV# I
""-+"""+""-+""- I

I -D I -HS I 405 I

I
I -E I -s I 46 I

EMP I NAME I SAL I DNO I
""+"""-+""-+""-

dependent query. That is,

SELECT DV#,X.DIV
FROM HQLOC X DEFT Y
WHERE LOCN = 'SCRANTON
AND DV# = Y.DIV
AND LOC = 'LC'

P. I -D 1 -DV

HQLOC DV# DIV LOCN
I -D 1 -DV I SCRANTON

DEPT I yi I L,(,(4
produces the following result:

DIV DNO
121 M A N U F ~ U R I N G
121 MANUFACTURING
302 PERSONNEL
121 MANUFACTURING
I2 I MANUFACTURING

12 1 MANUFACTURING
I2 1 MANUFACTURING
302 PERSONNEL

This report is a result of the join and the retention
of duplicates produced from the join. If the DISTINCT
qualifier is used to eliminate duplicates, all duplicates
are excluded. That is,

SELECT DISTINCT DV#,X.DIV
FROM HQLoC X DEPT Y
WHERE LOCN = 'SCRANTON
AND DV# = Y.DIV
AND LOC = 'LC'

P.UNQ. I -D 1 -DV

HQLOC DV# DIV LOCN
I -D I -DV I SCRANTON

DEPT DIV I LOC

1 -D I LC

I

IBM SYSTEMS JOURNAL, VOL 23, NO 2,1984

Figure 15 Join equivalent of a dependent query

SELECT DISTINCT NAME,SAL,DNO
FROM EMP, DEPT
WHERE DNO = DNUM
AND LOC = 'SJ'

gives the same result as:

SELECT DISTINCT NAME,SAL,DNO
FROM EMP
WHERE DNO = ANY

(SELECT DNUM
FROM DEPT
WHERE DNO = DNUM
AND LOC = 'SJ')

EMP I NAME I SAL I DNO I
"""-+-"""+""-+""-
P.UNQ. I I I -DN I

I

DEPT I LOC I DNUM I
""-+""-+""" I

I SJ I -DN I

EMP I NAME I SAL
""-+"""-+""

P.UNQ. I I

DEPT I LOC I DNUM
""-+""-+"""

I SJ I -DN

eliminates all duplicates:

DIV DNO

302 PERSONNEL

-
121 M A N U F ~ U R I N G

The result is still not the same as for the dependent
query retrieving duplicates. Generally speaking, one
should use a dependent retrieval instead of a join if
duplicates are to be retained, unless one is familiar
enough with the data to know that no unwanted
duplicates will be formed as the result of a join. For
example, the retrieval in Figure 15 includes the
names of employees from the EMP table. Since there
are no duplicate names in the EMP table, there will
be no duplicates in the report produced from the
query. Therefore, the DISTINCT and UNQ. qualifiers
may be omitted, and the join form of the SQL re-
trieval will give the same report as the sQL-dependent
form.

Grouping in retrieval queries. Thus far, data has been
addressed in terms of the rows and columns that
contain data elements. QMF also provides a means of
partitioning tables into groups of rows and of refer-
encing such groups using built-in functions. One or
more columns may be named upon which grouping
is to take place, and all rows in a table that have the

same values in the grouping columns constitute a
specific group or partition of the table. Grouping is
indicated by use of the SQL GROUP BY clause or the
QBE G. operator. Following is an example in which
we retrieve the department number and average
salary for each department:

SELECT DNO, AVG (SAL)
FROM EMP
GROUP BY DNO

P. -D A V G . 2

EMP SAL DNO

-S -D G.

When grouping is used in a QMF retrieval, only group
data may be retrieved. That is, the SELECT clause in
SQL may contain only built-in functions and columns
named in the GROUP BY clause; the report skeleton
in QBE may contain only built-in functions and
example elements for which there is a G . in a source
table.

Note that a report skeleton is required in the QBE
query because other than data elements from rows
of a table are to appear in the report.

142 SORDI IBM SYSTEMS JOURNAL, VOL 23. NO 2,1984

Conditional retrieval using built-in functions. In all
our previous examples, conditions referred only to
data elements. A QMF query that has grouping may
also have conditions that contain built-in functions.
In such instances, the grouping must be done before
the value for a built-in function can be determined.
Conditions that reference only data elements are
evaluated first to retrieve rows that meet retrieval
criteria. Retrieved rows are then grouped, and the
conditions that apply to groups are evaluated last.
SQL uses the WHERE and HAVING clauses to distin-
guish row from group conditions. In Figure 16, the
department numbers and the sums of the salaries
from Departments 46, 5 1, and 79 are to be retrieved
if the average salary in the department is over
$12 000. Only the salaries of those employees mak-
ing more than $10 000 are to be used.

Grouping with more than one column. When more
than one grouping column is specified in the same
GROUP BY clause in SQL or in the same query row in
QBE, data elements used for grouping from each row
are treated as a single combined value. In the ex-
ample below, we retrieve the department number,
manager, and average salary for each department
and manager:

SELECT DNO,MGR,AVG(SAL)
FROM EMP
GROUP BY DN0,MGR

P. -D -M A V G . 3

EMP MGR SAL DNO

G." -s -D G.

Each group is formed on a combined MGR and DNO
value. That is, all rows that have the same MGR and
DNO values are members of the same group.

Grouping in a join retrieval. Grouping may be spec-
ified in a join retrieval. There is no significant differ-
ence in the way grouping is done for a join retrieval
except that the grouping is done on the joined data.
That is, the join is done on retrieved rows before the
grouping is done. Figure 17 shows an example in
which we are to retrieve the department numbers,
locations, and sums of the salaries of employees in
Division 404, grouping by department number and
location.

In this example, EMP and DEPT are joined, and the
DNO and LOC grouping columns are part of the join.
That is, grouping takes place after the join and
according to the combined DNO and LOC columns.

Grouping in a dependent retrieval. In dependent
retrievals, grouping columns may reference the table
from which data is retrieved or the table upon which

Figure 16 Conditional selection of groups

SELECT DNO,SUM(SAL)
FROM EMP
WHERE DNO IN (46,51,79)
AND SAL > 10000
GROUP BY DNO
HAVING AVG(SAL) > 12000

"""_
P .

EMP ""_ I SAL I DNO I
-+""-+"-""" I

I

I CONDITIONS I
("""""""""""- I
I -s > 10000 I
I -D IN (46,51,79) I
I AVG.-S > 12000 I

IEM SYSTEMS JOURNAL, VOL 23, NO 2,1984 SORDI 143

Figure 17 Join retrieval using grouping

SELECT DNO,LOC,SUM(SAL)
FROM EMP ,DEFT
WHERE DIV =404
AND DNO = DNUM
GROUP BY DNO, LOC

I

retrieval is dependent. Here we retrieve the names
and salaries of those whose salaries are greater than
the average salary of any department:

SELECT NAME, SAL
FROM EMP
WHERE SAL > ANY

(SELECT AVG(SAL)
FROM EMP
GROUP BY DNO)

EMP NAME SAL

P. -E >AVG.-S

EMP SAL DNO

-s G.

Conditions that contain group and row references. A
condition that contains both group and row refer-
ence to the same rows of a table is ambiguous and
will be rejected by QMF. The following three queries
are parts of an example of mixed group and row
references. The first is an invalid query:

SELECT NAME,SAL,DNO,OTIME
FROM EMP
WHERE OTIME > 500
GROUP BY DNO
HAVING SAL > AVG(SAL)

EMP NAME SAL DNO OTIME

P. 1 -N 1 -S I -D 1 >500

I CONDITIONS I
i I

This query could be interpreted to mean "retrieve

EMP I SAL I
""+""-+

I - s I
DEPT I DNUM
""-+"""

DNO I """_ I

+"""-+"""- I
I -M I 404 I G.-L I

data from the EMP table for those whose salaries are
greater than the average salary of employees who
make more than $500 in overtime":

SELECT NAME,SAL,DNO,OTIME
FROM EMP
WHERE SAL > ANY

(SELECT AVG(SAL)
FROM EMP
WHERE OTIME > 500
GROUP BY DNO)

EMP NAME SAL DNO OTIME

P. -s 1
-s2 G. >500

m -S 1 > AVG. 3 2

or it could mean "retrieve data from the EMP table
for those who make more than $500 in overtime and
whose salaries are greater than the average salary of
any department":

SELECT NAME,SAL,DNO,OTIME
FROM EMP

AND SAL > ANY
(SELECT AVG(SAL)
FROM EMP
GROUP BY DNO)

WHERE OTIME >500

EMP 1 NAME t
1 CONDITIONS 1
1 - S 1 > AVG. 3 2 1

IBM SYSTEMS JOURNAL, VOL 23. NO 2,1984 144 SORDI

Figure 18 Join within a dependent retrieval

S E L E C T NAMF,,SAL,DNO

WHERE DNO = ANY
""+"""-+"""-+""-

(S E L E C T DNUM
FROM D E P T , HQLOC D E P T 1 DNUH 1 D I V I
WHERE D I V = D V l
AND LOCN = ' SCRANTON')

""-+"""-+""-

HQLOC I DV# I LOCN I
"""+"""-+"""""

Either of the latter two queries is valid in QMF, but
the first of these three queries is invalid because of
the ambiguity.

Mixed join and dependent retrievals. Previously,
joins and dependent queries have been discussed as
separate query types. It is possible to mix joins and
dependent queries in the same QMF query. An ex-
ample is shown in Figure 18, in which we retrieve
the names, salaries, and department numbers of
those employees whose departments are in a division
located in Scranton.

Figure 19 is an example of the mixed join and
dependent retrieval whereby we retrieve the names,
salaries, and locations of those employees in depart-
ments not in a division located in Blakely.

For performance reasons, it is always better to use
joins at lower levels in an sQL-dependent query than
it is to use multiple levels of dependence. The SQL
query in Figure 20 uses multiple levels of dependence
(a subquery within a subquery). In this query, we
retrieve the names, salaries, and department num-
bers of those employees whose departments are lo-
cated in San Jose and whose division is located in
Scranton. Figure 2 1 shows an equivalent query using
a join in the SQL subquery. The result is the same no
matter which SQL form is used, but performance may
be better for the latter SQL form. Note that either SQL
form has the same equivalent QBE form.

Multiple levels of dependence. There are three cases
where it is sometimes necessary to use multiple levels
of dependence in SQL:

IBM SYSTEMS JOURNAL, VOL 23, NO 2.1984

1. When creating more than one group
2. When ALL is used with a comparison operator
3 . When comparing group and row data

Release 1 of QMF does not provide QBE support for
these cases. That is, Release 1 of QMF does not
provide QBE support for ALL in a comparison oper-
ator, and the QBE equivalent form to those SQL
queries that require multiple levels of dependence is
not supported in Release 1 of QMF.

Figure 22 is an example of the first case. Here we
retrieve the names, salaries, and department num-
bers of those employees in any department having
an average salary greater than the average salary of
any division. Although the equivalent QBE form ex-
ists, as shown in this example, it is not supported in
Release 1 of QMF.

Performance considerations using retrieval queries.
There are at least three situations where performance
is a consideration when creating QMF queries:

1. Ordering of retrieved data
2. Elimination of duplicate rows
3 . Using an equivalent join in place of a subquery

Ordering of data has an obvious impact upon per-
formance because it means data must be sorted
before it is displayed. Not so obvious, however, is
the fact that elimination of duplicates causes a sort
to be done. That is, data is sorted so that duplicate
rows can be located and eliminated from a report.
Generally speaking, then, elimination of duplicates

m a 145

Figure 19 Mixed join and dependent retrieval

I I I I

p. I -E I -s I -L I
SELECT NAHE,SAL,LOC ""-+"""-+"""-+"" I
FROM EMP, DEPT
WHGRF, DNO = DNUM
AND DIV -r= ANY EMP I NAME I SAL I DNO 1
(SELECT DV# ""+"""-+""-+""- I
FROM NQu3C I -E I -s I " I
W E E LOCN = ' BLAKELY')

DEPT I DNUM I DIV 1 LOC I
""-+"""+"""""+-""" I

I " I -(= -D I -L I
HQLOC I DV# 1 LOCN I
"""+"""-+""""-

D I BLAKELY I
I . ,

I -

Figure 20 Joins at levels of dependence

SELECT NAME,SAL,DNO
FROM EMP
WHERE DNO = ANY
(SELECT DNUM
FROM DEW
WHERE LOC = 'SJ'
AND DIV = ANY
(SELECT DV#
FROM HQLoC
W H E R E LOCN = ' SCRANTON'))

EMP I NAME I SAL I DNO I
""+"""-+"""-+-""" I

pa I -E I -s I -D I

I
I -D I -E I SJ I

DEPT I DNUM I DIV I LOC I
""-+"""-+""-+""-

HQLOC I DV# I LOCN I
"""+"""-+"""""

I -E I SCRANTON I
I

and the specification of ordering should be omitted
unless necessary.

As discussed previously, performance may be better
if a join is used instead of an equivalent dependent
query. If, however, duplicates are retained in a join,
unwanted duplicates may appear as the result of the
join. Under those circumstances, if performance is a
consideration, one has the choice of composing a
dependent query with the duplicates retained, or of
composing a join query with duplicates eliminated.

Knowing something about the data has a bearing on
the choice to be made. That is, if one knows from
the queried data that there will be no unwanted
duplicates, selection of duplicates in a join should be
used instead of a dependent query when perform-
ance is a consideration.

Insert, update, and delete queries. QMF also includes
the ability to insert, update, and delete data using
either QBE or SQL. These types of queries are referred
to collectively as maintenance queries.

IEM SYSTEMS JOURNAL, VOL 23, NO 2 , l W

~~

Figure 21 Join replacing a level of dependence
~~ ~

SELECT NAME,SAL,DNO

WHERE DNO = ANY
1 FROM EMP

(SELECT DNUN
FROM DEPT X, HQLOC
WHERE LOC = 'SJ'
AND LOCN = ' SCRANTON '
AND X.DIV = DVC)

EMP I NAME I SAL I DNO 1
""+"""-+"""-+""- I
p. I -E I -s I -D I

I
I -D I -E I SJ I

DEPT I DNUM I DIV I LOC I
""-+"""-+""-+""-

HQLOC I DV# I LOCN I
"""+"""-+"""""

I -E I SCRANTON I
I

Figure 22 Separate groups in a multidependent query
~~

SELECT NAME,SAL,DNO
FROM EMP
WHERE DNO = ANY

(SELECT DNO
FROM EMP
GROUP BY DNO
HAVING AVG(SAL) > ANY

(SELECT AVG (SAL)
FROM HQLOC
GROUP BY DV#))

EMP I NAME I SAL I DNO I
""+"""-+"""-+"""- I

HQLOC 1 DVt I SAL I
"""+"""-+"""- I

I G. I -s2 I

1"""""""""- I
1 CONDITIONS I
I AVG.-SI > AVG.-SP I

In QMF, one may not insert, update, or delete data
into more than one table at a time; therefore, unions
and joins are not relevant to maintenance queries.
Also, the specification of a sort applies only to data
as it appears in a report. Since maintenance queries
do not produce a report, sorts are not valid in such
queries.

Simple inserts. A simple insert is simpler than its
retrieval counterpart because no conditions may ap-
pear in a simple insert. Only the constant values to
be added as part of the newly inserted row are given.

If no vaIue is given for any column, a null is indicated
for that column in the newly inserted row.

In the following example, if we insert the name and
employee number for James Jones into the employee
table, the newly inserted row will have nulls for the
columns other than NAME and ENO. A null is not the
same as a zero or a blank. A null means the absence
of a value, and if a null is referenced in an expression,
the expression produces a null. Also, if a column
with nulls is specified as a grouping column, each
null is treated as a separate group:

IBM SYSTEMS JOURNAL, VOL 23. NO 2,1984 SORDI 147

Figure 23 Dependent delete query

DELETE
FROM EMP
WHERE DNO = ANY

(S E L E C T DNUM
FROM D E P T X , HQLOC
WHERE X . D I V = DV#
AND LOCN = ' SCRANTON ')

EMP I DNO I
""+""-

D . -D
I

D E P T I DNUM I D I V I
""-+"""+""- I

I -D I - D t I
HQLOC I D V t I LOCN I
"""+""-+"""""

I -D# I SCRANTON I
I

Figure 24 Dependent update query

UPDATE EMP
S E T S A L = S A L * 1 . 1
WHERE S A L < ANY

FROM EMP
GROUP BY DNO)

(SELECT .S*AVG(SAL)

EMP I S A L I S A L I DNO I
"""-+"""""+""-+""- I

I U . l . l * - S I -s I I
I I 1 G - I

I CONDITIONS I
I""""""""_ I
I -S < . S;\AVG.-Sl I

INSERT INTO EMP (NAME,ENO)
VALUES (JAMES JONES, 579)

EMP NAME E N 0

I . I 'JAMES JONES I 579

Simple updates. Data elements within existing rows
of a table may be updated to a new value (or to a
value that replaces a null). As an example, we update
employee number 579 to contain the new employee
number 979. Also, we update the department num-
ber to 77 and the salary to $7200:

UPDATE EMP
SET DNO = 77,

E N 0 = 979,
SAL = 7200

WHERE E N 0 = 579

Note that the ENO column is repeated in the QBE
query. Even though a column may be repeated in a
query, reference is to the single column with the
same name in the actual table.

Simple deletes. Simple deletes are similar in form to
simple retrievals, except that rather than qualifying
a row for display, the row is qualified for deletion.
In the example below, we delete James Jones in
department number 77 from the employee table:

DELETE
FROM EMP
WHERE DNO = 77
AND NAME = 'JAMES JONES'

EMP NAME DNO

D. I 'JAMES JONES' 1 77
~

EMP DNO EN0 EN0 SAL Dependent insert, update, and delete queries. De-
l U.77 1 579 l U.979 l U.7200 pendent insert, update, and delete queries are very

148 SORDI IBM SYSTEMS JOURNAL, VOL 23. NO 2,1984

Grouping with insert, update, and delete queries.
Inserts, updates, and deletes are made on a row-by-
row basis. That is, a group of rows cannot be specified
for insert, update, or delete. However, grouping may
occur in a dependent query. Figure 24 shows a case
where each employee’s salary that is less than half
the average salam of any department is increased by
ten percent.

Concluding remarks

One of the unique features of QMF is the dual syntax
provided as part of the query facility. Users can
accommodate their personal needs and preferences
by choosing either SQL or QBE to compose a particular
query. The result of a query is completely independ-
ent of the syntax used to formulate the query. Data
from a retrieval, for instance, may be formulated
into different reports, saved, modified, and otherwise
manipulated in the same manner, no matter which
syntax was used to retrieve the data.

Every QBE query in QMF is translated into an equiv-
alent SQL form. That is, every query submitted to
the relational data base manager by QMF is either an
SQL query composed by the user or an SQL query
translated from QBE to SQL.

There are a number of benefits derived from trans-
lating QBE to an equivalent SQL form:

SQL queries are parsed by the relational data base
manager. If QBE queries were not translated to SQL
by QMF, a separate parser would have to be built
into every relational data base manager supported
by QMF for both QBE and SQL.
SQL provides the standard set of query functions
supported by QMF. To guarantee that QBE does not
diverge from the standard, QBE (and any other
language syntax that may be supported by QMF)
must be translatable to SQL. (Since QBE is depend-
ent upon SQL for the function that it may provide,
the QBE in QMF is different from that originated
and defined by Zloof.)
The parsing of a QBE query can easily include
translation to a “flattened” or linear form that can
be made available to the user as an alternative to
the graphic form. In QMF, it would be pointless to
provide other than SQL as that linear form.

IBM SYSTEMS JOURNAL, VOL 23, No 2.1984

their assistance in preparing this paper.

Appendix: Sample tables

The tables referenced in the examples in this paper
are on the following page.

Cited references

1. Query Management Facility, General Information Manual,
GC26-407 I , IBM Corporation; available through IBM branch
offices.

2. Query Management Facility, User’s Guide and Reference
Manual, SC26-4100, IBM Corporation; available through
IBM branch offices.

3. IBM Database 2 General Information, GC26-4073, IBM Cor-
poration; available through IBM branch offices.

4. SQLIData System General Information, GH24-5012, IBM
Corporation; available through IBM branch offices.

5. G. Sandberg, “A primer on relational data base concepts,”
IBMSystems Journal 20, No. 1, 23-40 (1981).

6. C. J. Date, An Introduction to Database Systems, Addison-
Wesley Publishing Company, Reading, MA (1977).

7. M. M. Zloof, “Query-by-Example,” AFIPS Conference Pro-
ceedings, National Computer Conference 44,431-438 (1975).

8. M. M. Zloof, “Query-by-Example: A data base language,”
IBM Systems Journal 16, No. 4, 324-343 (1977).

9. M. M. Zloof, “Query-by-Example: The invocation and defi-
nition of tables and forms.” Proceedings of the 1st Interna-
tional Conference on Very Large Data Bases (September
1975).

10. Query-by-Example Terminal User’s Guide, SH20-2078, IBM
Corporation; available through IBM branch offices.

1 I . IBM Database 2, Introduction to SQL, (3226-4082, IBM
Corporation; available through IBM branch offices.

12. D. D. Chamberlin et al., “SEQUEL 2: A unified approach to
data definition, manipulation, and control,” IBM Journal of
Research and Development 20, No. 6, 560-575 (1976).

13. M. W. Blasgen et al., “System R An architectural overview,”
IBMSystems Journal20, No. 1,41-62 (1981).

Reprint Order No. (3321-5214.

Joseph J. Sordi IBM General Products Division, Santa Teresa
Laboratory, P.O. Box 50020, Sun Jose, Calqornia 95150. Mr.
Sordi is a Senior Planner in the Advanced Language Products
department at the Santa Teresa Laboratory. He joined IBM in
1966 at the IBM Gaithersburg facility, where he participated in
the design and implementation of the Generalized Information
System (CIS) and the early design of the Interactive Query Facility
(IQF) language. He was the manager of IQF development and
then of Advanced Text Management System (ATMS) develop
ment before joining his present department, where he did the
design and implementation of the Query-by-Example (QBE) sup
port in the Query Management Facility (QMF). Mr. Sordi has
received an IBM Invention Achievement Award as coinventor of
the algorithm used to translate QBE to the Structured Query
Language (SQL) in QMF. He continues to work in the area of
query languages at Santa Teresa. He received a B.S. in mathematics
and philosophy from the University of Scranton in 1960.

SORD 149

EMP Table

NAME EN0 DNO MGR SAL OTlME

Petra Davis
Frank Cantrell
Carol Campbell
Janet Hill
Angelo Divisiero
William James
Richard Gomez
Ann Marie Swanson
Randolph Drew
Janet Could
Timothy Haroldson
Steve White
James Vanzant
Joseph Russell
Pamela Griffith
Vernon Collins
Sharon Rostege

775
529
299
349
284
209
182
125
362
238
579
382
234
787
36 1
948
27 1

46
77
46
12
51
87
51
46
23
77
12
87
46
87
23
73
51

299
182
182
182
299
238
014
182
299
I82
299
238
182
299
238
299
238

10750
9650

17500
8000
6800
5 500

25500
13500
11700
2 1000
12500
16500
1 I000
18000
8500

12400
6 100

500
800

1200
1500
250

I340

-

-

* 1100 -
-

780
2300
1280
650
40

-

EPT Table

DNAME

Sales
Payroll
Accounting
Publicity
Development
Applications
Systems
Recruiting
Communications
Media
Publications
Printing
Classified
Systems Analysis
Programming

DNUM

23
46
77
18
49
33
13
44
21
37
12
87
72
55
51

DIV

510
404
404
510
121
121
131
302
20 1
20 1
20 1
111
111
131
111

LOC

SJ
SA
SA
SJ
LC
LC
LC
LC
MI
MI
MI
SJ
SJ
LC
LG
__

HQLOC Table
r DIV DV# SAL LOCN NAME

Kenneth Jamison
Harold Smith
Peter Osgood
Solomon Esterman
Richard Meinhardt
James Hershey
Merian Stiller
Ellen Goodman
Salley Peterson
Michael Douglas
Michael Buckley
Robert Hershfeld
Peter Langan
Daniel Magana
Hunan Choy
Evelyn Gallagher
Geoffrey Mei
John Jones

EN0

014
888
385
112
912
32 1
989
111
195
141
629
438
666
235
181
004
657
040

Manufacturing
Publicity
Personnel
Accounting
Manufacturing
Marketing
Manufacturing
Publicity
Markting
Accounting
Manufacturing
Manufacturing
Marketing
Manufacturing
Personnel
Publicity
Accounting
Accounting

121
20 1
302
404
131
5 10
111
20 I
510
405
121
121
5 IO
111
302
20 1
405
405

60000
15750
16500
42000
24000
23000
I8000
36000
14000
22000
19500
I7500
22000
48000
33000
45000
26000
24000

Scranton
New York
Scranton
Blakely
Blakely
New York
Blakely
New York
New York
Hamson
Scranton
Scranton
New York
Blakely
Scranton
New York
Hamson
Hamson

1

IBM SYSTEMS JOURNAL, VOL 23, NO 2.1984

