Playback: A method for
evaluating the usability of
software and its
documentation

Human factors evaluations of software products and
accompanying user publications must be conducted
so that developers can be certain that the target user
population can learn to use the product with a mini-
mum of difficulty and be able to perform the intended
tasks efficiently. A methodology is described for ob-
taining objective measures of product usability by col-
lecting performance data on the user interface without
affecting the user or the system being evaluated. The
log of stored activity is later played back through the
host system for analysis.

Developers of programs and their documentation
can no longer expect that their products will
be used exclusively by data processing professionals.
Therefore, these products must be easy for all in-
tended users to learn and use. We are regularly
reminded of this fact by product advertising in all
popular communications. Attention must be focused
on the personal interfaces to products and systems
to ensure their usability. Human factors specialists
are now assisting in the product development proc-
ess. These specialists have the following roles in
product development: (1) they provide advice and
counsel on the user-interface design, (2) they inter-
pret design guidelines, (3) they compare alternate
designs, and (4) they conduct product evaluations.

Comparisons of alternate designs and product eval-
uations require that the products be tested. Human
factors testing of hardware components of computer
interfaces has been performed frequently, but the
testing of software has been limited primarily be-

82 NEAL AND SMONS

by A.S. Neal
R. M. Simons

cause of the complexity of the task. Tests of the
usability of software products and their explanatory
publications need to be conducted to be certain that
the target user population will be able to learn to use
each product with minimum difficulty and apply
them with the maximum efficiency that their devel-
opers intend.

More than a single test is usually required to accom-
plish these usability goals. For example, an initial
test yields information that can be given to product
development and publications groups for corrective
action. After indicated changes to the product, a
second test is made to determine whether those
changes have alleviated the problems discovered in
the first test and to detect additional problems that
the changes may have caused. Frequently, this proc-
ess is repeated several times.

The earlier in the development cycle that testing
begins, the more efficiently product developers can
make changes. Testing can begin long before the
coding phase of the development cycle by employing
prototypes of the user interface.

© Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




The purpose of usability testing is to determine
whether a product is easy to learn and use, as well
as to detect areas for improvement. Usability goals
need to be specified in terms of ease-of-use criteria
that can be measured. An objective test must consist
of typical users actually working with a product.
Observations and measurements of users’ perform-
ance can be recorded during and after training.
Users’ comments, suggestions, and preferences
should be solicited only after they have had some
practical experience with a product.

Usability evaluation. In usability testing, the test
objectives and scope must first be defined, and a
decision as to what parts or aspects of a product to
test should be included. For example, the test might
be designed to evaluate the user interface of an entire
product, or the focus might be on such individual
features as the following:

Command syntax.

Task procedures.

Screen layout and context.
Menu navigation.
Messages.

On-line help facility.

¢ Publications.

¢ Training.

e System response time.

Operating software is needed for those parts of a user
interface to be tested. If the testing is to be done
before actual code is available, a prototype of the
user interface can be created. Prototypes can range
in complexity from simple straight-line simulations
to functioning interfaces. Bury' used a straight-line
simulation in a usability evaluation of a record-
selection language for a word-processing machine.
In that evaluation, if the query statement was correct,
a canned correct result was displayed. To simplify
the simulation, an incorrect query result was not
presented; instead, only a message stating that the
query was incorrect was presented. In the same re-
port, Bury also discusses using an elaborate proto-
type of a user interface to a programming language,
where most of the product’s edit and display func-
tions actually worked. Prototypes are also useful in
comparing design alternatives, because the construc-
tion of a prototype is much easier and less expensive
than producing multiple versions of an actual prod-
uct.

Test software must run on a system that provides at
least as short a system response time as that expected

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

with the final product in a field environment. Exces-
sive delays may adversely affect the user’s learning
and the operation of the product. The terminal hard-
ware also should be typical of the devices expected
to be used with the software in the field.

It is important to provide the
subjects with motivation
approximating that provided by a
potential employer.

The user documentation for a product can and usu-
ally should be tested at the same time as the software.
Current drafts of product tutorials, programmers’
guides, and reference books should be obtained.
Decisions must be made concerning which books or
parts of the books should be used and evaluated.

The target user population for which a product is
intended must be determined; product specifications
are often vague about intended users. Representative
test subjects are selected from the population of
intended users. If test subjects from this population
are difficult to obtain, surrogate users are identified
and agreed upon by all parties involved. Even when
test subjects are obtained from an appropriate user
population, it is important to provide the subjects
with motivation that approximates that provided by
a potential employer.

Another essential ingredient for a usability test is the
selection of tasks for the users to perform with the
product. Test goals determine the types of tasks
selected. If the objective is to measure the effective-
ness of a training program or tutorial, one of the
tasks is the training itself, including required exer-
cises. Subsequent to training, the users should be
asked to perform a selection of tasks designed to
measure how well they have learned to use the
various features of the product. Other tasks can be
employed to assess usability and productivity. These
tasks should be representative of the types of activi-
ties the ultimate users of the product will perform.

NEAL AND SMONS 83




Usability testing must initially be conducted in a
controlled environment. To obtain valid and reliable
usability measurements, the tester must know how

Comparative measurements of
usability can be made on
alternate product designs.

the user was trained, what portions of the system
were available, and what testing tasks the user per-
formed. Later, field studies can be run to identify
special problems associated with the integration of
the product into an actual working environment.
Erdmann and Neal? discuss further the relative pur-
poses and merits of controlled laboratory and field
studies.

Finally, systematic measurements must be made of
user performance in order to obtain the quantitative
and qualitative information needed to determine the
level of usability of the product. Measurements of
user performance are useful for comparing a current
product with earlier versions of that product to see
whether the revisions have yielded improved per-
formance. Comparative measurements of usability
can be made on alternate product designs. Human
factors specialists can analyze, summarize, and in-
terpret these measurements in order to recommend
changes in both the software and the documentation
to optimize product usability.

Measurements to be collected are determined by the
goals of the test and the ease-of-use criteria that may
have been established for the product. Measurements
of ease of learning may include the following;

» Time required to complete a training program.

» Total time needed to achieve a given performance
criterion,

~ Observed difficulties in learning the product.

» User comments, suggestions, and preferences col-
lected in a postlearning interview.

Objective indicators of user difficulties could be the
following;:

84 NEAL AND SIMONS

» Frequency with which each error message is en-
countered.

» Inability to find needed information in the docu-
mentation.

» Frequency of use of each section of an on-line
help facility and the amount of time spent using
help.

» Number of times the user asks for special assist-
ance (perhaps by calling a simulated product sup-
port center).

» Efficiency with which the user employs different
features.

Measurements of ease of use after initial learning
may include the following:

» Time required to perform selected tasks.

» Success or failure in completing tasks.

» Frequency of use of various commands or lan-
guage features.

~ Time spent looking for information in documen-
tation.

» Measures of user problems similar to those used
to measure learning difficulties.

« User comments, suggestions, and preferences.

In this paper, we discuss a methodology we call
Plavback that we have developed for testing program
products and their documentation, We first discuss
this methodology in general and relate it to the
general principles just presented. We then discuss
Playback analysis, data collection and recording,
program management, and our experience with
Playback.

Playback methodology

The experimental methodology called Playback has
been developed at the 1BM Human Factors Center to
make the kinds of measurements just described, in
order to evaluate the usability of software and/or
software documentation. Playback evolved over sev-
eral years and has been employed at the Human
Factors Center to evaluate a variety of software
packages operating on systems ranging from stand-
alone word processors to large multipurpose com-
puters. Several of these studies are presented in the
last section of this paper.

The central idea of Playback is that, while a user is
working with the system, the keyboard activity is
timed and recorded by a second computer. This
stored log of activity is later played back through the
host system for observation and analysis. Thus, the

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




methodology is noninvasive in that the data-collec-
tion programs are external to the product being
evaluated, and the method is nonintrusive because
the data collection does not infringe upon the user’s
activities.

Basic system operation

Figure 1 is a block diagram of the basic testing
system. The user sits in front of a terminal that is
attached to a host system. The user’s keyboard is not
connected directly to the display terminal or to the
host. Instead, the keyboard is connected through
interface logic to the Human Factors Center labora-
tory computer.

The laboratory computer time-stamps and re-
cords each keystroke. The time recorded is the cu-
mulative time in milliseconds since the start of the
testing session, The laboratory computer then trans-
mits the keystrokes to the keyboard interface of the
host system terminal. All the data-collection pro-
grams run on the laboratory computer. In contrast,
if data-collection programs were to reside in the host
system, details of all keying activity, including ac-
curate timing information, might be lost because
some computer terminals send nothing to the host
until certain interrupt keys are used. With data col-
lection being conducted in the laboratory computer,
every keystroke can be timed and recorded.

No modifications are necessary to the host computer
software that is being evaluated. The host software
may be actual product code or a prototype of the
user interface to a software product under develop-
ment.

Session initialization. The auxiliary display shown
in Figure 1 is used to initialize the test session, to
present task instructions, and to display the Playback
analysis. The usability evaluation is divided into
separate testing sessions. A session can consist of
reading and doing exercises in one chapter of a
tutorial, or it can include the execution of one task
of a performance test. Before beginning a test session,
the experimenter usually sets up the host system to
the state at which the user begins execution of a
particular task that involves the software under eval-
uation. In addition, the experimenter can enter in-
formation that identifies the subject, task, and test
conditions.

Whether reading and doing exercises or executing a
performance test, both objectives are accomplished

1BM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Figure 1 Configuration of the Playback system

by software switches in the Playback program on the
laboratory computer. A unique combination of
switches controls the connection to the host system.
One switch determines whether the keystrokes will
be transmitted to the host. Another switch deter-
mines whether keystrokes will be interpreted and
recorded by the laboratory computer. The status of
both switches is shown on the auxiliary display.

When setting up the host system for a session, the
experimenter uses these switches to turn the host
system on and the laboratory system off. The labo-
ratory system automatically uses the opposite switch
positions (host off, laboratory on) when accepting
identifying information about the session. Both host
and laboratory switches are turned to on just before
the user begins to work.

Session identification information is provided to the
laboratory computer by selecting I (Initialize a new
test session) from the primary Playback menu shown
in Figure 2. The program then prompts the experi-
menter for a subject (user) number, session number,
and condition number. In subsequent sessions, the
previously entered subject and condition numbers
will be displayed for verification, and the session
number will be incremented by one. These numbers
are displayed one at a time and are verified by the
experimenter by keying the Line Return key. Cor-
rections can be made by backspacing and rekeying.

In the final step in this initialization process, the
Playback program requests the experimenter to ver-
ify all the identifying numbers. If the experimenter
indicates that the numbers are incorrect, the program
allows the experimenter to step through the numbers
again to make corrections.

NEAL AND SMONS 8§




Figure 2 Primary Playback menu

Playback Primary Selection Menu

Make a selection by typing the one-letter abbreviation.

Analyze a subject's test session
Delete a test session
Initialize a new test session

Status information about test sessions on disk

-4 »w - g »

Terminate Piayback program

These session identifying numbers are retained with
the data collected during the session. The condition
number identifies experimental conditions such as
order of presentation of tasks or alternate product
designs being tested.

Task description. After the experimenter verifies the
identifying numbers, the message WHEN READY,
PRESS SPACE BAR is displayed on the auxiliary screen
by the program. After ensuring that the appropriate
documentation is available to the user and that the
host system is ready, the experimenter leaves the
room. When the user presses the space bar, the
Playback program displays on the auxiliary screen a
description of the required task to be performed in
this session. The description can be as simple as
“Read Chapter 3 of the tutorial and do the prescribed
exercises using the ABC system,” or as extensive as a
complete description of a computer program to be
written on the host system.

Keystroke monitoring. The user now attempts to
accomplish the task, using the host system software
and appropriate documentation. All keystrokes
made by the user are time-stamped and recorded for
later analysis. In addition, the Playback program
sends to the host system a predetermined interrupt
if no user vaterrupts have occurred during a selected
time interval. This is to prevent automatic logoff on
some systems.

Documentation monitoring. We are sometimes inter-
ested in evaluating not only the user’s interactions
with the software but also with the documentation.
We want to know how easily the user can find the
information needed to solve a problem. In these
evaluations, an observer in a separate room monitors
the use of the documentation or book activity via

86 neaL AND siMons

television. Figure 3 shows a typical observation sta-
tion arrangement. One television monitor provides
an overview of the work station, giving the observer
a view of the user, display, keyboard, and documen-
tation. This monitor is used to determine whether
the user is looking at the terminal or the documen-
tation.

A second monitor shows a close-up of the documen-
tation or books available to the user. Large page
numbers are written in the books so that they are
readable on the television monitor. Although the
printed matter is not generally readable on the mon-
itors, the observer has a copy of the books in the
observation room for reference. The user is required
to keep the book or books within certain confines of
a table so that they will be within the range of the
camera. Alternatively, a book box that contains a
platform for the book and a mount for lights and
camera is sometimes employed. The book box per-

The observer may enter
observation codes and comments
about the user’s activities.

mits the user to move the book around for comfort-
able reading without disturbing the relative positions
of camera and book.

In addition to the overview monitor and the book
monitor, the observer sometimes employs a slave
display that shows the identical information that is
on the user’s host system display. The observation
station is also equipped with a keyboard-display
terminal connected to the laboratory computer. An
example of this display is shown in Figure 4. The
subject, session, and condition numbers established
during session initialization are shown at the top. At
the bottom of the screen is a readout that shows the
cumulative session time.

In the center of the display appear three columns,
labeled TIME, CODE, and COMMENT. The observer may
enter observation codes and comments about the
user’s activities. These entries are time-stamped and
recorded by the laboratory computer. The time re-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




corded is the cumulative session time—the same
time indicator recorded with the keyboard activity.

Five-character alphanumeric codes can be used. The
experimenter selects easy-to-remember codes to de-
note such specific book activities as, for example,
using the Index, browsing in Chapter 3, reading page
42, or looking at page 19 while keying.

The cursor on the observer’s display is initially lo-
cated in the code field. When the first keystroke of a
code is entered, the current session time is displayed
in the time field. Corrections in an entry can be
made with the back-space key. End of the code is
signaled by pressing ENTER or TAB. If TAB is pressed,
the cursor moves to the comment field to allow the
experimenter to enter a comment of any length. If
the entry is too long to be displayed on that line, the
cursor is automatically moved to the next line in the
comment field. Alternately, the observer can move
the cursor to that location using the line-return key.
An enter key signals completion of that comment.

The observer station is usually manned by the ex-
perimenter during pilot testing to debug procedures
and tasks and to establish an appropriate set of codes.
Later the observer station may be manned by a
laboratory assistant who is not required to under-
stand the host system operation or detaiis about the
tasks being performed.

Requests for assistance. A function key is provided
the user to request assistance from the experimenter.
This assistance is separate from and in addition to
any on-line help function that might be available in
the host software. The user might request assistance
for various reasons including lack of understanding
of task instructions, inability to solve the problem,
or malfunction of the host system. The Playback
program acknowledges requests with an audio signal
in the testing room, a signal light outside the testing
room, and messages written on the user’s auxiliary
screen and the observer’s display. This assistance
condition is turned off and the user resumes work
upon a second depression of the Assistance key.

If an observation station is employed in the evalua-
tion, information about the nature of the assistance
request and the type of assistance given is recorded
via codes and comments entered on the observer’s
terminal.

Session completion. The user presses a function key
labeled DONE to indicate that the task is completed

IBM SYSTEMS JOURNAL, VOL 23. NO 1. 1984

Figure 3 The observer station

Figure 4 Example observer display

Subject 12 Session 1 Condition 4

TIME CODE COMMENT

0:03:59 P42 Studying Programmers Guide.
Seems confused!
0:04:15 M1 Subject requested a coffee break
0:18:51 M2
0:18:57 P83
0:20:38 P19K
0:22:02 RTC Searching for topic in Table of Contents
0:22:46 R178

0:23:03

satisfactorily. The Playback program acknowledges
the done key in a manner similar to its response to
a request for assistance. The session timer is stopped
immediately, but the observer is allowed to complete
any code or comment entries already started. Finally,
the observer’s display and the user’s auxiliary display
are erased and the summary data for this session are
stored.

Stored with the task description for a session is a
code indicating whether this is a terminal or contin-
uous session. If it is a continuous session, the subject,
session, and condition numbers are displayed for the
next session, along with the message to press the
space bar when ready. The observer’s display is also
updated for the next session. The user may take a
break at this point because the session timer is not
started until the space bar is pressed. Continuous
sessions can be employed only if no setup of the host
system is required between sessions.

NEAL AND SMONS 87




Figure 5 Example statistics display

SUBJECT 12 SESSION 1 CONDITION 4
ENTER CR CLEAR ERASE INPUT ERASE EOF DEL
15 2 3 0 1 25
RIGHT LEFT DOWN upP RIGHT TAB LEFT TAB
0 12 0 0 0 1
PF1 PF2 PF3 PF4 PF5 PF6
2 0 1 0 0 5
PF7 PF8 PF9 PF10 PF11 PF12
0 0 0 0 0 3
PA1 PA2 FIELD MARK DUP INS MODE TEST REQ
0 0 0 0 1 0
RESET HELP
3 1
--------------- TIME (Sec) ---------=---=- --- KEYSTROKES ---
1st KS Penultimate KS Session Help Interrupts Total
12 1782 1800 125 29 231

If DONE is pressed for a terminal session, a message
on the user’s auxiliary screen asks him to wait for
the experimenter, At this point, the experimenter
may request the Playback program to present sum-
mary statistics on the user’s auxiliary screen. Figure
5 shows a sample of such a display. Shown are the
subject, session, and condition identifiers; frequency
counts of functions, commands, and keystrokes; and
various timing measures. The experimenter may
desire to discuss some of these measures with the
user for motivational or tutorial purposes.

During this break between sessions, the experimenter
has the opportunity to make any setups on the host
system that may be necessary for the next session.
The experimenter has the capability to abort a ses-
sion and readjust the session identifiers, in the event
of operational difficulties.

Playback analysis

Playback analysis is the key feature of the Playback
program. Each session is separately stored in the

88 NEAL AND SIMONS

laboratory computer. The experimenter usually con-
ducts a Playback analysis of the user’s performance
after the user has completed all required sessions.
There are occasions, however, when the playback
is done immediately after a session with the user
present, in order to obtain supplementary informa-
tion about the user’s thoughts or reasons for partic-
ular actions while performing the task. Playback
analysis can be performed many times if necessary.

Playback setup. To conduct a playback analysis, the
experimenter selects A (Analyze a subject’s test ses-
sion) from the primary Playback program menu
shown in Figure 2. The Playback program running
on the laboratory computer asks the experimenter
for the subject (user) and sesston numbers to be
analyzed. The experimenter then uses the special
switches, discussed earlier, to turn off the laboratory
computer and turn on the host system, in order to
set up the host program to the state that existed prior
to the time the user began the session to be analyzed.
The special switches are then set so that only the
laboratory computer is on.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




Playback pacing. The experimenter then requests
Playback to pace through the user’s actions during
the session. This is accomplished by pressing one of
four function keys to cause the laboratory computer
to send one of the following sequences of user key-
strokes to the host system:

¢ Next keystroke.

¢ All characters keyed up to and including the next
function selected.

e All characters and functions up to and including
the next interrupt.

e All characters up to and including the next func-
tion with the same time intervals as when origi-
nally keyed by the user.

Each time the experimenter presses one of these
function keys, the laboratory computer sends the
appropriate characters to the host system so that the
host terminal display appears just as it appeared to
the user at that same point in the test process. The
experimenter may switch between pacing methods
at any time during the Playback analysis.

Playback display. At the same time the laboratory
computer transmits the characters to the host system

it also writes the characters on an auxiliary display.
An example of the display the experimenter might
see while pacing through the user’s actions is shown
in Figure 6. The previous function or interrupt the
user selected is displayed along with the cumulative
session time at the point the function was keyed. All
the keystrokes up to the next function or interrupt
are shown on the following lines, along with the
session time when the first keystroke was made. The
next line shows the subsequent function or interrupt.
The display also shows the time interval between
entering the two functions. Also shown on the dis-
play are the observer’s codes and comments that
were entered from the observation station during
this period, along with the session time when they
were entered. The next observer code and comment
subsequent to the current time are also shown.

Occasionally, when pacing through a session, the
experimenter desires to back up and replay a short
segment of the action. A back-up key is provided for
this purpose. When the back-up function is used, the
Playback display shows the previous interrupt. One
can back up all the way to the beginning of the
session if that is desired. Because it is not feasible to
back up the host system, the host display remains

Figure 6 Sample Playback screen

Subject 12 Session 1 Condition 4

0:20:30 CLEAR

0:20:55 A = (22/7) * R¥*2

0:21:20 ENTER Function interval: 50 sec.

OBSERVATIONS

120:38 P19K
22:02 RTC Searching for topic in Table of Contents

PF1: Next keystroke PF2: Next function PF3: Next interrupt
PF4: Real time PF6: Set time <--: Backup CLEAR: Abort

Syntax error because referring to wrong page in
Programmers Guide

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984 NEAL AND SMONS 80




static until forward pacing is resumed and catches
up to the point where the backing-up began.

Problem determination and recording. As the exper-
imenter paces through the user’s activity, he can
enter additional codes and comments into the data
stream in the same way they were entered by the
observer during the session. These codes and com-

A detailed analysis requires the
experimenter to be very familiar
with the software, documentation,
and user’s task.

ments may be additional observations not noted
originally, or they may be indicators of certain errors
or problems noted during analysis. These codes are
also time-stamped with the cumulative session time,
so that in later review there is a record of the point
in the session at which errors or problems occurred.

A detailed analysis of the user’s actions during Play-
back requires the experimenter to be very familiar
with the software and documentation being evalu-
ated, as well as the nature of the user’s task on that
session.

Data collection and recording

Tape records. All user keystrokes and the cumulative
session time in milliseconds are recorded on tape
during the session. Also recorded on tape during the
session are the experimenter’s codes and comments
entered from the observation station (along with the
associated session time). In addition, the following
statistics are collected during the session and written
on tape at the conclusion of the session:

¢ Time from session beginning (space bar) until first
user keystroke.

» Time from session beginning until last keystroke.

o Cumulative time in an “Assistance” condition.

s Total session time from session beginning to DONE
key.

90 NEAL AND siMONS

+ Frequency of use of each function key.
« Number of requests for assistance.

Also recorded on tape are the experimenter codes
and comments entered during Playback analysis. All
data on tape for a session are preceded by an iden-
tification record containing the subject (user), ses-
sion, and condition numbers. The tape records are
for archival purposes, allowing later analysis of other
information that was not required at the time of
testing.

Disk records. In addition to the above tape records,
a disk data set is written by the Playback program to
include the user’s keystrokes and the codes and
comments (entered both during the session and dur-
ing the playback analysis). This data set is used to
accomplish the Playback analysis. It may also be
displayed or printed by the experimenter. Several
options are available. The display or printout may
contain only the user’s keyboard activity, only the
codes and comments, or both. Figure 7 is a sample
printout of this data set, showing both types of
entries. The first column is the cumulative session
time in hours, minutes, and seconds. The second
column shows the codes entered by the observer
during the session and codes entered by the experi-
menter during Playback analysis. The third column
contains either the user’s keystrokes or the observer/
experimenter comments. If user keystrokes are
shown in the third column, the time field shows the
session time for the first keystroke, and the code field
remains blank. Function keys are listed on a separate
line. Continuation lines are allowed for the com-
ments, and these are indicated by a quotation mark
(“) in the code column.

Data analysis. The Playback program also allows the
experimenter to perform limited analysis of this data
set to obtain measurements such as the following:

*» Frequency of selected experimenter-entered codes.

« Time between selected pairs of codes.

» Time between selected code and next user key-
stroke.

This information may be accumulated over a single
session or over many sessions. If needed, more so-
phisticated analysis of the user- or experimenter-
entered data may be performed using ad hoc pro-
grams for manipulating either the disk or tape rec-
ords.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




Figure 7 Printed record of a portion of a session

SUBJECT 40 SESSION 1 CONDITION 40

TIME CODE SUBJECT KEYSTROKES / OBSERVER COMMENTS

0:03:59 P42 Studying Programmers Guide
" Seems confused!
0:04:15 M1 Subject requested a coffee break
0:18:51 M2
0:18:57 P83
0:20:30 <CLEAR>
0:20:38 P1SK
0:20:55 A = (22/7) * R¥*2
0:21:20 <ENTER>
0:21:20 *E5 Syntax error because referring to wrong page in
" Programmers Guide
0:22:02 RTC Searching for topic in Table of Contents
0:22:38 <CLEAR>
0:22:46 R178
0:23:30 E
0:25:00 JPCOPY WS
0:25:14 H ASKED ABOUT LOADING FROM PUBLIC LIBRARY
" AFTER EXPLAINING, SHE KNEW TO CLEAR WS
" AND USE PCOPY
0:25:59 JPCOPY CREDIT GETANS
0:26:22 <ENTER>
0:26:29 JPCOPY CREDIT GETINFO
0:26:42 <ENTER>
0:26:51 JFNS
0:26:53 <ENTER>
0:27:02 B
0:27:03 54
0:27:13 E
0:27:19 ws2 C2
0:27:33 <ENTER>
0:27:51 B
0:27:57 )
0:27:598 E
0:28:00 PCOPY 3 WS2 'C2
0:28:11 <ENTER>
0:28:36 B
0:28:37 56
0:28:43 57
0:28:58 <PF8>
0:29:01 <CLEAR>
0:29:04 E
Program management Factors Center computer. Each copy controls one
user and optionally one observer station. All exper-
Concurrent experiments. Multiple copies of the Play- imental data are recorded on a community tape that
back program may be loaded in the same Human is later separated by user.?

1BM SYSTEMS JOURNAL, VOL 23, NO 1, 1984 NEAL AND SIMONS 91




Figure 8 Primary menu for the Loader Program

Playback Loader Primary Selection Menu

Make a selection by typing the one-letter abbreviation.

Add or modify instructions.
Delete instructions for one task.
List task numbers stored.

Specify task sequence for a condition.

4 »w rr o »

Terminate Playback Loader program.

Job parameters. Before the Playback program can
be executed, multiple copies of the program must be
created, several data sets must be created, and data
definitions must be established for each data set used
by Playback. In order not to burden the experimenter
with programming details, an interactive EXEC that
performs all the preceding functions is provided. The
EXEC interrogates the experimenter for the following
parameters of his experiment:

» Name of experiment.

e Number of subjects’ data to be stored concur-
rently.

* Maximum number of keystrokes per subject.

« Maximum number of sessions per subject.

e Maximum number of observations per subject.

« Average length of task instructions.

When the Playback program is initially loaded, such
job parameters as the following are specified:

« Input and output computer ports for the various
keyboards and displays.

* Whether an optional observation station is used.

» Whether separate task descriptions are to be used
or a common description as a default.

¢ Default maximum session time.

* Whether end-of-session statistics should be dis-
played.

These and other job parameters are saved. Thus,
when Playback is later executed, only those param-
eters that the experimenter wants to change need be
entered. Ordinarily all parameters remain un-
changed from run to run.

File management. The selection of S (Status infor-
mation about test sessions on disk) on the Playback

92 NEAL AND SIMONS

program’s primary menu shown in Figure 3 allows
the experimenter to note the disk status by displaying
the number of sessions recorded on disk for each
subject number. Also shown is the percentage of
allocated disk space that is filled. The selection of D
(Delete a test session) allows the experimenter to
delete sessions no longer needed on disk.

Playback loader. A separate interactive program,
which also runs on the same Human Factors Center
computer, performs several functions necessary for
preparing an experiment using the Playback pro-
gram, The primary display menu for this Playback
Loader program is shown in Figure 8.

The selection of item A (Add or modify instructions)
on the Playback Loader menu allows the experimen-
ter to enter or modify the task descriptions presented
to the test user at the beginning of each session.
These task descriptions are entered with an arbitrary
identifying number. Figure 9 shows a sample display
from this function of the Playback Loader program.
In addition to the entry of the task description, this
function requests a maximum time to be allowed for
the task (0 specifies no limit). Also, a specification
can be entered to indicate whether, at the conclusion
of the task, the experimenter should be called (i.e., a
terminal session) or whether the next task should be
presented (i.e., a continuous session).

Selection of item D on the menu (Delete instructions
for a task) allows the experimenter to delete one of
the previously entered task instructions. Selection of
item S on the Playback Loader menu (Specify task
sequence for a condition) allows the experimenter to
specify the order of presentation of the tasks for each
test condition. Function keys are used to insert and
delete tasks from this list. Selection of item L (List
condition numbers stored) lists the condition num-
bers for which task indexes have been entered.

It is not necessary to use Playback Loader before
using the Playback program if defaults are preferred.
The default task instruction is the following: COM-
PLETE THE TASK FOR SESSION . In the default, all
test users receive the tasks in the same order, all
sessions are terminal sessions (experimenter is
called), and the maximum session time is the same
for all sessions.

History and applications

The first application of the Playback process at the
Human Factors Center was in a study of word-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




Figure 9 Sample task description

S

Maximum time: 10

PF3: File PF4: Max time

#43: Create a new workspace to be stored in your private library. The
name of the new workspace should be NEW. The new workspace should
contain all of the functions that start with the letter D in the
workspace named CREDIT. Also, NEW should contain the variables that
start with the letter C in the workspace named WS2.

PF5: Continue/stop

Continue/stop: C

PF12: Cancel

processing machine functions and displays con-
ducted in 1980. Users’ keyboard activity, which had
been collected earlier while they performed selected
editing tasks, was replayed through a simulated word
processor in order to tutor the users. In this study,
the programs simulating the host system and the
programs for data collection and for playing back
tasks all ran on one of the 1BM System/7 computers
in the Human Factors Center.

Clauer* recognized the usefulness of the playing back
of tasks as a method of data collection. He adapted
this technique in an evaluation of the self-training
material for a free-standing word-processing ma-
chine. The host system was an 1BM Displaywriter.
An early version of the Playback program ran on an
1BM System/7 computer. Keystrokes were collected
and recorded while users performed training exer-
cises and did test problems with the Displaywriter.
The users’ keystrokes were later replayed through
the Displaywriter in order to observe problems in
the use of either the systems or training book. These
problems were recorded by the experimenter during
the paced replay by entering error codes into the
Playback program to designate the section of the
training book where problems occurred. Experimen-
ter comments were also recorded.

The number and severity of user problems were the
primary data item collected, along with training

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

time, test completion time, and frequency of calls
for assistance. Four interactions of this test were
conducted, with modifications being made in the
training material as a result of the findings of each
interaction of the test. The process resulted in very
worthwhile improvements in the training, as re-
flected in several of the performance measures. There
were fewer requirements for assistance, fewer signifi-
cant difficulties, shorter criterion test times (reflect-
ing greater retention), and also somewhat higher
subjective ratings of the training manual and skill
proficiency.

The Displaywriter test clearly proved the utility of
the Playback approach for the evaluation of the
effectiveness of training material for a small stand-
alone system. The next application of the technique
at the Human Factors Center was in a study of how
best to introduce novice users to the concepts of an
interactive data base query language. The host sys-
tem was a prototype of a query language running on
an 1BM System/370 vM system.

Additional Playback pacing methods were incorpo-
rated into the Playback program before its next use
in a human factors study of 18M BASIC by Bury.! The
study included an evaluation of a tutorial, an editor,
and other interactive aspects of the language. The
host system was, at first, a prototype running on a
vM system. The user learned how to use the language

NEAL AND SIMONS Q3




and editor from a tutorial that required exercises to
be entered on an 1BM 3277 Display Station. After
completion of training, users had to write a number
of programs using 1BM BASIC. User actions were
recorded and later played back through the host
system to observe user problems with both the soft-
ware and the training materials.

Six iterations of this study were conducted, with
improvements in both the system and tutorial being

Experiences with Playback
convinced us of the usefulness of
the methodology to evaluate both
training material and the software.

made after each test. The first iterations were con-
ducted using a prototype of IBM BASIC, while the later
tests were conducted with the actual product code.
No modifications were required in the Playback
program running on the laboratory computer to
accommodate this change. In almost all cases, im-
provements in user performance measures were
achieved with new versions of the system and tuto-
rial.

These experiences with Playback convinced us of the
usefulness of the methodology to evaluate both train-
ing material and the software itself. The program
was then completely rewritten to make it an efficient
general-purpose laboratory tool. This new general-
ized version of Playback was first used in an evalu-
ation of the training material for QMF, a data base
query facility. Later, Ogden and Boyle® used the
same program to compare three different methods
of report modification after completing a query of a
data base. Prototypes of the user interface for the
three methods ran on a vM system. The Playback
program was employed to conduct a replay analysis
of the users’ activities and to collect performance
data. The performance data that were obtained
clearly revealed the relative usability of the alternate
designs. The product developers were then able to
select for the product that design which yielded the
best user performance.

94 NEAL AND SIMONS

This version of the Playback program was also used
to study the usability of the advanced functions
available in 1BM BASIC. In this study, experienced
programmers attempted to write BASIC programs to
solve selected problems. They were required to use
one or more of the advanced features on each task.
The users needed the Language Reference Manual
to learn how to use the advanced features, since none
of the programmers were familiar with them. Al-
though the emphasis in this study was on the ad-
vanced features of the software, inadequacies in the
reference material were also revealed.

Late in 1982, several evaluations were planned for
new versions of programming languages in which
the emphasis was on the software documentation.
Modifications in the Playback program again ap-
peared to be called for. Since these modifications
were substantial, a whole new Playback program was
designed.

Coding of this new version was completed in the first
part of 1983. The largest addition to the program
was the capability of recording and displaying codes
and comments entered from an observer station.
The method of entering error codes and comments
during Playback analysis was also modified, as was
the method of storing the user’s keyboard activity.
Another major addition was the ability to display
task instructions for each session. The Playback
Loader program was developed to facilitate the entry
of these instructions as well as the entry of specifi-
cations for such other new options as continuous
sessions, varying task orders, and flexible session
time limits. A number of other changes were made
in the program to increase its utility and ease of
operation.

The current version has now been used to evaluate
the Application Programmers Guide and Language
Reference Manual for a new version of a program-
ming language. It has also been employed to test the
effectiveness of a primer for novice users of an inter-
active system under development.

The early versions of Playback were all programmed
to run on the Human Factors Center’s 1BM System/
7 computers. The latest version has been converted
to run on the Human Factors Center’s IBM Series/ |
computer network.

Although we feel that Playback is now a very flexible

and useful human factors data-collection tool, we
anticipate further improvements to be made as we

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




gain more experience using it in the evaluation of
software and software documentation.

Concluding remarks

The Playback methodology has proved itself to be a
very effective tool for objective evaluations and com-
parisons of software, including user interface design
and software documentation. The Playback program
incorporating this methodology has a number of
attributes that make it flexible and useful.

Playback is a general-purpose data-collection pro-
gram. No changes in the program are required from
one application to another. Even radically different
host systems (ranging from free-standing word proc-
essors to large multiple-user systems) can be moni-
tored with little or no modification of the Playback
program. Some setup, of course, is required for each
individual experiment. Such preparations as entering
task descriptions and various program options are
handled by the experimenter using interactive fea-
tures of the Playback and Playback Loader programs,
without requiring the services of the programmer.
The discussions in the previous section of the mod-
ifications made to the Playback program may have
implied the contrary, but these changes were en-
hancements to the general utility of the program,
and were not added specifically for any particular
experiment.

The Playback methodology requires no modification
of the host system software. All experimental control
and data-collection functions are in the Playback
program running on the laboratory computer.

The data-collection process does not intrude on the
user’s thoughts or activities. The user operates the
actual or prototype system in a separate room with-
out necessarily being aware of the extent of the data
being collected on his activities. The experimenter,
of course, tells the test user that his performance is
being monitored. The user, however, perceives no
time delay due to the Playback program capture of
keystrokes before transmission to the host system,
nor is he aware of any other interference.

The Playback program provides the unique capabil-
ity for replaying the user’s keystrokes back through
the host system for later analysis. This allows the
experimenter not only to know what keystrokes were
made while the user interacted with the host system,
but also allows the experimenter to see on the display
what the user saw at each point in the execution of

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

the task. The speed of Playback is controlled by the
experimenter. Where the user had no apparent prob-
lem, the analysis can proceed quickly. Where there
were problems, the experimenter can pace the review
more slowly or even back up and replay sections

An eight-hour day of user activity
can usually be analyzed in an
hour or two.

requiring careful analysis. Our experience has been
that an eight-hour day of user activity can usually be
analyzed in an hour or two, depending upon the
number of user problems, task complexity, and de-
tail of analysis desired. This is certainly much less
analysis time than would be required to review an
equivalent amount of user activity had it been re-
corded on video tape only.

Although the use of an observer station can be
somewhat labor-intensive, the station can be
manned by a laboratory assistant, thereby freeing
the experimenter for other work. This is possible
because problem determination is done during the
playback analysis, rather than during the session.

Finally, all user actions and observer entries are
recorded on-line. Data are thus immediately avail-
able for computer-aided summary and analysis.

Acknowledgments

The authors would like to express their appreciation
for the valuable contributions made toward the de-
velopment of the Playback methodology by a num-
ber of members of the Human Factors Center. Cal-
vin Clauer was the first to apply the technique as a
data-collection tool. James Boyle, Kevin Bury, Wil-
liam Ogden, and Barbara Isa used the technique in
early stages of development and suggested improve-
ments. Michael Darnell and Susan Wolfe debugged
both the latest System/7 and Series/l versions of
Playback. They also used the program in several
studies and helped improve the program’s utility as

NEAL AND sMONs 95




a general-purpose laboratory tool. The operation of
Playback would not be possible without the contri-
bution of Rob Cotton, who designed and built the
interface logic that allows Playback to be used with
a wide variety of stand-alone and terminal devices.
In addition, the authors acknowledge ideas obtained
from the 1BM Product Usability group in Atlanta,
Georgia, on techniques for monitoring the use of
documentation.

Cited references

1. K. F. Bury, Prototyping on CMS: Using Prototypes to Conduct
Human Factors Tests of Software During Development, IBM
Human Factors Center Technical Report HFC-43, IBM Gen-
eral Products Division, 5600 Cottle Road, San Jose, CA 95143
(February 1983).

2. R. L. Erdmann and A. S. Neal, “Laboratory versus field
experimentation in human factors,” Human Factors 13, No.
6, 521-531 (1971).

3. R. M. Simons, 4 Community Tape, IBM Human Factors
Center Technical Report HFC-27, IBM General Products
Division, 5600 Cottle Road, San Jose, CA 95143 (December
1977).

4. C. K. Clauer, “Methodology for testing and improving oper-
ator publications,” Proceedings of Office Automation Confer-
ence, American Federation of Information Processing Socie-
ties, San Francisco, CA (1982), pp. 867-873.

5. W. C. Ogden and J. M. Boyle, “Evaluating human-computer
dialog styles: Command versus form/fill-in for report modifi-
cation,” Proceedings of The Human Factors Society 26th
Annual Meeting, Santa Monica, CA (1982), pp. 542-545.

Alan S, Neal IBM General Products Division, 5600 Cottle Road,
San Jose, California 95193. Mr. Neal is the manager of the IBM
Human Factors Center in San Jose, California. In the twenty years
he has been with IBM, Mr. Neal has concentrated on designing
and conducting experiments with the aim of optimizing the inter-
face between computer systems and their users. Mr. Neal began
his career with IBM in 1964 when he joined the Advanced Systems
Division, where he worked as an engineering psychologist. In 1970
he transferred to the Research Division. He was a charter member
of the Human Factors Center when it was formed in 1973, and
was made a manager of interdivisional projects in the Human
Factors Center in 1974, In 1981 he became manager of the software
human factors group within the Human Factors Center. Mr. Neal
was promoted to Senior Human Factors Engineer and manager of
the Human Factors Center in August of 1982. He is a graduate of
Purdue University (B.S.) and Iowa State University (M.S.) in
experimental psychology. He has been an active member of the
Human Factors Society since 1963, and is currently serving that
organization as Publications Committee Chair and Managing Ed-
itor.

Roger M. Simons IBM General Products Division, 5600 Cottle
Road, San Jose, California 95193. Mr. Simons is a Senior Pro-
grammer in the Human Factors Center in San Jose, California. In
this assignment, he has developed programs that simulate the
operator interface and measure operator performance for IBM
products, including keyboards, displays, electronic typewriters,
word processors, software, and software documentation. Mr. Si-
mons joined IBM in 1955 at San Francisco, where he was an
Applied Science Representative. In this position, he assisted IBM

06 NEAL AND SIMONS

customers and IBM sales personnel in developing scientific com-
puting applications. Since 1959, he has held various programming
and management assignments in San Jose, including Manager of
the Engineering and Scientific Computation Laboratory. Mr. Si-
mons received a B.S. degree in mathematics from Stanford Uni-
versity and a Ph.D. degree in applied mathematics from MIT. He
is a member of the Association for Computing Machinery and
Sigma Xi, and is a former chairman of the Bay Area Chapter of
the ACM.

Reprint Order No. G321-5211.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984




